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Abstract: Drone logistics can play an important role in logistics at the end of the supply chain
and special environmental logistics. At present, drone logistics is in the initial development stage,
and the location of drone logistics hubs is an important issue in the optimization of logistics systems.
This paper implements a compact cuckoo search algorithm with mixed uniform sampling technology,
and, for the problem of weak search ability of the algorithm, this paper combines the method of
recording the key positions of the search process and increasing the number of generated solutions to
achieve further improvements, as well as implements the improved compact cuckoo search algorithm.
Then, this paper uses 28 test functions to verify the algorithm. Aiming at the problem of the location of
drone logistics hubs in remote areas or rural areas, this paper establishes a simple model that considers
the traffic around the village, the size of the village, and other factors. It is suitable for selecting the
location of the logistics hub in advance, reducing the cost of drone logistics, and accelerating the
large-scale application of drone logistics. This paper uses the proposed algorithm for testing, and the
test results indicate that the proposed algorithm has strong competitiveness in the proposed model.

Keywords: improved compact cuckoo search algorithm; location of drone logistics hub; sampling
technology; drone logistics

1. Introduction

There are many complex optimization scenarios in the fields of industry, finance, mathematics,
etc. Some of them are difficult to find a true global optimal solution. The meta-heuristic algorithm is
suitable for dealing with problems that are not solved by specific effective methods [1–4]. The Cuckoo
Search (CS) algorithm is a new heuristic algorithm that simulates cuckoo parasitic brooding and solves
complex optimization problems [5,6]. The CS uses the nest position of the cuckoo bird to represent
a possible solution in the solution space. The cuckoo bird’s parasitic brooding behavior is used to search
the solution space of the complex optimization problem. The movement of the solution is realized by
the cuckoo’s Levy flight mechanism, and the potential better solution is found through continuous
searching and updating. The Levy flight mechanism used in the cuckoo algorithm can effectively jump
out of the local optimal solution, and thus has better global search performance. It has also achieved
better results in engineering optimization problems [6,7]. Since the cuckoo algorithm was proposed,
various improved versions of the algorithm have been proposed for different uses, such as Modified
Cuckoo Search (MCS) [8], Binary Cuckoo Search (BCS) [9], Multiobjective Cuckoo Search (MOCS) [10],
Chaotic Cuckoo Search (CCS) [11], etc. This type of algorithm is usually used to solve complex
optimization problems, thus it will set a population to obtain better solutions in a shorter time.
Therefore, when dealing with complex optimization problems, or when it is applied to a device with

Mathematics 2020, 8, 333; doi:10.3390/math8030333 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-3128-9025
https://orcid.org/0000-0002-9355-1797
https://orcid.org/0000-0003-2117-0618
http://www.mdpi.com/2227-7390/8/3/333?type=check_update&version=1
http://dx.doi.org/10.3390/math8030333
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 333 2 of 19

limited memory, the heuristic algorithm needs to be improved to achieve the same or better solution in
a shorter time or with less memory consumption.

Compact is a technique that can reduce the memory usage of the meta-heuristic algorithm.
By using a probabilistic model to replace the population used in the algorithm from a macro perspective,
it achieves less memory usage and shorter calculation time [12–18]. The compact method uses
a probability model to represent the original population, and then uses the probability model to
generate a new solution. By comparing the generated solutions, the probability model is updated,
which is then used to replace the population update in the original algorithm [12]. Some related
algorithm improvements using the compact method have been proposed, such as compact particle
swarm optimization (cPSO) [12], compact genetic algorithm (cGA) [13], compact differential evolution
(cDE) [14], compact bat algorithm (cBA) [15], etc. This article attempts to implement an improved
version of the compact CS algorithm with a mixture of normal and uniform distributions. For the
problem of weak search ability of the algorithm, this paper combines the method of recording the key
positions of the search process and increasing the number of generated solutions to achieve further
improvements and implements the improved compact cuckoo search algorithm (icCS). The algorithm
was tested using 28 test functions of CEC2017.

As a new logistics method in the supply chain, drone logistics can effectively improve the efficiency
of the logistics system and solve the problem of express delivery in the last mile of the current logistics
system [19,20]. Drone logistics, with its own advantages, can perform express delivery in rural,
mountainous, or congested areas, as well as areas where ground traffic is impassable [20]. It can also
be used in special situations and applied to scenarios that require rapid delivery, such as medical
rescue and blood product transportation [21–24]. To apply drones to logistics systems, there have
been many related studies. In addition to optimizing the design of logistics systems and logistics
drones [25], it is also necessary to design logistics models based on cost, efficiency, and other factors.
Flight optimization in the process of logistics distribution of drones is also an issue that needs to be
researched in the field of drone logistics [26]. There are currently two main models of drone logistics:
models for distribution centers and drones and those for delivery vehicles and drones. Many scholars
have studied the logistics mode of combining drone and truck transportation [27,28]. For the model
of using truck transportation and drone for distribution, the logistics problem is usually regarded
as a path planning problem with the drone [29]. Then, usually the travelling salesman problem is
used to solve it on the basis of adding drones [30]. Intelligent algorithms are also applied to such
problems [31]. In addition, there are many studies using machine learning to deal with supply chain
problems. Some machine learning methods, such as Bayesian optimization, can also effectively deal
with optimization problems [32,33]. The logistics mode of distribution centers and drones usually
focuses on the location of the logistics center, and, because of the low load of the drone itself and
the limited battery energy, the logistics of the drone are limited [34]. In addition, other scholars have
studied other influencing factors of drone logistics, including operating costs, differences between
urban and rural areas, etc. [35,36].

Hu et al. [37] used CS to deal with the trajectory planning of micro aerial vehicles for express
transportation in cities. Considering the wind field, the obstacles of the building, and the characteristics
of the goods, the cuckoo algorithm is used to plan the transportation path. This paper focuses on
rural and remote areas, where surrounding villages are served by setting up a drone logistics hub.
The path of the drone during transportation is a straight line between the logistics hub and the village.
The main problem is the optimization of the location of the logistics hub. This paper aims at the
logistics scenarios in rural and remote areas, using the logistics model of distribution centers and
drones, assuming that future logistics drones can or have a stronger load capacity and longer dwell
time. Then, the location of the drone logistics hub is simply modeled and tested using the algorithm
proposed in this paper.
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2. Related Work

This section briefly introduces the cuckoo search algorithm and the drone logistics hub location
model proposed in this paper.

2.1. Metaheuristics Algorithm of Cuckoo

The CS algorithm is a new meta-heuristic algorithm that simulates the breeding strategy of cuckoo
in nature [5]. It solves complex optimization problems by imitating the brooding and parasitic behavior
of cuckoos in nature. The cuckoo search algorithm uses the position of the bird nest to represent
a possible solution, and updates the solution by updating the position of the bird nest. The update
method uses Lévy flight to simulate the movement pattern of birds in nature. Lévy flight consists
of long-range flights with occasional large steps and short-range flights with frequent small steps.
The occasional long-distance flight in Lévy flight can expand the search range and prevent falling into
local optimum.

To simplify the implementation of this algorithm , three simple and idealized rules are set for the
cuckoo search algorithm. (1) Each cuckoo produces only one egg at a time, and then randomly selects
a location for hatching. (2) The nest with the best eggs will be preserved and passed on to the next
generation. (3) The number of nests that can be used is fixed, and the probability of the eggs in the
nest being found is pa ∈ [0, 1] . When the egg is found, the owner of the nest will throwaway the egg
or build a new nest. The cuckoo search algorithm uses the parameter pa to control local search and
global exploration [38]. The formula for local search is written as

x(t+1)
i = x(t)i + α · St⊗ H (pa − ε)⊗

(
x(t)j − x(t)k

)
(1)

where x(t+1) represents the next generation solution, i is a cuckoo in the solution, St is the step size,
H(u) is a Heaviside function, ε is a random number generated by a uniform distribution, and x(t)j

and x(t)k represent two randomly selected different solutions from all current possible solutions.
The implementation formula for global exploration is written as

x(t+1)
i = x(t)i + αLévy(λ) (2)

In Equation (2), α > 0 indicates the step size scaling factor, usually α = 1. The random step size in
Lévy flight is generated using the Lévy probability distribution.

Lévy(δ) ∼ u = t−1−δ, (0 < δ ≤ 2) (3)

The variance and mean of the distribution are infinite. According to the original literature of the
CS algorithm [5], the pseudo-code of the algorithm is shown in Algorithm 1.

Compared with PSO, cuckoo search algorithm can achieve global convergence [39–41]. Compared
to algorithms using standard Gaussian processes, the cuckoo search algorithm is more efficient by
using Lévy flights.
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Algorithm 1: Cuckoo search via Lévy flights.

Objective fitness function f (x), x = (x1, . . . , xd)
T ;

Generate initial n bird nests xi(i = 1, 2, 3, . . . , n);
while (t< Max Generation ) or (stop criterion) do

Generate a random solution using Lévy flights;
Calculate and store fitness Fi;
Choose a nest among n( say, j) randomly;
if
(

Fi > Fj
)

then
Generate new solution and replace j;

end
A fraction (pa) of worse nests are abandoned and generate a new solution;
Keep the optimal solution in all solutions unchanged;
Find the current optimal solution and save;

end

2.2. Location Model of Drone Logistics Hub

At present, drone logistics is limited by the low load and weak endurance of drones. Moreover,
drones have limited mobility and cannot perform long-term continuous delivery, thus the current more
reasonable model is the collaborative model of delivery vehicles and drones. Then, path planning
for delivery vehicles and drones is performed. However, after the drone picks up the goods from
the delivery vehicle for delivery, it is necessary to consider that the drone returns to the delivery
vehicle after the recipient receives it. The movement of the delivery vehicle and the uncertainty of the
recipient’s pickup time will significantly reduce the drone’s delivery efficiency. However, with the
development of technology, drone equipment for logistics will solve the current problems, and, when
the level of automation increases, the mode of combining small unmanned logistics centers with
drones will become more competitive.

This paper chooses the model of unmanned logistics center and drone, and applies it to the location
of unmanned logistics hub in rural areas. The simulation diagram of the model in two-dimensional
space is shown in Figure 1. The premise assumptions and explanations of the model are as follows:

(1) The frone only travels to and from one village at a time.
(2) The drone’s endurance is able to meet the flight requirements from the logistics hub to the

farthest village that the logistics hub is responsible for.
(3) Under ideal conditions, the drone distribution path is a straight line from the logistics hub to

the corresponding village.
(4) Each logistics hub is responsible for express delivery services in multiple villages, and each

village chooses the nearest logistics hub to serve it.
(5) The sizes of the villages are different, that is, the areas of the villages and the numbers of villagers

are different.
(6) Drones do not enter the village when delivering goods, but deliver goods to the edge of the

village to ensure safety.
(7) The land transportation distance from the logistics hub to each village is different and the degree

of traffic difficulty is measured by the distance.
(8) The number of logistics hubs is artificially set according to the scope of application and artificially

selected after calculating different solutions.
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Figure 1. Location model of drone logistics hub.

The circle in Figure 1 represents the village, and the size of the circle represents the radius of the
village, which is expressed as R. The triangle represents the drone logistics station, and H represents
the straight line distance between the logistics hub and the village center. The model established in
this paper is relatively simple. This paper only considers the distribution distance, the size of the
village, and the current village’s efficiency ratio of using drone logistics to land transportation, which is
used to indicate the degree of difficulty of land transportation. The objective function of the model is
written as

min F = ∑
i∈N

(Hi − Ri) · cp · ( L1
L2

) (4)

In the formula, Hi represents the straight line distance from the center of the village labeled i to
the nearest logistics hub. Hi − Ri is the distance between a village and a logistics hub minus the village
radius, as drone delivery is not delivered to the precise location of the recipient, but is delivered to the
edge of the village, which can ensure better security. N is the total number of villages to be considered.
cp is the number of people living in the village. The larger is the population, the more frequently does
the logistics center deliver to the village, thus the logistics hub needs to be closer to the village to reduce
the overall cost. L1 is the distance for land transportation, L2 is the distance for linear delivery using
drones, and L1

L2 is usually a value greater than 1, thus the logistics hub needs to be closer to villages
with high land distribution costs. The variables and parameters involved in the model can be obtained
through actual measurement. There are no unnatural parameters, and the degree of traffic difficulty is
also obtained by using land transportation distance and straight flight distance. All parameters can be
calculated from the application environment data during actual application.The solution obtained after
calculating the model is the relative positions of multiple logistics hubs, and different villages choose
their nearest logistics hubs based on the distance. In the end, different solutions will be generated
according to the number of logistics hubs. Because the proposed model does not take into account all
the influencing factors, and the importance of the model’s constraints is different in different situations,
it needs to be artificially selected according to actual conditions.

3. Improved Compact Cuckoo Search Algorithm

This section introduces the application of the compact scheme and improved compact scheme to
cuckoo search algorithm.

3.1. Compact Scheme

The essence of the distribution estimation algorithm (EDA) is to use the probability model to
represent the population in the meta-heuristic algorithm, use the probability model to represent
the population from a macro perspective, and implement the operation on the population in the
meta-heuristic algorithm by operating the probability model [42,43]. The compact method is an effective
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method to reduce the memory footprint of the meta-heuristic algorithm. By updating the probability
model instead of updating the entire population, the calculation amount is reduced and the algorithm
running time is shortened.

Firstly, the probabilistic model is constructed using the original population distribution, and then
the population is updated by evaluating the probability model to find the optimal solution. Since the
probability model is used to represent the entire population, the characteristics of the original
population are described from a macro perspective. Perturbation Vector (PV) is often used to represent
the characteristics of the entire population. PV is constantly changing with the operation of the
algorithm, which is defined as : PVt =

[
µt, σt], where µ is used to representing the mean value of the

PV, σ is the standard deviation of the PV, and t is used to represent the number of current iterations.
Each pair of mean and standard deviation corresponds to a probability density function (PDF), which is
truncated at [−1, 1] and normalized to an area of amplitude of 1 [44]. Using the PV vector, the solution
xi can be randomly generated by the inverse cumulative distribution function (CDF). After generating
two solutions using PV, usually which is better is judged by comparing the fitness function values of
the two solutions; the better solution is the winner and the worse solution is the loser. Then, the PV is
updated. The formula for updating each standard deviation and the average value in the PV using
winner and loser is as follows:

µt+1
i = µt

i +
1

Np
(winneri − loseri) (5)

where µt+1
i represents the newly generated average and Np is the virtual population. The update rules

for σ are as follows:

σt+1
i =

√(
σt

i
)2

+
(
µt

i
)2 −

(
µt+1

i

)2
+

1
Np

(
winner2

i − loser2
i

)
(6)

The PV vector and the generated individual solution are stored during algorithm execution,
instead of storing the location of the entire population solution and the motion vector, which achieves
less runtime memory usage and is beneficial for use on resource-constrained devices. However,
since the conventional compact algorithm only randomly generates one solution at a time, there are
fewer possible solutions explored during each iteration, which will cause the problem of insufficient
convergence ability in the later iterations, and the method needs to be improved.

3.2. Improved Compact Scheme

The compact algorithm saves more memory resources, reduces the amount of calculation,
and shortens the algorithm running time compared with the original algorithm. However, the compact
algorithm generates two solutions per iteration and compares them. The solution generated during
each iteration is less than the population-based method in the original algorithm. Therefore, the number
of overall searches is small, the algorithm will converge slowly in the later stages of iteration, and it is
easy to fall into a local optimum.

Because the compact algorithm uses PV to generate new solutions, with continuous iteration,
PV will slowly converge to a certain area, but the number of solutions generated by PV during each
iteration is small, thus it is difficult to jump out of the local optimum. Thus, the method of sampling
using the normal distribution in the compact mode is improved. Considering the above problems,
this paper chooses to add the uniform distribution sampling method on the basis of using the original
compact mode. As shown in Algorithm 2, a new solution is generated using PV during each iteration,
and another new solution is generated using uniform sampling. Then, CS is used to update the
two generated solutions. Using uniform sampling in the solution space can search for other regions
to find a better solution while the PV converges to the optimal region. Because there may be better
solutions around the solution generated during the iteration, to get closer to the surrounding better
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solution during the iteration, a perturbation operation on the optimal value is added in this paper,
as shown in Algorithm 2.

Algorithm 2: Improved compact cuckoo search algorithm.

Objective fitness function f (x), x = (x1, . . . , xd)
T ;

for i = 1 : d do
initialize µ[i] = 0; σ[i] = λ = 10;//PV initialization//;

end
Initializing nest location x randomly and gbest with the best location
value:gbest = arg min f [x]; FL = 1;//Switch flag//;

while (t< Max Generation ) or (stop criterion) do
if FL==1 then

Generate x1, x2 using PV, uniformly distributed samples;
x1, x2 randomly walk by Lévy flights;
[winner, loser] =compete(x1, x2, newx1, newx2);
for i = 1 : d do

Update µ[i], σ[i]via Equations (5) and (6);
end
gbestrd = gbest + rand · randn(1, d) //Perturbation//;
[winner, loser] =compete(winner, gbest, gbestrd); gbest = winner; t = t + 1;
FL = 2 when caught in a local optimal;

end
else

nest randomly walk by Lévy flights; evaluate nest’s quality/fitness;
A fraction(pa) of worse nests are abandoned and build a new one;
Keep the optimal solution in all solutions unchanged;
Find the current optimal solution and save;

end
if FL==1 then

Use gbest to form nestpvi(i ≤ n/2) via Equations (7);
Use nestpv and uniform distribution to form the nest;

end
end

After improving the compact mode, the algorithm can achieve better results and convergence
ability, but the global search ability and local search ability can still be further improved. Therefore,
a switching mode is added in this paper. When the algorithm is trapped in a local optimal value,
it switches to a population-based search mode, as shown in Algorithm 2. There are many ways to
judge when the algorithm is trapped in a local optimal value. The first method can compare the recent
iteration trend with the overall iteration trend. The second method can determine whether a better
solution can be found within a certain number of iterations. This paper uses the second method to
switch modes. The possible solutions when the mode is switched are divided into two parts, one is
selected from the optimal solution obtained during the execution of the compact algorithm, and the
other is generated using a uniform distribution, as shown in Algorithm 2, where n is the number of
new solutions generated per iteration after switching.

[best f it(t−m)− best f it(t− 1)]− [best f it(t− 1)− best f it(t)] < 0 (7)

There are many ways to obtain the optimal solution from the operation of the compact algorithm.
This article chooses the key solution of the optimal solution in the previous iterative process.



Mathematics 2020, 8, 333 8 of 19

The selection of the key solution needs to conform to Equation (7); the difference between the fitness
function value of the key solution and the previous solution is greater than the difference of the first m
optimal values of the key solution. m in this paper is 20. t represents the current number of iterations
and best f it is used to store the optimal solution obtained during each iteration. By selecting the key
solution from the optimal solution for each iteration, it is possible to use the previous search results for
a more refined search, which is a memory-based approach. Selecting those breakthrough solutions in
the iterative process through Equation (7) can assist in fine search after switching. Based on the above
introduction, the flow chart of the icCS algorithm in this paper is given in Figure 2.

𝑆𝑡𝑎𝑟𝑡

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 x1, x2 𝑢𝑠𝑖𝑛𝑔 𝑃𝑉,
𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

x 1, x2 𝐿é𝑣𝑦 𝑓𝑖𝑔ℎ𝑡𝑠;
𝑈𝑝𝑑𝑎𝑡𝑒 𝜇, 𝜎

𝐷𝑖𝑠𝑡𝑢𝑟𝑏 𝑔𝑏𝑒𝑠𝑡,
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𝑅𝑒𝑠𝑒𝑡 𝑤𝑜𝑟𝑠𝑒 𝑛𝑒𝑠𝑡;

𝑈𝑝𝑑𝑎𝑡𝑒 𝑛𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠;
𝑈𝑝𝑑𝑎𝑡𝑒 𝑛𝑒𝑠𝑡;
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𝑌𝑒𝑠

𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑁𝑜

𝑁𝑜

𝑌𝑒𝑠
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Figure 2. The overall flow chart of icCS.

4. Experimental Results

The proposed algorithm was tested. The test function used CEC’17 benchmark suite [45].
The 28 test functions used in this study include unimodal functions, simple multimodal functions,
mixed functions, and composition functions. All test functions used are minimization problems and
are defined as follows:

min f (x), x = [x1, x2, x3, . . . , xD]
T (8)

where D is the number of dimensions and the search range is [−100, 100]D. According to the
introduction of CEC’17 benchmark suite, f2 was excluded because it exhibits unstable behavior,
especially for higher dimensions in test functions. Compared with the same algorithm implemented in
Matlab, the performance of the one implemented in C is very different [45]. Thus, 28 test functions
were used to the the algorithm in this paper. All tested algorithms maintained consistent parameter
settings. The population size of all algorithms was 20 and the number of algorithm iterations was set
to 3000. Each algorithm was tested five times on each function and the average value was retained.
The parameter settings of each comparison algorithm are shown in Table 1.
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Table 1. Parameters setting of each algorithm.

Algorithm Main Parameters Setting

CS Population_number = 20, Max_iteration = 3000, Pa = 0.25
ACS Population_number = 20, Max_iteration = 3000, Pa = 0.25
PSO Population_number = 20, Max_iteration = 3000, ωmax = 0.9, ωmin = 0.4, c1 = 2, c2 = 2
DE Population_number = 20, Max_iteration = 3000, pCR = 0.2, Fmin = 0.2, Fmax = 0.8

SCA Population_number = 20, Max_iteration = 3000
icCS Population_number = 20, Max_iteration = 3000, Pa = 0.25
cPSO Population_number = 20, Max_iteration = 3000, φ1 = 1, φ2 = 1.5, φ3 = 2, c1 = 1, c2 = 1

cBA Population_number = 20, Max_iteration = 3000, loudness = 0.5, pulse rate = 0.5,
min/max frequency = [0,2]

cABC Population_number = 20, Max_iteration = 3000, limit = 100

4.1. Comparison with Common Optimization Algorithms

The improved compact cuckoo search algorithm proposed in this paper was compared with
common classical algorithms on the test functions: the original CS algorithm [5]; the Adaptive Cuckoo
Search Algorithm (ACS) [46], in which the parameter pa was set to 0.25; common PSO [47]; DE [48];
and the sine cosine algorithm (SCA) proposed in 2016 [49]. The comparison results are shown in Table 2.

Table 2. Comparison of means of fitness functions on 30D optimization among CS, ACS, PSO, DE,
SCA, and icCS is presented here.

Functions icCS CS ACS PSO DE SCA

f1(x) 1.20377 × 102 1.00000 × 1010 1.00000 × 1010 4.56091 × 103 3.18520 × 103 1.51701 × 1010

f3(x) 3.05501 × 104 3.79292 × 104 3.22087 × 104 1.70774 × 104 8.66524 × 104 5.75645 × 104

f4(x) 4.62444 × 102 4.73280 × 102 4.65491 × 102 5.40339 × 102 4.92410 × 102 1.93646 × 103

f5(x) 6.76672 × 102 6.68839 × 102 6.34201 × 102 5.62882 × 102 6.36734 × 102 8.00897 × 102

f6(x) 6.36546 × 102 6.44382 × 102 6.44924 × 102 6.00733 × 102 6.00000 × 102 6.53341 × 102

f7(x) 9.50101 × 102 9.35106 × 102 9.64459 × 102 8.26945 × 102 8.72143 × 102 1.18146 × 103

f8(x) 9.42849 × 102 9.40035 × 102 9.23222 × 102 8.65031 × 102 9.36081 × 102 1.07358 × 103

f9(x) 5.07394 × 103 5.64605 × 103 9.30145 × 103 1.16805 × 103 9.00000 × 102 6.44206 × 103

f10(x) 4.82195 × 103 5.05056 × 103 4.99931 × 103 5.12150 × 103 6.76785 × 103 8.60907 × 103

f11(x) 1.22792 × 103 1.21607 × 103 1.20667 × 103 1.24541 × 103 1.20299 × 103 2.57068 × 103

f12(x) 4.56905 × 104 6.00015 × 109 9.00368 × 109 6.21396 × 105 4.15010 × 106 1.61706 × 109

f13(x) 1.81192 × 103 1.00001 × 109 1.00001 × 109 1.80866 × 104 1.77057 × 105 6.63131 × 108

f14(x) 1.48212 × 103 1.47295 × 103 1.48013 × 103 4.06132 × 104 9.25870 × 104 2.99047 × 105

f15(x) 1.62982 × 103 1.61110 × 103 1.63020 × 103 1.64717 × 104 5.03273 × 104 2.12505 × 107

f16(x) 2.60602 × 103 2.65977 × 103 2.69191 × 103 2.22859 × 103 2.45510 × 103 3.82109 × 103

f17(x) 2.04739 × 103 2.07413 × 103 2.01007 × 103 2.03341 × 103 1.93289 × 103 2.59000 × 103

f18(x) 7.44420 × 103 7.67991 × 103 8.73722 × 103 1.25873 × 106 9.36373 × 105 4.69351 × 106

f19(x) 1.94031 × 103 1.94203 × 103 1.95316 × 103 1.29213 × 104 2.77813 × 104 4.60719 × 107

f20(x) 2.39270 × 103 2.43996 × 103 2.45306 × 103 2.23193 × 103 2.20637 × 103 2.84076 × 103

f21(x) 2.44515 × 103 2.44476 × 103 2.41188 × 103 2.36641 × 103 2.44690 × 103 2.57886 × 103

f22(x) 3.59559 × 103 4.00541 × 103 5.33379 × 103 5.83669 × 103 5.18629 × 103 9.64492 × 103

f23(x) 2.81251 × 103 2.82287 × 103 2.77342 × 103 2.72533 × 103 2.78211 × 103 3.05061 × 103

f24(x) 2.95136 × 103 2.99155 × 103 2.92443 × 103 2.92132 × 103 2.99210 × 103 3.21214 × 103

f25(x) 2.88699 × 103 2.88668 × 103 2.88775 × 103 2.90573 × 103 2.88754 × 103 3.27954 × 103

f26(x) 4.10369 × 103 4.71619 × 103 3.80533 × 103 4.42989 × 103 4.95267 × 103 7.52475 × 103

f27(x) 3.22191 × 103 3.22988 × 103 3.22089 × 103 3.25043 × 103 3.21313 × 103 3.46664 × 103

f28(x) 3.18150 × 103 3.17620 × 103 3.16887 × 103 3.27739 × 103 3.23058 × 103 4.11323 × 103

f29(x) 3.82243 × 103 3.88243 × 103 3.93256 × 103 3.65520 × 103 3.71836 × 103 4.93266 × 103

w - 19 17 15 16 28

Table 2 shows the average value obtained by running the icCS algorithm and other algorithms
on the test functions. The last row in the table summarizes the comparison results of icCS algorithm
and other algorithms, where w indicates on how many test functions icCS has achieved better results
than the algorithm results of the current column. Table 3 shows the standard deviation of the icCS
algorithm and other algorithms on the test functions.
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According to the data in Tables 2 and 3, the algorithm proposed in this paper achieved better
results than other algorithms on the test functions. Especially on specific functions, such as f1, f12,
and f13, compared with CS and ACS algorithms, the proposed algorithm could obtain better and more
stable results. At the same time, the overall performance of each algorithm compared with the icCS
algorithm was measured at a significant level α = 0.05 under the Wilcoxon’s sign rank test (Table 4) [50].

According to Table 2, compared with CS, icCS achieved better or similar results on 19 functions;
compared with ACS, icCS achieved better or similar results on 17 functions; compared with the PSO
algorithm, icCS obtained better or similar results on 15 functions, with better results than PSO on
functions f1, f12, f13, f14, f15, f18, and f19; and compared with DE, icCS achieved better or similar
results on 16 functions, obtaining better results on functions f1, f12, f13, f14, f15, f18, f19. However,
DE could find the global optimal value effectively on f6 and f9, which was better than other algorithms.
Compared with SCA, icCS achieved better or similar results on all functions. For the comparison
of standard deviations, Table 3 gives the corresponding data. Combined with the data in Table 2,
the icCS algorithm proposed in this paper has similar stability compared with CS and ACS algorithms.
However, the CS and ACS algorithms on f1, f12, and f13 did not achieve good results. Based on the
above comparison, the overall performance of the algorithm icCS proposed in this paper is better on
28 test functions.

Table 3. Comparison of standard deviation of Fitness Functions on 30D optimization among CS, ACS,
PSO, DE, SCA, and icCS is presented here.

Functions icCS CS ACS PSO DE SCA

f1(x) 1.58954 × 101 0.00000 0.00000 6.14926 × 103 2.84671 × 103 1.02413 × 109

f3(x) 6.59109 × 103 1.23039× 104 7.88398 × 103 8.30263 × 103 1.77116× 104 8.19113 × 103

f4(x) 3.50377 × 101 3.05228 × 101 2.91856 × 101 4.49024 × 101 7.49639 4.73629 × 102

f5(x) 1.82381 × 101 1.68876 × 101 2.20047 × 101 9.36649 9.54795 2.40221 × 101

f6(x) 9.31378 4.77247 1.30530 × 101 6.83978 × 10−1 4.32832 × 10−8 6.94827
f7(x) 4.81329 × 101 4.62859 × 101 4.50709 × 101 2.98190 × 101 1.33903 × 101 4.31410 × 101

f8(x) 1.93099 × 101 2.37403 × 101 2.19209 × 101 2.07230 × 101 1.45249 × 101 2.30497 × 101

f9(x) 1.31639 × 103 1.92154 × 103 2.49578 × 103 1.23386 × 102 4.95811 × 10−6 1.51949 × 103

f10(x) 4.30482 × 102 3.13624 × 102 5.02779 × 102 1.45196 × 103 1.62505 × 102 2.78873 × 102

f11(x) 3.21566 × 101 1.69000 × 101 3.19376 × 101 6.68227 × 101 2.36883 × 101 5.02743 × 102

f12(x) 1.44805× 104 5.16379 × 109 3.15063 × 109 5.45313 × 105 1.70294 × 106 4.08268 × 108

f13(x) 1.64281 × 102 3.16227 × 109 3.16227 × 109 1.72784 × 104 1.73217 × 105 2.79337 × 108

f14(x) 1.48525 × 101 1.37260 × 101 1.49070 × 101 1.72076 × 104 6.05874 × 104 1.67867 × 105

f15(x) 4.30874 × 101 3.55231 × 101 3.23631 × 101 1.75888 × 104 4.37739 × 104 2.09254 × 107

f16(x) 1.62357 × 102 2.19252 × 102 2.12095 × 102 4.70514 × 102 2.20864 × 102 1.97921 × 102

f17(x) 1.07398 × 102 1.15661 × 102 1.20506 × 102 1.31330 × 102 6.21786 × 101 1.80726 × 102

f18(x) 2.57856 × 103 2.16380 × 103 3.99360 × 103 2.08530 × 106 3.00827 × 105 2.25986 × 106

f19(x) 8.58002 1.18938 × 101 1.24844 × 101 1.80333× 104 1.93855× 104 2.02455 × 107

f20(x) 1.37076 × 102 9.92375 × 101 1.10117 × 102 8.55912 × 101 1.05365 × 102 1.36654 × 102

f21(x) 3.40883 × 101 3.81789 × 101 1.45891 × 101 1.55532 × 101 8.60537 1.78525 × 101

f22(x) 2.09828 × 103 2.20659 × 103 2.10756 × 103 2.64497 × 103 2.29411 × 103 5.89906 × 102

f23(x) 3.75856 × 101 2.80960 × 101 2.37389 × 101 3.11146 × 101 8.48648 5.34084 × 101

f24(x) 1.91721 × 101 2.94028 × 101 2.37271 × 101 5.32288 × 101 1.34512 × 101 4.98180 × 101

f25(x) 2.06219 1.49136 3.20373 1.30168 × 101 3.47109 × 10−1 3.44086 × 101

f26(x) 1.39171 × 103 7.69896 × 102 1.04089 × 103 1.88883 × 102 1.59418 × 102 5.10981 × 102

f27(x) 1.21796 × 101 1.50593 × 101 6.43974 1.37635 × 101 3.20524 5.08883 × 101

f28(x) 4.21625 × 101 4.16685 × 101 4.77688 × 101 4.34023 × 101 2.53171 × 101 1.56604 × 102

f29(x) 1.61220 × 102 1.34654 × 102 1.73408 × 102 1.27860 × 102 1.62071 × 102 2.70478 × 102
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Table 4. Compared with the proposed icCS, the overall performance of each algorithm is measured at
a significant level α = 0.05 under the Wilcoxon’s signed rank test.

Functions CS ACS PSO DE SCA

f1(x) 6.386445 × 10−5 6.386445 × 10−5 7.685389 × 10−4 4.396388 × 10−4 1.826718 × 10−4

f3(x) 2.413216 × 10−1 6.231762 × 10−1 2.827272 × 10−3 1.826718 × 10−4 1.826718 × 10−4

f4(x) 3.074895 × 10−1 4.726756 × 10−1 1.314945 × 10−3 1.401928 × 10−2 1.826718 × 10−4

f5(x) 4.273553 × 10−1 7.685389 × 10−4 1.826718 × 10−4 1.826718 × 10−4 1.826718 × 10−4

f6(x) 3.120901 × 10−2 1.858767 × 10−1 1.826718 × 10−4 1.309295 × 10−4 1.314945 × 10−3

f7(x) 7.913368 × 10−1 4.273553 × 10−1 1.826718 × 10−4 1.826718 × 10−4 1.826718 × 10−4

f8(x) 9.097219 × 10−1 6.402210 × 10−2 2.461281 × 10−4 4.726756 × 10−1 1.826718 × 10−4

f9(x) 5.205229 × 10−1 5.828399 × 10−4 1.826718 × 10−4 1.786145 × 10−4 1.212245 × 10−1

f10(x) 7.566157 × 10−2 3.846731 × 10−1 7.337300 × 10−1 1.826718 × 10−4 1.826718 × 10−4

f11(x) 8.501067 × 10−1 5.205229 × 10−1 7.913368 × 10−1 1.858767 × 10−1 1.826718 × 10−4

f12(x) 6.519225 × 10−4 8.744987 × 10−5 2.827272 × 10−3 1.826718 × 10−4 1.826718 × 10−4

f13(x) 1.826718 × 10−4 1.826718 × 10−4 1.725746 × 10−2 1.826718 × 10−4 1.826718 × 10−4

f14(x) 7.566157 × 10−2 9.698500 × 10−1 1.826718 × 10−4 1.826718 × 10−4 1.826718 × 10−4

f15(x) 2.122938 × 10−1 9.698500 × 10−1 1.826718 × 10−4 1.826718 × 10−4 1.826718 × 10−4

f16(x) 6.231762 × 10−1 3.447042 × 10−1 1.725746 × 10−2 1.619724 × 10−1 1.826718 × 10−4

f17(x) 6.775850 × 10−1 3.447042 × 10−1 9.097219 × 10−1 1.401928 × 10−2 1.826718 × 10−4

f18(x) 7.337300 × 10−1 5.205229 × 10−1 1.826718 × 10−4 1.826718 × 10−4 1.826718 × 10−4

f19(x) 9.698500 × 10−1 9.108496 × 10−3 1.826718 × 10−4 1.826718 × 10−4 1.826718 × 10−4

f20(x) 4.273553 × 10−1 2.730363 × 10−1 1.725746 × 10−2 4.586392 × 10−3 2.461281 × 10−4

f21(x) 7.913368 × 10−1 2.113393 × 10−2 2.461281 × 10−4 7.913368 × 10−1 1.826718 × 10−4

f22(x) 7.566157 × 10−2 5.390256 × 10−2 1.041099 × 10−1 3.763531 × 10−2 1.826718 × 10−4

f23(x) 3.846731 × 10−1 9.108496 × 10−3 3.298385 × 10−4 3.763531 × 10−2 1.826718 × 10−4

f24(x) 1.706249 × 10−3 2.574808 × 10−2 1.212245 × 10−1 3.298385 × 10−4 1.826718 × 10−4

f25(x) 7.913368 × 10−1 6.775850 × 10−1 1.826718 × 10−4 4.726756 × 10−1 1.826718 × 10−4

f26(x) 3.447042 × 10−1 9.698500 × 10−1 4.726756 × 10−1 4.726756 × 10−1 1.826718 × 10−4

f27(x) 2.122938 × 10−1 9.698500 × 10−1 5.828399 × 10−4 4.515457 × 10−2 1.826718 × 10−4

f28(x) 9.097219 × 10−1 5.205229 × 10−1 2.461281 × 10−4 4.396388 × 10−4 1.826718 × 10−4

f29(x) 5.707504 × 10−1 1.858767 × 10−1 4.515457 × 10−2 2.413216 × 10−1 1.826718 × 10−4

4.2. Comparison with Compact Algorithms

Tables 5 and 6 compare the proposed pcCS algorithm with other common algorithms using
the compact method, including compact Particle Swarm Optimization (cPSO) [12], compact Bat
Algorithm (cBA) [15], and compact Artificial Bee Colony algorithms (cABC) [51]. The number of
virtual populations was set to 20 and the parameters of the algorithm remained the same as those in
the original document.

This paper compares the proposed icCS algorithm with other compact algorithms in 10D and
30D optimization. At the same time, the overall performance of each other algorithm was measured
at a significant level α = 0.05 under Wilcoxon sign rank test. According to the data in Tables 5 and 6,
the algorithm proposed in this paper has better performance than the other three compact algorithms
and can obtain better results. For the cBA algorithm in Table 5, icCS achieved better results on f1,
f3, f4, f12, f13, f18, f19, and f29. Combined with the results of Wilcoxon sign rank test, the proposed
icCS algorithm was significantly better than the cBA algorithm on 28 test functions. For the cPSO
and cABC algorithms, the cABC algorithm could still obtain better results when it was optimized in
10D, but, when it was optimized in 30D, as shown in Table 6, the cABC algorithm was not as stable
as the proposed icCS algorithm. As shown in Table 5 for 10D optimization and Table 6 for 30D
optimization, the performance of the proposed icCS algorithm in different dimensions is similar and
does not fluctuate too much. According to the results of the Wilcoxon sign rank test, the proposed icCS
algorithm was significantly better than other algorithms using only compact technology for the 28 test
functions and both 10D and 30D optimization.



Mathematics 2020, 8, 333 12 of 19

Table 5. Comparison with the average fitness function on 10D optimization among cBA, cPSO,
and cABC algorithms on 28 test functions. The overall performance of each of the other algorithms was
measured at a significant level α = 0.05 under the Wilcoxon’s signed rank test.

D = 10 Mean Wilcoxon’s Sign Rank Test

Functions icCS cBA cPSO cABC cBA cPSO cABC

f1(xi) 1.000 × 102 9.504 × 1010 1.050 × 1011 2.022 × 1010 1.391 × 10−20 7.188 × 10−21 1.391 × 10−20

f3(xi) 3.000 × 102 5.782 × 109 3.178 × 1011 1.833 × 104 1.391 × 10−20 1.056 × 10−20 1.391 × 10−20

f4(xi) 4.000 × 102 2.045 × 104 3.273 × 104 3.348 × 103 3.303 × 10−18 2.241 × 10−18 3.303 × 10−18

f5(xi) 5.120 × 102 8.476 × 102 8.085 × 102 6.706 × 102 3.304 × 10−18 2.242 × 10−18 3.304 × 10−18

f6(xi) 6.000 × 102 7.344 × 102 7.604 × 102 6.885 × 102 3.304 × 10−18 1.865 × 10−18 3.304 × 10−18

f7(xi) 7.259 × 102 2.626 × 103 2.056 × 103 8.431 × 102 3.304 × 10−18 2.849 × 10−18 3.304 × 10−18

f8(xi) 8.127 × 102 1.080 × 103 1.075 × 103 8.868 × 102 3.304 × 10−18 2.242 × 10−18 3.304 × 10−18

f9(xi) 9.004 × 102 6.903 × 103 2.120 × 104 2.106 × 103 1.864 × 10−19 1.460 × 10−19 1.864 × 10−19

f10(xi) 1.566 × 103 2.697 × 103 4.221 × 103 5.109 × 103 3.304 × 10−18 3.244 × 10−18 1.391 × 10−20

f11(xi) 1.102 × 103 7.657 × 104 4.605 × 105 9.857 × 105 3.304 × 10−18 2.471 × 10−18 1.391 × 10−20

f12(xi) 1.271 × 103 8.830 × 109 1.324 × 1010 2.340 × 109 3.304 × 10−18 2.576 × 10−18 3.304 × 10−18

f13(xi) 1.307 × 103 5.387 × 109 1.077 × 1010 3.576 × 108 3.304 × 10−18 2.242 × 10−18 3.304 × 10−18

f14(xi) 1.403 × 103 4.188 × 103 2.2266 × 108 4.0336 × 108 3.304 × 10−18 1.865 × 10−18 1.3916 × 10−20

f15(xi) 1.501 × 103 4.065 × 104 3.248 × 109 5.095 × 106 3.304 × 10−18 2.675 × 10−18 3.304 × 10−18

f16(xi) 1.610 × 103 5.251 × 103 1.548 × 104 2.653 × 103 3.304 × 10−18 2.242 × 10−18 3.304 × 10−18

f17(xi) 1.720 × 103 2.948 × 103 1.1726 × 105 2.174 × 103 3.304 × 10−18 1.342 × 10−18 3.304 × 10−18

f18(xi) 1.801 × 103 1.312 × 1010 3.134 × 1010 3.418 × 109 3.304 × 10−18 2.471 × 10−18 3.304 × 10−18

f19(xi) 1.901 × 103 3.457 × 109 1.505 × 1010 3.4326 × 108 3.304 × 10−18 1.734 × 10−18 3.304 × 10−18

f20(xi) 2.006 × 103 2.690 × 103 3.224 × 103 2.668 × 103 3.304 × 10−18 1.093 × 10−18 3.304 × 10−18

f21(xi) 2.239 × 103 2.564 × 103 2.549 × 103 2.671 × 103 3.282 × 10−18 2.409 × 10−17 1.378 × 10−20

f22(xi) 2.293 × 103 5.081 × 103 5.468 × 103 4.262 × 103 3.304 × 10−18 1.602 × 10−18 3.304 × 10−18

f23(xi) 2.614 × 103 3.286 × 103 4.524 × 103 3.452 × 103 3.304 × 10−18 2.675 × 10−18 3.304 × 10−18

f24(xi) 2.648 × 103 3.220 × 103 3.356 × 103 3.058 × 103 3.301 × 10−18 4.840 × 10−19 3.789 × 10−16

f25(xi) 2.881 × 103 2.478 × 104 3.837 × 104 4.136 × 103 3.160 × 10−18 2.463 × 10−18 3.160 × 10−18

f26(xi) 2.838 × 103 7.302 × 103 7.289 × 103 5.083 × 103 2.636 × 10−18 2.330 × 10−18 2.636 × 10−18

f27(xi) 3.089 × 103 1.051 × 104 1.847 × 104 3.949 × 103 3.293 × 10−18 4.4716 × 10−16 3.293 × 10−18

f28(xi) 3.109 × 103 3.714 × 103 3.423 × 103 4.172 × 103 2.602 × 10−18 3.203 × 10−17 1.018 × 10−20

f29(xi) 3.171 × 103 7.190 × 106 7.6356 × 107 7.919 × 103 3.304 × 10−18 2.471 × 10−18 3.304 × 10−18

Table 6. Comparison with the average fitness function on 30D optimization among cBA, cPSO,
and cABC algorithms on 28 test functions. The overall performance of each of the other algorithms was
measured at a significant level α = 0.05 under the Wilcoxon’s signed rank test.

D = 30 Mean Wilcoxon’s Sign Rank Test

Functions icCS cBA cPSO cABC cBA cPSO cABC

f1(xi) 1.293 × 102 3.695 × 1011 4.358 × 1011 7.356 × 1010 3.304 × 10−18 1.602 × 10−18 3.304 × 10−18

f3(xi) 3.107 × 104 1.374 × 1016 3.298 × 1016 9.454 × 104 3.304 × 10−18 2.242 × 10−18 3.304 × 10−18

f4(xi) 4.608 × 102 1.451 × 105 1.302 × 105 2.740 × 104 3.304 × 10−18 2.471 × 10−18 3.304 × 10−18

f5(xi) 6.719 × 102 2.119 × 103 2.082 × 103 1.021 × 103 3.304 × 10−18 1.472 × 10−18 3.304 × 10−18

f6(xi) 6.432 × 102 7.472 × 102 8.101 × 102 7.132 × 102 3.304 × 10−18 1.342 × 10−18 3.304 × 10−18

f7(xi) 9.618 × 102 9.068 × 103 7.007 × 103 1.495 × 103 3.304 × 10−18 2.120 × 10−18 3.304 × 10−18

f8(xi) 9.354 × 102 1.811 × 103 1.908 × 103 1.222 × 103 3.304 × 10−18 1.865 × 10−18 3.304 × 10−18

f9(xi) 5.221 × 103 2.989 × 104 1.312 × 105 1.420 × 104 8.947 × 10−18 1.734 × 10−18 3.304 × 10−18

f10(xi) 4.784 × 103 6.173 × 103 1.259 × 104 9.609 × 103 6.339 × 10−15 3.105 × 10−18 3.304 × 10−18

f11(xi) 1.224 × 103 6.970 × 1010 2.933 × 1011 2.072 × 105 3.304 × 10−18 1.865 × 10−18 3.304 × 10−18

f12(xi) 9.720 × 104 8.191 × 1010 8.116 × 1010 2.227 × 1010 3.304 × 10−18 2.120 × 10−18 3.304 × 10−18

f13(xi) 1.844 × 103 3.858 × 1010 6.393 × 1010 3.093 × 1010 3.304 × 10−18 1.472 × 10−18 3.304 × 10−18

f14(xi) 1.481 × 103 3.739 × 109 1.643 × 1010 1.273 × 108 3.304 × 10−18 9.752 × 10−19 3.304 × 10−18

f15(xi) 1.612 × 103 7.039 × 1010 7.402 × 1010 2.946 × 109 3.304 × 10−18 2.242 × 10−18 3.304 × 10−18

f16(xi) 2.607 × 103 1.840 × 105 3.616 × 105 1.264 × 104 3.304 × 10−18 2.471 × 10−18 3.304 × 10−18

f17(xi) 2.041 × 103 5.641 × 107 6.773 × 108 5.782 × 104 3.304 × 10−18 1.865 × 10−18 3.304 × 10−18

f18(xi) 8.327 × 103 1.101 × 1010 2.532 × 1010 9.179 × 108 3.304 × 10−18 2.675 × 10−18 3.304 × 10−18

f19(xi) 1.942 × 103 6.498 × 1010 7.511 × 1010 3.356 × 109 3.304 × 10−18 2.471 × 10−18 3.304 × 10−18

f20(xi) 2.426 × 103 3.790 × 103 4.970 × 103 3.810 × 103 3.304 × 10−18 3.244 × 10−18 3.304 × 10−18

f21(xi) 2.446 × 103 3.292 × 103 3.318 × 103 2.950 × 103 3.304 × 10−18 2.471 × 10−18 3.304 × 10−18

f22(xi) 5.032 × 103 7.343 × 103 1.321 × 104 1.140 × 104 1.598 × 10−17 5.211 × 10−18 3.304 × 10−18

f23(xi) 2.820 × 103 4.607 × 103 5.456 × 103 5.814 × 103 3.304 × 10−18 1.865 × 10−18 1.391 × 10−20

f24(xi) 2.982 × 103 5.261 × 103 5.596 × 103 4.585 × 103 3.304 × 10−18 3.304 × 10−18 3.304 × 10−18

f25(xi) 2.888 × 103 7.592 × 104 7.524 × 104 7.323 × 103 3.304 × 10−18 2.359 × 10−18 3.304 × 10−18

f26(xi) 4.279 × 103 4.351 × 104 5.076 × 104 1.380 × 104 3.304 × 10−18 3.301 × 10−18 3.304 × 10−18

f27(xi) 3.224 × 103 7.648 × 103 8.023 × 103 7.428 × 103 3.304 × 10−18 1.109 × 10−7 3.304 × 10−18

f28(xi) 3.180 × 103 1.675 × 104 1.094 × 104 8.858 × 103 3.304 × 10−18 3.304 × 10−18 3.304 × 10−18

f29(xi) 3.891 × 103 2.317 × 107 5.965 × 108 4.799 × 104 3.304 × 10−18 1.865 × 10−18 3.304 × 10−18
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4.3. Convergence Evaluation

The optimal value obtained by the algorithm cannot completely define the validity of the
algorithm’s search principle. It is also necessary to evaluate the convergence of the algorithm to
measure the speed of the algorithm reaching the optimal value. In this study, two unimodal functions
( f1, f3), two simple multimodal functions ( f6, f10), two hybrid functions ( f12, f13), and two composition
functions ( f22, f28) were selected as the test functions to compare the convergence of icCS and other
common classic algorithms for evaluation of convergence. The comparison of the convergence
performance of the icCS algorithm proposed in this paper and other common classical algorithms is
shown in Figures 3 and 4.

(a) f1 (b) f3

(c) f6 (d) f10

Figure 3. Convergence test results for functions f1, f3, f6 ,and f10 in 30 dimensions: (a) f1; (b) f3; (c) f6;
and (d) f10.

Because the algorithm proposed in this paper combines compact- and population-based
technologies, the overall complexity of the algorithm is higher than that of algorithms using only
compact. Based on the introduction of the algorithm in Section 3, the proposed icCS algorithm is
divided into two phases. The first stage uses compact technology. To increase the global search
capability at this stage, a step of uniform sampling is added in this paper. Sn additional uniform
distribution sampling is performed on the basis of compact using normal distribution sampling.
In this way, a new solution is generated during each iteration and two new solutions are generated,
which increases the global search capability and also increases the complexity of the algorithm.
At the same time, because the compact method generates fewer solutions, as shown in Figures 3 and 4,
the early convergence speed of the proposed algorithm is slow.

After the algorithm switches to the second stage, the algorithm uses a population-based method
for enhanced search in order to jump out of the local optimum. The algorithm complexity at this time
is the same as the original population-based algorithm. In addition, during the execution of the first
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phase of the algorithm, it is necessary to prepare for switching to the second phase. The key solutions
in the first phase need to be saved, and it is necessary to judge whether to switch to the second phase
continuously. Therefore, the overall complexity of the algorithm is similar to or slightly higher than
the original algorithm.

(a) f12 (b) f13

(c) f22 (d) f28

Figure 4. Convergence test results for functions f12, f13, f22, and f28 in 30 dimensions: (a) f12; (b) f13;
(c) f22; and (d) f28.

5. Application to Drone Logistics Hub Location

The location of the drone logistics hub is briefly introduced in Section 2.2, which establishes
a simple model based on three influencing factors, and then determines the fitness function of the
model. In this section, the proposed algorithm is applied to the model for testing.

In fact, there are many studies on the way of drone logistics. The endurance time and load
capacity of the drone itself also limit the development of drone logistics. However, there are studies on
the innovative design of drone applications in the logistics industry [25]. With the development of
technology, the restrictions on drone logistics due to the lack of performance of the drone itself will be
gradually resolved. Thus, this paper focuses on the logistics issues in rural areas and remote mountain
areas, and uses a model of logistics hubs and drones. A certain number of unmanned logistics hubs is
used to provide logistics distribution services for surrounding villages and drones complete the end
logistics tasks.

According to the above model and the introduction in Section 2.2, this article considers three
factors that affect the location of the logistics center: the distance from the village to its logistics
hub, the rural population, and the degree of transportation difficulty from the logistics hub to the
village. The significance of the first factor is that the total distance between the logistics hub and the
villages it serves is the smallest, and its operating costs are also smaller. The significance of the second
factor is that, if the rural population is larger, the frequency of services required is higher, thus the
proportion of the village in the whole is higher. Then, the logistics hub needs to be closer to the village,
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thus the cost is lower and the logistics efficiency will be higher. The significance of the third factor
lies in the advantage of the drone’s straight flight. Traditional land logistics methods need to consider
terrain factors, and roads are not straight, thus logistics in remote areas or mountain regions is more
difficult. By adding this factor, logistics hubs can provide better logistics services to areas with difficult
transportation. Based on the above and the introduction in Section 2.2, the objective function used in
this paper is written as

min F = ∑
k=1,k∈N

(Hk − Rk) · cpk · (
L1k
L2k

) (9)

where k is the kth village, cpk is the population of villages k, N is the total number of villages, Rk is the
radius of the village, and Hk is the straight line distance from the village to the nearest logistics hub to
the village. The meaning of L2k is the same as Hk, and L1k is the land transportation distance from
the current village to the nearest logistics hub. The goal of the intelligent algorithm is to find the best
logistics hub location so that the objective function is the smallest overall. That is, Hk is minimized in
Equation (10) by an intelligent algorithm to achieve the overall minimum, where dj is the position of
the drone logistics hub in a certain dimension.

min Hk =

√√√√ 2

∑
j=1

(xj − dj)2 (10)

A program was used to generate the original test data based on the proposed drone logistics
hub location model. Thirty random village locations were generated in a two-dimensional space of
50,000 m × 50,000 m. The radii of the villages were 200–900 m and their populations were 300–3000.
The degree of traffic difficulty was the land transportation distance divided by the drone’s straight
flight distance, which ranged from 1 to 3. Two generated models were used for testing. Table 7 shows
the results of testing using Model 1. N is the number of logistics hubs for 30 villages. Each test was
executed 50 times and the number of iterations was 3000. Table 8 shows the data results of the test
using Model 2. N is the number of logistics hubs for 30 villages. Each test was performed 30 times and
the number of iterations was 5000.

Table 7. The results of the algorithm proposed in this paper and other algorithms on the location of the
drone logistics hub in Model 1.

N icCS PSO SCA DE

5 5.785676 × 108 6.236103 × 108 7.100692 × 108 5.806862 × 108

6 4.600239 × 108 5.084005 × 108 6.316990 × 108 4.675162 × 108

7 3.784290 × 108 4.169794 × 108 5.960870 × 108 3.960494 × 108

8 3.166692 × 108 3.559690 × 108 5.403769 × 108 3.376844 × 108

9 2.581782 × 108 2.918791 × 108 5.234646 × 108 2.901538 × 108

10 2.138288 × 108 2.376954 × 108 5.135606 × 108 2.624356 × 108

Table 8. The results of the algorithm proposed in this paper and other algorithms on the location of the
drone logistics hub in Model 2.

N icCS PSO SCA DE

5 6.217989 × 108 6.378356 × 108 7.707247 × 108 6.229052 × 108

6 5.245071 × 108 5.475654 × 108 6.768210 × 108 5.313589 × 108

7 4.296633 × 108 4.315215 × 108 6.820193 × 108 4.402420 × 108

8 3.370972 × 108 3.631537 × 108 6.819135 × 108 3.623817 × 108

9 2.546246 × 108 3.078089 × 108 6.418266 × 108 2.953324 × 108

10 2.035772 × 108 2.984507 × 108 6.218386 × 108 2.722444 × 108
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Figure 5 shows the results of running different models using different algorithms, where circles
represent the village location, squares represent the calculated logistics hub location, and circles of
different sizes represent villages with different radii. According to the execution result data, setting
more logistics hubs can obtain smaller fitness function values. However, the construction of the
logistics hub itself also requires costs. The larger is the number of logistics hubs, the higher is the
overall cost, and the more dispersed are the goods, thus it is necessary to set an appropriate number of
logistics hubs based on actual needs. It can be seen in Figure 5 that the location of some logistics hubs
has been transferred to the village area after calculation, which means that the cost of logistics hubs
will also be reduced, thus they can be selected based on actual conditions.

(a) 5 logistics hubs, Model 1 (b) 10 logistics hubs, Model 1

(c) 6 logistics hubs, Model 2 (d) 9 logistics hubs, Model 2

Figure 5. Execution results of drone logistics hub location problem under different models and different
numbers of hubs: (a) five logistics hubs, Model 1; (b) ten logistics hubs, Model 1; (c) six logistics hubs,
Model 2; and (d) nine logistics hubs, Model 2.

6. Conclusions and Discussion

Drone logistics will play an increasingly important role in the logistics industry with the increase
in the degree of automation of the supply chain. This paper presents a simple location model for a drone
logistics hub. This model considers three factors that affect location selection and determines the fitness
function of the model. This paper is based on the original cuckoo search algorithm, which is improved
by compact and other technology, and proposes the icCS algorithm. On the basis of sampling using
the normal distribution, uniform distribution sampling and optimal solution perturbation are added,
and, for the problem that is easy to fall into a local optimum, the global search ability is improved by
increasing the number of generated solutions. Then, this paper uses the proposed algorithm to calculate
the location for drone logistics hub. Compared with other algorithms, it can get better execution results.
However, the model proposed in this paper is still inadequate, the influencing factors included are
not comprehensive enough, and further improvements can be made, such as adding logistics hub
cost, topographical influence, path planning between logistics hubs, and communication and control
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between logistics hub and drone. The proposed approach may be further improved by adopting some
intelligent and efficient algorithms.
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