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1 Department of Hydraulics and Environment Protection, Technical University of Civil Engineering
of Bucharest, Bd. Lacul Tei 122-124, 020396 Bucharest, Romania; sorin.perju@utcb.ro

2 Department of Mathematics and Computer Science, Technical University of Civil Engineering of Bucharest,
Bd. Lacul Tei 122-124, 020396 Bucharest, Romania; grozag@utcb.ro (G.G.); marilena.jianu@utcb.ro (M.J.)

3 Department of Mechanical Technology, Technical University of Civil Engineering of Bucharest,
Bd. Lacul Tei 122-124, 020396 Bucharest, Romania; rece@utcb.ro

4 Department of Electrical Engineering, Automation and Informatics, Faculty of Engineering,
Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
marta.harnicarova@uniag.sk (M.H.); jan.valicek@uniag.sk (J.V.)

5 Department of Mechanical Engineering, Faculty of Technology, Institute of Technology and Business in
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Abstract: The study of the combination of chemical kinetics with transport phenomena is the main
step for reactor design. It is possible to deviate from the model behaviour, the cause of which may
be fluid channelling, fluid recirculation, or creation of stagnant regions in the vessel, by using a
dispersion model. In this paper, the known general solution of the dispersion model for closed
vessels is given in a new, straightforward form. In order to improve the classical theoretical solution,
a hybrid of analytical and numerical methods is used. It is based on the general analytic solution
and the least-squares method by fitting the results of a tracer test carried out on the vessel with
the values of the analytic solution. Thus, the accuracy of the estimation for the vessel dispersion
number is increased. The presented method can be used to similar problems modelled by a partial
differential equation and some boundary conditions which are not sufficient to ensure the uniqueness
of the solution.

Keywords: dispersion model; variable separation method; least-squares method; residence time
distribution

1. Introduction

The efficiency of ensuring stable and economically optimal operating regimes for a wastewater
treatment plant requires a mathematical model that describes, using specific tools, the simulation of
the technological processes that occur in its operation. As the main technological object of a treatment
plant is represented by the biological reactor, the modelling of the complex phenomena that happen in
the wastewater flow process, with the help of mathematical models, is a real aid in understanding its
functioning, as well as in optimizing the design and the energy consumption.

The study of the combination of chemical kinetics with transport phenomena is the main step for
reactor design. Inside of a reactor, the flow pattern usually deviates from the ideal cases of plug flow or
mixed flow. This deviation, the cause of which may be fluid channelling, recirculation of fluid, or the
fact that stagnant regions were created in the vessel, can be approached by using a model characterized
by one parameter (e.g., tanks-in-series model or dispersion model) or a model characterized by two
parameters (e.g., reactor with bypassing and dead volume). The parameter(s) of the model is (are)
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evaluated using the residence time distribution (RTD). MacMullin and Weber were the first who came
up with the idea of using the RTD [1]. In the 1950s, Danckwerts proposed the concept of RTD [2],
which has been used by many authors. It is mostly associated with the analysis of the chemical reactor
performance [3–6]. A careful analysis of the RTD theory has been published by Nauman [7], who
introduced new modelling techniques and applications. The concept of RTD has some limitations
mainly for complex systems. In the process simulation of single flow pattern in wastewater treatment,
the main restriction is that the process is running under steady-state conditions during the tracer
experiment [8]. Therefore, some attempts to use this approach in the transient state were made [9–11].
For more than 70 years, this method has been used for process optimization [12–18].

When we introduce a model pulse of tracer into the fluid that enters a vessel, the pulse spreads
while passing through the vessel. If we want to characterize the spreading based on this model,
a diffusion-like process superimposed on plug flow, called dispersion or longitudinal dispersion,
is assumed [4]. This spreading process is represented by the dispersion coefficient D (m2

· s−1). A high
value of D denotes the tracer curve rapid spreading, a low value of D represents slow spreading, and D
= 0 implies that there is no spreading, hence plug flow. Moreover, the vessel dispersion number, which
is a form of the inverse of the Peclet number Pe−1, D/µL where u is the mean (displacement) velocity
and L is the length of the vessel, is the dimensionless group characterizing the spread in the whole
vessel. If back mixing is transferred on a plug flow of a fluid to a certain degree, whose magnitude does
not depend on the position within the vessel, it is called the dispersion model [4]. To solve the problem
of dispersion, minimization is a challenging task. There is an extensive literature on the dispersion
model [19–22]. In fact, the dispersion model is based on the dispersion Equation (1) and two boundary
conditions, Equations (2) and (3). This problem has infinitely many solutions, but by using additional
ideal theoretical conditions, Murphy and Timpany [23] selected an analytic solution described by the
residence time distribution (see Equation (33)). However, in the real cases, some errors may often
appear by comparing the analytic solution, Equation (33), with the results obtained by measurements
(e.g., by so-called tracer test).

In the paper, we introduce a new method for estimating the vessel dispersion number. The outline
of this paper is as follows: In Section 2.1, the general solution of the dispersion model for closed vessels
is obtained by separation of variables to underline the possibility to improve the known solution
obtained by Murphy and Timpany in Reference [23]. Here, a simplified expression of the general
solution and of the residence time distribution E(t) is also obtained. Section 2.2 deals with a new
solution which is achieved by fitting the results of a tracer test carried out on the vessel with the values
of the analytic solution. In Section 2.3, an iterative method to improve the accuracy of the estimation of
the parameter D/µL is presented. In fact, an inverse problem is solved by using the results of a tracer
test and the least-squares method. An illustrative numerical example is given, and the conclusions of
the work are presented in Section 3. The standard tools used for partial differential equations can be
found, for example, in Reference [24].

Finally, the given approach is an excellent example of interdisciplinary mathematics with a direct
impact on the needs of current industrial practice.

2. Dispersion Model and Its Solutions

2.1. Solution of the Dispersion Model for Closed Vessels

The basic differential equation representing the dispersion model is (see Reference [23,25] or
Reference [4]),

D
∂2c
∂x2 − u

∂c
∂x

=
∂c
∂t

, (1)

where c(x, t) is the concentration (wt./unit vol.) at time t and distance x. We have to take two cases into
consideration: boundary conditions for closed vessels and open vessels called Danckwerts boundary
conditions (see Reference [3], p. 883). In closed vessels, no dispersion or radial variation in concentration
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is assumed upstream (closed) nor downstream (closed) of the section where the reaction occurs;
therefore, this is a closed-closed vessel. In open vessels, dispersion occurs both upstream (open)
and downstream (open) of the reaction section; therefore, this is an open-open vessel. In this paper,
we discuss the first case that models all the reactors for which there is no flow or diffusion or up-flow
eddies at the entrance or at the vessel exit (see Reference [4]).

Thus, in the case of a closed vessel, plug flow (no dispersion) can be found to the immediate left
of the entrance and the immediate right of the exit, so that the boundary conditions can be written in
the following form (see Reference [25] or Reference [3], p. 884):

∂c
∂x

(0, t) =
u
D

c(0, t), (2)

∂c
∂x

(L, t) = 0. (3)

In order to find a solution of Equation (1) that verifies the boundary conditions, Equations (2)
and (3) (i.e., to solve the boundary value problem (1)–(3)), the method of separation of variables is
used. Thus, by choosing

c(x, t) = X(x)T(t) (4)

from Equation (1) it follows that

X′′ (x) − u
D X′(x)

X(x)
=

T′(t)
DT(t)

= λ, (5)

where λ is a constant. Hence, the following differential equations are obtained:

T′(t) − λDT(t) = 0 (6)

and
X′′ (x) −

u
D

X′(x) − λX(x) = 0 (7)

The general solution of the differential Equation (6) is

T(t) = α1eλDt, (8)

where α1 is a constant. Since lim
t→∞

c(x, t) = 0, by (8), it follows that λ < 0.

By the Equation (4) and using the boundary conditions, Equations (2) and (3), it follows that

X′(L) = 0 (9)

and
X′(0) =

u
D

X(0) (10)

It is easy to prove that the conditions of Equations (9) and (10) can be fulfilled only in the case

when
(

u
D

)2
+ 4λ < 0. If we denote by

(
u
D

)2
+ 4λ = −4δ2, where δ is a positive number, then the general

solution of the differential Equation (7) is:

X(x) = e
ux
2D (α2 cos δx + α3 sin δx) (11)

where α2 and α3 are constants. Hence, the derivative X′(x), is written:

X′(x) = e
ux
2D ·

u
2D

(α2 cos δx + α3 sin δx) + e
ux
2D · δ(−α2 sin δx + α3 cos δx) (12)
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Consequently, from (9)–(12), the following system is obtained:
(

u
D cos δL− 2δ sin δL

)
α2 +

(
u
D sin δL + 2δ cos δL

)
α3 = 0

u
Dα2 − 2δα3 = 0

(13)

From the last equation of the system, Equation (13), it follows that

α2 =
2Dδ

u
α3 (14)

and, by replacing in the first one, we get:(
2δ cos δL−

4δ2D
u

sin δL +
u
D

sin δL + 2δ cos δL
)
α3 = 0 (15)

Thus, in order to obtain nonzero solutions of the system, Equation (13), the following condition
must be verified: (2u

D
+ 4

λD
u

)
sin δL + 4δ cos δL = 0. (16)

This condition may be written in the following form:

cot δL = −
u
D + 2λD

u√
−

u2

D2 − 4λ
. (17)

By denoting

µ =
L
2

√
−

u2

D2 − 4λ (18)

Equation (17) becomes

cotµ =
1
2

(
2Dµ
uL
−

uL
2Dµ

)
. (19)

This can be written in a simplified form if we denote by U = Lu
2D ,

cotµ =
1
2

(
µ

U
−

U
µ

)
. (20)

As can be noticed in Figure 1, Equation (20) has an infinity of solutions µ1, µ2, . . . , µn, . . . which
are the abscissas of the intersection points between the graphs of the functions f1(µ) = cotµ and
f2(µ) = 1

2

( µ
U −

U
µ

)
, where µ ∈ R\{kπ : k ∈ Z}. As a matter of fact, there is exactly one solution µk on

each interval ((k− 1)π, kπ), k ∈ Z.
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Figure 1. The solutions of Equation (20). 
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Now, by Equations (14) and (18), it follows that

α2 =
2µnD

uL
α3 =

µn

U
α3, (21)

and, by Equation (9), we obtain

Xn(x) = e
ux
2D

(
2µnD

uL
cos

µnx
L

+ sin
µnx

L

)
α3 (22)

or, equivalently,

Xn(x) =
2D
uL

e
ux
2D

(
µn cos

µnx
L

+
uL
2D

sin
µnx

L

)
α3. (23)

From Equations (4), (8) and (23), the following solutions of the boundary problem, Equations
(1)–(3), are obtained:

cn(x, t) = γne
ux
2D−(

u2

4D2 +
µ2

n
L2 )Dt

(
µn cos

µnx
L

+
uL
2D

sin
µnx

L

)
, (24)

where γn, with n = 1, 2, . . ., are constants. By denoting

k2
n =

u2

4D
+
µ2

nD
L2 , (25)

Equation (24) becomes

cn(x, t) = γne
ux
2D−k2

nt
(
µn cos

µnx
L

+
uL
2D

sin
µnx

L

)
. (26)

Hence, every finite sum or a suitable infinite series whose terms have the form, Equation (26), is a
solution of the boundary value problem, Equations (1)–(3). Thus, the general solution is

c(x, t) =
m∑

n=1

γne
ux
2D−k2

nt
(
µn cos

µnx
L

+
uL
2D

sin
µnx

L

)
, (27)
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where m is either a positive integer or m = +∞. In the second case, also discussed in Reference [23],
the constants γn are small enough such that the series and its partial derivatives converge uniformly
on [0, L] × [0,+∞).

Let t be the mean residence time, which can be written (for a closed system) as t = L
u . Since

L
u

k2
n =

L
u

(
u2

4D
+
µ2

nD
L2

)
=

U
2
+
µ2

n

2U
(28)

Equation (27) can be written in the equivalent form:

c(L, t/t) =
m∑

n=1

γneU−
U2+µ2

n
2U ·

t
t (U sinµn + µn cosµn). (29)

By choosing γn = βnC, where

βn :=
2µn

U2 + 2U + µ2
n

, (30)

T =
t
t
, and (31)

C =

∞∫
0

c(L, T)dT (32)

It follows Equation (10) from Reference [23] expressing the (normalized) residence time distribution
E(T):

E(T) = c(L, T)/C = 2
∞∑

n=1

µn(U sinµn + µn cosµn)

U2 + 2U + µ2
n

eU−
U2+µ2

n
2U ·T (33)

By taking into account that, for n = 1, 2, . . ., µn is the unique solution of Equation (20) on the
interval ((n− 1)π, nπ),, we obtain that

sinµn := (−1)n−1 2Uµn

µ2
n + U2

, cosµn := (−1)n−1 µ
2
n −U2

µ2
n + U2

. (34)

It follows that
U sinµn + µn cosµn = (−1)n−1µn (35)

Hence, we obtain a new, simplified expression for the general solution c(L, T) and for the
(normalized) residence time distribution E(T). Equations (29) and (33) can be written in the
following form:

c(L, T) =
m∑

n=1

(−1)n−1γnµneU−
U2+µ2

n
2U ·T (36)

and, respectively,

E(T) = 2
∞∑

n=1

(−1)n−1µ2
n

U2 + 2U + µ2
n

eU−
U2+µ2

n
2U ·T (37)

2.2. An Improved Solution for the Boundary Value Problem (1)–(3)

In this subsection, we aim to find a solution of the boundary value problem, Equations (1)–(3),
more accurate than Equation (36). Consider a sequence of r pairs of real values for (T, c(L, Ti)):

(T1, c1), (T2, c2), . . . , (Tr, cr) (38)
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where c(L, T) is the function defined by Equation (36), γn are adjustable parameters, and m is a suitable
positive integer. The values of γ1,γ2, . . . ,γm will be obtained by fitting the pairs (38) with (Ti, c(L, Ti)).
Thus, a new solution c(x, t) will be found by considering

c(L, T) =
m∑

n=1

(−1)n−1γnµneU−
U2+µ2

n
2U ·T (39)

As usual in the least-squares method [26], the quantity

χ2 =
r∑

i=1

(c(L, Ti) − ci)
2 (40)

must be minimized. Therefore, by using Equation (39), the partial derivatives of the function

χ2(γ1,γ2, . . . ,γm) =
r∑

i=1

 m∑
n=1

(−1)n−1γnµneU−
U2+µ2

n
2U ·Ti − ci

2

(41)

with respect to γ1, . . . ,γm, vanish. Since

∂χ2

∂γ j
= 2

r∑
i=1


 m∑

n=1

γn(−1)n−1µneU−
U2+µ2

n
2U ·Ti − ci

(−1) j−1µ jeU−
U2+µ2

j
2U ·Ti

, j = 1, 2, . . . , m, (42)

the following system of equations is obtained:

m∑
n=1

(−1)n−1µn

 r∑
i=1

eU−
2U2+µ2

n+µ
2
j

2U ·Ti

 γn =
r∑

i=1

cie−
U2+µ2

j
2U ·Ti , (43)

where j = 1, 2, . . . , m. By solving the system, Equation (43), the constants γ1, . . . ,γm are obtained and
then, by replacing in Equation (39), the solution c(L, T) is determined.

2.3. A New Iterative Method for Estimating the Vessel Dispersion Number D/uL

In the case of a closed vessel, the following equation holds as in Reference [3,9,27], or Reference [4],
p. 300:

σ2
t

t
2 = 2

D
uL
− 2

( D
uL

)2(
1− exp

(
−

uL
D

))
, (44)

where σ2
t is the variance. Hence, it follows an estimation of the parameter D/uL. In this section we

present a new iterative method to increase the accuracy of this estimation. An initial value
(

D
uL

)
0
,

determined by Equation (44) using the sequence in Equation (38), is considered. Let m be a fixed
positive number less than r. Then, by the system in Equation (43), the values γ(0)1 , . . . ,γ(0)m are obtained,
and by replacing in Equation (39), the solution c0(L, T) is obtained. The main idea is to find a value of(

D
uL

)
∗

such that the corresponding solution c∗(L, T) provides the minimum value for the function

Erc

( D
uL

)
=

r∑
i=1

(c(L, Ti) − ci)
2. (45)

Since the expression of this function obtained by Equations (39) and (43) is complicated enough to
find

(
D
uL

)
∗

by analytic methods, a suitable positive small real number h is considered. Then,
(

D
uL

)
1

is
chosen to be that number from the set{( D

uL

)
0
− h,

( D
uL

)
0
,
( D

uL

)
0
+ h

}
(46)
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for which the function ErC

(
D
uL

)
has the minimum value. If

(
D
uL

)
1
=

(
D
uL

)
0
, then

(
D
uL

)
∗

can be approximated

by
(

D
uL

)
0
. In the case when

(
D
uL

)
1
=

(
D
uL

)
0
− h, the following sequences of values is considered:( D

uL

)
s
=

( D
uL

)
0
− sh,s = 2, 3, . . . (47)

Then,
(

D
uL

)
∗

is approximated by the first term
(

D
uL

)
s
, for which

ErC

( D
uL

)
s+1

> ErC

( D
uL

)
s

(48)

Similarly, if
(

D
uL

)
1
=

(
D
uL

)
0
+ h, then

(
D
uL

)
∗

is approximated by the first term
(

D
uL

)
s
=

(
D
uL

)
0
+ sh

such that
ErC

(( D
uL

)
0
+ (s + 1)h

)
> ErC

(( D
uL

)
0
+ sh

)
. (49)

3. Results and Discussion

A first-order reaction takes place in a tubular reactor 6.36 m in length with a diameter of 10 cm
(see Reference [3], (p. 889)). The value of the specific reaction rate is 0.25 min−1. Table 1 shows the
results of a tracer test performed on this reactor.

Table 1. The results of a tracer test carried out on this reactor.

ti (min) 0 1 2 3 4 5 6 7 8 9 10 12 14

ci (mg/L) 0 1 5 8 10 8 6 4 3 2.2 1.5 0.6 0

By considering a dispersion model of a closed vessel, a comparison between the known analytic
method and the new iterative method is given.

In this case r = 13 and by Equation (44) it follows that D/uL = 1/7.5 ≈ 0.13, and U = 3.75. Since

t =

13∑
i=2

tici(ti+1−ti)

13∑
i=2

ci(ti+1−ti)

= 5.0541 (see Reference [4], p. 294), we obtain for Ti the values listed in Table 2.

Table 2. The values of Ti, i = 1,2, . . . ,13.

i 1 2 3 4 5 6 7 8 9 10 11 12 13

Ti 0 0.1979 0.3957 0.5936 0.7914 0.9893 1.1871 1.3850 1.5829 1.7807 1.9786 2.3743 2.77

Then, for m = 4, by Equations (20), (30) and (43), we obtain for µi, βi and γi, i = 1, . . . , 4 the values
given in Table 3.

Table 3. The values for µi, βi, and γi, i = 1, . . . , 4.

i µi βi γi

1 2.114669 0.162452 1.468256
2 4.525511 0.215281 1.848822
3 7.239104 0.195738 1.350646
4 10.133634 0.163113 0.445602

The coefficients γi, i = 1, . . . , 4 from Table 3 are used in Equation (39) to obtain the solution
c(L, T). The constant C is calculated by using c(L, T) in Equation (32). The value obtained is C = 9.2099.
New coefficients γn are calculated afterwards, by the formula γn = Cβn. By replacing them in
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Equation (33), the function c(L, T) = C · E(T) is obtained. By comparing (using Equation (45)) the

errors obtained for each solution we get that Erc(0.13) =
13∑

i=1
(c(L, Ti) − ci)

2 = 33.9486 and Erc(0.13) =

13∑
i=1

(c(L, Ti) − ci)
2 = 4.4090. Hence, the new solution c(L, T) leads to a better accuracy than c(L, T).

In order to improve the accuracy of the new theoretical model, the initial value
(

D
uL

)
0
= 0.13 is considered.

By choosing h = 0.01, and
(

D
uL

)
−h

= 0.12,
(

D
uL

)
+h

= 0.14, and using the method from Section 2.2,
the corresponding solutions c−h(L, T) and c+h(L, T) are determined. Then, Erc−h

(0.12) = 5.5915 and

Erc+h
(0.14) = 3.9981 are obtained. Hence, we consider

(
D
uL

)
1
= 0.14,

(
D
uL

)
2
= 0.15,

(
D
uL

)
3
= 0.16, . . . .

and calculate the values of the error function for each case. These values are given in Table 4.

Table 4. The values of the error function.

i 0 1 2 3 4 5 6 7 8(
D
uL

)
i

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21

Erci

((
D
uL

)
i

)
4.4090 3.9981 3.5411 3.2279 3.0203 2.8912 2.8213 2.7965 2.8061

The minimum error is obtained for
(

D
uL

)
∗
≈

(
D
uL

)
7
= 0.20. In this case Erc7(0.20) = 9.5359 and the

graphs of c7(L, T) and c7(L, T) are represented in Figure 2.
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4. Conclusions

Thus, by this new method, the solution given by Murphy and Timpany [23] can be improved by
matching the results of a tracer test performed on the vessel with the values of the analytic solution.
Moreover, as a solution of an inverse problem, by an iterative method, the accuracy of the estimation
of the vessel dispersion number increased. The presented method can be used to similar problems
modelled by a partial differential equation when the known boundary conditions are not sufficient to
ensure the uniqueness of the solution.
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