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Abstract: This paper deals with the transverse free vibration of axially functionally graded (AFG)
cantilever columns under the influence of axial compressive load. The columns possessing a regular
polygon in their cross-section are tapered and their material properties vary along the axis of the
column. An emphasis is placed on the columns with constant volume for admissible geometries and
materials. The governing differential equation of the problem is derived and solved using the direct
integral approach in conjunction with the determinant search technique. The obtained results are
in good agreement with those in the available literature and computed by finite element analysis.
Numerical examples for the natural frequency and mode shape of the columns are presented to
investigate the effects of parameters related to geometrical nonuniformity and material inhomogeneity.

Keywords: free vibration; cantilever column; axially functionally graded material; regular polygon
cross-section; constant volume; rotatory inertia couple

1. Introduction

In a variety of structural engineering applications, columns are often built as one of the most
important main components by which axial compressive forces, one of the main types of external
loading, are supported [1]. As a result, over the past few decades, many researchers have devoted a
lot of effort to improving the analysis of column structure systems. After the concept of functionally
graded material (FGM) was established in 1984 by material scientists in Japan, recently, FGM is usually
composited from ceramic and metallic materials, because these composites enhance the advantages
of the materials, such as stronger mechanical performance, as well as better thermal resistance [2].
Therefore, FGM has been successfully applied for various engineering applications, such as aerospace,
precision machinery, and biomedical structures. Due to the benefits of space utilization, esthetics,
safety, optimization, and economy, tapered components are typically used in engineering practices [3].
In particular, taper elements behave differently from the uniform ones because of the variation of
the cross-section along the axial coordinate yields effective stress distributions and a strong coupling
between the stress resultants. This concept is important for optimizing the structural members and
reducing the self-weight. Thus, by adopting tapered components, safe and economical designs
are achieved.

In this respect, much research has been undertaken on the above-mentioned subject that deals
with functionally graded cantilever columns. Generally, FGMs are divided into two types: laterally
functionally graded material (LFGM) in which the mechanical properties, i.e., the Young’s modulus
and mass density, are composited laterally to the axial coordinate; and axially functionally graded
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material (AFGM) in which its properties are composited axially along the coordinate. In this study,
AFGM is a major concern for analyzing the free vibration of the cantilever columns.

For the free vibration problems in this subject, the mathematical models include the inertia forces,
which are treated as the static quantities. The following references and their citations include the
mathematical models and historical reviews of this subject. The typical studies on free vibration of
AFG columns are briefly reviewed here in chronological order: Akgoz and Civalek [3] studied natural
frequencies of a linearly tapered microbeam based on the modified couple stress theory; Calio and
Elishakoff [4] investigated the closed-form solutions of natural frequency for a simply supported
beam-column with an elastically guided end condition at one end, where the trigonometric functions
of the Young’s modulus in the mathematical formulation were considered; Li [5] studied the static and
dynamic behaviors of a prismatic beam, including the rotatory inertia and shear deformation; Singh and
Li [6] studied critical buckling loads of a cantilever column with a piecewise element, restrained by the
elastic foundation; Huang and Li [7] researched a new approach for the free vibration of tapered beams
with simply supported, both clamped, clamped-pinned, and cantilevered end conditions, respectively,
where the Fredholm integral equations were used in the mathematical formulations; Shahba et al. [8]
investigated the free vibration and stability of a non-prismatic column with classical and non-classical
boundary conditions; Shahba and Rajasekaran [9] studied the free vibration and stability of tapered
beams, in which governing equations for the free vibration and buckling were solved by the differential
quadrature element method (DQEM); Kukla and Rychlewska [10] dealt with beams with both ends
fixed, which were fabricated from two different FGMs for analyzing free vibration; Yilmaz et al. [11]
investigated the buckling loads of non-prismatic columns restrained by the elastic foundation using the
differential quadrature method (DQM); Chandran and Rajendran [12] studied closed-form solutions
of the buckling load of a prismatic cantilever column using the principle of conservation energy;
Shafiei et al. [13] studied non-linear vibrations of a linearly tapered microbeam with a square
cross-section, where the governing equations were solved by the differential quadrature method
(DQM); Ranganathan et al. [14] studied the buckling of slender columns that determined the buckling
loads by the linear perturbation method together with the Rayleigh-Ritz method and investigated
the maximum buckling loads under the same average mean Young’s modulus; Elishakoff et al. [15]
studied the buckling and vibrations of a column sharing Duncan’s mode shapes and assuming a
fifth order polynomial; Rezaiee and Masoodi [16] investigated closed-form solutions of the natural
frequencies and buckling loads of tapered beam-columns supported by semi-rigid connections; and
Lee and Lee [17] studied the free vibration and buckling of tapered cantilever columns with square and
circular cross-sections. As discussed above, FG materials developed in 1984 are of particular interest in
dealing with the free vibration of FG columns.

This paper presents a unique numerical approach for analyzing the free vibration of AFG cantilever
columns. In terms of geometry, the column is tapered, the cross-sectional shape is a regular polygon,
and the volume of the columns is constant. In the literature, the scope of this topic has not yet been
covered. This paper consists of the following contents: Section 2 describes the mathematical model
of the problem. By using the equilibrium of free body diagram of the column element subjected
to the transverse and rotatory inertia loadings, the differential equation governing the mode shape
of vibrating columns is derived with its boundary conditions. A variable function for the Young’s
modulus of AFGMs is adopted as a linear function, and in terms of the column geometry, three taper
functions are selected as the linear, parabolic, and sinusoidal taper. Section 3 shows the solution
methods to the problems of this study. To calculate natural frequencies along with their corresponding
mode shapes, the governing differential equation is solved by the direct integral method enhanced by
the determinant search method. For the verification purpose, the predicted natural frequencies are
compared with those obtained by the general-purpose software ADINA and the references. Section 4
deals with the numerical experiments and provides a discussion. The effects of the material and
geometrical properties of AFG cantilever columns on free vibration behaviors are extensively discussed.
Section 5 summarizes this study and suggests areas for further study.
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2. Mathematical Model

Shown in Figure 1a is an AFG cantilever column with a length l and a volume V. From a
geometrical point of view, the column is tapered, the cross-sectional shape is a regular polygon with
an integer side number k(≥ 3), as shown in Figure 1c, and the column volume V is constant. The
axial coordinate x is zero at the clamped end, and the circumradius, area, and second moment of the
regular polygonal cross-section are denoted by r, A, and I, respectively. The Young’s modulus and
mass density are represented by E and ρ, and the flexural rigidity is denoted by R f (= EI). At the
clamped end (x = 0), r, E, and ρ are denoted by rc, Ec, and ρc. At the free end (x = l), r, E, and ρ are
denoted by r f , E f ,AF and ρ f . The column is externally subjected to an axial compressive load P less
than the buckling load B at the free end.
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Figure 1. (a) Schematic view of an axially functionally graded (AFG) cantilever column with constant
volume; (b) free body diagram of the column element; (c) variations of Young’s modulus (and mass
density) and circumradius of the regular polygon.

When the column vibrates, the undeformed column axis depicted by the straight dashed line
elastically deforms the mode shape depicted by the solid line in Figure 1a, defined in Cartesian
coordinates (x, y). The cross-section of the deformed column is subjected to the dynamic shear force Q
and bending moment M, as well as the axial force P. The column element shown in Figure 1b is loaded
to the transverse inertia force FI and the rotatory inertia couple T, since the column has mass. In this
study, the free vibration is a harmonic motion in which each dynamic coordinate is proportional to
sin(ωit). For example, yx,t = yx sin(ωit) where yx(= y) is the transverse deflection, ωi is the angular
frequency in motion where the dynamic co0 i(= 1, 2, 3, · · ·) is the mode number, and t is the time.

Using the equations of
∑

Fy = 0 and
∑

M(x,y) = 0 established from the free body diagram shown
in Figure 1b, the equations of the dynamic equilibrium are obtained as∑

Fy = (Q + dQ) −Q− FIdx = 0 :
dQ
dx
− FI = 0 (1)

∑
M(x,y) = (Q + dQ)dx + Pdy− (M + dM) + M− Tdx = 0 :

dM
dx
−Q− P

dy
dx

+ T = 0 (2)

From Equation (2), the first derivative dM/dx is re-arranged as
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dM
dx

= P
dy
dx

+ Q− T (3)

Combining the second derivative d2M/dx2 obtained from Equation (3) and dQ/dx = FI in
Equation (1) yields

d2M
dx2 = P

d2y
dx2 −

dT
dx

+ FI (4)

The bending moment M, transverse inertia force FI, and rotatory inertia couple T are expressed
as [18,19]

M = −EI
d2y
dx2 = −R f

d2y
dx2 (5)

FI = −ρAω2
i y (6)

T = −RρIω2
i

dy
dx

(7)

where the rotatory inertia index R is defined as

R = 0, if rotatory inertia couple is excluded; R = 1, if included. (8)

From Equation (7), the first derivative dT/dx is obtained as

dT
dx

= −Rω2
i

[
ρI

d2y
dx2 +

(
dρ
dx

I + ρ
dI
dx

)
dy
dx

]
(9)

Substituting Equations (6) and (9) into Equation (4) yields Equation (10), and from Equation (5),
the second derivative d2M/dx2 is obtained as Equation (11):

d2M
dx2 = P

d2y
dx2 + Rω2

i

[
ρI

d2y
dx2 +

(
dρ
dx

I + ρ
dI
dx

)
dy
dx

]
− ρAω2

i y (10)

d2M
dx2 = −R f

d4y
dx4
− 2

dR f

dx
d3y
dx3 −

d2R f

dx2

d2y
dx2 (11)

Using Equations (10) and (11) and re-arranging against d4y/dx4 yields the following equation, or

d4y
dx4

= −
2

R f

dR f

dx
d3y
dx3 −

1
R f

P +
d2R f

dx2

d2y
dx2 −Rω2

i

[
ρI

d2y
dx2 +

(
dρ
dx

I + ρ
dI
dx

)
dy
dx

]
+ω2

i
ρA
R f

y (12)

Now consider the boundary conditions of the column ends (x = 0 and x = l). At the clamped end
(x = 0), the deflection y and the rotation dy/dx are zero:

y = 0;
dy
dx

= 0 (13)

At the free end (x = l), the bending moment M in Equation (5) and the shear force Q in Equation (3)
together with Equations (5) and (7) are zero, that is

d2y
dx2 = 0;

d3y
dx3 +

1
R f

dR f

dx
d2y
dx2 +

1
R f

(
P + Rω2

i ρI
)dy

dx
= 0 (14)

In the equations presented, the variable functions of R f , A, and ρ are arbitrary, so if each respective
function is given, the angular frequency can be determined. Now, to define variable functions
mentioned above for the mathematical formulations. First, in order to define the function of Young’s
modulus E, the modular ratio m is introduced as
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m =
E f

Ec
(15)

There are various kinds of functions for Young’s modulus E in the literature: linear [2,3,9,12,14,17],
trigonometric [4], polynomial [5,14–16], piecewise [6], exponential [7,10], and periodic [14] functions,
etc. The linear function is selected in this study, and then the function of E at the coordinate x is
expressed as [17]

E = Ec

(
m1

x
l
+ 1

)
; m1 = m− 1 (16)

For the variable function of the mass density ρ, it is usual that ρ is equal to E [2–17], and then
the density ratio is the same of modular ratio m (see Figure 1c). Therefore, the mass density ratio m
defined as a ratio of ρ f to ρc and the linear function of ρ at the coordinate x can be written as

m =
ρ f

ρc
(17)

ρ = ρc

(
m1

x
l
+ 1

)
(18)

For the variable function of the circumradius r, the taper ratio n is introduced as

n =
r f

rc
≤ 1 (19)

The function of r at the coordinate x is expressed as

r = rcF
(x

l

)
= rcF (20)

where F is an arbitrary function of x/l, F = F(x/l), but in terms of geometry, three kinds of taper
functions F are selected in this study as follows.

F = n1
x
l
+ 1 (21a)

for a linear taper,

F = n1

(x
l

)2
+ 1 (21b)

for a parabolic taper, and

F = −n1 sin
[
π
2

(x
l
+ 1

)]
+ n (21c)

for a sinusoidal taper with n1 = n− 1.
Using the function of r in Equation (20), variable functions of A and I for a k-sided regular

polygonal cross-section at the coordinate x are obtained as

A = c1r2 = c1r2
c F2 (22)

I = c2r4 = c2r4
c F4 (23)

where the constants of c1 and c2 for the regular polygon cross-section are:

c1 = k sin
(
π
k

)
cos

(
π
k

)
; c2 =

k
12

sin
(
π
k

)
cos3

(
π
k

)[
3 + tan2

(
π
k

)]
(24)

Using Equations (16) and (23), the variable function of flexural rigidity R f (= EI) at the coordinate
x is established:

R f = c2Ecr4
c

(
m1

x
l
+ 1

)
F4 (25)
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The volume V of the column can be determined as

V =

∫ l

0
Adx = c1r2

c

∫ l

0
F2dx = c1c3r2

c l (26)

where the constant c3 by the taper type is:

c3 =
1
3

(
n2 + n + 1

)
(27a)

for a linear taper,

c3 =
1

15

(
3n2 + 4n + 8

)
(27b)

for a parabolic taper, and

c3 =
(3

2
−

4
π

)
n2 +

( 4
π
− 1

)
n +

1
2

(27c)

for a sinusoidal taper.
To facilitate numerical experiments, the following dimensionless system parameters are introduced:

ξ =
x
l

(28)

η =
y
l

(29)

λ =
V
l3

(30)

p =
Pl4

EcV2 (31)

bi =
Bil4

EcV2 (32)

Ci = ωil

√
ρcl3

EcV
(33)

where (ξ, η) are the normalized Cartesian coordinates, λ is the volume ratio, p is the load parameter,
bi is the buckling load parameter, and Ci is the frequency parameter. Substituting Equations (18),
(22), (23) and (25) into Equation (12) and using Equations (28)–(33) yields the fourth order ordinary
dimensionless differential equation, or

d4η
dξ4 = −2

(
m1
e + 4

f
d f
dξ

)
d3η
dξ3 −

{
RλC2

i +
c2

1c2
3

c2

p
e f 4 +

4
f

[
2m1

e
d f
dξ +

3
f

(
d f
dξ

)2
+

d2 f
dξ2

]}
d2η
dξ2

−RλC2
i

(
m1
e + 4

f
d f
dξ

)
dη
dξ +

c2
1c3
c2

C2
i

f 2 η
(34)

where
e = m1ξ+ 1 (35a)

f = n1ξ+ 1,
d f
dξ

= n1,
d2 f
dξ2 = 0 (35b)

for a linear taper,

f = n1ξ
2 + 1,

d f
dξ

= 2n1ξ,
d2 f
dξ2 = 2n1 (35c)

for a parabolic taper, and
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f = −n1 sin
[
π
2
(ξ+ 1)

]
+ n,

d f
dξ

= −
πn1

2
cos

[
π
2
(ξ+ 1)

]
,

d2 f
dξ2 =

π2n1

4
sin

[
π
2
(ξ+ 1)

]
(35d)

for a sinusoidal taper.
Boundary conditions of Equations (13) and (14) in the dimensional form are transformed into the

non-dimensional form using Equations (28)–(33), or
For clamped end (ξ = 0),

η = 0;
dη
dξ

= 0 (36)

For free end (ξ = 1),

d2η

dξ2 = 0;
d3η

dξ3 +

c2
1c2

3

c2

p
mn4

+ RλC2
i

dη
dξ

= 0 (37)

The above fourth order ordinary differential Equation (34) with boundary conditions, Equations
(36) and (37), governs the free vibration of AFG cantilever columns with a regular polygon cross-section
and constant volume. In Equation (34), the taper type, side number k, modular ratio m, taper ratio
n, volume ratio λ, and load parameter p are input parameters, while Ci is the eigenvalue which is
calculated with its mode shape (ξi, ηi), using appropriate numerical methods.

3. Numerical Methods

Based on the above analyses, a FORTRAN computer program was written to compute the
natural frequencies of the cantilever columns. The input column parameters were: (1) the geometrical
properties of the circumradii rc and r f with the taper type, side number k(≥ 3), column length l, and

column volume V; (2) the material properties, i.e., Young’s moduli (Ec, E f ) and mass densities
(
ρc,ρ f

)
;

and (3) the axial compressive load P. These input parameters in the dimensional units can be shifted to
the non-dimensional form, i.e., modular ratio m, taper ratio n, volume ratio λ, and load parameter
p, as developed in the previous section. For integrating differential equations to calculate the mode
shape (ξi, ηi), the Runge-Kutta method [20], a direct integral method, was used, and for computing the
frequency parameter Ci, the determinant search method enhanced by the Regula-Falsi method [20]
was used. This solution method of calculating eigenvalues, such as the natural frequencies of this
study, from the initial value problem, is often used in the available literature [17]. For the sake of clarity,
the numerical processes for solving the differential equation can be summarized as follows:

(1) Define the column parameters of R, k, m, n, λ, and p with the taper type.
(2) Set a trial frequency Ct in Equation (34) as a trial eigenvalue Ci. The first trial Ct is zero.
(3) Subject the initial boundary conditions of Equation (36) to the differential Equation (34) at ξ = 0

and assume two sets of unknown initial boundary conditions of (η′′ , η′′′ ) at ξ = 0 as shown in
Table 1, where (′) is one derivative differential operator, etc.

Table 1. Assumed initial conditions* at clamped end (ξ = 0) and obtained trials at free end (ξ = 1).

Clamped end (ξ = 0)
Execution of
Runge-Kutta

method

Free end (ξ = 1)

Set no. η η′ η′′ η′′′ η η′ η′′ η′′′

[1] 0 0 1 3 η[1], f η′
[1], f

η′′
[1], f

η′′′
[1], f

[2] 0 0 2 4 η[2], f η′
[2], f

η′′
[2], f

η′′′
[2], f

* Figures 1–4 in set no. [1] and [2] are assumed values and the subscript ‘ f ’ stands for ‘at the free end’.

(4) Integrate Equation (34) from ξ = 0 to ξ = 1 using the Runge-Kutta method. This result gives trial
coordinates (η, η′, η′′ , η′′′ ) at the axial coordinate ξ.
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(5) Using the results of the two trial coordinates separately obtained by Set [1] and Set [2], the
following linear combinations are established:

η = η[1] + cη[2], η
′ = η′

[1] + cη′
[2], η

′′ = η′′
[1]

+ cη′′
[2]

, η′′′ = η′′′
[1]

+ cη′′′
[2]

(38)

where c is a constant. If the trial Ct assumed in Step (2) is a characteristic eigenvalue Ci, the
boundary conditions expressed in Equation (37) at the free end (ξ = 1) are satisfied for the linear
combination equations, that is

η′′F = η′′
[1], f

+ cη′′
[2], f

= 0 (39a)

η′′′f + uη′f =
(
η′′′
[1], f

+ uη′
[1], f

)
+ c

(
η′′′
[2], f

+ uη′
[2], f

)
= 0 (39b)

where u = c2
1c2

3p/
(
c2mn4

)
+ RλC2

i . The above Equation (39) can be written in the matrix form: η′′f
η′′′f + uη′f

 =
 η′′

[1], f
η′′′
[1], f

+ uη′
[1], f

η′′
[2], f

η′′′
[2], f

+ uη′
[2], f

[ 1
c

]
= 0 (40)

Since c , 0, to satisfy the above equation, the following determinant D must be zero:

D =

 η′′
[1], f

η′′′
[1], f

+ uη′
[1], f

η′′
[2], f

η′′′
[2], f

+ uη′
[2], f

 = 0 (41)

The first convergence criterion is
|D| ≤ 10−8 (42)

If this criterion is met, the trial Ct is just a characteristic eigenvalue Ci, and one should go to Step
(7).

(6) If not, increase the trial frequency Ct = Ct + ∆Ct and perform Steps (2)–(5). During executions,
note the sign of D1 ×D2, where D1 is the determinant of the previous execution and D2 is the
determinant of the present execution. When the sign changes, the eigenvalue of Ci lies between
Ct,1 and Ct,2, where Ct,1 is the trial frequency corresponding to D1 and Ct,2 corresponds to D2.
An advanced trial frequency Ct,3 approaching closer to the eigenvalue Ci can be obtained by the
Regula-Falsi method, a solution method of the non-linear equation:

Ct,3 =
Ct,1|D2|+ Ct,2|D1|

|D1|+ |D2|
(43)

The second convergence criterion is

Ct,2 −Ct,1

Ct,2
≤ 10−5 (44)

If the above criterion is met, the trial Ct,3 is the eigenvalue Ci for a given set of column parameters.
(7) From Equation (39), the constant c of the linear combination relationship is calculated as

c = −
η′′
[1], f

η′′
[2], f

or c = −
η′′′
[1],c

+ uη′
[1], f

η′′′
[2], f

+ uη′
[2], f

(45)

where two c values in Equation (45) are the same. All of the dynamic coordinates (η, η′, η′′ , η′′′ )
at ξ are computed using Equation (38).
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(8) In order to obtain higher frequencies, set a new Ct = Ci + ∆Ct and repeat all above steps until the
desired number of frequencies is computed.

(9) Output the computed results of Ci with the corresponding coordinates (η, η′, η′′ , η′′′ ) and
stop calculation.

4. Numerical Experiments and Discussions

Prior to the numerical experiments, it is important to determine the suitable step size ∆ξ in the
Runge-Kutta method for efficiently integrating efficiently differential Equation (34). To determine
the appropriate ∆ξ, the convergence analysis was performed by the number of dividing column
elements, 1/∆ξ, and its result is shown in Figure 2, where the input column parameters are presented.
It has been observed that solutions of Ci=1,2,3 with 1/∆ξ = 50 (∆ξ = 0.02) converge to those with
1/∆ξ = 200 (∆ξ = 0.005) within three significant numbers. In this study, all computations with
1/∆ξ = 100 (∆ξ = 0.01) in the parametric study were carried out on a PC without any difficulties.
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In the available literature, the closed-form or numerical solutions to this problem are lacking,
so that, for verification purpose, the selected results of this study are comparable to those of the
general-purpose software ADINA and those in the authors’ previous work [17]. The predicted natural
frequencies fi(= ωi/2π) for k = 4 and k = ∞ with the linear taper are compared in Table 2. Here,
AFGM is composited with pure aluminum (Al) at the clamped end and pure zirconia (ZrO2) at the free
end, from which the Young’s modulus E and mass density ρ can be defined along with x using Equations
(16) and (18). The column parameters are: R = 0, l = 1 m, V = 0.0177 m3, n = 0.5; Ec = 70 GPa,
ρc = 2700 kg/m3 (Al); E f = 140 GPa, ρ f = 5400 kg/m3 (ZrO2); and P = 0. From these parameters,
natural frequencies fi = 107.8Ci Hz are obtained from Ci predicted in this study. Results of this study,
ADINA, and reference [17] in Table 2 are in good agreement within a 3.5% error. In these comparisons,
the theory, including the numerical method developed herein, is verified.
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Table 2. Comparison of frequencies * fi of this study with those obtained by ADINA and references.

Side Number k Data Source
Natural Frequency fi in Hz

i=1 i=2 i=3

4 (Square) ADINA 155.2 734.4 1867
This study 156.3 746.6 1925

∞ (Circular) ADINA 151.8 715.6 1820
Reference [17] 155.4 742.4 1913

This study 152.7 729.6 1880

* See the text for column parameters used in the comparison.

Hereafter, the lowest three frequency parameters (i = 1, 2, 3) Ci are computed for the numerical
experiments. Also Ci with p = 0 are computed in Tables 3–5 since this load case is the most practiced
in practical engineering. First, selected analyses were conducted to determine the effects of rotatory
inertia index R, side number k, and taper type on Ci, and these results are listed in Tables 3–5. Note
that the column parameters used in the parametric study are given in each table.

Table 3. Effect of rotatory inertia index R on frequency parameter Ci by volume ratio λ.

Volume Ratio λ R
Frequency Parameter Ci

i=1 i=2 i=3

0.005 0 1.449 6.925 17.85
1 1.449 6.895 17.64

0.01 0 1.449 6.925 17.85
1 1.448 6.866 17.43

0.03 0 1.449 6.925 17.85
1 1.445 6.751 16.67

0.05 0 1.449 6.925 17.85
1 1.441 6.642 16.00

* Linear taper, k = 4, m = 2, n = 0.5, and p = 0.

Table 4. Effect of side number k on frequency parameter Ci.

Side Number k
Frequency Parameter Ci

i=1 i=2 i=3

3 (Triangle) 1.552 7.227 17.74
4 (Square) 1.445 6.751 16.67

5 (Pentagon) 1.424 6.658 16.46
6 (Hexagon) 1.417 6.629 16.40
7 (Heptagon) 1.415 6.617 16.37
8 (Octagon) 1.413 6.612 16.36
∞ (Circular) 1.412 6.605 16.34

* Linear taper, m = 2, n = 0.5, λ = 0.03 and p = 0.

Table 5. Effect of taper type on frequency parameter Ci.

Taper Type Frequency Parameter Ci

i=1 i=2 i=3

Linear 1.445 6.751 16.67
Parabolic 1.369 6.879 16.93

Sinusoidal 1.414 6.832 16.75

* k = 4, m = 2, n = 0.5, λ = 0.03 and p = 0.

Table 3 shows the effect of the inertia index R on Ci, where the volume ratio λ varies from λ = 0.005
to 0.05. From these results, the following findings are observed: (1) Ci is always lower with rotatory
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inertia (R = 1) than without rotatory inertia (R = 0), as expected based on the free vibration analysis of
structures made of conventional homogeneous materials [21]; (2) this frequency reduction is magnified
by a higher mode number i and larger parameter λ; and (3) in practical column designs, the rotatory
inertia couple reduces the frequency less than 0.6% for i = 1, less than 4.3% for i = 2 and less than
11.6% for i = 3, which cannot be negligible.

Table 4 shows the effects of side number k on the frequency parameter Ci, where the number k
varies from k = 3 ∼ 8 and ∞. Hereafter, all numerical results included the rotatory inertia couple
(R = 1). The frequency parameter Ci with a smaller side number k is larger than Ci with larger
k. For an illustrative example, the fundamental frequency parameter C1 of k = 3 (triangle) is 9.9%
(1.552/1.412=1.099) larger than C1 of k = ∞ even though the column volumes V are the same. When
the k value increases, Ci converges to Ci of k = ∞. It is observed that Ci for k = 8 (octagon) approaches
Ci for k = ∞within 1.22%. From these results and others not shown, the effect of k is greatly reduced
from i = 1 (critical mode) for the higher mode.

The effects of taper type on the frequency parameter Ci, are shown in Table 5. The fundamental
frequency parameter C1 is larger in the order from the linear to sinusoidal to parabolic taper, while for
the higher modes i = 2 and 3, Ci are larger in the order from the parabolic to sinusoidal to linear taper.
As an illustrative example, C1 of the linear taper is 5.6% (1.445/1.369 = 1.056) larger than C1 of the
parabolic taper and 2.2% (1.445/1.414 = 1.022) larger than C1 of the sinusoidal taper. In higher modes,
the effect of taper type may be negligible.

The numerical results for the modular ratio m, taper ratio n, volume ratio λ, and load parameter p
are presented in Figures 3–8, where the effect of rotatory inertia (R = 1) is included. Note that column
parameters used in the parametric study are presented in each figure.

Figure 3 presents the frequency curves of Ci versus m. The frequency parameters Ci decrease
as the modular ratio m increases for all mode numbers i. The largest Ci occurs at m = 0. Higher
decreasing rates of Ci are observed for the smaller values of m, particularly for m < 1. Larger values of
m lead to smaller reduction rates of Ci.
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Figure 3. Frequency parameter Ci versus modular ratio m curves.

Figure 4 presents the frequency curves of Ci versus n. The frequency parameters Ci decrease as
the modular ratio m increases for all mode numbers i. The characteristics of the frequency curves are
similar to those of Figure 3. The largest Ci occurs at n = 0 and the value of Ci converges to a common
value, i.e., Ci = 0.
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Figure 4. Frequency parameter 𝐶𝑖 versus taper ratio 𝑛 curves.  Figure 4. Frequency parameter Ci versus taper ratio n curves.

Figure 5 represents the three dimensional curved surface map of (m, n, C1) with respect to the
fundamental frequency parameter C1 in the domain of 0 ≤ m ≤ 5 and 0 ≤ n ≤ 1 for a given set of
column parameters of the linear taper, k = 4, λ = 0.03 and p = 0, which is the same as previous
Figures 3 and 4. Figure 5 reflects the characteristics of both Figures 3 and 4. The C1 value decreases
as both m and n values increase, and therefore the maximum value of C1,max = 6.462 occurs at the
coordinates (m = 0,n = 0) and the smallest value of C1,min = 0.626 at the coordinates (m = 5, n = 1),
as shown in this figure. If the values m and n are infinitely extended, i.e., zero flexural rigidity R f = 0
at the clamped end (x = 0), the C1 value converges the minimum value of C1,min = 0. This means that
the cantilever column with the above given set of column parameters has the fundamental frequency
parameters C1 in the range of 6.462 ≤ C1 ≤ 0.
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Figure 6 presents the frequency curves of Ci versus λ. The frequency parameters Ci decrease as
the volume ratio λ increases. For the lower modes i = 1 and 2, the effect of λ on Ci is negligible, while
for the higher mode i = 3 not negligible. It is particularly noteworthy that, only in this figure, the
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angular frequency ωi with the smaller Ci is larger than ωi with larger Ci, since ωi is proportional to
√
λ
(
=

√
l3/V

)
, i.e., ωi = (

√
λ
√

Ec/ρc/l)Ci (see Equation (33)).
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Figure 7 shows the frequency curves of Ci versus p. The frequency parameters Ci decrease as
the load parameter p increases. When Ci decreases and reaches zero, the column buckles and then
becomes static state, i.e., Ci = 0. The corresponding p with Ci = 0 is the buckling load parameter
bi. For an example for the fundamental mode i = 1, the critical (i = 1) buckling load parameter
bcr is bcr(= b1) = 0.3562 is marked by � in the horizontal p axis, i.e., C1 = 0. Using this physical
phenomenon, the buckling loads B with natural frequencies of zero can be determined [17]. It is
particularly noteworthy that after buckling (p > bcr), Ci values are meaningless in practical engineering,
since the column has already buckled.
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Now, consider the effects of column parameters on the vibration mode shapes. Figure 8 shows
examples of the mode shapes for the given set of column parameters presented in this figure. In
Figure 8a, three lowest (i = 1, 2, 3) mode shapes for the linear, parabolic, and sinusoidal tapers are
shown. In Figure 8b, those for m = 1, 2, 3 are shown. Three mode shapes depicted by solid, dashed,
and dotted curves, respectively, in Figure 8a,b, are much different from each other and therefore, the
effects of the taper type and modular ratio n on the mode shapes are significant. From these mode
shapes, the positions of nodes and maximum amplitudes of the free vibrations are understood.
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5. Concluding Remarks

This paper presents a unique numerical approach for analyzing the free vibration of AFG cantilever
columns subjected to an axial compressive force. The column is tapered, the cross-sectional shape is
a regular polygon, and the volume of the column is constant. A mathematical model of governing
differential equations for such columns is formulated based on the dynamic equilibrium of the free
body diagram of the column element subjected to the rotatory inertia couple as well as the transverse
inertia force. For numerical experiments, the linear functions of Young’s modulus and mass density
are selected and three kinds of taper functions of the column are chosen: the linear, parabolic, and
sinusoidal taper. The governing equation is numerically integrated by the direct integral method for
computing the mode shape, and the determinant search method enhanced by the Regula-Falsi method
is used to compute the natural frequencies. For verification purposes, the predicted natural frequencies
are compared with those obtained by the general-purpose software ADINA and reference [17]. Effects
of the taper type, side number, modular ratio, taper ratio, and volume ratio on the natural frequencies
and mode shapes are discussed. For further study, free vibration analysis of AFG columns supported
by various end conditions combined with hinged and clamped ends, not considered in this study,
is required.
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