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Abstract: This paper concerns the use and implementation of penalized maximum likelihood
procedures to fitting smoothing functions of the generalized extreme value distribution parameters to
analyze spatial extreme values of ultraviolet B (UVB) radiation across the Mexico City metropolitan
area in the period 2000–2018. The model was fitted using a flexible semi-parametric approach and
the parameters were estimated by the penalized maximum likelihood (PML) method. In order to
investigate the performance of the model as well as the estimation method in the analysis of complex
nonlinear trends for UVB radiation maxima, a simulation study was conducted. The results of the
simulation study showed that penalized maximum likelihood yields better regularization to the
model than the maximum likelihood estimates. We estimated return levels of extreme UVB radiation
events through a nonstationary extreme value model using measurements of ozone (O3), nitrogen
oxides (NOx), particles of 10 µm or less in diameter (PM10), carbon monoxide (CO), relative humidity
(RH) and sulfur dioxide (SO2). The deviance statistics indicated that the nonstationary generalized
extreme value (GEV) model adjusted was statistically better compared to the stationary model.
The estimated smoothing functions of the location parameter of the GEV distribution on the spatial
plane for different periods of time reveal the existence of well-defined trends in the maxima. In the
temporal plane, a presence of temporal cyclic components oscillating over a weak linear component
with a negative slope is noticed, while in the spatial plane, a weak nonlinear local trend is present on
a plane with a positive slope towards the west, covering the entire study area. An explicit spatial
estimate of the 25-year return period revealed that the more extreme risk levels are located in the
western region of the study area.

Keywords: penalized maximum likelihood; extreme value theory; smoothing functions; nonstationary;
UVB radiation; Mexico City

1. Introduction

Ultraviolet radiation can cause different effects on Earth’s life. In living organisms, UVB radiation
destroys DNA, produces protein denaturation, triggers coagulation of albumin, as well as erythema

Mathematics 2020, 8, 329; doi:10.3390/math8030329 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-8516-4738
https://orcid.org/0000-0003-3422-7193
https://orcid.org/0000-0002-9606-9963
http://dx.doi.org/10.3390/math8030329
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/3/329?type=check_update&version=3


Mathematics 2020, 8, 329 2 of 17

and skin problems. In humans, UVB radiation causes the weakening of immune system, creates
conditions for the development of skin cancer, cataract, aging as well as the formation of erythema [1],
dealing to wide economic losses in public health and thousands of deaths each year due to skin
cancer [2].

The intensity of UVB radiation at ground level is affected by the absorption of energy required
by the chemical reactions that occur in the atmosphere and by the reflection caused by particles and
gases. One of the most important is ozone, which among all atmospheric gases plays an active role in
the absorption of UV radiation and protection against dangerous levels of solar radiation [3]. In the
stratosphere, UVB is absorbed mainly in the ozone layer. This region concentrates ninety percent of
total ozone at an altitude of between 9 to 18 miles forming a protective shield against UVB radiation.
The ozone concentration varies spatially due to chemical reactions which constantly create or destroy
this element. In densely populated areas with air pollution problems, UVB radiation interacts with
pollutant oxides of nitrogen and nonmethane hydrocarbons in the troposphere to form ozone. There are
other air pollutants called ozone-depleting substances (ODS) which, in contact with UVB radiation,
release chemical compounds such as chlorine and bromine, which destroy the ozone in the stratosphere.
In all latitudes, except the equatorial zone, from 1979 to 1998, the decrease in ozone was the cause of
the annual average increase in ultraviolet radiation from 290 nm to 325 nm [4].

The relationships between ultraviolet radiation and air pollutants have been widely used to
analyze the spatial distribution of continuous levels of UVB radiation through statistical models [5].
The covariates that have been used by these models to explain the spatial and temporal distribution
of UVB radiation are clouds, ozone, nitrogen oxides, particulate matter, carbon monoxide and sulfur
dioxide [6]. The clouds have an effect on the distribution of UVB radiation. Scattering by clouds
increases the rate of photochemical reactions and reduces the radiation below them. The particulate
matter concentration is also an important factor that plays an important role in the distribution of
ultraviolet radiation. In [7], Sun et al. showed that the magnitude of correlation between PM2.5 and
ultraviolet radiation is of the order of −0.5 in the near-surface layer. They deduced that the maximum
and the daily average UV radiations could be attenuated by particulate matter by 40% at most. Their
results showed that if one day the average UV radiation was high, the next day the average UV radiation
was also high, the reason was that the amount of chemical reactions related to UV radiation created new
particulate material. Fluctuations of intensities in ultraviolet radiation are also caused by the amounts
of atmospheric NO2 and SO2. In [8], McKenzie et al. found that if the amount of NO2 is increased 10 or
more times than the average amount, then the irradiation of UVA rays decreases up to 40.

One of the most important results of statistical theory were developed by Fisher and Tippett [9],
and Gnedenko [10] on the asymptotic distribution of the maximum of a random sample. They showed
that if the maximum of a random sample centered and scaled by properly chosen constants converges to
some distribution, it should be one of the following: Fréchet, Weibull or Gumbel. Later, Jenkinson [11]
combined these three distributions into a single distribution, known as the generalized extreme value
distribution, also known as the generalized extreme value (GEV) distribution. The GEV distribution
uses three parameters corresponding to the location, scale and shape. The sign of the shape parameter
determines the type of the distribution: negative values correspond to the Weibull, positive values
to the Fréchet and zero to the Gumbel distribution. The estimation of the parameters has been made
using maximum likelihood [12,13], partial probability weighted moments, L-moments [14] as well as
several Bayesian approaches [15,16]. The L-moments estimators are sometimes more accurate in small
samples than those obtained by maximum likelihood and in the case of outliers in the data, are more
robust than the conventional moments methods [17,18]. Martins and Stedinger [19] showed that the
method of penalized maximum likelihood provided better estimates than maximum likelihood and
method of moments when the sample sizes are small and the GEV distribution has heavy-tailed tails.

The generalized distribution of extreme values was developed under the assumption of
independent samples with stationary distribution. However, since most real applications have spatial
or temporal trends, it has been adapted for the study of nonstationary processes [20]. The nonstationary
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extreme value analysis has been widely used to study extreme events in hydrology, hydroclimatology,
as well as in environmental, anthropogenic and geophysical processes. Particularly, it has been used
to study the long-term risks in rainfall [21], winds [22], heat waves [16] and earthquakes [23,24].
In these studies, it can be seen that the trend of extreme values has been adjusted using several
approaches. In fact, one of these approaches is that if the patterns follow the law determined by a
model, then the GEV parameters of the corresponding model are estimated [25,26]. In contrast, for
some others, it is more appropriate to adjust the trend with smoothing functions [21,27]. In both
cases, the trend is adjusted by estimating the parameters on predictors of the location parameter of
the GEV distribution. Analogously, an adjustment similar to the logarithm of the scale parameter is
made [28–30]. The contrast occurs for the shape parameter, which is assumed to be constant because
the estimation is numerically fraught when this parameter is allowed to be too flexible [28]. Extreme
nonstationary values have also been studied extensively using the Bayesian approach. For instance,
Gaetan and Grigoletto [15] studied rainfall maxima with Markov random fields approximated based
on smoothing kernel, Reich et al. [16] studied heat waves using a Bayesian hierarchical model with the
generalized Pareto distribution (GPD) and Sang and Gelfand [31] studied the extreme values of spatial
stochastic processes and modeled the observed trend as a function of spatial covariates.

2. Methods

2.1. Study Area

The Mexico City metropolitan area (MCMA) is one of the largest urban area of the world, with
nearly 25.4 million people distributed in about 9560 km2. The MCMA is composed by the Mexico City,
59 municipalities of the state of Mexico and one municipality of the state of Hidalgo. The MCMA
is located within a raised basin at an average elevation of 2240 m surrounded by mountains to the
east, south and west. The topography combined with meteorological phenomena modify pollutant
dispersion pattern. The study area and the primary sampling sites located in FES Acatlán (FAC),
Hangares (HAN), Merced (MER), Montecillo (MON), Pedregal (PED), San Agustín (SAG), Santa Fe
(SFE) and Tlalnepantla (TLA) are shown in Figure 1.

Figure 1. Study area.

2.2. Methodology

A Nonstationary GEV Model

Inferences about the parameters of the extreme values can be made with the exact distribution of
the maximum of a random sample when the cumulative distribution function of the target population
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is known. However, in large samples the exact distribution function tends to concentrate the mass
of the probabilities in a single point, known as degenerate distribution. This kind of distribution is
not useful for further analysis. In other cases neither the population distribution is known, nor the
sample is small. One solution to these limitations is to approximate the asymptotic distribution of the
extremes through the limit distribution of a properly rescaled sequence. Consider Y1, ..., Yn a sample of
independent and identically distributed random variables with cumulative distribution function FY (y)
and let Mn = max (Y1, ..., Yn), then the only limiting nondegenerate distribution Gn = (Mn − an)/bn

as n→ ∞ (if such a sequences of constants {bn} and {an} such that for each n ∈ N, bn > 0 exist) is the
generalized extreme value (GEV) distribution [11]:

G(y) =

exp
{
−
(

1 + κ
(y−µ)

σ

)− 1
κ

}
, κ 6= 0

exp
{
− exp

(
− (y−µ)

σ

)}
, κ = 0

for y : 1 + κ
(y−µ)

σ > 0 when κ 6= 0, where −∞ ≤ y ≤ µ− σ/κ when κ < 0 (Weibull), µ− σ/κ ≤ y ≤
+∞ when κ > 0 (Fréchet) and −∞ ≤ y ≤ +∞ when κ = 0 (Gumbel). Here, µ ∈ R, σ > 0 and κ ∈ R are
the location, scale and shape parameters, respectively. The quantile function of the GEV distribution,
obtained with Q (p) = G−1 (p), is given by

Q (p) =

µ + σ
κ

[
[− log(p)]−κ − 1

]
, κ 6= 0

µ− σ log{− log(p)}, κ = 0
(1)

The GEV distribution was derived using the stationarity assumption inherited from a random
sample. In a real scenario, the maxima are usually not identically distributed, i.e., the mean of the
distribution varies as a function of covariates. In such cases, we establish a predictor to the parameters of
location, scale and shape of the form µt = µ (Xt1, ..., Xtk), σt = σ (Xt1, ..., Xtk) and κt = κ (Xt1, ..., Xtk) [20].

2.3. Proposed Approach

Similar to the approach of generalized linear vector models proposed by Yee and Stephenson [28]
and the analysis of nonstationary extreme values proposed by Coles [20], we associated a linear
predictor to the parameters of the GEV distribution. The linear predictor expresses the relationship of
a set of covariates with the maxima through the parameters, which usually consists of linear functions.
The structure of the linear predictor is analogous to linear regression models based on spline-based
functions. However, the regression is not directly done on the response variable, but is assigned a
linear function with a radial basis kernel to approximate the trend of UVB radiation maxima through
the location parameter. We chose a flat function for the scale and shape parameter respectively, because
the estimation is numerically fraught when this parameters are allowed to be too flexible. Therefore,
the proposed model is as follows:

µt = c0 + xt1c1 + . . . + xt(p1−1)cp1−1 + exp
((

φ ‖xi − k1‖
2
))

d1 + . . . + exp
((

φ
∥∥∥xi − kp2

∥∥∥2
))

dp2 ,

κt = κ,

log σt = v, (2)

where φ (·) is a real value function, σt, κ and µt are scale, shape and location parameters, respectively,
xt =

[
xt1, . . . , xt(p1−1)

]
is the vector of covariates for the t-th observation, scaled and centered, and

kj corresponds to the j-th centroid obtained by the method of hierarchical clustering among xt, t =
1, 2, . . . , n [32]. Note that the set of location parameter can be expressed in matrix notation as µ =

Xβ(1) + Zu(1) where β>(1) =
[
c0, c1, . . . , cp1−1

]
is a vector of size p1, u>(1) =

[
d1, . . . , dp2

]
is a vector

of size p2, X is a n × p1 matrix which has the additional column of one for the coefficient of c0
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and
[
Zij
]>

=

[
exp

(
φ

(∥∥∥xi − kj

∥∥∥2
))]>

is a p2 × n matrix of kernel basis which consists of a set of

columns obtained by using radial Gaussian function used to approximate the trend and capture the
interactions between covariates.

Penalized Maximum Likelihood

Let y = (y1, ..., yn) be a sample of n extremes. The maximum likelihood estimator for
the nonstationary GEV is defined as the estimator that maximizes the joint density of the n
random variables:

L(µt, σt, κt | y) =
n

∏
t=1

1
σt

exp

{
−
[

1 + κt

(
yt − µt

σt

)]− 1
κt

}
×
[

1 + κt

(
yt − µt

σt

)]−(1+ 1
κt

)
.

It can be seen that maximizing the likelihood function with respect of the GEV parameters is equivalent
to maximizing the log-likelihood function:

`(µt, σt, κ | y) = −n log σt −
n

∑
t=1

[
1 + κ

(
yt − µt

σt

)]− 1
κ

−
n

∑
t=1

(
1 +

1
κ

)
log
[

1 + κ

(
yt − µt

σt

)]
.

Let C = [X Z] and b>(1) =
[

β>
(1)

u>(1)
]
, where C is an n× p matrix, with p = p1 + p2; b(1) is a vector

of p× 1 parameters, the linear predictor of the location parameter can be written as µ = Cb(1). The
penalty of the parameters is introduced through the following matrix:

P1 =

 1
σ2

β

Ip1 0

0 1
σ2

u

[(
IP2 + D>d Dd

)]
 ; P2 =

[ 1
σ2

v
0

0 1
σ2

κ

]

where Ip1 and Ip2 are identity matrices of order p1 and p2 respectively, σ2
β, σ2

u , σ2
v and σ2

κ are values that

control the degree of shrinkage on coefficient estimates and Ddu1 = ∆du1 consists of the vector of dth
differences of u1.

Therefore the penalized log-likelihood of the model is:

`
p
n(µt, σt, κ | y) =

n

∑
t=1

`t(µt, σt, κ | y)− b>(1)P1b(1) − w>P2w (3)

where `t(µt, σt, κ | y) = − log σt −
[
1 + κ

(
yt−µt

σt

)] 1
κ log

[
1 + κ

(
yt−µt

σt

)]
and w = [v, κ]. Defining

`n(µt, σt, κ | y) =
n
∑

t=1
`t(µt, σt, κ | y) and `PL(b(1), σt, κ) =

[
−b>(1)P1b(1) − w>P2w

]
, we can rewrite the

Equation (3) as:

`
p
n(µt, σt, κ | y) = `n(µt, σt, κ | y) + `PL(b(1), σt, κ). (4)

The gradient of the likelihood is given by:

∂`
p
n(µt, σt, κ | y)

∂b1
=

n

∑
t=1

∂`t(µt, σt, κ | y)
∂µt

ct − 2b>(1)P1.

∂`
p
n(µt, σt, κ | y)

∂v
=

n

∑
t=1

∂`t(µt, σt, κ | y)
∂v

− 2v
σ2

v
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∂`
p
n(µt, σt, κ | y)

∂κ
=

n

∑
t=1

∂`t(µt, σt, κ | y)
∂κ

− 2κ

σ2
κ

,

where c>t =
[
x>t , z>t

]
. The Hessian matrix is given by H =

n
∑

t=1
H(t) as follow:

H(t) =

[
H1(t) H2(t)
H>2(t) H3(t)

]
.

Considering ⊗ as the usual Kronecker product, the elements of the Hessian matrix are:

H1(t) =
∂`t(µt, σt, κ | x)

∂µ2
t

⊗ ctc
>
t − 2P1

H>2(t) =

 ∂`t(µt ,σt ,κ|x)
∂µt∂v

∂`t(µt ,σt ,κ|x)
∂µt∂κ

⊗ c>t

H3(t) =

[
∂`t(µt ,σt ,κ|x)

∂v2
∂`t(µt ,σt ,κ|x)

∂v∂κ
∂`t(σt ,κt ,κ|x)

∂v∂κ
∂`t(µt ,σt ,κ|x)

∂κ2

]
− 2P2

We can observe that the gradient and Hessian equations have been expressed in terms of those
derived from the density function of the response variable, in this case the GEV distribution. Thus, we
considered this formulation to be advantageous because these expressions could be used analogously
in different smoothing models with penalties that have a linear predictor similar to Equation (2).

2.4. Simulation Study

In order to examine the performance of the semi-parametric GEV model defined in Equation (2),
a simulation study was conducted. The nonlinear system that is addressed by Equation (5) was used to
simulate the trend of n = 500 extreme values sampled from a nonstationary GEV distribution. In this
function, x1 and x2, correspond to the longitude and latitude, respectively. To perform a more realistic
simulation, the intervals for x1 and x2 were chosen on the current range of the UVB radiation data.
Therefore, the x1 values were generated with randomly spaced data on the interval [98.88, 99.38], and
the values of the covariate x2 were randomly selected from the interval [19.15, 19.73], with

µt = 5 +
25
6π

e

[
1
2 [(x1−99.22)2+(x2−19.34)2]

1
3
]
− e

[
1
2 [(x1−99.05)2+(x2−19.54)2]

1
3
]

σt = σ = 0.1 (5)

κt = κ = −0.4

The performance of proposed model was evaluated through the simulation of a simple function
which consists of two critical points where the function has a maximum and minimum, respectively.
We simulated the data using the inverse transform method proposed by Ross [33] as follows: (1) we
generated random values for x1 and x2 and obtained µt, σ and κ, using Equation (5); (2) we generated a
random value q with uniform distribution and (3) simulated values were obtained through the inverse
of the GEV distribution, given by the Equation (1), using the value of q obtained in step 2 and the
values of µt, σ and κ obtained in step 1. Regarding the number of knots, we consider two settings, the
first one using a set of basis functions with p2 = 20 knots and the second with p2 = 80 knots, in both
cases we choose σ2

β = 1, σ2
u = 1, σ2

v = 1 and σ2
κ = 1. We can see in Figure 2, that the log-likelihood has

stabilized at settings p2 = 80. Once the model was estimated, the estimates obtained for the shape
parameter were −0.4000 and −0.4016, respectively. The estimate of the scale parameter was 0.1000
and 0.1002, respectively. The true functions of µ expressed as a function of the covariates x1 and x2
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are shown in Figure 3a. The function corresponding to µ involves the sum of the exponentials to the
square of the covariates x1 and x2, which represents a nonlinear surface in the spatial plane, similar to
the conditions in the extreme values that can occur in real situations of nonstationary extreme values.
As expected, Figure 3c shows that the estimation improved by increasing the number of knots in the
spline functions. The function for σ and κ are constant in the covariate space.

Figure 2. Log-likelihood function averaged over fifty independent simulations at each value of p2.

The goodness of fit for the proposed model using the simulated data was evaluated using the
mean square error (RMSE) and Pearson’s correlation, given by Equations (6) and (7). We simulated
a new data set of 500 observations of model in Equation (2) and then calculated the RMSE with
respect to their estimated values. For the location parameter, in the model with k = 80, we obtained
a RMSE of 0.0788 and a correlation of 0.9949 between the predicted values and the testing data.
Regarding the interpretation of the coefficients, due to the nonlinear form of the estimated function,
the estimated coefficients of the spline model cannot be interpreted directly as marginal changes of
the covariates, however, we can still analyze the adjusted function in the covariable space and obtain
enough information about the behavior of the trend of extreme values for different values of the
covariates.

RMSE =

√√√√√ n
∑

t=1
(µt − µ̂t)

2

n
(6)

Pearson’s correlation =

n
∑

t=1
(µt − µ̄t) (µ̂t − ¯̂µt)

σµt σµ̂t

(7)

where µt is the t-th simulated trend, µ̂t is its corresponding estimate; µ̄t and ¯̂µt are the means of
the set of simulated and estimated values, respectively; and σµt and σµ̂t are their corresponding
standard deviations.

An inspection of the estimated functions presented in Figure 3 show that the proposed model
with both p2 = 20 and p2 = 80 recovers the original form of the real function used in the simulation.
In the case of the estimated smoothing function build with 20 knots, i.e., p2 = 20, we observed a more
pronounced border effect, similar to the case of spline functions when the response variable has a
normal distribution. This border effect is visibly reduced as we increased the number of nodes, in the
model with k = 80 of Figure 3c, in which we graphically observed that the shape of the estimated
function is more similar to the true function Figure 3a. Similarly, a comparison of estimators of σ in
both p2 = 20 and p2 = 80 reveals that the estimation of the scale parameter of the extreme values
based on the model given in Equation (2) improves in the case when the number of nodes is increased
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when k = 80. In contrast, the estimators of the shape parameter are slightly skewed to the right in
both cases.

Figure 3. (a) Real functions, (b) and (c) are functions obtained by fitting the parameters of a
nonstationary generalized extreme value (GEV) model with P2 = 10 and P2 = 80 knots respectively, to
simulated data with a sample size of n = 500.

2.5. Data Description

The data corresponded to 397 observations of bi-monthly maxima of UVB radiation and its
corresponding atmospheric covariates, obtained between 1 January 2000, and 30 September 2018, at 7
fixed monitoring stations of the Red Automática de Monitoreo Atmosférico, RAMA (http://www.aire.
cdmx.gob.mx/default.php). This monitoring network subsystem is one of the three subsystems of the
Sistema de Monitoreo Atmosférico (SIMAT) established by the Comision Ambiental Metropolitana
of Mexico City to monitor compliance with ambient air quality standards. The information obtained
by the measuring instruments of the RAMA network is concentrated in a computer that sends the
information continuously through the modem to the Control Center. The gases are measured in
real time, by different methods. O3 is measured by photometry in the ultraviolet range; NOx by
chemiluminescence; CO by nondispersive spectroscopy by correlation; relative humidity is measured
using a sensor, capacitor-type, of polymer thin film.

http://www.aire.cdmx.gob.mx/default.php
http://www.aire.cdmx.gob.mx/default.php
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2.6. Data Analysis

The extreme values were obtained from space–time using the block maxima methodology.
The statistical analysis was performed using the R 3.4.2 software [34]. In the spatial plane, we
considered each station as a block, a total of 7 stations were used. In the temporal plane, the width of
the time interval was two months. Due to problems in the measurement instruments, we identified
195 records which had missing data in any of the covariates associated with a maximum of radiation.
These observations were excluded from the study. We estimated a GEV model for the maxima of
UVB radiation on the Mexico City metropolitan area using a multivariate smoothing functions with
spatio-temporal and environmental covariates like latitude (s1), longitude (s2), time (t), ozone (O3),
nitrogen oxides (NOx), carbon monoxide (CO), relative humidity (RH), particulate matter of 10 µm or
less in diameter are called PM10 (PM10) and sulfur dioxide (SO2), grouped into the X matrix to fit the
trends in the nonstationary GEV model. In order to avoid abrupt changes between the coefficients,
we assign a P = 1

σ2
1

(
IP2 + D′dDd

)
penalty matrix to the coefficients u′1s in the model in Equation (4),

where Dd (with d = 1) is a matrix such that Ddu1 = ∆du1 constructs the vector of dth differences of u1.

3. Results and Discussion

The descriptive statistics of the data by each monitoring station are shown in Table 1. On this
table, we can see that there are differences in the distributions of the extreme values in each of the
monitoring stations, i.e., the mean of the distributions is not constant. We verified these results in the
boxplot presented in Figure 4. By a simple inspection of the descriptive statistics, we observed that the
distribution of the extremes is not stationary, therefore the use of a nonstationary model of extreme
values is justified for the analysis of trends. The inspection of Table 1 indicates that in station 1, located
in the Acatlán area, the maximum intensity recorded was 6.09 W/m2, in contrast to the maximum
intensity measured in station 5, located in the San Agustín area, located in the municipality of Ecatepec
de Morelos, in the State of Mexico, where the maxima was 5.65 W/m2. Similarly, the station 3, located
at the Merced and the station 7, located at Tlalnepantla, showed the lowest UVB radiation values
in comparison with the other stations. Moreover, on these three stations where we observe more
frequently intense periods of air pollution within the study region, the level of UVB radiation is lower
than other less polluted areas in the MCMA.

Table 1. Descriptive summary information on the UVB radiation maxima on the Mexico City
metropolitan area.

ID Name Simbol Long(W) Lat(N) Min. 1st Qu. Median Mean 3rd Qu. Max.

1 FES Acatlán FAC −99◦14’36.68" 19◦28’56.90" 4.04 5.18 5.35 5.3 5.55 6.09
2 Hangares HAN −99◦05’01.04" 19◦25’13.86" 4.87 5.05 5.19 5.2 5.34 5.68
3 Merced MER −99◦07’10.53" 19◦25’28.59 3.01 4.71 4.96 4.93 5.24 5.88
4 Pedregal PED −99◦12’14.88" 19◦19’30.52" 4.45 4.8 5.05 5.11 5.34 5.8
5 San Agustín SAG −99◦01’49.16" 19◦31’58.68" 3.42 4.71 4.91 4.87 5.13 5.65
6 Santa fe SFE −99◦15’46.31" 19◦21’26.48" 4.96 5.14 5.28 5.35 5.53 5.88
7 Tlalnepantla TLA −99◦12’16.54" 19◦31’44.67" 4.27 4.71 4.95 4.96 5.2 5.74

The results of the comparison between the modeling of maximum likelihood method and the
modeling of penalized maximum likelihood is shown in Table 2. In this table, we observed that the
estimated parameters have a considerable shrinkage, which is a desirable characteristic that indicates
a strong regularization of the model. We validated the results obtained by observing that the value
of −12.49 corresponding to the log-likelihood of the adjusted model has been significantly improved
in relation to the value of −180.07 corresponding to the log likelihood of the stationary model. We
also validated the proposed model using the Deviance statistic [20]. In the contrast of two models, M1

with θ1 a parametric vector against another model M0 with θ0 a subset vector such as M0 ⊂ M1, the
deviance statistic defined by D = 2 (l∗n (M1)− l∗n (M0)), where l∗n (M) is the maximized log likelihood
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function of model M, is used to prove the superiority of the M1 model. Values of D greater than the
quantile 1− α of the χ2 distribution with k degrees of freedom, are considered significant, where k is
the difference between the dimensions of M1 and M0. In Table 2 shows the results of the validation
of the proposed model using the statistical deviance test, which evidences the improvement of the
proposed model compared to the stationary model. These results indicate that the deviance statistics
is significant with a reliability level of 99%. Therefore, we concluded that our model allows us to
explain spatial and temporal trends using the relationship between covariates and the amount of UVB
radiation measured at ground surface.

Figure 4. Boxplots of the ultraviolet B radiation (UVB) maxima at seven monitoring stations in the
Mexico City metropolitan area.

Table 2. Statistical comparison of the adjustment using penalized maximum likelihood against the
maximum likelihood method.

% Method `n(y | µt , σt , κ) `PL(b(1), b(2), κ) Deviance p-Value

ML 149.64 6526.85 659.43 <0.0001

Penalized ML −12.49 44.30 335.14 <0.0001

The estimates obtained for the σ and κ parameters were 0.2504 and −0.0356, respectively.
The spatial smoothing for the years 2000, 2005, 2010, 2015, 2018 and 2019 for the location functions are
shown in Figure 5. The results show well-defined patterns related to the trend in the spatial plane.
The magnitude of the UVB radiation maxima decreased as we moved toward the east direction of
the study area. This region coincides with the most industrialized areas of the MCMA. Therefore,
these results indicate that the air pollution covariates reduce the net amount of UVB radiation that
reaches the ground surface. In contrast, we observed that in the less polluted areas of MCMA there
is a greater amount of UVB radiation. However, we were able to observe that, although the general
trends are maintained throughout the study period, between 2010 and 2015 there was a small decrease
in the intensity of UVB radiation in the central region, which return to the initial levels in 2018 and
2019. These results show that our model allowed us to identify the complete temporal dynamics of
the trend throughout the study period. This is one of the strengths of the proposed model, which
allows us to identify patterns in the distribution of maximum UVB radiation, make inferences and
obtain conclusions about extreme values throughout the study region over time. The results also
show the advantage of using a spline model with radial-based functions to estimate trends in extreme
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values. The nonlinear spatial function estimates in each of the different periods through a single model
show the existence of the spatial variation of UVB radiation maxima. The proposed model also has
the advantage that it includes the effects of covariate interactions in the model through the use of
spline functions that depend on the norm of Euclidean distance between covariates and knots. This
feature of the model combined with the penalty of the parameters results in a smooth continuous
surface as shown in Figure 5. Future research could include the study of other types of distances
between observations.

Figure 5. Estimated spatial smoothing of the location parameter for the years (a) 2000, (b) 2005, (c) 2010,
(d) 2015, (e) 2018 and (f) 2019.
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The results of the temporal trend of UVB radiation over the years keeping the other covariates
constant are shown in Figure 6. In this figure, we can observe the existence of cyclic temporal patterns
in the trends of the maxima in the regions located around the monitoring stations. An important
finding related to the temporal behavior of the extremes, which can also be seen in Figure 6, is the
decrease in the location parameter over time. An explanation for this finding could be the increase in
pollution, specifically the amount of ozone (O3), nitrogen oxides (NOx), particles of 10 µm or less in
diameter (PM10) and carbon monoxide (CO), which decreases the amount of UVB radiation as a result
of direct chemical reactions or by radiation blockage.

Figure 6. Estimates of the temporal trend for the location GEV parameter of the UVB radiation maxima
distribution for monitoring station.

The spatial distribution of the extreme values of UVB radiation is influenced by the
physicochemical interactions it has with covariates such as ozone, nitrogen oxides, particles of 10 µm
or less in diameter (PM10), carbon monoxide (CO), relative humidity (RH) and sulfur dioxide (SO2) [6].
The atmospheric concentrations of some of these covariates also present seasonal behaviors which
modify the intensities of UVB radiation over time. These covariates are used in the nonstationary
extreme value model to estimate the trend on UVB radiation maxima, through the linear predictors
corresponding to the location and scale parameters. In order to increase the likelihood of the model,
we built the design matrix by using a nonlinear function of the square of distance of each observation
to knots on the vector space of the observations. Each knot represented one of the k centroids resulting
from a hierarchical clustering. There are several approaches to obtain a basis in the column space of the
covariates, however, considering the sample size and the number of nodes, the radial basis functions
are sufficient to obtain a linearly independent set.

One of the most important applications of the models obtained with the analysis of nonstationary
extreme values, consists in the elaboration of risk probability maps and the return level maps. The return
level Zp is the threshold at which an extreme value is exceeded with probability p, which is expected
to occur once every 1/p years (Fawcett and Green [35]). Figure 7 shows the maximum expected UVB
radiation for a return period of 25 years. Isolines on the map (Figure 7) were used to visualize the
spatial risk of maximum UVB radiation. In fact, the highest UVB radiation values over a 25-year return
period can be expected in the west part of the study area in the regions surrounding the SFE and
PED monitoring stations (Figure 7). An interesting fact that explains the spatial trend of the maxima
is the amount of atmospheric pollution resulted from the emissions of internal combustion vehicles
and industrial emissions, among others. Further, in densely populated areas, such as the Merced or
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Hangares, where a large number of vehicles circulate daily, as well as in industrialized areas such as
Naucalpan and Tlalnepantla, we can expect to have the lowest return levels of UVB radiation of the
entire study area. An opposite situation occurs in regions farther from urban areas, in which an increase
in the estimates of UVB radiation intensity can be observed. Therefore, the map of return levels shown
in Figure 7 allows us to confirm the potential risk of dangerous levels of UVB radiation in the study
region. These findings should encourage the creation of policies and the revision of standards related to
the protection against UVB radiation as well as the delimitation of critical areas of risk.

Figure 7. Spatial distribution of 25-year return period extreme UVB radiation estimation in North
Mexico City.

We agree with the results of Ailliot et al. [36], who reported that for stationary case, the imposing
constraints improves the performance of the estimation on κ parameter. However, we verified these
results in the nonstationary case. Similar to the results of Martins and Stedinger [19], we obtained
implausibly large estimates of κ for unconstrained maximum likelihood. We observed that the
Newton–Raphson method does not reach the global optimal solution for most of the initial values. This
happens because we have enough variables to estimate and the quadratic approximation, which is the
basis of the optimization algorithm, is not appropriate to approximate the log likelihood function when
the initial values are distant from the optimal value. On this case, the optimization of the penalized
log likelihood was carried out in two stages. The first stage consists of finding an initial point or
seed, which will be used in the second stage of the algorithm. To achieve this, the optimization was
performed in a smaller parametric space. Once the maximum is found in a parametric space with
a dimension smaller than the original, we used these values as seeds or initial values to perform
the approximation using the Newton–Raphson algorithm in the initial parametric space. We also
agree with the results of Coles and Dixon [37], which found that estimators are improved using the
maximum penalized likelihood method by restricting the range of κ.
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Similar to the work of Bais et al. [38], we conclude that there is a relationship between UVB
radiation and ozone, SO2 and clouds on the spatial UVB radiation distribution across the metropolitan
area of Mexico City. Other researchers have found similar relationships through direct chemical studies,
concluding that chemical reactions that involve UVB radiation to produce compounds such as ozone,
nitric oxide or sulfur dioxide decrease the amount of UVB radiation that reaches the ground [3,39].
There also exists other factors that interact with UVB radiation. In heavily polluted regions, there are
several types of particulate matter which block the UVB radiation path [38]. The goal of our study
was to analyze the spatio-temporal distribution of the UVB radiation maxima, since extremes have a
strong impact on public health, while in most studies only study continuous measurements. We take
advantage of the chemical interactions between air pollution and UVB radiation to model the temporal
dynamics on the spatial distribution of maximas in the study area.

The monitoring and analysis of UVB radiation levels is a priority concern in terms of public health
for all the largest population centers. In previous studies on UVB radiation in the metropolitan area of
Mexico City, Acosta and Evans [40] found that UVB radiation levels, measured over the international
standard units, reached dangerous levels for humans. We agree with their findings, in which they
also detected a strong attenuation of UVB radiation at ground level in the urban troposphere under
polluted conditions. However, in contrast to them, we have used the GEV distribution. An alternative
to this distribution is the skew generalized extreme value distribution (SGEV) [41], which showed that
it improves the return level estimation in the case of a slow convergence or in the heavy-tailed case.
Future work should consider the use of the SGEV distribution for analysis of UVB radiation extremes.

4. Conclusions

In this study, we have developed a nonstationary extreme value model for UVB radiation maxima
on the metropolitan area of Mexico City using a semi-parameterized model to obtain a spatio-temporal
smoothing of the location parameter of the GEV distribution. We have estimated return levels of
extreme events of UVB radiation through a nonstationary extreme value model in which we use both
spatial and environmental covariates. UVB maxima were obtained in each of the monitoring stations
through the block maxima method. The spatial and temporal trend was approximated by means
of the location parameter of the GEV distribution using linear predictors based on Gaussian basis
functions of the observations to knots, in order to include the effect of the interaction between the
covariates in the model. One of the advantages of this model is that the estimated smooth curve
allows for the adjustment of a wide variety of nonlinear functions, allowing its application in a wide
variety of real situations. The regularization of the model is obtained by penalizing the parameters
via penalized maximum likelihood (PML) which has the advantage of producing a shrinkage of the
coefficient estimates and reducing overfitting. These methods are equivalent to the optimization of
the constrained maximum likelihood and also to Bayesian methods in which the coefficients have a
priori normal distributions with zero mean. The deviance test was used to validate the fitted model.
The results showed that the adjusted model was significantly better than the stationary model with a
reliability of 99%.

Regarding the empirical analysis of UVB radiation on the metropolitan area of Mexico City, we
characterized the distribution of maxima in the spatial and temporal plane. In the spatial plane,
although the results show the existence of differentiated local patterns, the estimates of the location
parameter of the GEV distribution showed that there is a plane that determines the trend in the entire
study region, which evidences the existence of a positive linear correlation in the west direction of
the study area. These results are consistent with the demographic characteristics of the area. In the
temporal plane, we observe cyclical observations on the location parameter of the spatial distribution
of maxima. Such oscillations are dominated by a negative linear trend with respect to time, which is
consistent with the increase in population and its corresponding consequences on air pollution. Our
findings also revealed the existence of areas with well-defined spatio-temporal patterns which should
help administrative authorities to improve prevention policies and standards to mitigate the impact
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of UVB radiation maxima. Regarding the simulation results, these demonstrate that it is feasible to
identify the nonlinear characteristics of the trends reliably under the parametric conditions used in
the simulation, which were established with values of the GEV parameters similar to those found in
real conditions. Particularly, the spatial function for the location parameter used in the simulation,
which contains nonlinear features that we can expect to find in real data, was satisfactorily estimated.
However, we conclude that optimal simulations related to the distribution of nonstationary GEV is an
issue that requires further investigation.

Future work can first include to analyze new functions of distance between vectors, since it is
natural to think that some variables may be more important as explanatory variables than others.
Secondly, to examine the asymptotic properties of the estimators regarding to the number of knots.
Finally, some other further studies could consider the analysis of the sensitivity of estimates on more
complex nonlinear functions using simulations on the GEV distribution under different sample sizes.
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