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Abstract: As an effective technique to qualitatively depict assessment information, a linguistic
intuitionistic fuzzy number (LIFN) is more appropriate to portray vagueness and indeterminacy
in actual situations than intuitionistic fuzzy number (IFN). The prominent feature of a Muirhead
mean (MM) operator is that it has the powerful ability to capture the correlations between any
input-data and MM operator covers other common operators by assigning the different parameter
vectors. In the article, we first analyze the limitations of the existing ranking approaches of LIFN
and propose a novel ranking approach to surmount these limitations. Secondly, we propound
several novel MM operators to fuse linguistic intuitionistic fuzzy (LIF) information, such as the
LIF Muirhead mean (LIFMM) operator, the weighted LIF Muirhead mean (WLIFMM) operator and
their dual operators, the LIFDMM operator and the WLIFDMM operator. Subsequently, we discuss
several desirable properties along with exceptional cases of them. Moreover, two novel multiple
attribute group decision-making approaches are developed based upon these operators. Ultimately,
the effectuality and practicability of the propounded methods are validated through dealing with
a global supplier selection issue, and the comparative analysis and the merits of the presented
approaches are demonstrated by comparing them with existing approaches.

Keywords: intuitionistic fuzzy set; LIFN; MM operator; multiple attribute group decision-making

1. Introduction

Decision-making (DM) is one of the most vital and fundamental missions of management, and
it is also an important activity for an organization to achieve its ultimate goal. Multiple attribute
group decision-making (MAGDM) is a significant constituent of modern decision science domains,
the essence of which is to select the optimal alternatives on the basis of the assessment information
obtained from a group of experts in terms of several given attributes. MAGDM problems are ubiquitous
in various aspects of human life and have been paid a growing amount of attention by many scholars
and fruitful research achievements have been made in this area [1–8]. As a result of the vagueness and
uncertainty of DM settings and the difference of diverse experts’ knowledge levels, how to accurately
represent the attribute assessment information in vague and nondeterminate environments is one of the
most arduous challenges in the course of DM. For this, Zadeh [9] originally presented the definition of
fuzzy sets (FS). Thereafter, a large number of research achievements on FS have been acquired, such as
fuzzy reasoning [10–12], fuzzy decision-making [13–15], fuzzy algebraic [16–18] and so on. However,
one of the defects of FS is that it only models the membership degree (MD) of an element belonging to
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a given objective. In order to surmount the shortcoming, Atanassov [19] extended FS to propound the
intuitionistic fuzzy set (IFS) theory by adding a nonmembership degree (NMD). Since its emergence,
a multitude of researchers have turned their attention to it and have made outstanding achievements
in theory and application. For instance, Xia et al. [20] propounded several generalized aggregation
operators for integrating intuitionistic fuzzy information based upon Archimedean t-norm and s-norm.
Chen et al. [21] extended the evidential reasoning methodology to intuitionistic fuzzy environments
to propound a novel DM approach. Xu et al. [22] presented some mathematical programming
methods for consistency and consensus and applied intuitionistic fuzzy preference relations to build
a DM approach. Liu et al. [23] combined the evidential reasoning and dynamic intuitionistic fuzzy
weighted geometric operator to construct a DM approach. Garg et al. [24] propounded an extended
TOPSIS approach by synthesizing the exponential distance and set pair analysis theory to address
DM problems with interval-valued intuitionistic fuzzy information. Liu et al. [25] developed several
intuitionistic fuzzy partitioned Maclaurin symmetric mean (MSM) operators of IFN to fuse intuitionistic
fuzzy information. Dogan et al. [26] combined the Analytic Hierarchy Process (AHP) and Technique
for Order Preference by Similarity to an Ideal Solution (TOPSIS) methods to settle the problem of
corridor selection for locating autonomous vehicles under interval-valued intuitionistic fuzzy settings.
Gao et al. [27] presented a novel target threat assessment method based on a three-way decision theory
to deal with intuitionistic fuzzy DM issues. For more investigation achievements of IFS the reader can
refer to References [28–39].

Although FS and IFS have been widely applied to many DM issues, all these techniques of DM
models take into account the evaluation information from a quantitative point of view. Owing to
the complexity of the decision context and the fuzziness of a decision-maker’s (DM’s) cognition,
evaluators often express their preference for information qualitatively. When an expert assesses an
accident, she/he often uses several natural language words to express his/her judgment information.
For instance, when a police officer assesses a transport accident based on some conditions, he or
she may use several linguistic words such as “very serious”, “serious” and “not too serious” to
evaluate the accident. It is evident that the linguistic expressions are more in line with the assessment
thinking of DMs and are more easily provided than fuzzy numbers and IFN. In order to resolve
this drawback, Zadeh [40–42] firstly propounded the concept of linguistic variables (LV) and further
proposed linguistic assessment methodology. For conquering the limitation of information loss,
Xu [43] extended the discrete linguistic term set (LTS) to continuous LTS. Based upon the LV and IFN,
Chen et al. [44] propounded the notion of a linguistic intuitionistic fuzzy number, in which the MD
and NMD of a LIFN are depicted through LV; satisfying the sum of them is less than or equal to the
upper boundary of LTS. It is evident that the LIFN synthesizes the superiorities of IFN and LV, which
has a more predominant capability to tackle fuzzy DM problems. Since its presentation, research on it
has received more and more attention and a lot of achievements have been acquired. Chen et al. [44]
propounded the several basis aggregation operators of LIFN such as weighted averaging, weighted
geometric and hybrid operators. Li et al. [45] developed the subtraction and division of LIFN and
presented an extended VIKOR approach based on the entropy measure. Liu and Qin [46] propounded
several Maclaurin symmetric mean (MSM) operators for aggregating LIF information, which can take
into consideration the correlation of input data. Zhang et al. [47] extended an outranking method with
LIFNs and applied the approach to tackling the coal mine safety evaluation problem. Liu and Liu [48]
proposed some scaled prioritized operators to fuse LIFNs and established a new decision model.

As an effective skill for fusing different kinds of assessment information, the aggregation operator
has become an indispensable branch in the field of information fusion. It can fuse the assessment
information provided by DMs into a collective or integrate all assessment information of every
alternative into a single comprehensive value. Because it takes into account two hierarchies of
problems, it involves the comprehensive value of evaluation information and the order relation
of alternatives. Therefore, many research achievements on the aggregation operator have been
made by various domain scholars. Classical aggregation operators like weighted average, weighted
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geometric and ordered weighted average operators have been widely applied to the procedure of
information fusion. However, these operators can only be utilized to tackle situations in which the
attributes are independent. For practical DM problems, DMs frequently take into account the relevance
of diverse attributes during the course of information integration. To conquer this issue, several
special aggregation functions such as Bonferroni mean (BM) operator [49–51], Heronian mean (HM)
operator[52–55] and MSM operator [56,57] are proposed in order to consider the interrelation of
different attributes. Aiming at the aforementioned operators, we find that the BM operator and HM
operator have the same characteristics in that they can only capture the interrelationship between
any two attributes but they fail to consider the correlation between multiple input arguments. As a
well-known aggregation operator, the MM operator was originally proposed by Muirhead [58] in
1902 and it has the following distinctive advantages: (1) it can consider the interrelationships between
multiple input arguments during the procedure of information aggregation; (2) it is a generalized
operator because it can get the existing operators by assigning different parameter vectors; (3) the
adjustable parameters make the information fusion procedure more flexible. Since its introduction,
Liu and Li [59] have put forward the dual MM (DMM) operator and several MM operators to
aggregate IFNs. Hong et al. [60] propounded a weighted dual MM operator under the hesitant
fuzzy environment. Wang et al. [61] developed several novel MM operators to integrate q-rung
orthopair fuzzy information. Liu and Teng [62] developed extended MM operators to a probabilistic
linguistic context for establishing a linguistic DM approach. Liu et al. [63] presented some uncertain
2-tuple linguistic MM operators based on the extended 2-tuple linguistic model. Up to now, the MM
operator has not been utilized to address the DM problems with the assessment information portrayed
by LIFN.

In a complex decision environment, the correlations of diverse attributes always exist in real-life
applications. For instance, when we assess the quality of a computer, the performance and software
configuration of the computer have a certain internal relationship. Therefore, it is vital for evaluators
to consider the correlations of the attributes to attain a reasonable decision result. Additionally,
the assessment information provided by the evaluator in the form of IFN is sometimes difficult to
acquire, but they can easily give their judgment by the linguistic variable, such as “good”, “bad” and
so forth. Hence, it is necessary to propound a novel linguistic decision approach to take into account
the interrelationships of diverse attributes when evaluators desire to obtain rational decision results.
Based upon the aforementioned analyses, we can derive the following results: (1)the LIFN synthesize
the advantage of IFN and LV, which can efficiently express qualitative assessment information in
complex fuzzy environment; (2) MM operator can seize the correlations of multi-data through the
parameter vector, and it is a universalization operator of several existing operators.

Based upon the above-mentioned analyses, it is meaningful and necessary to generalize MM
operator to LIF environment to process DM problems with LIFN information. So we combine the LIFN
with MM operator to propound several novel aggregation operators to resolve the actual decision
problems that consider the correlations of attribute in the decision process. Meanwhile, we build up
new decision approaches on the basis of these operators to make the decision procedure more general
and flexible. Accordingly, the objectives and contributions of this study are displayed below:

1. to develop a novel ranking method for LIFNs to eliminate the defects of existing methods;
2. to proffer several novel aggregation operators such as the LIFMM operator, the WLIFMM operator,

the LIFDMM operator and the WLIFDMM operator.
3. to study several paramount properties and particular instances of the developed operators;
4. to propose two MAGDM approaches based upon the WLIFMM operator and the

WLIFDMM operator;
5. to demonstrate the significant merits of the presented methods through a comparative analysis

and parameter analysis.
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To accomplish the above objective, the surplus sections of this manuscript is allocated as below.
Section 2 looks back on several fundamental notions of LIFN and MM operator. In Section 3, a novel
comparison approach for LIFN is developed after analyzing the shortcomings of the existing ranking
approach. In Section 4, the LIFMM operator, WLIFMM operator, LIFDMM operator and the WLIFDMM
operator are developed and several properties and particular cases are discussed. In Section 5,
two MAGDM approaches based on the WLIFMM operator and WLIFDMM operator are presented.
In Section 6, a numerical example is given to demonstrate the availability and superiority of the
presented method. Conclusively, several conclusions of this paper are given in the end.

2. Preliminaries

This part succinctly looks back on several fundamental concepts about LIFN and MM
operator, which make readers easier to understand this research and lay a good foundation for
the follow-up research.

2.1. LIFNs

The concept of LIFN firstly proposed by Chen et al. [44] in 2015, which is defined as below.

Definition 1 ([44]). Assume that Ŝ = {sα|α ∈ [0, g]} be a continuous linguistic terms set. For sα, sβ ∈ Ŝ ,
θ̃ = (sα, sβ) is called a LIFN, if α + β ≤ g. For simplicity, Ῡ[0,g] denotes the set of all LIFNs.

Remark 1. Because α ∈ [0, g], then another expression of LIFN is shown as θ̃ = (sα, neg(sα)), where
neg(sα) = sg−α.

Definition 2 ([44]). Assume that θ̃i = (sαi , sβi )(i = 1, 2) ∈ Ῡ[0,g] with κ > 0, then the operations of θ̃1, θ̃2

are shown as below.

1. θ̃1 ⊕ θ̃2 =

(
s

α1+α2−
α1α2

g
, s β1β2

g

)
;

2. θ̃1 ⊗ θ̃2 =

(
s α1α2

g
, s

β1+β2−
β1β2

g

)
;

3. κθ̃1 =

(
sg−g(1− α1

g )κ , s
g( β1

g )κ

)
;

4. θ̃κ
1 =

(
sg( α1

g )κ , s
g−g(1− β1

g )κ

)
.

Example 1. Assume that θ̃1 = (s4, s3), θ̃2 = (s6, s2) ∈ Ῡ[0,8], with κ = 2, then we have

1. θ̃1 ⊕ θ̃2 =
(

s4+6− 4×6
8

, s 3×2
8

)
= (s7, s0.75);

2. θ̃1 ⊗ θ̃2 =
(

s 4×6
8

, s3+2− 3×2
8

)
= (s3, s4.25);

3. 2 · θ̃1 =
(

s8−8(1− 4
8 )

2 , s8( 3
8 )

2

)
= (s6, s1.125);

4. θ̃2
1 =

(
s8( 4

8 )
2 , s8−8(1− 3

8 )
2

)
= (s2, s4.875).

It is easy to prove the mentioned operational results are also LIFNs.

Theorem 1 ([44]). Let θ̃i = (sαi , sβi )(i = 1, 2, 3) be any three LIFNs and κ, κ1, κ2 > 0, then

1. θ̃1 ⊕ θ̃2 = θ̃2 ⊕ θ̃1;
2. θ̃1 ⊗ θ̃2 = θ̃2 ⊗ θ̃1;
3. θ̃1 ⊕ (θ̃2 ⊕ θ̃3) = (θ̃1 ⊕ θ̃2)⊕ θ̃3;
4. θ̃1 ⊗ (θ̃2 ⊕ θ̃3) = (θ̃1 ⊗ θ̃2)⊕ θ̃3;
5. κ(θ̃1 ⊕ θ̃2) = kθ̃1 ⊕ κθ̃2;



Mathematics 2020, 8, 322 5 of 30

6. (θ̃1 ⊗ θ̃2)
κ = θ̃κ

1 ⊗ θ̃κ
2 ;

7. κ1θ̃ ⊕ κ2θ̃ = (κ1 + κ2)θ̃;
8. κθ̃1 ⊗ κθ̃2 = κθ̃1+θ̃2 ;
9. κ1(κ2θ̃) = κ1κ2θ̃;

10. (κθ̃2)θ̃1 = κθ̃1 θ̃2 .

2.2. MM Operator

As a distinguished aggregation function, the notion of MM operator was originally propounded
by Muirhead [58] in 1902.

Definition 3. Suppose that εi(i = 1, 2, . . . , n) is a group of positive numbers, P = (p1, p2, . . . , pn) ∈ Rn is a
parameters vector. The MM operators is expounded as:

MMP (ε1, ε2, . . . , εn) =

(
1
n! ∑

ξ∈Sn

n

∏
τ=1

ε
pτ

ξ(τ)

) 1
n
∑

τ=1
pτ

, (1)

where ξ(τ) is denoted as any permutation of (1, 2, . . . , n) and Sn is the collection of all permutation of
(1, 2, . . . , n).

3. A Novel Ranking Approach of LIFN

The ultimate result of the DM problem is to pick the best alternative from a finite collection of
alternatives. A reasonable comparison law is important for solving DM problems. In this section,
we firstly analyze the shortcomings of the existing ranking approaches. Aiming at the analyzed
shortcomings, a novel ranking approach for ranking LIFNs is presented to overcome the above defects.

Chen et al. [44] originally introduced the approach of ranking for LIFNs.

• Ranking Approach I

Definition 4. Let θ̃ = (sα, sβ) be a LIFN, then the score function and accuracy function of θ̃ are defined
as below:

LS(θ̃) = α− β;

LH(θ̃) = α + β.

Based upon the score function and accuracy function of LIFN, the comparison method is defined
as follows:

Definition 5. Let θ̃1 = (sα1 , sβ1), θ̃2 = (sα2 , sβ2) ∈ Ῡ[0,t]. Then

1. If LS(θ̃1) < LS(θ̃2), then θ̃1 ≺ θ̃2;
2. If LS(θ̃1) = LS(θ̃2), then,

• If LH(θ̃1) > LH(θ̃2), then θ̃1 � θ̃2;
• If LH(θ̃1) = LH(θ̃2), then θ̃1 ∼ θ̃2.

The aforementioned comparison approach has two shortcomings: (1) it must synthesize the LS
and LH to rank LIFN; (2) it fails to take into consideration the indeterminacy index of LIFN, i.e., it can
produce an unreasonable ranking result. In the following, we will illustrate the aforementioned
drawbacks by utilizing an example from [44].



Mathematics 2020, 8, 322 6 of 30

Example 2. For θ̃1 = (s5, s3), θ̃2 = (s5, s2), θ̃3 = (s4, s1) ∈ Ῡ[0,8], we can obtain that:

LS(θ̃1) = 2, LS(θ̃2) = 3, LS(θ̃3) = 3,

LH(θ̃1) = 8, LH(θ̃2) = 7, LS(θ̃3) = 5.

By the Ranking approach I, we can acquire that θ̃2 > θ̃3 > θ̃1.

• Ranking Approach II

In order to perfect the operational laws of LIFNs, Li et al. [45] presented the subtraction and
division operations of LIFNs and given another approach to sort LIFNs.

Definition 6. Let θ̃ = (sα, sβ) be a LIFNs, then

L(θ̃) = α + t− β

2
;

H(θ̃) =
α + β

2
.

Based on the Definition 6, the comparison method of LIFNs is defined as below:

Definition 7. Let θ̃1 = (sα1 , sβ1), θ̃2 = (sα2 , sβ2) ∈ Ῡ[0,t]. Then,

1. If L(θ̃1) > L(θ̃2), then θ̃1 � θ̃2;
2. If L(θ̃1) = L(θ̃2), then,

• IfH(θ̃1) < H(θ̃2), then θ̃1 ≺ θ̃2;
• IfH(θ̃1) = H(θ̃2), then θ̃1 ∼ θ̃2.

• Ranking Approach III

The ranking result obtained by Ranking approach I in Example 1 is θ̃2 > θ̃3 > θ̃1, which need
combine the LS and LH to sort LIFNs. Although we can obtain the final ranking result, the loss of
consistency will be produced in the process of comparison. Furthermore, the ranking result of θ̃1 and
θ̃3 is θ̃1 < θ̃3. However, when we consider the consistency of information, we have θ̃1 > θ̃3. In this
situation, we draw a unreasonable ranking result between θ̃1 and θ̃3.

When we use Ranking approach II to solve Example 1, we have L(θ̃1) = 5,L(θ̃2) = 5.5. So the
ranking result is θ̃2 > θ̃3 > θ̃1. Although this approach only uses the score function to obtain the
ranking result, the inconsistency of information is also produced.

Accordingly, a better ranking approach needs to be investigated for ranking LIFNs. By the means
of the academic think in [64], we present a novel ranking approach which synthetically takes into
account the hesitancy degree and positive ideal solution of LIFN. The proposed ranking approach can
conquer the aforementioned drawbacks in Ranking Approach I. In what follows, we first propound a
novel distance called generalized LIF distance.

Definition 8. Assume that θ̃i = (sαi , sβi )(i = 1, 2) be two LIFNs. The generalized LIF distance between θ̃1

and θ̃2 is elaborated as below:

d̂(θ̃1, θ̃2) =

{
1

2g
(|α1 − α2|χ + |β1 − β1|χ + |π1 − π2|χ)

} 1
χ

, (2)

where πi = g− αi − βi(i = 1, 2) and χ ≥ 1.

Several particular cases of the generalized LIF distance shall be given by assigning different
values χ.
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Case 1. When χ = 1, the generalized LIF distance will degenerate into the LIF Hamming distance,

d̂(θ̃1, θ̃2) =
1

2g
(|α1 − α2|+ |β1 − β1|+ |π1 − π2|) . (3)

Case 2. When χ = 2, the generalized LIF distance will degenerate into the LIF Euclidean distance,

d̂(θ̃1, θ̃2) =

{
1

2g

(
|α1 − α2|2 + |β1 − β1|2 + |π1 − π2|2

)} 1
2

. (4)

Theorem 2. Let θ̃1, θ̃2 be two LIFNs. The generalized LIF distance meets the following properties;
(P1) θ̃1 = θ̃2 iff d̂(θ̃1, θ̃2) = 0;
(P2) d̂(θ̃1, θ̃2) = d̂(θ̃2, θ̃1);
(P3) 0 ≤ d̂(θ̃1, θ̃2) ≤ 1.

Proof. P1 and P2 are obvious. We only prove P3.
(P3) For two LIFNs θ̃1 and θ̃2, we have

d̂(θ̃1, θ̃2) =

{
1

2g
(|α1 − α2|χ + |β1 − β2|χ + |π1 − π2|χ)

} 1
χ

=

{
1

2g
(|α1 − α2|χ + |β1 − β2|χ + |(g− α1 − β1)− (g− α2 − β2)|χ)

} 1
χ

=

{
1

2g
(|α1 − α2|χ + |β1 − β2|χ + |(α2 − α1 + β2 − β1)|χ)

} 1
χ

≤
{

1
2g

(|α1 − α2|χ + |β1 − β2|χ + |α1 − α2|χ + |β1 − β2|χ)
} 1

χ

=

{
1
g
(|α1 − α2|χ + |β1 − β2|χ)

} 1
χ

.

According to 0 ≤ αi, βi, πi ≤ g and αi + βi + πi = g(i = 1, 2).

It is calculated that
0 ≤ |α1 − α2|χ + |β1 − β2|χ ≤ g.

Accordingly, we get

0 ≤ 1
g
{|α1 − α2|χ + |β1 − β2|χ}

1
χ ≤ 1.

Therefore, it is acquired that 0 ≤ d̂(θ̃1, θ̃2) ≤ 1.
Now, we give the definition of novel ranking approach on the basis of the generalized LIF distance.

Definition 9. Let θ̃ = (sα, sβ) be a LIFN. P = (sg, s0) is the positive ideal point. The ranking indexR of θ̃ is
expressed as below.

R(θ̃) = 1
2

(
1 +

g− α− β

g

)
d̂(θ̃, P), (5)

in which d̂(θ̃, P) is the generalized LIF distance between θ̃ and P.

It is easy to know that the small the distance from θ̃ to P, the alternative is closer to the ideal point.
Hence, we can know that the small the value ofR(θ̃), the better the alternative θ̃.
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Example 3. Let θ̃1 = (s5, s3), θ̃2 = (s5, s2), θ̃3 = (s4, s1) ∈ Ῡ[0,8], we have R(θ̃1) = 0.1875,
R(θ̃2) = 0.2109, R(θ̃3) = 0.3438. By the above Ranking approach 3, we can acquire a more reasonable
result θ̃1 > θ̃2 > θ̃3.

Example 4. Assume that θ̃1 = (s5, s3), θ̃2 = (s7, s1), θ̃3 = (s2, s6), θ̃4 = (s3, s4) ∈ Ῡ[0,8], we utilize the above
Ranking approaches to obtain the ranking result, respectively:

(1) Utilize the Ranking approach I, we have LS(θ̃1) = 2,LS(θ̃2) = 6,LS(θ̃3) = −4,LS(θ̃4) = −1,
hence, the ranking result is θ̃2 > θ̃1 > θ̃4 > θ̃3.

(2) Utilize the Ranking approach II, we have L(θ̃1) = 5,L(θ̃2) = 7,L(θ̃3) = 2,L(θ̃4) = 3.5, hence,
the ranking result is θ̃2 > θ̃1 > θ̃4 > θ̃3.

(3) Utilize the Ranking approach III, when χ = 3, by utilizing the Comparison Approach III, the we
have R(θ̃1) = 0.1181,R(θ̃2) = 0.0394,R(θ̃3) = 0.2362,R(θ̃4) = 0.2021, hence, the ranking result is
θ̃2 > θ̃1 > θ̃4 > θ̃3.

According to the above analysis and the utilization of Example 4, the proposed novel ranking
approach has the following superiorities: (1) Compared with the score function proposed by [44,45],
we can obtain that the final comparison result only need one step and it can reduce information loss;
(2) The problem consistency of information is addressed valid; (3) The hesitation degree of DMs can be
taken into consideration in the process of decision-making.

4. Linguistic Intuitionistic Fuzzy Muirhead Mean Operators

In this section, we shall develop some linguistic intuitionistic fuzzy Muirhead mean operators
and explore some desirable properties of them.

4.1. Linguistic Intuitionistic Fuzzy Muirhead Mean Operator

Definition 10. Assume that θ̃i = (sαi , sβi )(i = 1, 2, . . . , n) be a set of LIFNs, and P = (p1, p2, . . . , pn) ∈ Rn

be a parameters vector, then the LIFMM operator is expressed as:

LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
=

(
1
n! ∑

ξ∈Sn

n

∏
τ=1

θ̃
pτ

ξ(τ)

) 1
n
∑

τ=1
pτ

,

where ξ(τ)(τ = 1, 2, . . . , n) and Sn is denoted any permutation and a collection of all permutation of
(1, 2, . . . , n), respectively.

Theorem 3. Assume that θ̃i = (sαi , sβi )(i = 1, 2, . . . , n) be a collection of LIFNs, then the fused result by
LIFMM operators is also a LIFN, and it can be gained by

LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
=

s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

( αξ(τ)
g

)pτ
)) 1

n!


1

n
∑

τ=1
pτ

, s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−

βξ(τ)
g

)pτ)) 1
n!


1

n
∑

τ=1
pτ

 . (6)

Proof. (1) We shall prove that the Equation (6) holds; (2) Equation (6) is an LIFN.

(1) According to the operational rules of LIFNs, we gain

θ̃
pτ

ξ(τ)
=

s
g
( αξ(τ)

g

)pτ , s
g
(

1−
(

1−
βξ(τ)

g

)pτ)
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and

n

∏
τ=1

θ̃
pτ

ξ(τ)
=

s
g

n
∏

τ=1

( αξ(τ)
g

)pτ , s
g
(

1−
n
∏

τ=1

(
1−

βξ(τ)
g

)pτ)
 .

Then

∑
ξ∈Sn

n

∏
τ=1

θ̃
pτ

ξ(τ)
=

s
g

(
1− ∏

ξ∈Sn

(
1−

n
∏

τ=1

( αξ(τ)
g

)pτ
)), s

g

(
∏

ξ∈Sn

(
1−

n
∏

τ=1

(
1−

βξ(τ)
g

)pτ))
 .

Further

1
n! ∑

ξ∈Sn

n

∏
τ=1

θ̃
pτ

ξ(τ)
=

s
g

(
1− ∏

ξ∈Sn

(
1−

n
∏

τ=1

( αξ(τ)
g

)pτ
)) 1

n!
, s

g

 ∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−

βξ(τ)
g

)pτ) 1
n!



 .

Hence, we get

LIFMMP (θ̃1, θ̃2, . . . , θ̃n
)
=

s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

( αξ(τ)
g

)pτ
)) 1

n!


1

n
∑

τ=1
pτ

, s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−

βξ(τ)
g

)pτ)) 1
n!


1

n
∑

τ=1
pτ

 .

(2) In the following, we prove that Equation (6) is a LIFN. Suppose that

ℵ = g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

,

h̄ = g− g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

.

Then, we need to prove that the listed conditions are kept.
(i) 0 ≤ ℵ ≤ g, 0 ≤ h̄ ≤ g;
(ii) 0 ≤ ℵ+ h̄ ≤ g.

(i) Because αξ(τ) ∈ [0, g], we can obtain

n

∏
τ=1

(
αξ(τ)

g

)pτ

∈ [0, 1]⇒ 1−
n

∏
τ=1

(
αξ(τ)

g

)pτ

∈ [0, 1]

⇒ ∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)
∈ [0, 1]⇒

(
∏

ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!

∈ [0, 1]

⇒ 1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!

∈ [0, 1]⇒

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

∈ [0, 1]

⇒ g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

∈ [0, g].
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Similarly, we can easily gain

g− g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

∈ [0, g].

Hence, the condition (i) is satisfied.

(ii) Since 0 ≤ αξ(τ) + βξ(τ) ≤ g, then αξ(τ) ≤ g− βξ(τ). Then

ℵ+ h̄ = g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
αξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

+ g− g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1− βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

≤ g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

( g−βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

+ g− g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1− βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

= g.

Hence, We obtain 0 ≤ ℵ+ h̄ ≤ g.
It is evident that the fused value by the LIFMM operator is still an LIFN. Accordingly, Theorem 2

is proved by analyzing (1) and (2).

In the next, we shall investigate several anticipated properties of LIFMM operator.

Theorem 4 (Idempotency). If θ̃i = (sαi , sβi )(i = 1, 2, . . . , n) are equal to θ̃ = (sα, sβ), then

LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
= θ̃. (7)

Proof. Since θ̃i = θ̃ = (sα, sβ), we have

LIFMMg (θ̃1, θ̃2, . . . , θ̃n
)
=

s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

( αξ(τ)
g

)pτ
)) 1

n!


1

n
∑

τ=1
pτ

, s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−

βξ(τ)
g

)pτ)) 1
n!


1

n
∑

τ=1
pτ



=


s

g

1−


1−

(
α
g

) n
∑

τ=1
pτ

n!


1
n!


1
n
∑

τ=1
pτ

, s

g−g

1−


1−

(
1− β

g

) n
∑

τ=1
pτ

n!


1
n!


1
n
∑

τ=1
pτ



=

s

g

1−

1−
(

α
g

) n
∑

τ=1
pτ


1

n
∑

τ=1
pτ

, s

g−g

1−

1−
(

1− β
g

) n
∑

τ=1
pτ


1

n
∑

τ=1
pτ



=

s

g

( α
g

) n
∑

τ=1
pτ


1

n
∑

τ=1
pτ

, s

g−g

(1− β
g

) n
∑

τ=1
pτ


1

n
∑

τ=1
pτ


=

(
s

g
(

α
g

), s
g−g

(
1− β

g

)) = (sα, sβ) = θ̃
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Theorem 5 (Monotonicity). Let θ̃i = (sαi , sβi ) and θ̃
′
i = (s

α
′
i
, s

β
′
i
) be two collections of LIFNs. If, sαi ≥

s
α
′
i
, sβi ≤ s

β
′
i

for each i. Then

LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
≥ LIFMMP

(
θ̃
′
1, θ̃

′
2, . . . , θ̃

′
n

)
. (8)

Proof. Since sαi ≥ s
α
′
i
≥ 0, s

β
′
i
≥ sβi ≥ 0, we have αi ≥ α

′
i, βi ≤ β

′
i, then

αξ(τ)

g
≥

α
′

ξ(τ)

g
⇒

n

∏
τ=1

(
αξ(τ)

g

)pτ

≥
n

∏
τ=1

α
′

ξ(τ)

g

pτ

⇒ ∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)
≤ ∏

ξ∈Sn

1−
n

∏
τ=1

 α
′

ξ(τ)

g

pτ


⇒ 1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!

≥ 1−

 ∏
ξ∈Sn

1−
n

∏
τ=1

α
′

ξ(τ)

g

pτ


1
n!

⇒ g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

≥ g

1−

 ∏
ξ∈Sn

1−
n

∏
τ=1

α
′

ξ(τ)

g

pτ


1
n!


1
n
∑

τ=1
pτ

Similarly, we have

βξ(τ)

g ≤
β
′
ξ(τ)

g ⇒
n
∏

τ=1

(
1− βξ(τ)

g

)pτ

≥
n
∏

τ=1

(
1−

β
′
ξ(τ)

g

)pτ

⇒ ∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1− βξ(τ)

g

)pτ
)
≤ ∏

ξ∈Sn

(
1−

n
∏

τ=1

(
1−

β
′
ξ(τ)

g

)pτ
)

⇒
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1− βξ(τ)

g

)pτ
)) 1

n!

≤
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−

β
′
ξ(τ)

g

)pτ
)) 1

n!

⇒

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1− βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

≥

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−

β
′
ξ(τ)

g

)pτ
)) 1

n!


1

n
∑

τ=1
pτ

⇒ g− g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1− βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

≤ g− g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−

β
′
ξ(τ)

g

)pτ
)) 1

n!


1

n
∑

τ=1
pτ

Let LS(θ̃),LS(θ̃′) be the score values of θ̃ and θ̃
′
, respectively, where θ̃ =

LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
, θ̃
′
= LIFMMP

(
θ̃
′
1, θ̃

′
2, . . . , θ̃

′
n

)
, respectively. Based on the score function of

LIFNs and the aforementioned inequality, we can attain that LS(θ̃) ≥ LS(θ̃′), then we discuss the
following cases:

(i) If LS(θ̃) > LS(θ̃′), then we can imply that

LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
> LIFMMP

(
θ̃
′
1, θ̃

′
2, . . . , θ̃

′
n

)
(ii) If LS(θ̃) = LS(θ̃′), then
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g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

−

g− g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ



= g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

−

g− g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ


Since αi ≥ α

′
i, βi ≤ β

′
i ,then based Definition 4, we can derive that

g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

= g

1−

 ∏
ξ∈Sn

1−
n

∏
τ=1

α
′

ξ(τ)

g

pτ


1
n!


1
n
∑

τ=1
pτ

and

g− g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

= g− g

1−

 ∏
ξ∈Sn

1−
n

∏
τ=1

1−
β
′
ξ(τ)

g

pτ


1
n!


1
n
∑

τ=1
pτ

So, we can obtain that

LH(θ̃) = g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
αξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

+ g− g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

βξ(τ)

g

)pτ
)) 1

n!


1
n
∑

τ=1
pτ

= g

1−

 ∏
ξ∈Sn

1−
n

∏
τ=1

 α
′
ξ(τ)

g

pτ


1
n!


1
n
∑

τ=1
pτ

+ g− g

1−

 ∏
ξ∈Sn

1−
n

∏
τ=1

1−
β
′
ξ(τ)

g

pτ


1
n!


1
n
∑

τ=1
pτ

= LH(θ̃
′
)

Then, LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
= LIFMMP

(
θ̃
′
1, θ̃

′
2, . . . , θ̃

′
n

)
.

Theorem 6 (Boundedness). Let θ̃i = (sαi , sβi ) be a group of LIFNs, and θ̃− = (smin(αi)
, smax(βi)

), θ̃+ =

(smax(αi)
, smin(βi)

), then we can obtain

θ̃− ≤ LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
≤ θ̃+. (9)

Proof. On the basis of Theorem 4 and 5, we can get

LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
≥ LIFMMP

(
θ̃−, θ̃−, . . . , θ̃−

)
= θ̃−

and

LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
≤ LIFMMP

(
θ̃+, θ̃+, . . . , θ̃+

)
= θ̃+.

So, we have

θ− ≤ LIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
≤ θ̃+.
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Theorem 7 (Commutativity). Let θ̃i = (sαi , sβi ), ϑ̃i = (sµi , sνi )(i = 1, 2, . . . , n) be two groups of LIFNs.
Assume (ϑ̃1, ϑ̃2, . . . , ϑ̃n) is any permutation of (θ̃1, θ̃2, . . . , θ̃n), then

LIFMMP (θ̃1, θ̃2, . . . , θ̃n) = LIFMMP (ϑ̃1, ϑ̃2, . . . , ϑ̃n). (10)

Proof. Due to (ϑ̃1, ϑ̃2, . . . , ϑ̃n) is any permutation of (θ̃1, θ̃2, . . . , θ̃n), then

(
1
n! ∑

ξ∈Sn

n

∏
τ=1

θ̃
pτ

ξ(τ)

) 1
n
∑

τ=1
pτ

=

(
1
n! ∑

ξ∈Sn

n

∏
τ=1

ϑ̃
pτ

ξ(τ)

) 1
n
∑

τ=1
pτ

.

Hence, LIFMMP(θ̃1, θ̃2, . . . , θ̃n) = LIFMMP(ϑ̃1, ϑ̃2, . . . , ϑ̃n).

In what follows, we will investigate some particular cases of LIFMM operator by taking different
parameter vectors.

Case 3. If P = (1, 0, . . . , 0), the LIFMM operator shall degenerate into LIF arithmetic average operator.

LIFMM(1,0,...,0) (θ̃1, θ̃2, . . . , θ̃n
)
=

1
n

n

∑
τ=1

θ̃τ =

s
g−g

(
n
∏

τ=1

(
1− αi

g

)) 1
n

, s
g

n
∏

τ=1

(
βi
g

) 1
n

 .

Case 4. If P = (ρ, 0, . . . , 0), the LIFMM operator shall degenerate into generalized LIF arithmetic
average operator,

LIFMM(ρ,0,...,0) (θ̃1, θ̃2, . . . , θ̃n
)
=

(
1
n

n

∑
τ=1

θ̃
ρ
j

) 1
ρ

=

s(
g−g

n
∏

τ=1

(
1−
(

αi
g

)) 1
n
) 1

ρ
, s

g−g

(
1−

n
∏

τ=1

(
1−
(

1−
(

βi
g

))ρ) 1
ρ

) 1
ρ

 .

Case 5. If P = (1, 1, 0, . . . , 0), the LIFMM operator degenerate into the LIFBM operator,

LIFMM(1,1,0,...,0) (θ̃1, θ̃2, . . . , θ̃n
)
=

 1
n(n− 1)

n

∑
i,τ=1
i 6=τ

θ̃i θ̃τ


1
2

=


s

g

1−

 n
∑

i,τ=1
i 6=τ

θi θτ

t3


1

n(n−1)


1
2

, s

g−g

1−

 n
∑

i,τ=1,
i 6=τ

1−
(

1− θi
g

)(
1− θτ

g

)
1

n(n−1)


1
2


.

Case 6. If P = (1, 1, . . . , 1), the LIFMM operator degenerate into LIF geometric averaging operator [44],

LIFMM(1,1,...,1) (θ̃1, θ̃2, . . . , θ̃n
)
=

(
n

∏
τ=1

θ̃τ

) 1
n

=

s
g

n
∏

τ=1

(
αi
g

) 1
n

, s
g−g

(
n
∏

τ=1

(
1− βi

g

)) 1
n

 .

Case 7. If P = ( 1
n , 1

n , . . . , 1
n ), the LIFMM operator shall degenerate into LIF geometric averaging operator [44],

LIFMM(1,1,...,1) (θ̃1, θ̃2, . . . , θ̃n
)
=

n

∏
τ=1

(
θ̃τ
) 1

n =

s
g

n
∏

τ=1

(
αi
g

) 1
n

, s
g−g

(
n
∏

τ=1

(
1− βi

g

)) 1
n

 .
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Case 8. If P = (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0), the LIFMM operator shall degenerate into the LIFMSM operator [46],

LIFMM(

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0) (θ̃1, θ̃2, . . . , θ̃n

)
=


∑

1≤i1<···<ik≤n

k
∏

τ=1
θ̃j

Ck
n


1
k

=


s

g

1−

 ∑
1≤i1<···<ik≤n

1−

k
∏

τ=1
αiτ

g




1
Ck

n


1
k

, s

g−g

1−
(

∑
1≤i1<···<ik≤n

(
1−

k
∏

τ=1

(
1− βiτ

g

))) 1
Ck

n


1
k


.

Example 5. Let θ̃1 = (s6, s4), θ̃2 = (s5, s2), θ̃3 = (s1, s3) ∈ Ῡ[0,8] be three LIFNs, and P = (1.0, 0.5, 0.3),
then we utilize LIFMM operator to fuse the three LIFNs.

According to the Equation (6), we have

∏
ξ∈S3

(
1−

3

∏
τ=1

(
αξ(τ)

g

)pτ
)

=

{
1−

(
6
8

)1
×
(

5
8

)0.5
×
(

1
8

)0.3
}
×
{

1−
(

6
8

)1
×
(

1
8

)0.5
×
(

5
8

)0.3
}

×
{

1−
(

5
8

)1
×
(

6
8

)0.5
×
(

1
8

)0.3
}
×
{

1−
(

5
8

)1
×
(

1
8

)0.5
×
(

6
8

)0.3
}

×
{

1−
(

1
8

)1
×
(

6
8

)0.5
×
(

5
8

)0.3
}
×
{

1−
(

1
8

)1
×
(

5
8

)0.5
×
(

6
8

)0.3
}

= 0.1637

∏
ξ∈S3

(
1−

3

∏
τ=1

(
1−

βξ(τ)

g

)pτ
)

=

{
1−

(
1− 4

8

)1

×
(

1− 2
8

)0.5

×
(

1− 3
8

)0.3
}
×
{

1−
(

1− 4
8

)1

×
(

1− 3
8

)0.5

×
(

1− 2
8

)0.3
}

×
{

1−
(

1− 2
8

)1

×
(

1− 3
8

)0.5

×
(

1− 4
8

)0.3
}
×
{

1−
(

1− 2
8

)1

×
(

1− 4
8

)0.5

×
(

1− 3
8

)0.3
}

×
{

1−
(

1− 3
8

)1

×
(

1− 2
8

)0.5

×
(

1− 4
8

)0.3
}
×
{

1−
(

1− 3
8

)1

×
(

1− 4
8

)0.5

×
(

1− 2
8

)0.3
}

= 0.0371.

Hence, we can gain the fused value by LIFMM operator is

LIFMMP (θ̃1, θ̃2, θ̃3
)
=

(
s

8(1−(0.1637)
1
3! )

1
1+0.5+0.3

, s
8−8(1−(0.0371)

1
3! )

1
1+0.5+0.3

)
= (s3.7881, s3.0423) .

4.2. The Weighted Linguistic Intuitionistic Fuzzy Muirhead Mean Operator

It is known that the attribute weight is important during the decision procedure, which directly
influence the result of decision-making. However, the attribute weight is not considered in the LIFMM
operator, hence, it is of importance for DMs to think over the wights of attributes in information fusion.
In the next, we will develop the WLIFMM operator to consider the weight sufficiently.
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Definition 11. Suppose that θ̃i = (sαi , sβi )(i = 1, 2, . . . , n) be a collection of LIFNs, w = (w1, w2, · · · , wn)T

is the associated weight vector of θi which meets wi ∈ [0, 1] and ∑n
i=1 wi = 1, and P = (p1, p2, . . . , pn) ∈ Rn

be a parameters vector. Then the WLIFMM operator is defined as

WLIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
=

(
1
n! ∑

ξ∈Sn

n

∏
τ=1

(
nwξ(τ) θ̃ξ(τ)

)pτ

) 1
n
∑

τ=1
pτ

,

where ξ(τ)(τ = 1, 2, . . . , n) and Sn is denoted any permutation and a collection of all permutation of
(1, 2, . . . , n), respectively.

Theorem 8. Let θ̃i = (sαi , sβi )(i = 1, 2, . . . , n) be a collection of LIFNs, then the aggregation result by utilizing
WLIFMM operator is still a LIFN, and

WLIFMMP (θ̃1, θ̃2, . . . , θ̃n
)

=

s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1−
αξ(τ)

g

)nwξ(τ)
)pτ)) 1

n!


1

n
∑

τ=1
pτ

, s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

βξ(τ)
g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

 (11)

Proof. (1) We shall prove that Equation (11) holds; (2) Equation (11) is a LIFN.

(1) According to the operational rules of LIFNs, we have

nwξ(τ) θ̃ξ(τ) =

s
g
(

1−
(

1−
αξ(τ)

g

)nwξ(τ)
), s

g
(

βξ(τ)
g

)nwξ(τ)


and

(
nwξ(τ) θ̃ξ(τ)

)pτ

=

s
g
(

1−
(

1−
αξ(τ)

g

)nwξ(τ)
)pτ , s

g

(
1−
(

1−
(

βξ(τ)
g

)nwξ(τ)
)pτ

)
 .

Therefore,

n

∏
τ=1

(
nwξ(τ) θ̃ξ(τ)

)pτ

=

s
g

n
∏

τ=1

(
1−
(

1−
αξ(τ)

g

)nwξ(τ)
)pτ , s

g

(
1−

n
∏

τ=1

(
1−
(

βξ(τ)
g

)nwξ(τ)
)pτ

)
 .

Further

∑
ξ∈Sn

n

∏
τ=1

(
nwξ(τ) θ̃ξ(τ)

)pτ

=

s
g

(
1− ∏

ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1−
αξ(τ)

g

)nwξ(τ)
)pτ

)), s
g ∏

ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

βξ(τ)
g

)nwξ(τ)
)pτ

)
 .

Then

1
n! ∑

ξ∈Sn

n

∏
τ=1

(
nwξ(τ) θ̃ξ(τ)

)pτ
=

s
g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1−
αξ(τ)

g

)nwξ(τ)
)pτ

)) 1
n!


, s

g

(
∏

ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

βξ(τ)
g

)nwξ(τ)
)pτ

)) 1
n!

 .
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Thus(
1
n! ∑

ξ∈Sn

n

∏
τ=1

(
nwξ(τ) θ̃ξ(τ)

)pτ

) 1
n
∑

τ=1
pτ

=

s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1−
αξ(τ)

g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

, s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

βξ(τ)
g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

 .

(2) In the following, we prove that Equation (11) is an LIFN. Suppose that

 = g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

g
(

1−
(

1−
αξ(τ)

g

)nwξ(τ)
)pτ

)) 1
n!


1
n
∑

τ=1
pτ

,

` = g− g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

(
βξ(τ)

t

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

.

Then, we need to proof the listed conditions are met.
(i) 0 ≤  ≤ g, 0 ≤ ` ≤ g;
(ii) 0 ≤  + ` ≤ g.

(i) Because αξ(τ) ∈ [0, t], we can obtain

1−
αξ(τ)

t
∈ [0, 1]⇒ 1−

(
1−

αξ(τ)

g

)nwξ(τ)
∈ [0, 1]⇒

(
1−

(
1−

αξ(τ)

g

)nwξ(τ)
)pτ

∈ [0, 1]

⇒
n

∏
τ=1

(
1−

(
1−

αξ(τ)

t

)nwξ(τ)
)pτ

∈ [0, 1]⇒ 1− ∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

(
1−

αξ(τ)

g

)nwξ(τ)
)pτ

)
∈ [0, 1]

⇒
(

1− ∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

(
1−

αξ(τ)

g

)nwξ(τ)
)pτ

))
∈ [0, 1]⇒

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

(
1−

αξ(τ)

g

)nwξ(τ)
)pτ

)) 1
n!

 ∈ [0, 1]

⇒ g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

(
1−

αξ(τ)

g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

∈ [0, g]

Similarly, we can easily gain

g− g

1−
(

∏
ξ∈Sn

(
1−

n

∏
τ=1

(
1−

(
βξ(τ)

g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

∈ [0, g].

Hence, condition (i) is satisfied.
(ii) Since 0 ≤ αξ(τ) + βξ(τ) ≤ g, then αξ(τ) ≤ g− βξ(τ), we can obtain the following inequality

 + ` = g

1−

 ∏
ξ∈Sn

(
1−

n
∏
τ=1

t
(

1−
(

1−
αξ(τ)

g

)nwξ(τ)
)pτ

) 1
n!


1

n
∑

τ=1
pτ

+ g− g

1−

 ∏
ξ∈Sn

(
1−

n
∏
τ=1

(
1−

(
βξ(τ)

g

)nwξ(τ)
)pτ) 1

n!


1

n
∑

τ=1
pτ

≤ g

1−

 ∏
ξ∈Sn

(
1−

n
∏
τ=1

t

(
1−

(
1−

t− βξ(τ)

t

)nwξ(τ)
)pτ) 1

n!


1

n
∑

τ=1
pτ

+ g− g

1−

 ∏
ξ∈Sn

(
1−

n
∏
τ=1

(
1−

(
βξ(τ)

g

)nwξ(τ)
)pτ) 1

n!


1

n
∑

τ=1
pτ

= g.

We can obtain 0 ≤  + ` ≤ g.
It is evident that the fused value by WLIFMM operator from Equation (11) is still an LIFN.

Theorem 8 is proved by analyzing (1) and (2).
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In the following, we shall explore several anticipated properties of the WLIFMM operator.

Theorem 9 (Monotonicity). Let θ̃i = (sαi , sβi ) and θ̃
′
i = (s

α
′
i
, s

β
′
i
)(i = 1, 2, . . . , n) be two sets of LIFNs.If

sαi ≥ s
α
′
i
, sβi ≤ s

β
′
i

for every i, then

WLIFMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
≥WLIFMMP

(
θ̃
′
1, θ̃

′
2, . . . , θ̃

′
n

)
. (12)

Theorem 10 (Boundedness). Let θ̃i = (sαi , sβi )(i = 1, 2, . . . , n) be a group of LIFNs, and θ̃− =

(smin(αi)
, smax(βi)

), θ̃+ = (smax(αi)
, smin(βi)

), then we can obtain(
αθ̃− , βθ̃−

)
≤WLIFMMP (θ1, θ2, . . . , θn) ≤

(
αθ̃+ , βθ̃+

)
(13)

in which

αθ̃− = s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1− minαi
g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

, βθ̃− = s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

max(βi )
g

)nwξ(τ)
)pτ)) 1

n!


1

n
∑

τ=1
pτ

,

αθ̃+ = s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1− maxαi
g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

, βθ̃+ = s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

min(βi )
g

)nwξ(τ)
)pτ)) 1

n!


1

n
∑

τ=1
pτ

.

Proof. On basis of Theorem 9, we can get

WLIFMMP
(
θ̃−, θ̃−, . . . , θ̃−

)
≤WLIFMMP

(
θ̃1, θ̃2, . . . , θ̃n

)
≤WLIFMMP

(
θ̃+, θ̃+, . . . , θ̃+

)
,

Additionally, in light of the Equation (11), one has

WLIFMMP (θ̃− , θ̃− , . . . , θ̃−
)
=

s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1− minαi
g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

, s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

max(βi )
g

)nwξ(τ)
)pτ )) 1

n!


1

n
∑

τ=1
pτ



and

WLIFMMP (θ̃+ , θ̃+ , . . . , θ̃+
)
=

s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1− maxαi
g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

, s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

min(βi )
g

)nwξ(τ)
)pτ )) 1

n!


1

n
∑

τ=1
pτ



So, we have (
αθ̃− , βθ̃−

)
≤WLIFMMP (θ1, θ2, . . . , θn) ≤

(
αθ̃+ , βθ̃+

)
.

Theorem 11. When the weight vector w = ( 1
n , 1

n , · · · , 1
n ). Then, the WLIFMM operator degenerates into the

LIFMM operator.
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Proof.

WLIFMMP (θ̃1, θ̃2, . . . , θ̃n
)

=

s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1−
αξ(τ)

g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ

, s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

βξ(τ)
g

)nwξ(τ)
)pτ

)) 1
n!


1

n
∑

τ=1
pτ



=


s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1−
αξ(τ)

g

)n× 1
n
)pτ)) 1

n!


1

n
∑

τ=1
pτ

, s

g−g

1−

 ∏
ξ∈Sn

1−
n
∏

τ=1

1−
(

βξ(τ)
g

)n× 1
n
pτ

1
n!


1

n
∑

τ=1
pτ



=

s

g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

1−
αξ(τ)

g

))pτ
)) 1

n!


1

n
∑

τ=1
pτ

, s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−
(

βξ(τ)
g

))pτ)) 1
n!


1

n
∑

τ=1
pτ



4.3. Linguistic Intuitionistic Fuzzy Dual Muirhead Mean Operator

It is known that the aggregation operator has two types including the original operator and its
dual operator in the aggregation theory. In this section, we will extend the dual Muirhead mean
operator to the LIF setting and discuss some desirable properties of them.

Definition 12. Let θ̃i = (sαi , sβi )(i = 1, 2, . . . , n) be a set of LIFNs, and P = (p1, p2, . . . , pn) ∈ Rn be a
parameter vector. Then the definition of LIFDMM operator is expressed as follows:

LIFDMMP (θ̃1, θ̃2, . . . , θ̃n
)
=

1
n
∑

τ=1
pτ

(
∏

ξ∈Sn

n

∑
τ=1

(
pτ θ̃ξ(τ)

)) 1
n!

,

where ξ(τ)(τ = 1, 2, . . . , n) and Sn is denoted any permutation and a collection of all permutation of
(1, 2, . . . , n), respectively.

Theorem 12. Let θ̃i = (sαi , sβi )(i = 1, 2, . . . , n) be a collection of LIFNs, then the aggregated result by
LIFDMM operators is also an LIFN, and it can be obtained that

LIFDMMP
(
θ̃1, θ̃2, . . . , θ̃n

)
=

s

g−g

1−
(

∏
ξ∈Sn

(
1−

n
∏

τ=1

(
1−

αξ(τ)
g

)pτ
)) 1

n!


1

n
∑

τ=1
pτ

, s

g

1−
(

∏
ξ inSn

(
1−

n
∏

τ=1

(
βξ(τ)

g

)pτ)) 1
n!


1

n
∑

τ=1
pτ

 . (14)

The LIFDMM operator has the same properties with LIFMM operator, It is omitted here.

In what follows, we will investigate some particular cases of LIFDMM operators by taking
different parameter vectors.
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Case 9. If P = (1, 0, . . . , 0), then LIFDMM operator will reduce to the LIF geometric averaging operator,

LIFDMM(1,0,...,0) (θ̃1, θ̃2, . . . , θ̃n
)
=

1
n

n

∑
τ=1

θ̃τ =

s
g

n
∏

τ=1

(
αi
g

) 1
n

, s
g−g

(
n
∏

τ=1

(
1− βi

g

)) 1
n

 .

Case 10. If P = (ρ, 0, . . . , 0), then the LIFDMM operator will reduce to the generalized LIF geometric
averaging operator,

LIFDMM(ρ,0,...,0) (θ̃1, θ̃2, . . . , θ̃n
)
=

(
1
n

n

∑
τ=1

θ̃
ρ
j

) 1
ρ

=

s
g−g

(
1−

n
∏

τ=1
(1−(1−( αi

t ))
ρ
)

1
ρ

) 1
ρ

, s(
g−g

n
∏

τ=1

(
1−
(

βi
t

)) 1
n
) 1

ρ

 .

Case 11. If P = (1, 1, 0, . . . , 0), then LIFDMM operator will reduce to geometric LIFBM operator.

LIFDMM(1,1,0,...,0) (θ̃1, θ̃2, . . . , θ̃n
)
=

 1
n(n− 1)

n

∑
i,τ=1
i 6=τ

θ̃i θ̃τ


1
2

=


s

g−g

1−

 n
∑

i,τ=1
i 6=τ

1−
(

1− αi
g

)(
1− ατ

g

)
1

n(n−1)


1
2

, s

g

1−

 n
∑

i,τ=1,
i 6=τ

βi βτ

g3


1

n(n−1)


1
2


.

Case 12. If P = (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0), then LIFDMM operator reduce to geometric LIF dual MSM operator.

LIFDMM(

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0) (θ̃1, θ̃2, . . . , θ̃n

)
=


∑

1≤i1<···<ik≤n

k
∏

τ=1
θ̃j

Ck
n


1
k

=


s

g

1−

 ∑
1≤i1<···<ik≤n

1−

k
∏

τ=1
αiτ

gk




1
Ck

n


1
k

, s

g−g

1−
(

∑
1≤i1<···<ik≤n

(
1−

k
∏

τ=1

(
1−

βiτ
g

))) 1
Ck

n


1
k


.

Case 13. If P = (1, 1, . . . , 1), then LIFDMM operator will reduce to LIF arithmetic averaging operator.

LIFDMM(1,1,...,1) (θ̃1, θ̃2, . . . , θ̃n
)
=

s
g−g

n
∏

τ=1

(
1−
(

αi
g

)) 1
n

, s
g

n
∏

τ=1

(
βi
g

) 1
n


Case 14. If P = ( 1

n , 1
n , . . . , 1

n ), then LIFDMM operator will reduce to LIF arithmetic averaging operator.

LIFDMM(1,1,...,1) (θ̃1, θ̃2, . . . , θ̃n
)
=

s
g−g

n
∏

τ=1

(
1−
(

αi
g

)) 1
n

, s
g

n
∏

τ=1

(
βi
g

) 1
n

 .
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Example 6. Let θ̃1 = (s6, s4), θ̃2 = (s5, s2), θ̃3 = (s1, s3) be three LIFNs, and P = (1.0, 0.5, 0.3). By the same
method with Example 4, we can obtain

∏
ξ∈S3

(
1−

3

∏
τ=1

(
1−

βξ(τ)

t

)pτ
)

= 0.1934, ∏
ξ∈S3

(
1−

3

∏
τ=1

(
αξ(τ)

t

)pτ
)

= 0.3335.

Accordingly,

LIFDMMP (θ̃1, θ̃2, θ̃3
)
=

(
s

8−8(1−(0.1934)
1
3! )

1
1+0.5+0.3

, s
8(1−(0.3335)

1
3! )

1
1+0.5+0.3

)
= (s4.3833, s2.9621) .

4.4. The Weighted Linguistic Intuitionistic Fuzzy Dual Muirhead Mean Operator

Similar to the WLIFMM operator, the weighted linguistic intuitionistic fuzzy dual Muirhead mean
(WLIFDMM) operator is defined as below.

Definition 13. Let θ̃i = (sαi , sβi )(i = 1, 2, . . . , n) be a collection of LIFNs, w = (w1, w2, · · · , wn)T is the
associated weight vector of θi which meets wi ∈ [0, 1] and ∑n

i=1 wi = 1, and P = (p1, p2, . . . , pn) ∈ Rn be a
parameters vector. Then

WLIFDMMP
(
θ̃1, θ̃2, . . . , θ̃n

) 1
n
∑

τ=1
pτ

(
∏

ξ∈Sn

n

∑
τ=1

(
pτ θ̃

nwξ(τ)

ξ(τ)

)) 1
n!

,

is call WLIFDMM operator, ξ(τ)(τ = 1, 2, . . . , n) and Sn is denoted any permutation of (1, 2, . . . , n) and a
collection of all permutation of (1, 2, . . . , n), respectively.

Theorem 13. Let θ̃i = (sαi , sβi )(i = 1, 2, . . . , n) be a collection of LIFNs, then the aggregation result by
utilizing WLIFMM operator is still a LIFN, and it can be obtained by
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 (15)

Theorem 14. When the weight vector is w = ( 1
n , 1

n , · · · , 1
n ). Then the WLIFDMM operator degenerate to the

LIFDMM operator.

5. The Developed MAGDM Approaches

Assume that X = {Θ1, Θ2, · · · , Θm} be a set of alternatives, and A = {a1, a2, · · · , an} be
a group of attributes whose weighting vector is w = (w1, w2, · · · , wn)T , with wj ∈ [0, 1](j =

1, 2, · · · , n), ∑n
i=1 wj = 1. Supposed that there is a group of l experts Z = {Z1,Z2, · · · ,Zl} with

weighting vector µ = (µ1, µ2, · · · , µl)
T , with µk ∈ [0, 1], k = 1, 2, · · · , l, ∑l

k=1 µk = 1. The expert Zk
provides the assessment information on alternative Xi with respect to the attribute Aj in the form
of LIFN, θ̃k

ij = (sk
αij

, sk
βij
), (i = 1, 2, · · · , m; j = 1, 2, · · · , n; k = 1, 2, · · · , l). Then the LIF decision

matrices Qk = (θk
ij)m×n(k = 1, 2, · · · , l) are constructed. Then the aim is to give a order relation for all

alternatives and obtain the optimal one(s).
In the next, two novel MAGDM methods are developed based on the WLIFMM operator and

WLIFDMM operator and the flowchart of the developed approaches is given in Figure 1.
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Figure 1. The decision process of the propounded multiple attribute group decision-making
(MAGDM) approach.

Approach I

The detailed decision steps are displayed as below:
Step 1. Normalize the decision information. In order to eliminate the influence of different kinds of
attributes, we need transform decision matrices Qk into Q̆k = (θ̆k

ij)m×n, where

θ̆k
ij =

{
(sk

αij
, sk

βij
) for benefit attribute aj

(sk
βij

, sk
αij
) for cost attribute aj

Step 2. Utilize the WLIFMM operator to fuse DM’s decision matrices Q̆k = (θ̆k
ij)m×n to Q̃ = (θ̃ij)m×n,

θ̃ij = WLIFMMP (θ̃1
ij, θ̃2

ij, · · · , θ̃l
ij).

Step 3. Utilize the WLIFMM operator to compute the overall preference value θ̃i,

θ̃i = WLIFMMP (θ̃i1, θ̃i2, · · · , θ̃in).

Step 4. Calculating the score valueR(θ̃i) of each alternative Θi by the Ranking approach III.
Step 5. Rank all alternative and confirm the optimal one(s).

Approach II

Similar to Approach I, the steps of method 2 on basis of the WLIFDMM operator is given as
below:
Step 1. Same as the Approach I.
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Step 2. Utilize the WLIFDMM operator to fuse DM’s decision matrices Q̆k = (θ̆k
ij)m×n to Q̃ =

(θ̃ij)m×n,

θ̃ij = WLIFDMMP (θ̃1
ij, θ̃2

ij, · · · , θ̃l
ij).

Step 3. Utilize the WLIFMM operator to compute the overall preference value θ̃i,

θ̃i = WLIFDMMP (θ̃i1, θ̃i2, · · · , θ̃in).

Step 4. Calculating the score valueR(θ̃i) of each alternative Θi by the Ranking approach III.
Step 5. Rank all alternative and confirm the best one(s).

6. Numerical Example and Comparative Analysis

In this part, we shall apply a numerical example to demonstrate the developed
MAGDM approaches.

The practical example in this paper is cited from [44] which is about a company to choose a
optimal global supplier from the alternatives. Assume that X = {Θ1, Θ2, Θ3, Θ4} be a collection of
alternatives, and A = {a1, a2, a3, a4, a5} be a collection of attributes, where the attributes indicate “the
profile of supplier”, “product quality”, “supplier service quality”, “supplier benefit”, “safe factor”,
respectively. The weight vector of attribute is w = (0.25, 0.2, 0.15, 0.18, 0.22)T and the weight vector of
experts is µ = (0.25, 0.3, 0.2, 0.25)T . The assessment information are provided by four experts with
LIFNs according to the linguistic term set: S = {st | t = 0, 1, · · · , 8} under five attributes. Then the LIF
decision-making matrices Qk = (θ̃k

ij)4×5(k = 1, 2, 3, 4) is constructed and listed in Tables 1–4. Then the
aim of this issue is to choose a optimal supplier.

Table 1. Decision matrix provided Z1.

a1 a2 a3 a4 a5

x1 (s7, s1) (s6, s2) (s4, s3) (s7, s1) (s5, s2)
x2 (s6, s2) (s5, s2) (s6, s1) (s6, s2) (s7, s1)
x3 (s6, s1) (s5, s3) (s7, s1) (s5, s1) (s3, s4)
x4 (s5, s2) (s7, s1) (s4, s3) (s6, s1) (s4, s4)

Table 2. Decision matrix provided Z2.

a1 a2 a3 a4 a5

x1 (s7, s1) (s4, s4) (s6, s2) (s5, s1) (s3, s5)
x2 (s7, s1) (s5, s1) (s6, s1) (s5, s2) (s4, s3)
x3 (s6, s2) (s6, s1) (s7, s1) (s5, s3) (s4, s4)
x4 (s5, s2) (s4, s3) (s5, s2) (s7, s1) (s5, s3)

Table 3. Decision matrix provided Z3.

a1 a2 a3 a4 a5

x1 (s6, s1) (s5, s2) (s3, s4) (s7, s1) (s5, s2)
x2 (s7, s1) (s6, s2) (s7, s1) (s6, s2) (s5, s1)
x3 (s5, s3) (s5, s2) (s6, s1) (s4, s3) (s3, s1)
x4 (s6, s2) (s7, s1) (s5, s1) (s5, s2) (s5, s3)
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Table 4. Decision matrix provided Z4.

a1 a2 a3 a4 a5

x1 (s5, s3) (s4, s4) (s7, s1) (s5, s1) (s4, s2)
x2 (s6, s1) (s7, s1) (s6, s1) (s5, s2) (s6, s1)
x3 (s5, s2) (s3, s4) (s6, s2) (s3, s3) (s5, s2)
x4 (s4, s3) (s5, s1) (s4, s2) (s6, s2) (s5, s2)

6.1. Process of Decision-Making Based on the WLIFMM Operator

Step 1. Because the five attributes are all benefit kind, then the LIF decision-making matrices
Z1 −Z4 need not to be normalized.

Step 2. Utilize the WLIFMM operator to fuse DM’s decision matrices Q̆k = (θ̆k
ij)m×n to Q̃ =

(θ̃ij)m×n which is shown in Table 5.

Table 5. Collective matrix Q by utilizing the weighted linguistic intuitionistic fuzzy Muirhead mean
(WLIFMM) operator.

a1 a2 a3 a4 a5

x1 (s6.2399, s1.5647) (s4.6288, s3.1933) (s4.9052, s2.5062) (s5.8147, s1.3163) (s4.0568, s3.1265)
x2 (s6.4807, s1.2646) (s5.6408, s1.4691) (s6.1879, s1.0000) (s5.4275, s2.0000) (s5.3238, s1.6721)
x3 (s5.2332, s1.9875) (s4.6480, s2.5748) (s6.5309, s1.2646) (s4.2085, s2.5612) (s3.7159, s3.0490)
x4 (s5.1800, s2.2673) (s5.4407, s1.6721) (s4.4721, s2.0879) (s6.0590, s1.4691) (s4.7287, s3.0508)

Step 3. Utilize the WLIFMM operator to compute the comprehensive value θ̃i which are shown
as below.

θ̃1 = (s5.0926, s2.3868), θ̃2 = (s5.8063, s1.4958),

θ̃3 = (s4.7114, s2.3620), θ̃4 = (s5.1590, s2.1777).

Step 4. Computing the score values of R(θi)(i = 1, 2, 3, 4) by the Ranking approach III, where
the LIF distance parameter is taken as χ = 3.

R(θ1) = 0.1122, R(θ2) = 0.0824, R(θ3) = 0.1281, R(θ4) = 0.1091.

Step 5. Rank all alternative Θi(i = 1, 2, · · · , m) on the basis of the score value, we have

Θ2 > Θ4 > Θ1 > Θ3.

Hence, the best alternative is Θ2.

6.2. Process of Decision-Making Based on the WLIFDMM Operator

Step 1. Same as the Approach I.
Step 2. Utilize the WLIFDMM operator to fuse DM’s decision matrices Q̆k = (θ̆k

ij)m×n to

Q̃ = (θ̃ij)m×n which is displayed in Table 6.

Table 6. Collective matrix Q by utilizing the WLIFDMM operator.

a1 a2 a3 a4 a5

x1 (s6.2399, s1.5647) (s4.6288, s3.1933) (s4.9052, s2.5062) (s5.8147, s1.3163) (s4.0568, s3.1265)
x2 (s6.4807, s1.2646) (s5.6408, s1.4691) (s6.1879, s1.0000) (s5.4275, s2.0000) (s5.3238, s1.6721)
x3 (s5.2332, s1.9875) (s4.6480, s2.5748) (s6.5309, s1.2646) (s4.2085, s2.5612) (s3.7159, s3.0490)
x4 (s5.1800, s2.2673) (s5.4407, s1.6721) (s4.4721, s2.0879) (s6.0590, s1.4691) (s4.7287, s3.0508)
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Step 3. Utilize the WLIFDMM operator to compute the comprehensive value θ̃i which are shown
as below.

θ̃1 = (s5.6229, s1.9116), θ̃2 = (s6.0628, s1.3539),

θ̃3 = (s5.1154, s1.9786), θ̃4 = (s5.4759, s1.9238).

Step 4. Computing the score values ofR(Θi)(i = 1, 2, 3, 4) by the Ranking approach III, where
the LIF distance parameter is taken as χ = 3.

R(θ1) = 0.0786, R(θ2) = 0.0650, R(θ3) = 0.1004, R(θ4) = 0.0848.

Step 5. Rank all alternative Θi(i = 1, 2, · · · , m) on the basis of the score value, one has

Θ2 > Θ1 > Θ4 > Θ3.

Hence, the best alternative is Θ2.

6.3. Influence of Parameter Vector for the Decision-Making Results

In this section, we shall discuss the influence of parameter vector P and parameter χ for the final
decision result.

Parameter vector P can make the fusion stage more elastic and it is vital for ultimate ranking
results. This part will analyze the effect of different parameter vectors on decision results, we assign
distinct parameter vectors P to obtain the ranking results, which are displayed in Tables 7 and 8.
Although we get a diverse score of alternatives by taking different parameter vectors, the sorting
results are basically the same. When the parameter vector P = (1, 0, 0, 0, 0), the WLIFMM operator
will yield to LIFWA operator [44] and the WLIFDMM operator will yield to LIF geometric average
operator [44]. However, when P = (1, 0, 0, 0, 0), the interrelationship among different attributes is
not taken into account in the process of decision-making. The WLIFMM operator and WLIFDMM
operator can consider more relationships between any attributes.

Table 7. Order relation obtained by using different parameter vector P based on the LIFMM operator.

Parameter Vector P Score Value of Θi Order Relation

P = (1, 0, 0, 0, 0) R(Θ1) = 0.3037, R(Θ2) = 0.3020, R(Θ3) = 0.3073, R(Θ4) = 0.3048 Θ2 > Θ1 > Θ4 > Θ3
P = (1, 1, 0, 0, 0) R(Θ1) = 0.2984, R(Θ2) = 0.2961, R(Θ3) = 0.3017, R(Θ4) = 0.2999 Θ2 > Θ1 > Θ4 > Θ3
P = (1, 1, 1, 0, 0) R(Θ1) = 0.0063, R(Θ2) = 0.0048, R(Θ3) = 0.0077, R(Θ4) = 0.0066 Θ2 > Θ1 > Θ4 > Θ3
P = (1, 1, 1, 1, 1) R(Θ1) = 0.1122, R(Θ2) = 0.0824,R(Θ3) = 0.1281, R(Θ4) = 0.1091 Θ2 > Θ1 > Θ4 > Θ3
P = (2, 2, 2, 2, 2) R(Θ1) = 0.1122, R(Θ2) = 0.0824,R(Θ3) = 0.1281, R(Θ4) = 0.1091 Θ2 > Θ1 > Θ4 > Θ3

P = (10, 10, 10, 10, 10) R(Θ1) = 0.1122, R(Θ2) = 0.0824,R(Θ3) = 0.1281, R(Θ4) = 0.1091 Θ2 > Θ1 > Θ4 > Θ3
P = (0.2, 0.2, 0.2, 0.2, 0.2) R(Θ1) = 0.1122, R(Θ2) = 0.0824, R(Θ3) = 0.1281, R(Θ4) = 0.1091 Θ2 > Θ1 > Θ4 > Θ3
P = (3, 0, 0, 0, 0) R(Θ1) = 0.2301, R(Θ2) = 0.2235, R(Θ3) = 0.2421, R(Θ4) = 0.2348 Θ2 > Θ1 > Θ4 > Θ3
P = (5, 0, 0, 0, 0) R(Θ1) = 0.1850, R(Θ2) = 0.1787, R(Θ3) = 0.1995, R(Θ4) = 0.1915 Θ2 > Θ1 > Θ4 > Θ3

Table 8. Order relation obtained by using different parameter vector P based on the LIFDMM operator.

Parameter Vector P Score Value of Θi Order Relation

P = (1, 0, 0, 0, 0) R(Θ1) = 0.0096, R(Θ2) = 0.0065, R(Θ3) = 0.0121, R(Θ4) = 0.0098. Θ2 > Θ4 > Θ1 > Θ3
P = (1, 1, 0, 0, 0) R(Θ1) = 0.2998, R(Θ2) = 0.2964, R(Θ3) = 0.3041, R(Θ4) = 0.2991. Θ2 > Θ4 > Θ1 > Θ3
P = (1, 1, 1, 0, 0) R(Θ1) = 0.0935, R(Θ2) = 0.0829, R(Θ3) = 0.00985, R(Θ4) = 0.0940. Θ2 > Θ4 > Θ1 > Θ3
P = (1, 1, 1, 1, 1) R(Θ1) = 0.0786, R(Θ2) = 0.0650, R(Θ3) = 0.1004, R(Θ4) = 0.0848. Θ2 > Θ4 > Θ1 > Θ3
P = (2, 2, 2, 2, 2) R(Θ1) = 0.0786, R(Θ2) = 0.0650, R(Θ3) = 0.1004, R(Θ4) = 0.0848. Θ2 > Θ4 > Θ1 > Θ3

P = (10, 10, 10, 10, 10) R(Θ1) = 0.0786, R(Θ2) = 0.0650, R(Θ3) = 0.1004, R(Θ4) = 0.0848. Θ2 > Θ4 > Θ1 > Θ3
P = (0.2, 0.2, 0.2, 0.2, 0.2) R(Θ1) = 0.0786, R(Θ2) = 0.0650, R(Θ3) = 0.1004, R(Θ4) = 0.0848. Θ2 > Θ4 > Θ1 > Θ3
P = (3, 0, 0, 0, 0) R(Θ1) = 0.0527, R(Θ2) = 0.0362, R(Θ3) = 0.0588, R(Θ4) = 0.0460. Θ2 > Θ4 > Θ1 > Θ3
P = (5, 0, 0, 0, 0) R(Θ1) = 0.0827, R(Θ2) = 0.0572, R(Θ3) = 0.0892, R(Θ4) = 0.0699. Θ2 > Θ4 > Θ1 > Θ3
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Furthermore, we analyze the decision results obtained by assigning different parameter values of
χ, which are listed in Tables 9 and 10. We can obtain that the ultimate decision results have no changes
under diverse χ values, which implies that the decision result is relatively stable.

Table 9. Order relation obtained by using different parameter χ based on the WLIFMM operator and
Ranking approach III.

Parameter χ Score Value of Θi Order Relation

χ = 1 R(Θ1) = 0.1572, R(Θ2) = 0.1229, R(Θ3) = 0.2007, R(Θ4) = 0.1696 Θ2 > Θ1 > Θ4 > Θ3
χ = 5 R(Θ1) = 0.0833, R(Θ2) = 0.0670, R(Θ3) = 0.1003, R(Θ4) = 0.0888 Θ2 > Θ1 > Θ4 > Θ3

χ = 10 R(Θ1) = 0.0795, R(Θ2) = 0.0651, R(Θ3) = 0.1006, R(Θ4) = 0.0853 Θ2 > Θ1 > Θ4 > Θ3
χ = 50 R(Θ1) = 0.0786, R(Θ2) = 0.0650, R(Θ3) = 0.1004, R(Θ4) = 0.0848 Θ2 > Θ1 > Θ4 > Θ3
χ = 100 R(Θ1) = 0.0786, R(Θ2) = 0.0650, R(Θ3) = 0.1004, R(Θ4) = 0.0848 Θ2 > Θ1 > Θ4 > Θ3

Table 10. Order relation obtained by using different parameter χ based on the WLIFDMM operator
and Ranking approach III.

Parameter χ Score Value of Θi Order Relation

χ = 1 R(Θ1) = 0.1935, R(Θ2) = 0.1491, R(Θ3) = 0.2293, R(Θ4) = 0.1923 Θ2 > Θ4 > Θ1 > Θ3
χ = 5 R(Θ1) = 0.1031, R(Θ2) = 0.0767, R(Θ3) = 0.1188, R(Θ4) = 0.1008 Θ2 > Θ4 > Θ1 > Θ3

χ = 10 R(Θ1) = 0.0980, R(Θ2) = 0.0747, R(Θ3) = 0.1151, R(Θ4) = 0.0968 Θ2 > Θ4 > Θ1 > Θ3
χ = 50 R(Θ1) = 0.0968, R(Θ2) = 0.0745, R(Θ3) = 0.1147, R(Θ4) = 0.0961 Θ2 > Θ4 > Θ1 > Θ3
χ = 100 R(Θ1) = 0.0968, R(Θ2) = 0.0745, R(Θ3) = 0.1147, R(Θ4) = 0.0961 Θ2 > Θ4 > Θ1 > Θ3

6.4. Comparative Analysis with Existing Approaches

In order to further clarify the validity and the significant merits of the developed methods in this
article. we will utilize three existing methods to address the example in this article and analyze the
ranking results obtained by these approaches. The three existing operators include the LIFWA operator
and LIF hybrid average (LIFHA) operator in [44], the WLIFMSM operator in [46], the weighted
intuitionistic uncertain linguistic fuzzy BM (WIULBM) operator in [65]. The final decision result is
displayed in Table 11.

From Table 11, we can find that the decision results obtained by these methods are slightly
different. However, the optimal alternative is Θ2, which proves the feasibility and validity of the
proposed methods.

From Table 12, we compare the listed characteristics of different methods and further highlight
the superiority of the proposed methods.

Based on Tables 11 and 12, we further perform a detailed analysis in the following.
Firstly, compared with the approach presented by Chen et al. [44] based on the LIFWA and

LIFWG operator. Although LIFWA operator and LIFWG operator can aggregation vague information
effectively and its computational process is relatively uncomplicated, they fail to take into consideration
the relevances among all input-data and ignore the non-independence of inputting arguments.
However, the propounded approaches can fully take into consideration the interrelationships among
all input arguments and it is a generalization fusion function because it can transform into several
existing operators by different parameter vectors. In addition, LIFWA operators and LIFWG operators
are a particular instance of WLIFMM operators and WLIFDMM operators, respectively. Accordingly,
the proposed methods are more universal and flexible to address MAGDM problems.

Secondly, compared with the approach proposed by Liu et al. [46] based on the WLIFMSM
operator. Although the interrelationships of multiple attributes can be considered, the proffered
method can make the fusion process more flexible in the process of decision-making by utilizing
a parameter vector. Besides, the WLIFMM operator can yield to WLIFMSM operator when the

parameter vector P = (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0). Hence, the proposed methods are more general than

previous approaches.
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Thirdly, compared with the approach proposed by Liu et al. [65] based on the WIULFBM operator.
Although the WIULFBM operator can consider the interrelationships of diverse attributes, it only
captures the interrelationships between any two attributes, which will lead to an unreasonable decision
result. The WLIFMM operator can overcome the weakness of the WIULFBM operator to consider
the interrelationships among multiple attributes. Additionally, the WLIFMM operator can reduce to
WLIFBM operator when the parameter vector P = (1, 1, · · · 0, 0). That means the WLIFBM operator
is a special case of the WLIFMM operator. Thus, the presented approaches are more universal and
flexible to tackle MAGDM issues than the above-mentioned approaches.

Table 11. Decision results by different approaches.

Aggregation Operator Parameter Order Relation

LIFWA operator [44] NO Θ2 > Θ1 > Θ4 > Θ3
LIFWG operator [44] NO Θ2 > Θ1 > Θ4 > Θ3
LIFHA operator [44] NO Θ2 > Θ1 > Θ4 > Θ3
WLIFMSM operator [46] k = 4 Θ2 > Θ1 > Θ4 > Θ3
WIULBM operator [65] p = q = 1 Θ2 > Θ1 > Θ4 > Θ3
LIFWPA operator [66] NO Θ2 > Θ1 > Θ4 > Θ3
LIFWPG operator [66] NO Θ2 > Θ1 > Θ4 > Θ3
WLIFMM operator P = (1, 1, 1, 1, 1) Θ2 > Θ1 > Θ4 > Θ3
WLIFDMM operator P = (1, 1, 1, 1, 1) Θ2 > Θ4 > Θ1 > Θ3

Table 12. Comparison of characteristics with different MAGDM approaches.

Approaches Whether Quantitative
Description Information

Whether to Capture
the Interrelationship

between Two Attributes

Whether to Capture
the Interrelationship

between Multiple Attributes

Whether Has Generalized
Characteristics by

the Parameter Vector

IFWA operator [28] NO NO NO NO
LIFHA operator [44] YES NO NO NO
WLIFMSM operator [46] YES YES YES YES
WIFMM operator [59] NO YES YES YES
WIULBM operator [65] YES YES NO NO
WLIFMM operator YES YES YES YES
WLIFDMM operator YES YES YES YES

To sum up, according to the above comparative analysis, the propounded approaches in this
paper have the following merits: (1) they can more validity to depict the assessment information
provided by decision-makers in quantitative circumstance; (2) they can consider interrelationships
among any amount of the attributes; (3) they can provide greater robustness and flexibility to deal
with uncertain and ambiguous information by an adjustable parameter vector P .

7. Conclusions

As a research hot topic in information fusion problems, integration operators have received more
attention in various decision-making issues and more aggregation operators have been investigated
in detail. MM operator has a conspicuous merits which can take into account the interrelationship
among multiple argument values and it can address decision problems during the aggregation process
more nimble by the adjustable parameter vector. LIFNs can portray complex, fuzzy information more
effectively by combining the linguistic variables and intuitionistic fuzzy numbers. In this study, we
first introduce a novel ranking approach to sort LIFNs; secondly, we propound several novel MM
operators under the linguistic intuitionistic fuzzy setting and investigate several desirable properties
of them. Thirdly, we develop two novel MAGDM approaches based on the presented operators.
Finally, the presented methods are applied to tackle a global supplier selection problem to show its
validity. The comparative analysis and characteristic analysis are given by comparing it with existing
approaches. The proposed operators have notable features which it can capture the correlation of
multiple input attributes by a parameter vector P . When we take different vectors to the MM operator,
it can consider the interrelationship between one or more attributes, so it is more flexible in dealing
with MAGDM problems by altering the parameter vector P . Apart from those, the presented operators
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can qualitatively describe vague evaluation information by LIFN. Nevertheless, the limitation of this
study is that the weights of attributes and decision-makers are directly provided by experts, which has
a certain subjectivity. Aiming at the situation that weights are unknown, we should determinate the
weights by several approaches to comprehensively consider the objectivity and subjectivity of weights.

In the future, we can apply the proposed methods to deal with real-life issues, such as low carbon
supplier selection, performance evaluation and so forth. Additionally, we can generalize the MM
operator to other fuzzy setting [67,68] to display its merits in information fusion fields. Meanwhile,
we will further explore several novel decision approaches and extended them to other linguistic
decision-making issues.
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