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Abstract: Motion in biology is studied through a descriptive geometrical method. We consider a
deterministic discrete dynamical system used to simulate and classify a variety of types of movements
which can be seen as templates and building blocks of more complex trajectories. The dynamical
system is determined by the iteration of a bimodal interval map dependent on two parameters, up to
scaling, generalizing a previous work. The characterization of the trajectories uses the classifying tools
from symbolic dynamics—kneading sequences, topological entropy and growth number. We consider
also the isentropic trajectories, trajectories with constant topological entropy, which are related with
the possible existence of a constant drift. We introduce the concepts of pure and mixed bimodal
trajectories which give much more flexibility to the model, maintaining it simple. We discuss several
procedures that may allow the use of the model to characterize empirical data.

Keywords: complex movement; iterated maps of the interval; symbolic dynamics; kneading
sequences; topological entropy

1. Introduction

Motion was one of the first topics considered in science. In fact, it was precisely from the study of
motion that was developed modern science. Before the discovery of the causes of motion, with the
development of dynamics and the concept of force with Newton, was important the comprehension of
the geometry of the trajectories—kinematics—with Kepler and Galileu. In biology, with the enormous
variety of phenomena and concepts, it is easy to be overwhelmed with information and interrelated
data. It is difficult to simplify as in physics. There are too many parts with non-negligible interactions,
characteristics of what is now called complex system. It is natural to develop stochastic methods,
as an extension of statistical mechanics methods, to obtain statistical regularities and from it to make
predictions about the long term behavior of the biological systems. It is necessary to give some apriori
assumptions in order to chose the appropriate distributions, or to consider a completely empirical
based approach in which machine learning with Bayesian methods, or others, can be employed without
an explicit stochastic model.

On the other hand, the natural quasi-stochastic behavior of many chaotic deterministic systems,
despite its eventually simple definition, may present an opportunity to explore new conceptual
approaches which are in fact part of the old dynamics.

Animal movement and dispersal is an essential aspect in a variety of phenomena considered
in biology, ecology and biogeography. Improvements on the subject depends on appropriate
mathematical methods and have impact on the study of spreading of diseases, population dynamics,
animal locomotion, and many other areas. The study of complex individual movement has attracted
much attention since Mandelbrot observed that certain types of trajectories exhibit scale invariance and
fractal properties. These properties are reflected in the type of distributions of the movement lengths,
for example, inverse power law-like tail. Much work in the literature on the subject follows this
perspective and it has been applied to different animal movements, from bird flight, insect movement
and human movement to large size animals such as whales and other.
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The methods used vary, ranging from pure stochastic, see for example the survey [1], machine
learning or mechanistic approaches. An important reference in this last direction of study is
Reference [2], where a conceptual framework for movement in ecology is proposed. Their approach
is general and includes certain components which determine the movement path. Three of these
components regard the individual and are: internal state, motion capacity and navigation capacity.
A fourth component, corresponding to the external factors, represents aspects of the abiotic and biotic
environment which affect the movement.

In Reference [3], the authors review literature on the agent based modeling approach allowing
to incorporate in simulations characteristics of animal behavior and the interaction with different
environments. Other methods are introduced and developed in References [4–6]. For example, state
space models appropriate to deal with biological and statistical features of satellite tracking data
and different methodologies of collecting data using statistically robust methods. The state-space
framework considers the internal state of the animal as a possible state variable which influence the
displacement, therefore allowing the transition between behavior states or modes, within the model.
This is important for the observed type of trajectory, since the animal may be migrating, searching for
water, foraging, exploring, and these types of behavior produce distinct types of trajectories.

In Reference [7], the authors refer to alternative methods for modeling animal trajectories with
hidden Markov models, where the modeling is based on existing non-observable states which are
governed by some probability distributions, for example, Markov chains. The authors discuss these
methods comparing them with the state-space model approach. The computational tractability and
mathematical simplicity are stressed as main advantages of the referred methods, and the authors
apply the models to changing behavior of the animals and to multiple animal movement description.

Until recently there remains some academic debate with respect to the stochastic nature of
animal movement and the appropriate length probability distribution in the characterization of animal
movements, in particular, regarding the importance or not of the Levy walk type. See, for example
References [8,9].

The objective of the present paper is to develop a model, introduced in Reference [10], which
simulate and classify different types of trajectories using a very simple iterated map of the interval—a
cubic map fb,d, depending on two parameters b, d ∈ [−1, 1]. The map fb,d produce the displacements in
each Cartesian coordinate through iteration. We consider that the produced trajectories are identified
as typical paths of certain animals which at some extent are isolated, with stable behavior, or exposed
to a constant external influence. The characteristics, patterns or irregularities of the trajectory are
codified in the symbolic description of the orbits of fb,d, through the alphabet {L, C, R}, corresponding
to the partition of monotonicity of fb,d. The iterated map is seen as a descriptive classifying tool,
establishing, through symbolic dynamics, a dictionary for trajectories. The main classifying tool is
the kneading invariant, Kb,d, of the map fb,d, which is composed by two symbolic sequences. These
sequences correspond to the symbolic itineraries of the critical points which are attractors for the
dynamics. Therefore, this pair of orbits determine the behavior of every orbit in the system. Roughly
speaking, we associate to a particular patch, or piece of trajectory, a symbolic sequence or a class
of symbolic sequences. Thus, the study of the possible trajectories and its properties can be made
enumerating symbolic sequences satisfying certain combinatorial constrains. On the other hand,
using ergodic theory for symbolic dynamics and for iterated maps of the interval we may derive the
probability distributions which are, in this case, a consequence of the model. The model introduced in
Reference [10] depends on a real number b which parametrizes the complexity of the trajectories in
the isolated case, since the topological entropy of the system depends monotonically on b. Here, we
include a new parameter d which serves to describe the existence of persistent drift affecting globally
the movement and models the effect of some constant external influence. This new parameter implies
the use of the topological invariant introduced by Sousa Ramos and his collaborators in Reference [11].
This invariant classifies and distinguishes dynamics with the same topological entropy, that is, allows
the characterization of isentropic trajectories—which are only possible with the introduction of an
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external influence provoking the constant drift. Typically, low topological entropy values give direct
motion, with very few changes in direction, or regular changes in direction. On the other hand,
high topological entropy gives large variation on direction and many different possible patterns of
changing direction.

The model is scale independent, since it can be applied directly from the microscopic scale to the
scale of the largest animal in earth. This is obtained through the choice of an external scale parameter
ε, which is related to the largest linear step possible for the particular animal.

Differently from the stochastic approaches, there is no fixed model of probability distribution.
In fact, there are many families of probability distributions, depending only on the chosen parameters
b, d or on the kneading invariant, arising from the long term dynamics of fb,d.

Although the model is deterministic, particular observed animal trajectories are not necessarily
reproduced in an exact manner. From the pattern of an observed trajectory, the number of consecutive
steps where the direction is approximately maintained are identified, as the changes in direction and
the consecutive steps of changing direction. Then, it is possible to produce a sequence in the referred
alphabet {L, C, R}, associated with the observed trajectory. Next, it is possible to determine, at least,
a class of kneading sequences which turns the observed sequence into admissible with respect to the
iterated map. In this case, the approximate values for the topological entropy and other invariants can
be computed, obtaining a characterization of the system which produces similar trajectories, as the
given one. This process still needs some details to be completed. It will be considered later, in a paper
dedicated exclusively on dealing with empirical data and experimental procedure to find the best way
to fit the bimodal trajectories on empirical trajectories.

The model, here discussed, is of interest at theoretical level taking into account the range and
variety of behaviors and trajectories for the simple deterministic system, many theoretical questions
may be posed. It is of numerical and simulation interest since it can be seen as a pseudo-random
number generator suitable for trajectory analysis, considering the chaotic behavior for certain values
of the parameters. We outline that for the mean square displacement of the trajectories, we obtain
diffusive type of behavior, with exponents close to 0.5, sub-diffusive, with exponents less than 0.5 and
superdiffusive with exponents between 0.5 and 1. See the dictionary in Section 6.

We expect that using this method to describe the motion of an animal it is possible the development
of a more complete model, maintaining its simplicity, including interactions with the environment
and with other animals. This can be pursued allowing the dependence of the parameters on the
position or on the displacement, obtaining an larger dynamical system or a non-autonomous discrete
dynamical system.

The paper is organized as follows: In Section 2 we review general assumptions which support
certain aspects of the model. In Section 3 we review the symbolic dynamics techniques used for
bimodal maps, namely its classification, and the definition of the topological Markov chain in the
periodic and pre-periodic case. In the Section 4 we discuss the notion of isentropic dynamics and
classify the behaviors with only one attractor. In Section 5 we introduce the model and discuss its
interpretation and direct consequences. Moreover, we discuss certain adaptations to make the model
usable with empirical data. In the Section 6 we present numerical results for a sample of the dictionary,
showing the relation between parameters, symbolic sequences and the trajectories behavior.

2. Kinematics of Isolated Animal

Kinematics, in physics, study the motion of a particle or a body, from a geometrical point of view.
There are intrinsic characteristics of the object which may have to be considered such as mass or the
electrical charge. If there is no force present we obtain uniform movement with constant velocity and
zero acceleration. With a constant force, for example, the gravitational force, we may have, depending
on the initial conditions, a straight line, a parabola, an ellipse or hyperbola. With a time dependent
force we pass from kinematics to dynamics, we have to introduce an interaction between the objects
and have to consider the Newton laws of motion.
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With a similar reasoning we may consider the kinematics of the isolated animal, as proposed in
Reference [10]. The concept of isolated animal is comparable to the notion of isolated body in physics.
An isolated system does not exist in real world, however, is an essential abstraction to conceptual
development, hypothesis formulation and for the design of experimental apparatus which may indicate
new hypothesis, infirm or confirm stated ones.

In the context of the animal movement study, taking an observational point of view, we may
conceive a systematic study in which different kinds of species are considered. The study of movement
of the considered animals can be made in controlled environments, maintaining constant every abiotic
parameters, such as temperature, light, humidity, type of underlying material/terrain and so on.
The experimental apparatus can be progressively improved eliminating possible causes of gradients,
maintaining the environment the most homogeneous possible. For each specie several individuals
may be considered and tested, and several runs or tracks are observed for each individual. We may
observe that the trajectories are irregular and different even for the same animal—it is not common an
animal repeating exactly the same trajectory, unless there is an external influence causing this repetition.
However, it is natural to suspect that there are some patterns, eventually common to many different
species and eventually depending on the internal state of the animal—hungry, tired, exhaustion, other.

A natural question is, then, the following—what is a typical motion of an animal in isolated or
strongly controlled conditions?

It is interesting to consider this question either experimentally or theoretically. Taking these
observations into account let us see how far we can go, theoretically, with the simplifying assumptions
given next:

(1) Metabolism or internal dynamics as the only cause of motion: Isolated animal.
(2) Motion is composed of discrete linear steps.
(3) There is a maximal displacement, in one step, which is a consequence of the finite size of the animal

and the finite energy at disposal.
(4) Any step depends on the previous step taken: Markov hypothesis.

These four assumptions, (1), (2), (3), (4), allow the use of an iterated map to produce the steps at
discrete time instants, t, which can be scaled so that t ∈ N.

Next, the following assumptions determine further the structure of the model and the specific
families of iterated maps we may consider to produce the trajectory.

(5) Differentiability/Continuity: close steps give origin to close steps.
(6) Isotropy: there is no preferential direction for the motion.
(7) One parameter characterizing the iterated process so that there exist for some values of the

parameter, at least, one chaotic attractor.

Some consideration can be made:

(a) From the assumption (1) the movement of an animal in isolation depends on its internal state or
metabolism. This does not mean that the motion is simple. Moreover, the internal state of the
animal may change with time and with the energy spent in the motion. Therefore, next to these
basic assumptions we have to consider, theoretically and empirically, the dependence of patterns
of motion according to the behavior associated with the internal states of the animal. This issue
will be considered in future work in detail. Here, we simple aim to describe geometrically short
time patches of trajectories, seen as templates or archetype movements, in which the animal
behavior is ideally stable. An implicit assumption here is that we have a correspondence between
animal behavior and the parameters determining the geometry trajectory.

(b) If eventually, the empirical data shows that the trajectories are not well described by linear
steps, then the assumption (2) can be read as the trajectories following approximately the linear
step, that is, are contained in a rectangle of δ wide which contains the linear step. This point is
discussed in Section 5.
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(c) There is no special reason for the assumption (5). The alternative would need eventually a cause
or an explanation for the existing discontinuity or point without derivative. We could assume
that there are discontinuity points (in a finite number) for some reason. Eventually, empirical
data may require this adjustment. In future work we plan to deal with this issue.

(d) The existence of a chaotic attractor assumed in (7) allows the simulation of the animal movement
with a deterministic model. The variability of the trajectories is codified in the initial condition
for the chaotic system and in its parameters. In a certain sense, due to the chaotic nature of the
model we can see it as a pseudo random number generator which is adequate to produce typical
trajectories with varied geometrical and statistical properties. We can chose initial conditions
randomly or if we pretend a particular trajectory, with prescribed characteristics, we can obtain it,
since the process is deterministic.

(e) Different types of coordinates can be considered, using the above assumptions. We have tested
polar coordinates and coupled Cartesian coordinates. However, in the present paper, as in
Reference [10], we focus on Cartesian uncoupled coordinates. A general framework using
matricial iteration is very promising and will be used in forthcoming paper. There are several
reasons to focus, on a first approach, on the very simple iterated maps with uncoupled Cartesian
coordinates: (1) its symbolic dynamics is well known, (2) the two or three dimensional trajectories
can be reduced to one dimensional dynamics (3) the complexity of trajectories obtained is
sufficiently interesting and varied to be analyzed.

(f) Since we are considering isolated animal if there is symmetry breaking this means that the
animal has in its internal processes a preference to some direction. For example, the possibility of
detecting magnetic field, light, heat or other phenomena. This point is very interesting for certain
classes of animals, however in this case we do not have isolation.

These assumptions and considerations led, in Reference [10], to a symmetrical bimodal map as
the simplest model to produce the isotropic displacements in each Cartesian coordinate, and which
fulfills the above assumptions. Among the bimodal maps, a particular bimodal family was chosen,
simple from the analytical and numerically point of view: the cubic family, fb, of symmetric surjective
bimodal maps on the interval [−1, 1],

fb (x) = 4b3x3 − 3bx, b ∈ [−1, 1] .

3. Bimodal Maps

General bimodal maps, which are continuous maps with two critical points, are characterized
by two parameters, up to topological conjugacy. In an equivalent way, they are characterized by
two symbolic sequences called kneading sequences, corresponding to the symbolic itineraries of the
critical points, see Reference [12] for details, and below for the definition. Assuming the conditions
referred in the previous section: isotropic motion, rest position as a possible solution and the simplest
situation in which we have one attractor or two symmetrical attractors, we arrive to a family of
interval maps which are symmetric and bimodal, that is, differentiable with two critical points,
and f (−x) = − f (x). This family is topologically equivalent, through conjugation of an interval
homeomorphism, to a one-parameter family of the interval [−1, 1]. The simplest case possible, in terms
of analytical expression, is a symmetric cubic map

fb (x) = 4b3x3 − 3bx, b ∈ [−1, 1] .

If we consider a possible symmetry breaking of isotropy, consequence on some external effect on
the animal, this leads directly to a general bimodal map with two parameters.
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3.1. Symbolic Dynamics for Bimodal Maps

Consider the general family, fb,d, derived from the symmetric surjective bimodal maps
introduced above:

fb,d (x) := fb (x− d) = 4b3 (x− d)3 − 3b (x− d) , b, d ∈ [−1, 1] .

Note that when d = 0 we recover the symmetric family fb,0 = fb. This particular parametrization
is surjective on [−1, 1], for the parameters b, d in some region to be defined below.

We consider the discrete dynamical system, referred in the introduction, as the pair ([−1, 1] , fb,d)

and the orbit of a point x0 ∈ [−1, 1] is the set

orb fb,d
(x0) :=

{
xk : xk+1 = fb,d (xk) , k ∈ N

}
,

obtained under iteration of fb,d. The critical points of fb,d are denoted by

c± = ± 1
2 |b| + d,

where |b| denotes the absolute value of b. Therefore, independently on the sign of b we have c− < c+.
Let us introduce the region of the parameters (b, f ) ∈ [−1, 1] × [−1, 1] where the dynamics

on [−1, 1] is well defined. Well defined means the orbits of the critical points are contained in
[−1, 1], independently of the critical points are in fact inside [−1, 1]. This leads to the conditions
−1 ≤ fb,d (−1) ≤ 1, −1 ≤ fb,d (1) ≤ 1, and to the explicit condition on the parameters:

−1 ≤ 3b− 4b3 + 3bd− 12b3d− 12b3d2 − 4b3d3 ≤ 1

−1 ≤ −3b + 4b3 + 3bd− 12b3d + 12b3d2 − 4b3d3 ≤ 1,
(1)

since the images of the critical points, the critical values, are equal to±1. However, this includes regions
with very simple dynamical behavior and without much to study dynamically. It is natural to impose
additional conditions, namely the condition that the two critical points are themselves contained in the
interval [−1, 1]. This gives us −1 ≤ c− ≤ 1, −1 ≤ c+ ≤ 1 and in terms of the parameters

−1 ≤ − 1
2|b| + d ≤ 1

−1 ≤ 1
2|b| + d ≤ 1,

(2)

In Figure 1 we represent the region delimited by the conditions (1) and the conditions (2).
Moreover, we include the graphics of the bimodal for the points indicated in the boundary of the
regions discriminated. The relevant dynamical parameter region is

Ω := I(−,−) ∪ I(−,+) ∪ I(+,−) ∪ I(+,+),

where I(sgn(b),sgn(d)) is distinguishing the signs of the parameters b, d. The region I I I has not the signs
of the parameters discriminated since its behavior is very simple and direct. The regions I(sgn(b),sgn(d))
which compose Ω correspond to the cases in which both the critical points are in the interval [−1, 1]
and its orbits contained also in [−1, 1]. The chaotic behavior region is contained in Ω. Note that the
region Ω is disconnected according to the sign of b, that is, its connected components are I(−,−) ∪ I(−,+)

and I(−,−) ∪ I(−,+).
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Figure 1. Space of parameters (b, d) with the dynamical behavior specified.

Let Jc± denote the intervals where fb,d is contractive. They are intervals centered in the critical
points c±. Every point starting in Jc± will be attracted to the orbit of the critical point c±. Almost every
point, with respect to Lebesgue measure, in the interval [−1, 1], under iteration, will reach one of Jc± ,
in finite time. Therefore, almost every orbit is strongly conditioned by the orbits of the critical points.
If the critical point is periodic then almost every point in the interval is eventually attracted to that
periodic orbit. If the critical orbit is aperiodic then almost every point in the interval is eventually
attracted to it and we have chaotic motion. However, if the topological entropy is positive the case of
periodic critical point has appreciable complex behavior. On one hand, the transient behavior changes
significantly, changing the parameters b, d. On the other hand, there is an infinite number of periodic
orbits, unstable, of any period, which coexist with the given attractive periodic orbit.

The topological entropy measures the chaotic behavior of a discrete dynamical system. Roughly
speaking, positive topological entropy is usually associated with chaotic behavior, that is, sensitivity
dependence to initial conditions, existence of a transitive orbit, coexistence of infinite repulsive periodic
points. The topological entropy is a topological invariant for fb,d and can be computed as the logarithm
of the growth number of fb,d. The growth number is the growth rate of the number of periodic orbits
with increasing size k. On the other hand, in the Markov case, for which there is a Markov partition of
the interval and a transition matrix A fb,d

associated with fb,d, the growth number can be calculated as
the Perron eigenvalue of A fb,d

, see References [11,13], or below. In general, not necessarily Markov,
the growth number can be computed as a zero of the kneading determinant, in the context of the
kneading theory, see References [12,14].

To classify every type of behavior and to know exactly what type of orbits coexist, given (b, d),
it is very efficient the use of combinatorial methods, namely symbolic dynamics, in which numerical
orbits are represented by symbolic sequences. In what follows we give the notions necessary to
use symbolic dynamics. For more details, on symbolic dynamics of bimodal maps, we refer to
References [12,13,15,16].
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The address of x ∈ [−1, 1], with respect to fb,d, is defined by

ad fb,d
(x) =



L if x ∈ [−1, c−[
C− if x = c−
M if x ∈]c−, c+[
C+ if x = c+
R if x ∈]c+, 1].

If there is no possible ambiguity we drop the index in the address map, that is, ad (x) = ad fb,d
(x).

The itinerary of a point x, which collects the addresses of the points in the orbit of x, is defined by

it fb,d
(x) := ad (x) ad ( fb,d (x)) ad

(
f 2
b,d (x)

)
. . . ,

and allows the correspondence of orbits, under iteration of fb,d, with symbolic one-sided sequences in
the alphabet {L, M, R} or {L, C−, M, C+, R}, if we consider the orbits of the critical points. The space
of one-sided sequences is denoted by {L, M, R}N or {L, C−, M, C+, R}N. A symbolic sequence S ∈
{L, C−, M, C+, R}N is admissible, with respect to fb,d, if there is an initial condition x0 so that it fb,d

(x0) =

S. Note that depending on b, d ∈ Ω the space of admissible sequences, it fb,d
([−1, 1]) ⊂ {L, M, R}N ⊂

{L, C−, M, C+, R}N, can vary significantly.
The kneading invariant of fb,d is defined by

K fb,d
:= K( fb,d) = (K−, K+) ,

where K− := it fb,d
( fb,d(c−)) and K+ := it fb,d

( fb,d(c+)) are the itineraries of the critical points and
called kneading sequences.

In the symmetric case, d = 0, it is useful the notation L = R, C− = C+, M = M, C+ = C−, R = L,
to express the symmetry of the admissible sequences. In particular, for any K( fb,0) = (K−, K+) we
have K− = K+. In general, there are two distinct critical orbits orb fb,0

(c−) 6= orb fb,0
(c+), in this case

necessarily, orb fb,0
(c−) = −orb fb,0

(c+) (two symmetrical atractors). Nevertheless, we may have one
critical orbit, that is, the two critical points belong to the same orbit orb fb,0

(c−) = orb fb,0
(c+) (one

atractor), and in this case the kneading sequences must be periodic and K− = σt (K+), where t is
the period.

The iteration of fb,d corresponds to the shift map on the symbolic space sequences, that is, we have
a semi-conjugation

σ ◦ it fb,d
(x) = it fb,d

◦ fb,d (x)

where
σ : {L, C−, M, C+, R}N → {L, C−, M, C+, R}N

σ (S1S2S3 . . .) = S2S3 . . .

For different values of (b, d) different types of sequences occur. When considering the alphabet
{L, C−, M, C+, R} some care is needed since the symbols C± are special. They represent points and the
symbols L, M, R represent intervals. To the symbol C− only follows the sequence K−, to the symbol C+

only follows the sequence K+, and no other possibility. On the contrary to the symbols L, M, R, which
can be followed by any other symbol, depending on the parameters b, d. Therefore, the combinatorial
diversity of sequences can be enormous.

To determine exactly which sequences occur as itineraries in the set of all possible sequences,
{L, C−, M, C+, R}N, it is necessary to introduce an order relation in the set of sequences. First, we
define the parity or sign function: the bimodal sign function is defined by

ε : ∪k≥1{L, C−, M, C+, R}k → {−1, 0, 1},
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with
ε (P) = ε (P1) . . . ε (Pk) ,

for P = P1 . . . Pk ∈ {L, C−, M, C+, R}k, and

ε (L) = sgn (b) , ε (C±) = 0, ε (M) = −sgn (b) , ε (R) = sgn (b) .

Consider the set {L, C−, M, C+, R} ordered by

L ≺ C− ≺ M ≺ C+ ≺ R.

The induced order relation in the set of one-sided sequences {L, C−, M, C+, R}N is defined as
follows. Consider two sequences P1P2 . . . and Q1Q2 . . . of {L, C−, M, C+, R}N. There is a number
k = 0, 1, . . . such that Pi = Qi for i < k. Then

P1P2 . . . ≺ Q1Q2 . . .

if and only if
Pk ≺ Qk and ε (P1 . . . Pk−1) = 1,

or
Qk ≺ Pk and ε (P1 . . . Pk−1) = −1.

It can be easily seen that the symbolic order structure is compatible with the order in the real line.
In fact, for x, y ∈ [−1, 1], x < y if and only if it fb,d

(x) ≺ it fb,d
(y).

Let us characterize the orbits and symbolic sequences which are not critical, that is, does not have
the symbol C±. Recall that a sequence S ∈ {L, M, R}N is called admissible, with respect to fb,d or K fb,d

,
if there is x0 ∈ [−1, 1] so that it fb,d

(x0) = S.
The combinatorial characterization for the admissible sequences is the following: A sequence

S ∈ {L, M, R}N is admissible if and only if K− ≺ S ≺ K+ and b < 0 or K+ ≺ S ≺ K− and b > 0.
Let us now characterize the orbits and symbolic sequences which are kneading sequences: periodic

if Q = (Q1Q2 . . . QrC±)
∞, pre-periodic if Q = P1 . . . Pt (Q1Q2 . . . Qr)

∞ or aperiodic if Q = Q1Q2Q3 . . ..
In every case Qi, Pj ∈ {L, M, R}.

In the following sentences, Q is in one of the previous three types:
A sequence Q is a maximal (resp. minimal) kneading sequence if and only if σt (Q) ≺ Q (resp.

Q ≺ σt (Q)), for every t ≥ 1.
Let S = (S1S2 . . . Sk)

∞ be an admissible periodic sequence. Let |S|b,d denote the point x in
the interval [−1, 1] satisfying it fb,d

(x) = S. If there is no ambiguity we write |S| = |S|b,d, to
simplify notation.

3.2. Topological Markov Chain

Let us consider the case of periodic and pre-periodic critical orbits. In this two situations there is
a Markov partition of the interval [−1, 1], with respect to the iteration of fb,d. The Markov partition is
obtained directly from the orbits of the critical points, orb fb,d

(c−) and orb fb,d
(c+). From the periodicity,

or pre-periodicity, there is a least natural number r ∈ N so that

fb,d

(
∪r

k=0 f j
b,d ({c−, c+})

)
= ∪r

k=0 f j
b,d ({c−, c+}) ,

that is, we obtain an invariant set of points. In this case, the set ∪r
j=0 f j

b,d ({c−, c+}) constitute precisely
the set of boundary points of the Markov partition for fb,d. Each interval of the partition is associated to
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a finite word in the alphabet {L, M, R} and to a Markov state. The kneading sequences are necessarily
periodic or pre-periodic, that is, in the form

K fb,d
=
((

S1 . . . Sk−−1C−
)∞ ,

(
Q1 . . . Qk+−1C+

)∞) , (3)

or
K fb,d

=
(
S1 . . . St−

(
St−+1 . . . St−+k−

)∞ , Q1 . . . Qt+
(
Qt++1 . . . Qt++k+

)∞) , (4)

for some natural numbers t−, t+, k−, k+.
Recall from Reference [10] that in the symmetric case the periodic and pre-periodic kneading

sequences, are in the form

K fb,0
=
(
(S1 . . . SkC−)

∞ ,
(
S1 . . . SkC+

)∞
)

,

or
K fb,0

=
(

S1 . . . St (St+1 . . . St+k)
∞ , S1 . . . St

(
St+1 . . . St+k

)∞
)

.

In the case K± are periodic or pre-periodic, with period k−, k+, and transient lengths t−, t+, as
in (4), the Markov partition and the transition matrix induced by fb,d can be explicitly determined from
the symbolic sequences. We give the explicit construction here for the pre-periodic case considering
that the periodic case is a particular situation with t− = t+ = 0. The Markov partition is determined
precisely by the successive shifts of the kneading sequences and ordered by ≺. Let n− = t− + k− + 1,
n+ = t+ + k+ + 1. Consider the set of sequences obtained by the systematic shift of the itineraries of
the critical points:

C−, K−, σ (K−) , . . . , σt− (K−) , . . . , σn− (K−) , (5)

C+, K+, σ (K+) , . . . , σt+ (K+) , . . . , σn+ (K+) .

The number of distinct sequences in (5) is n ≤ n− + n+ . If there is no repeated sequences we
have n = n− + n+. There is a unique permutation which re-orders the previous list of sequences with
respect to ≺:

S(1) ≺ S(2) ≺ · · · ≺ S(n−) ≺ S(n−+1) ≺ · · · ≺ S(n). (6)

Therefore, the Markov partition is given by[∣∣∣S(i)
∣∣∣ ,
∣∣∣S(i+1)

∣∣∣] , i = 1, . . . , n,

a total of n intervals, and note that, since fb,d is surjective, we have∣∣∣S(1)
∣∣∣ = −1 and

∣∣∣S(n)
∣∣∣ = 1.

As in Reference [10], due to the specificities of our approach, to model symbolically the
displacements we introduce a different enumeration for the Markov alphabet, which is not usual
in general. We incorporate the sign of the numbers belonging to a certain Markov interval on the
corresponding Markov symbol. Therefore, there is a natural number p, 1 ≤ p ≤ n, so that

0 ∈
[∣∣∣S(p)

∣∣∣ ,
∣∣∣S(p+1)

∣∣∣] .

Let m− be the number of Markov intervals contained in [−1, 0] and m+ be the number of Markov
intervals contained in [0, 1]. The Markov states are then denoted by

{−m−, . . . ,−1, 0, 1, 2, . . . , m+} ,
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and the Markov intervals, with this enumeration, are

Ij =
[∣∣∣S(p+j)

∣∣∣ ,
∣∣∣S(p+j+1)

∣∣∣] , j = −m−,−m− + 1, . . .− 1, 0, 1, . . . , m+. (7)

Since the boundary points
∣∣∣S(j)

∣∣∣ , j = 1, . . . , n, belong to the orbits of the critical points c± the
image of any interval Ii i = −m−,−m− + 1, . . .− 1, 0, 1, . . . , m+, under fb,d, is a union of intervals Ij for
some j = −m−,−m− + 1, . . .− 1, 0, 1, . . . , m+. This fact allows the definition of the transition matrix,
A fb,d

:=
(
aij
)

i,j=−m,...,m, given as usual by

aij =

{
1 if fb,d (Ii) ⊃ Ij
0 if otherwise.

, i, j = −m−, . . .− 1, 0, 1 . . . , m+.

The topological entropy is given by the logarithm of the Perron eigenvalue of A fb,d
. It is also equal

to the logarithm of the growth rate of the admissible words of size k.

Example 1. Let b = 0.984714 . . . and d = −0.00924703 . . . so that K fb,d
=
(

RRC+ (LLC+)
∞ , (LLC+)

∞),
see Figure 5. In this case the shifted kneading sequences are,

C−RRC+ (LLC+)
∞ , RRC+ (LLC+)

∞ , RC+ (LLC+)
∞ ,

C+ (LLC+)
∞ , (LLC+)

∞ , (LC+L)∞ , (C+LL)∞ .

and its ordering, as in (5) and (6), is

(LLC+)
∞ ≺ (LC+L)∞ ≺ C−RRC+ (LLC+)

∞ ≺
≺ C+ (LLC+)

∞ ≺ RC+ (LLC+)
∞ ≺ RRC+ (LLC+)

∞ ,

S(1) ≺ S(2) ≺ S(3) ≺ S(4) ≺ S(5) ≺ S(6).

Note that C+ = (LLC+)
∞ = C+ (LLC+)

∞. Also note that since b > 0 we have ε (L) = 1, ε (M) =

−1, ε (R) = 1.
The orbit of the critical point c− = −0.517009 is, approximately

−0.517009 7→ 1 7→ 0.944833 7→ 0.498508 7→ −1

The orbit of the critical point c+ = 0.498515 is, approximately

0.498515 7→ −1 7→ −0.787557 7→ 0.498508 7→ −1

Joined the two orbits and reordered

−1 < −0.787557 < −0.517009 < 0.498515 < 0.944833 < 1

The Markov partition is constituted by the intervals, indexed by the Markov states {−2,−1, 0, 1, 2} :

I−2 = [−1,−0.787557]

I−1 = [−0.787557,−0.517009]

I0 = [−0.517009, 0.498515]

I1 = [0.498515, 0.944833]

I2 = [0.944833, 1] ,

and the transition matrix is
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Ab,d =


0 1 1 0 0
0 0 0 1 1
1 1 1 1 1
1 1 1 0 0
0 0 0 1 0


Its Perron eigenvalue is precisely 1 +

√
3 which corresponds to the growth number of the system. Therefore,

the topological entropy is ht ( fb,d) = 1.00505. The Markov states in terms of admissible words in the alphabet
{L, M, R} are

−2←→ LL ∪ LM,−1←→ LR, 0←→ M, 1←→ RL ∪ RM, 2←→ R2

4. Isentropic Motion and Unique Attractor Cases

The topological entropy, as discussed previously, is a topological invariant for the dynamics of
fb,d. In the symmetrical case, with d = 0, the map fb,0 is characterized by the topological entropy, up to
topological conjugacy. In the non-symmetric case, with the drift parameter d 6= 0, this is no longer
true. We have for different values of b, d possible dynamics, non equivalent in terms of topological
conjugacy, with the same topological entropy. Here, we do not make a systematic study on this issue,
however we describe the main points. On the other hand, we discuss the cases for which there is only
one attractor, that is, both critical orbits coincide at to some finite time instant. For further reading on
isentropics of cubic maps see Reference [17] and also References [11,15,18].

4.1. Piecewise Linear Semi-Conjugation and Isentropics

To find isentropic systems, that is, values of the parameters (b, d),
(

b̃, d̃
)
∈ Ω for which the

topological entropy of fb,d and fb̃,d̃ are equal, it is useful the semi-conjugation of fb,d with a two
parameter piecewise linear family. The existence of this semi-conjugation was proven in Reference [14],
see also References [11,18]. We can, with more or less effort, chose an appropriate form, in order to
include the two situations b > 0 and b < 0 in the same map. This is accomplished with the following
parametrization, considering ρ = sgn (b),

τρ,s,r (x) =


ρsx + 2ρ− ρsr if − 1 ≤ x ≤ −s−1 + r
−ρsr + ρsr if − s−1 + r ≤ x ≤ s−1 + r

ρsrx− 2ρ− ρsr if s−1 + r ≤ x ≤ 1.

It is useful to distinguish the branches of τρ,s,r, given by

τL (x) := ρsx + 2ρ− ρsr, τM (x) := −ρsr + ρsr, τR (x) := ρsrx− 2ρ− ρsr.

The map τρ,s,r (x) has constant slope, its absolute value is s and it is surjective in the interval
[−1, 1], similarly to fb,d. The parameters ρ ∈ {±1}, s and r are topological invariants for the family
fb,d, through a semi-conjugation between fb,d and τρ,s,r, see Reference [11]. Consider the restrictions
s ∈ [1, 3] and

r ∈
[
1− 3s−1, 3s−1 − 1

]
if s ∈ [2, 3] ,

r ∈
[
s−1 − 1, 1− s−1

]
if s ∈ [1, 2] .

For these values of the parameters there are two singular points (discontinuous derivative) inside
[−1, 1], and correspond to the region Ω, with respect to fb,d. The value s is the growth number of
τρ,s,r (x) and r is the topological invariant distinguishing between isentropics. In fact, for fixed s and
variable r the dynamics are not topological equivalent, however, the topological entropy is the same
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and equal to log s. These type of invariants were studied in various contexts by Sousa Ramos and his
collaborators, see the review in Reference [16].

Note that the symbolic dynamics for these maps τρ,s,r is equivalent to the formalism introduced
to fb,d. We here use the same notation for the address map adτρ,s,r , the itinerary itτρ,s,r and the kneading
invariant Kτρ,s,r . The address of x ∈ [−1, 1] is then defined by

adτρ,s,r (x) =



L if x ∈ [−1,−s−1 + r[
C− if x = −s−1 + r
M if x ∈]− s−1 + r, s−1 + r[
C+ if x = s−1 + r
R if x ∈]s−1 + r, 1].

Again, if there is no danger of confusion we drop the index in the address map, that is, ad(x) =
adτρ,s,r (x). The itinerary of a point x, which collects the addresses of the points in the orbit of x, is
defined by

itτρ,s,r := ad (x) ad
(
τρ,s,r (x)

)
ad
(

τ2
ρ,s,r (x)

)
. . .

Kτρ,s,r := K(τρ,s,r) = (K−, K+) ,

where K− := itτρ,s,r

(
−s−1 + r

)
and K+ := itτρ,s,r

(
s−1 + r

)
. The main difference to the differentiable

bimodal family is that there is no attractive interval Jc± , and there are no windows of stability around
the periodic critical orbits.

The isentropic kneading invariants Kτρ,s,r are obtained fixing s and varying either ρ ∈ {±1} or r.
We can determine the parameters b, d, so that K fb,d

= Kτρ,s,r , obtaining the parameters as function of
the r−invariant, with the topological entropy, ht, fixed:

b = b (r) , d = d (r) , with s = eht fixed.

See Figure 2, for examples with s = 2, for various values of r, ρ. Therefore, the topological entropy
is equal to log 2, in every case. See the Example 2 in the next section to obtain the parameters b, d for
this case.

Figure 2. Graphs of τ−1,s,r for s = 2, and r = 0,−0.05,−0.1,−0.15,−0.2, on the left and τ1,s,r for s = 2,
r = 0, 0.05, 0.1, 0.15, 0.2, on the right. The growth number is equal to 2 in every case, and, therefore,
give origin to the same topological entropy log 2. Note that τρ,s,r (−1) = τρ,s,r (1), in every case.

4.2. Unique Critical Orbit

The cases in which there is a unique attractor, that is, a unique critical orbit, are important since we
may describe the behavior of the system specifying less information than with two arbitrary attractors.
There are two possible situations in which the two critical orbits coincide: either both are periodic and
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coincide exactly or they coincide only at some time instant k, after some transient phase. In the first
case the kneading sequences are of the type

K =
(
(PC+QC−)

∞ , (QC−PC+)
∞) , (8)

and in the second case the kneading sequences are of the type

K = (PS, QS) , (9)

where P and Q are some admissible words of size p, q. This corresponds to a situation in which

τ
p
ρ,s,r (1) = τ

q
ρ,s,r (−1) , or f p

b,d (1) = f q
b,d (−1) ,

if ρ = 1, b > 0, or
τ

p
ρ,s,r (−1) = τ

q
ρ,s,r (1) , or f p

b,d (−1) = f q
b,d (1) ,

if ρ = −1 and b < 0.
Recall that the itineraries of the points ±1 correspond to the itineraries of the images of the critical

points c±, since fb,d and τρ,s,r are surjective on [−1, 1].
We will focus on the case Q = P, and therefore p = q. The periodic case, including the case when

S is a periodic sequence in (9), can be handled also by the topological Markov chain method explained
in the previous section. However, the method described below is more direct to find s and r. Let us
consider that the size of P is equal to k > 0 and that S is periodic. Therefore, the parameters ρ, s, r and
b, d must be so that

Kτρ,s,r = K fb,d
=
(

PS, PS
)

.

Recall that when ρ = 1 then itτρ,s,r (1) = PS, and itτρ,s,r (−1) = PS, and when ρ = −1 then
itτρ,s,r (−1) = PS, and itτρ,s,r (1) = PS. Let us start with the symmetrical case: we immediately observe
that, since the kneading sequences must be symmetrical, we have

Kτρ,s,0 = K fb,0
=
(

PM∞, PM∞)
Now, given P = P1 . . . Pk ∈ {L, M, R}k let τP (x) := τPk ◦ τP2 ◦ · · · ◦ τP1 (x). Note the reverse order

in which the symbols appear.
The following result allow us to identify isentropic kneading sequences and the corresponding

topological invariants, see Reference [18] for more details.

Lemma 1. Let k > 0 and P ∈ {L, M, R}k. Then τP (1)− τP (−1) is a polynomial on s which does not depend
on r.

Proof. Let ∆X = τX (0), for X ∈ {L, M, R}, and recall that the sign function of each symbol in
{L, M, R} can be written depending on ρ: ε (L) = ρ, ε (M) = −ρ, ε (R) = ρ. Then given an admissible
word P = P1 . . . Pk ∈ {L, M, R}k we have

τP (x) = τPk ◦ τP2 ◦ · · · ◦ τP1 (x) = ε (Pk . . . P1) skx +
k−1

∑
r=1

ε (Pk . . . Pr+1) sk−r∆Pr + ∆Pk

Since ε (Pk . . . Pr) = ε
(

Pk . . . Pr
)

for every r = 1, . . . , k, and the differences ∆M − ∆M = 0, ∆R −
∆R = −4ρ, ∆L − ∆L = 4ρ do not depend on r, we have that

τP (1)− τP (−1) = 2ε (Pk . . . P1) skx +
k−1

∑
r=1

ε (Pk . . . Pr+1) sk−r
(

∆Pr − ∆Pr

)
+
(

∆Pk − ∆Pk

)
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does not depend on r.

Note that if we set Q = P we may enunciate the result: the quantity ±
(

τQ (1)− τQ (−1)
)

is
independent on r, for any admissible Q ∈ {L, M, R}, therefore the result is valid for ρ = ±1. From the
Lemma 1, the parameter s can be determined by the equation

τP (1)− τP (−1) = 0, if ρ = 1 or τP (−1)− τP (1) = 0 if ρ = −1. (10)

The parameter r can be determined by

τPS (1) = τP (1)⇔ τS (τP (1)) = τP (1) , (11)

or by
τPS (1) = τP (1)⇔ τS

(
τP (−1)

)
= τP (−1) , (12)

from the periodicity of S.

Example 2. If
τρ,s,r (−1) = τρ,s,r (1) ,

for both ρ = ±1, we have from the condition (10)

τρ,s,r (−1) = τL (−1) = τR (1) = τρ,s,r (1)⇔ s = 2,

which is a condition independent on r and on ρ. Therefore, for different r, ρ we have fixed topological entropy
ht = log 2. The kneading sequences correspond to sequences in the form

Kτ1,2,r = (RS, LS) , Kτ−1,2,r
= (LM∞, RM∞) ,

for some S so that RS is a maximal sequence and LS minimal, in the case ρ = 1. The case ρ = −1, has always
fixed kneading invariant and correspond to two re-scaled copies of the full tent map. Therefore, through the
semi-conjugacy, we obtain the same kneading sequences for fb,d and the associated condition is

fb,d (−1) = fb,d (1) .

This give the parameter relation

d = ±
√

3− 4b2

2
√

3b
,

which are the equations determining the isentropic curves in Figure 3, connecting the points marked EL and FM.
For maps fb,d with parameters (b, d) satisfying the previous relation the topological entropy is equal to log 2.
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Figure 3. The region Ω with the isentropes represented as black curves: for ht = log 2, the two largest

curves connecting the points L, E and M, F, and for ht = log
(

1 +
√

3
)

the smallest curves near the
points G and K.

Example 3. Let us now consider the case P = P1P2. There are two cases: for ρ = 1, with

Kτ1,s,r = (RRS, LLS)

and for ρ = −1, with
Kτ−1,s,r

= (RLS, LRS) ,

The conditions on s, r are obtained, with ρ = 1, through

τRR (1)− τLL (−1) = 0⇔ −4− 4s + 2s2 = 0

and for ρ = −1, through
τLR (1)− τRL (−1) = 0⇔ −4− 4s + 2s2 = 0

The solution greater than 1 is
s = 1 +

√
3 ≈ 2.732,

for both ρ = ±1. Let us consider two concrete examples with ρ = 1. The case S = M∞ is given by r = 0,
obtaining

Kτ1,1+
√

3,0
= (RRM∞, LLM∞)

Let S = (C+LL)∞. Note that τC+ = τM or τC+ = τR, since the map is continuous. From (11) we have a
condition to determine r which is

τMLL (τRR (1)) = τRR (1)⇔

r =
−2−

√
3

3
(

19 + 11
√

3
) ≈ −0.032.

Therefore, in this case

Kτ1,2.732...,−0.032... =
(

RR (C+LL)∞ , LL (C+LL)∞) .
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Through the semi-conjugacy, we obtain the same kneading sequences for fb,d, and the associated condition
on the parameters b, d is given by

f 2
b,d (−1) = f 2

b,d (1)⇔

−3 + 36b4 − 96b6 + 64b8 + 12b2d2 − 72b3d2 + 108b4d2 + 288b5d2−
1152b6d2 + 2112b8d2 + 96b5d4 − 288b6d4 + 1728b8d4 + 192b8d6 = 0

with the additional condition of the curve being contained in the region I(−,−) ∪ I(−,+) for b < 0 and in the
region I(+,−) ∪ I(+,+) for b > 0. The corresponding kneading invariants are of the type

K fb,d
= (RLS, LRS) ,

with b < 0, and
K fb,d

= (RRS, LLS) ,

with b > 0. Using the equation above we represent the isentropic curves for ht = log
(

1 +
√

3
)

in Figure 3.
The curves are near the points G and K.

See Figures 4 and 5, for the representation, with ρ = 1, of the critical orbits in the cases S = M∞ and
S = (C+LL)∞.

Figure 4. The graphics of fb,d with the trajectories of the critical points, c− and c+ in the case
b = 0.9862072184965917, d = 0, the kneading invariant is (RRM∞, LLM∞) . The growth number is
s = 1 +

√
3 and r = 0.

Figure 5. The graphics of fb,d with the trajectories of the critical points, c− and c+ in the case b =

0.984713955503324, d = −0.00924702872344659. the kneading invariant is
(
RR (C+LL)∞ , LL (C+LL)∞) .

The growth number is s = 1 +
√

3 and r = −3s (s + 1).
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5. The Model—Cartesian Plane Motion

5.1. Definition

The trajectory of the animal is composed of patches of linear motions intertwined by changes of
direction. The lengths and the directions of each patch are determined, in the Cartesian coordinates,
by the iteration of the map

Fb,d : R2 × [−1, 1]2

Fb,d
(

x, y, sx, sy
)
=
(
x + εsx, y + εsy, fb,d (sx) , fb,d

(
sy
))

.

depending on the parameters b, d and considering ε > 0 an external parameter, which does not affect
the dynamical behavior. In an explicit way,(

xk+1, yk+1, sx,k+1, sy,k+1

)
= Fb,d

(
xk, yk, sx,k, sy,k

)
, k ∈ N.

The position of the animal is, at each step k ≥ 0, given by the coordinate vector (xk, yk). On the
other hand, the displacement vector

(
sx,k, sy,k

)
, at step k, codifies the future action of the animal.

The parameter b characterizes the complexity of the motion, the parameter d characterizes its average
drift and the parameter ε gives the scale of the motion and can be related with the energy spent during
the motion. Note that the absolute value of the maximal displacement is normalized to 1. Therefore,
ε re-scales whenever needed to the appropriate size. Recall that we assume there is a maximal step
possible, for a given animal. In resume, the initial position of the animal is (x0, y0) ∈ R2 and the initial
conditions for the state of the system, which determines the trajectory, is the pair

(
sx,0, sy,0

)
∈ [−1, 1]2.

Associated to Fb,d is the kneading invariant, Kb,d, through fb,d, which characterizes the global
behavior of the animal, that is, the information which characterizes 1D dynamics is also characterizing
2D trajectories.

5.2. Interpretation of the Model

An animal in different circumstances, or time instants, produce different trajectories. We expect
that under the same exterior conditions, more or less controlled, and with the same internal conditions
(health, metabolism, etc.) the animal produce, not equal, however similar trajectories. In our model
this corresponds to consider different initial state conditions

(
sx,0, sy,0

)
. In the chaotic regime, due to

sensitivity of the initial conditions, very close initial displacements can lead to very different trajectories,
however with common topological invariants, see the Figure 6 for an example. The type of trajectory is
determined by the values of the parameters (b, d), and what is equivalent the kneading invariant Kb,d.

In isolated situation, d = 0, if the same animal is in a different internal state, with hunger,
exhausted, aggressive, or other, we may expect that produce very different types of trajectories.
These different behavior states are associated with different values of b. Therefore, a specie can be
characterized by a set of possible parameters b1 < b2 < . . . br−1 < br according to its observed behavior
states. Moreover, a different specie can have a set of possible parameters b̃1 < b̃2 < . . . b̃t−1 < b̃t,
according to some of the strategies typical of the considered specie. Since there are different values of
the parameter b producing topological equivalent behavior, corresponding to the windows of stability,
in fact is preferable to make the correspondence between kneading sequences and behaviors. It is this
correspondence that may be meaningful. We, thus, expect to have a specie characterized by a finite set
of kneading invariants

K1 ≺ K2 ≺ · · · ≺ Kr,

ordered by topological entropy which coincides with the symbolic order, which may be associated
with the typical behaviors according to internal and/or special controlled external conditions in quasi
isolation. For example, K1 may represent the simplest possible type of behavior, the rest. Next, K2,
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may codify directed trajectories, for example traveling. The next sequence, K3, may codify search for
food or for a reference, and so on. The last, Kr, may codify a random type behavior.

Figure 6. For parameters b = −0.97 and d = 0, the initial conditions sx,0 = 0.8718539083, sy,0 =

0.7322656727 and s̃x,0 = sx,0 + 10−11, s̃y,0 = sy,0 + 10−11 lead to different trajectories after few time
steps. In this case approximately 20 time steps.

When the animal is not isolated, excluding for now interactions between animals or time
dependent interactions, we may consider a constant interaction such as a air current, water current,
temperature gradient, or other. This means that the parameter d is different from 0 and produces
a tendency for displacements in one direction of the Cartesian coordinates. In this case, using the
topological invariants s, r, which can be computed directly from the kneading sequences as we have
seen in Section 4, we have the possibility of establishing a set of kneading sequences, organized in
increasing topological entropy, or, on the other hand, a set of kneading sequences with fixed topological
entropy ordered by the r−invariant which is related with the drift.

Moreover, as we have discussed in the section on isentropics, there are certain special values
of the parameters for which the critical orbits coincide and this allows a particularly simple process
to characterize the trajectories, since we are in fact using only one kneading sequence PS with the
tail S and a word P, which characterize the transient behavior. This aspect may be very important to
optimize procedures to obtain an approximate characterization of empirical data. It is much more
simple to fit to a unique symbolic sequence, than having the possibility of varying the two sequences.

5.3. Pure and Mixed Bimodal Trajectories

Although isotropy is considered in assumption (6) it does not mean there are no geometrical
patterns with preferential directions. In fact, these patterns may occur for certain values of the
parameters and are artificial, consequence of the very simplified version of the model with uncorrelated
Cartesian coordinates used. For certain types of parameters there are some tendency movements along
the Cartesian axis and the diagonals, see for example the intermittent case in the dictionary, Figure 23
and the movements close to periodic orbits, for example Figure 18. Note that the fact the straight lines,
which are also obtained for certain values of the parameters, are usually aligned with the Cartesian
axis or the diagonals. Since we does not have apriori settled a reference frame, and if we observe an
animal moving in a certain line or a maximal length occurs in a certain direction, we simply consider
that this line is a Cartesian axis or a diagonal for the reference frame of the animal, in that section of
the trajectory. On the other hand, since the model is built using uncoupled Cartesian coordinates, we
must consider that the orientation of the reference frame for Cartesian coordinates may be changing.

For a fixed set of parameters and an orientation θ of the Cartesian frame, the obtained trajectories
are called pure bimodal trajectories. It may happen that, even in the isolated situation, the animal by
an internal strategy can alternate types of trajectories. Therefore, eventually the parameters or the
orientation can be changing with some dynamical rule. The trajectories obtained by this process are



Mathematics 2020, 8, 339 20 of 33

called mixed bimodal trajectories. This issue will be explored in detail in a next work, in particular,
towards the development of experimental procedures. See in the Figure 7 an example of two pure
bimodal trajectories, with the same parameters and with a change in the orientation of the Cartesian
frame, θ = 20o, obtaining a mixed bimodal trajectory. Figure 8 shows a mixed bimodal trajectory with
changing parameters, in which the change can be due to internal state change (since d = 0) or due to
some external singular perturbation.

Figure 7. Two patches of pure bimodal trajectories with the same parameters b = −0.877, d = 0, which
compose the mixed bimodal trajectory on the right, with a rotation of 20o between them.

Figure 8. Two patches of pure bimodal trajectories with the different parameters b = −0.97, d = 0, on
the left, b = −0.877, d = 0, on the right, which compose the mixed bimodal trajectory on the right, with
a rotation of 20o between them.

5.4. Scale, Uncertainty and Precision in the Trajectory Determinacy

When considering finite size animals the very small steps which may be produced by the iteration
of the cubic, for certain values of the parameters as in the case of intermittent behavior, are not observed
or observable—see in the dictionary in Figure 16 or 23. We may consider that there is a scale break at
some point, that is, there is a limit scale for ε, say ε0 below which there is no distinction in the details
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of the motion. In this case, the uncertainties regarding position, below this value, may be discarded.
On the other hand, in real behavior, even in an almost isolated situation, gives origin to trajectories
which do not fit those produced theoretically. The bimodal trajectories can be seen as templates or
ideal geometrical objects which guide the real trajectories. Therefore, although the exact positions of
the animal are not given by the coordinates determined by the numerical model, the global behavior is
characterized by it. This may lead us to a similar procedure as in the stochastic methods. However,
here we do not apriori give a distribution for the lengths and direction, instead the (pseudo)stochastic
behavior is produced by the nonlinear iterated map.

Thus, for empirical use, instead of a pure one dimensional trajectory patch we may consider a
region where the animal may be present, during the displacement, and the movement is guided by the
bimodal trajectory, in the sense that the sequence of regions of possible occupancy is being determined
by the iterated map. We may assume further that there is a region of possible turning point locations.
The more natural way to accomplish this objective is to substitute a linear step by a region which
includes the bimodal displacement vector in which there is a positive probability that the animal will
be present.

A natural choice, however not unique, is to consider the rectangle which contains the displacement
vector in the center and in the starting and ending positions to consider a disk of a certain diameter,
which can be equal or not to the size of the rectangle. We may discuss the appropriate probability
distribution. However, for now we simply consider that the animal has the possibility of being in
the determined region. Therefore, given a position vector −→r k := (xk, yk) and a displacement vector
−→s k = (sx,k, sy,k), let −→u k be the unit vector orthogonal to −→s k. Consider the following points

Ak := −→r k −
δ

2
−→u k

Bk := −→r k +
δ

2
−→u k

Ck := −→r k +
−→s k −

δ

2
−→u k

Dk := −→r k +
−→s k +

δ

2
−→u k

The enveloping rectangle is determined by the vertices Ak, Bk, Ck, and Dk,(−→r k,−→s k
)
−→ Rk (δ) := [AkBkCkDk] ,

and the position disk

−→r k → Dk

(
δ̃
)

:=
{
(x, y) ∈ R2 : (x− xk)

2 + (y− yk)
2 ≤ δ̃2

}
.

Therefore, for applications, instead of considering an exact trajectory it should be considered a
sequence of rectangles, with the characteristic lengths δ and displacement vector length, a sequence of
position disks, with characteristic length δ̃, which give a region of confidence containing real trajectories
arising from sampling. Naturally, the smaller the accuracy parameters, δ , δ̃, the closer the sampled
trajectories are to the theoretical bimodal trajectories. See the Figure 9, where an hypothetical empirical
trajectory and its bimodal trajectory region are detailed.

This procedure, in addition, gives a method to estimate the area covered by the animal, estimating
the number of rectangles and disks from above and from below subtracting a disk or a square of area
every time there is an intersection.
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Figure 9. Trajectory region obtained by the iteration of the map Fb,d, with δ = 0.075 and δ̃ = 0.1, for the
dimensions of the rectangular regions and disks respectively. On the left an example of an eventual
real trajectory and in the middle the trajectory fitted into the pure bimodal trajectory region.

Example 4. Let us consider the following parameters b = −0.92, d = 0.002, which give K− =

LMRMRMMRMRR . . ., K+ = RMLMLMRMRMM. . . . The length of the enveloping rectangle is
δ = 0.075 and the radius of the position disk is δ̃ = 0.1. The trajectory is represented in Figure 10 is obtained
with sx,0 = 0.2, sy,0 = −0.54, itb,d(sx,0 = MMRMLLLMMRR), itb,d(sy,0 = MLMRMRMMRMR).
Note the enveloping region around the bimodal trajectory. The theoretical trajectory is represented in black lines
and an hypothetical real trajectory which is contained in the rectangles and disks, whatever may be geometrically,
is characterized by the same topological invariants.

Figure 10. Trajectory obtained with sx,0 = 0.2, sy,0 = −0.54, b = −0.92, d = 0.002, δ = 0.075 and
δ̃ = 0.1, for the dimensions of the rectangular regions and disks respectively. The real trajectory
is contained inside the region determined by the sequence of rectangles and disks. Therefore, the
characteristic lengths δ and δ̃ give an estimate of the precision involved in the measurements.

6. Dictionary

In this section is presented a sample of the dictionary, through Figures 11–27, where examples
of pure bimodal trajectories are illustrated, given the parameters b, d. Some representative behaviors
were chosen, there are many more. The key to read the dictionary is the following:

The values of the parameters b, d are presented together with the corresponding kneading
sequences. For each pair, b, d, are shown three different simulations, with the initial conditions
sx,0, sy,0 chosen randomly. Note that due to the sensitivity to the initial conditions, in particular for
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high topological entropy, the trajectories change significantly with a very slight change in the initial
conditions. In Figures 11–16, are represented trajectories with positive b and d = 0. In Figures 17–23,
are represented trajectories with negative b and d = 0. In Figures 24 and 25 both the parameters b, d
are positive and in Figures 26 and 27 the parameter b is negative and d is positive. The topological
invariants are also presented, such as growth number s, the r-invariant and the topological entropy.
Two graphics of the trajectories of the critical points, under the map fb,d are presented, to illustrate the
global behavior of the produced displacements. Finally, a simulation which determine approximately
the quadratic mean displacement. This shows that for different values of the parameters the behavior,
in average, may be comparable to the random walk, that is, diffusive behavior with the exponent close
to 0.5. This is the case in Figures 11–13 and 15, for example. There occurs superdiffusive behavior
with exponent larger than 0.5 and below 1, for example in Figures 16, 23 and 24. The sub-diffusive
behavior appears with the exponent less than 0.5. This is usually associated to parameters producing
atractive orbits close to periodic orbits which have no zero average, producing a slow drift, although d
may be 0. For an example of this phenomena see Figures 19 and 21. Naturally, there are values of the
parameters where the displacement is quasilinear. In this case, it is an almost direct trajectory with low
(or 0) topological entropy.

Considering the symmetric bimodal does not mean that a particular trajectory does not exhibit a
tendency to a certain direction. Means that if many different trajectories are produced, with random
initial conditions, in average there is no preferential direction. Instead, with the drift (d 6= 0) there is
this tendency that almost all trajectories gives a preferential direction, related with d.

Figure 11. Trajectories produced with b = 1 and d = 0.
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Figure 12. Trajectories produced with b = 0.992593 and d = 0.

Figure 13. Trajectories produced with b = 0.9875 and d = 0.
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Figure 14. Trajectories produced with b = 0.9113 and d = 0.

Figure 15. Trajectories produced with b = 0.866109 and d = 0.
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Figure 16. Trajectories produced with b = 0.7875 and d = 0.

Figure 17. Trajectories produced with b = −1 and d = 0.
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Figure 18. Trajectories produced with b = −0.9466315 . . . and d = 0.

Figure 19. Trajectories produced with b = −0.9496315 . . . and d = 0.
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Figure 20. Trajectories produced with b = −0.9498615 . . . and d = 0.

Figure 21. Trajectories produced with b = −0.88012 and d = 0.
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Figure 22. Trajectories produced with b = −0.88062 and d = 0.

Figure 23. Trajectories produced with b = −0.8665 and d = 0.
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Figure 24. Trajectories produced with b = 0.975445 . . . and d = 0.025.

Figure 25. Trajectories produced with b = 0.945198 . . . and d = 0.5.
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Figure 26. Trajectories produced with b = −0.946632 and d = 0.025.

Figure 27. Trajectories produced with b = −0.946632 and d = 0.5.

7. Conclusions, Discussion and Future Work

The objective of the present paper is to further develop the model introduced in Reference [10],
used to simulate and classify different types of trajectories of organisms arising in biology. The model
uses an iterated map of the interval—a cubic map fb,d - depending on two parameters b, d ∈ [−1, 1].
The map fb,d produces the displacements in each Cartesian coordinate through iteration. The produced
trajectories are identified as typical or template paths of certain organisms which at some extent are
isolated, with stable behavior, or exposed to a constant external influence. The characteristics, patterns
or irregularities of the trajectories, arising from any physical conditions or organism behavior, are
codified in the symbolic description of the orbits of fb,d, through the alphabet {L, C, R}. The main
classifying tool is the kneading invariant, Kb,d, of the map fb,d. To a particular patch, or piece of
trajectory, a symbolic sequence is associated. Thus, the study of the possible trajectories and its
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properties can be made enumerating symbolic sequences satisfying certain combinatorial constrains,
given by the admissibility conditions in the section. On the other hand, using ergodic theory for
symbolic dynamics and for iterated maps of the interval, the probability distributions can be derived
as a consequence of the model.

Regarding the possible use of the model to analyze empirical data it is necessary to take the
following into account. Particular observed animal trajectories are not necessarily reproduced in
an exact manner by the model. From the pattern of an observed trajectory, are identified: (1) The
consecutive steps where the direction is approximately maintained. (2) The changes in direction.
(3) The consecutive steps of changing direction. Then, from this information, it is possible to produce a
sequence in the referred alphabet {L, C, R}, associated with the observed trajectory. It is then possible
to determine a class of kneading sequences which turns the observed sequence into admissible, with
respect to the bimodal criteria. In this case, the approximate values for the topological entropy and
other invariants can be computed, obtaining a characterization of the system which produces similar
trajectories, as the given one. This process still needs some details to be completed. A paper dedicated
exclusively on dealing with experimental procedure to find the best way to fit the bimodal trajectories
on empirical trajectories, is being prepared.

The constraints that are either external, such as terrain or medium type, or internal, such as
metabolism, are codified and included in the kneading sequences and naturally on the parameter choice.
The allowed and not allowed types of motions are determined by the combinatorial admissibility rules
described in Section 3. The correspondence between the phenomena or experimental observations
and the kneading sequences are not determined apriori, or deduced, they must be obtained through
experimental procedure.

The generated motion in the case d = 0, is only dependent on the internal strategy, the metabolism
of the animal, or on the stabilized physical conditions. Naturally, the same organism can behave
differently if the physical conditions are different, and the parameter b characterize motions in those
stable equilibrium environment. Therefore, b resumes organism behavior and the stable physical
conditions of the environment. The parameter d is introduced to model the existence of a constant
external gradient of any kind, provoking a constant drift in the trajectories. In future work it is intended
to use this model to introduce interactions and to analyze how this interactions affect globally the
motion. We can introduce time dependent interaction or a space dependent interaction, such as a
potential. In this case the parameters b, d will be dependent on the organism position xk, yk

The uncertainty at the theoretical level, with respect to the initial conditions, influences the
difference in the produced trajectories for the same behavior, organism or physical conditions. That
is, a small perturbation of the initial conditions sx,0, sy,0, corresponds to perturbing a given trajectory,
as in Figure 6, obtaining different runs of the same organism, for example. This allows the simulation
of the movement of particular organisms in particular physical conditions, choosing different initial
conditions for the same set of parameters. The uncertainty with respect to small perturbation of the
parameters b, d, depending on the parameter region, can influence deeply the behavior or the physical
conditions for a given organism. This is typical for chaotic systems and can be observed in some of the
dictionary entries in Section 6. Regarding uncertainty of experimental data, the relevant concept is
the critical sequences of lengths, in each Cartesian coordinate, associated with the maximal lengths
observed. These sequences constitute the kneading invariant. The important point is to identify how
the consecutive observed lengths organize themselves with respect to the critical lengths, that is, if are
larger (symbol R), smaller (symbol L) or between the two critical lengths (symbol M). The symbolic
dynamics is robust to uncertainty regarding individual length measurements. However, regarding
the choice of the sample points, see for example Figure 9, and the choice of the turning points of the
rotation in the Cartesian frame, from an empirical trajectory, some work must be done to decide if
the obtained results are somehow independent on sampling method or if it is necessary to develop a
canonical sampling procedure adapted to the model.

This method can be easily generalized to three dimensions, as was suggested in Reference [10].
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It is planned also to explore the same method, iterated interval maps, in different coordinate
systems, namely polar coordinates, or different iterated maps, not necessarily bimodal, or continuous.
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