
mathematics

Article

Output-Space Branch-and-Bound Reduction Algorithm
for a Class of Linear Multiplicative Programs

Bo Zhang 1, Yuelin Gao 2,3,* , Xia Liu 1 and Xiaoli Huang 2,3

1 School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China; zbsdx121@163.com (B.Z.);
lingxiaoyu911@163.com (X.L.)

2 Ningxia Province Cooperative Innovation Center of Scientific Computing and Intelligent Information Processing,
North Minzu University, Yinchuan 750021, China; hxl1569501@163.com

3 Ningxia Province Key Laboratory of Intelligent Information and Data Processing, North Minzu University,
Yinchuan 750021, China

* Correspondence: gaoyuelin@nmu.edu.cn; Tel.: +86-139-9510-0900

Received: 17 November 2019; Accepted: 24 February 2020; Published: 1 March 2020
����������
�������

Abstract: In this paper, a new relaxation bounding method is proposed for a class of linear multiplicative
programs. Although the 2p − 1 variable is introduced in the construction of equivalence problem,
the branch process of the algorithm is only carried out in p−dimensional space. In addition,
a super-rectangular reduction technique is also given to greatly improve the convergence rate.
Furthermore, we construct an output-space branch-and-bound reduction algorithm based on solving a
series of linear programming sub-problems, and prove the convergence and computational complexity of
the algorithm. Finally, to verify the feasibility and effectiveness of the algorithm, we carried out a series
of numerical experiments and analyzed the advantages and disadvantages of the algorithm by numerical
results.

Keywords: global optimization; linear multiplicative programming; branch-and-bound; output-space;
linear relaxation

1. Introduction

In this study, we consider the following linear multiplicative programs (LMP):

(LMP) := min f (x) =
p

∏
j=1

(cT
j x + dj) s.t. Ax ≤ b.

where the feasible domain X = {x ∈ Rn|Ax ≤ b} is n-dimensional, nonempty, and bounded; p ≥ 2,
A ∈ Rm×n, b ∈ Rm, cj ∈ Rn, dj ∈ R, and cT

j x + dj > 0.
The linear multiplicative program problem comes from many application areas, for example,

financial optimization [1,2], microeconomics [3], robust optimization [4], decision tree optimization [5],
multiple-objective decision [6,7], VLSI chip design [8], optimal packing and layout [9], and control
problems [10–14]. It is well known that the (LMP) problem does not contain some common properties
(convexity or other properties), which is an important challenge and test for solving this kind of problems.
In addition, we also note that the (LMP) problem is closely related to the linear maximum multiplicative
programming problem (see [14–16]). Specifically, the linear maximum multiplicative programming
problem can be obtained by changing the min in the objective function of the (LMP) problem to max. Some

Mathematics 2020, 8, 315; doi:10.3390/math8030315 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-2021-2097
http://dx.doi.org/10.3390/math8030315
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/3/315?type=check_update&version=2

Mathematics 2020, 8, 315 2 of 34

scholars have shown that the (LMP) problem is NP-hard [17], but the linear maximum multiplicative
programming problem can be solved in polynomial time. In [18], Kuno pointed out that, without limiting
the positive nature of each product term in the objective function, multiplying the negative product
term by the negative sign “−” while considering the parity of p, the original problem can eventually
be classified into two categories, namely the (LMP) problem and the linear maximum multiplication
programming problem. Therefore, without loss of generality, as in [18], we investigate the (LMP) problem
under the positive assumption of each linear product term. It is stated in advance that the method we
mention can be generalized and applied to the maximization formal programming problem of such
problems.

Over the past 20 years, some practical algorithms have been developed to solve this (LMP) problem,
and, with the increasing reliance on modeling and optimization in real-world problems, great progress
has been made in both local and global optimization theories and algorithms. Compared with the local
optimization method, the global optimization methods for solving the (LMP) problem are still very few,
but the previous scholars have also done a series of research on the global optimization method for (LMP)
problem. The methods can be classified as branch-and-bound methods [18–26], outer-approximation
methods [27,28], vertex enumeration methods [29], heuristic methods [30,31], an outcome-space cutting
plane method [32], parameterization based methods [33–35], and level set algorithm [36,37]. Shao and
Ehrgott also proposed a class of global optimization algorithms for solving the (LMP) problem by using
multi-objective linear programming and primitive dual conditions [38]. However, despite this progress,
solving the (LMP) globally is still a thorny problem. In view of (LMP) and its variation, several global
solutions are proposed. For example, Jiao [22] establishes a reliable and efficient algorithm for a class
of generalized linear multiplicative programming by using the linear approximation of exponential and
logarithmic functions. Shen [24] proposed a new accelerating method for solving generalized linear
multiplicative programming by combining the appropriate deletion technique with the branch-and-bound
scheme. To solve the linear multiplicative programming problem with exponential form, Liu and Zhao [37]
proposed a level set algorithm based on the research of Youness [36], while Shen et al. [39] proposed a
complete polynomial time approximation algorithm. For linear programs with multiplicative constraints,
Benson [40] proposed a branch-and-bound algorithm based on decomposition.

Aiming at the (LMP) problem, this paper proposes a branch-and-bound algorithm based on the
rectangular branch of the output space. First, for this purpose, an equivalent optimization problem (EP) of
the problem (LMP) is proposed. Secondly, the approximation theorem of binary bilinear functions is given
and a relaxation subproblem of the problem (EP) is constructed. Finally, a branch-and-bound algorithm
based on output space is designed for (EP) problem. Compared with the methods in the above literature,
the proposed method has the following characteristics:

(a) Our relaxation method is easy to operate and can be extended to some more generalized
optimization problems, especially for the linear maximum multiplicative programming problem, which
can be directly generalized.

(b) The branch operation of the branch-and-bound algorithm proposed by us acts on the p-dimensional
output space, which greatly reduces the running cost of the computer.

(c) We also propose a new hyper-rectangular compression and reduction technique, which greatly
improves the convergence rate of the algorithm, and then analyzes the computational complexity of
the algorithm.

(d) To better illustrate the effectiveness of the proposed algorithm, we performed many numerical
experiments, and compared with the relevant references to illustrate the characteristics of the algorithm.

The remainder of this article is outlined as follows. Section 2 first gives the equivalent problem (EP)
of (LMP) as well as the algorithm framework, and then analyzes the problem (EP) and gives the required
bounding operation, Branching operation and rectangle-reducing operation of the algorithm, respectively,

Mathematics 2020, 8, 315 3 of 34

and finally gives the specific steps of the algorithm. In Section 3, the algorithm is analyzed, and it is shown
that the algorithm can be terminated within finite iterations. In Section 4, some numerical experiments
are presented and the characteristics of our algorithm are analyzed. Finally, the method of this paper is
briefly reviewed.

2. Output-Space Branch-and-Bound Reduction Algorithm for (LMP)

2.1. Convert (LMP) into an Equivalent Problem (EP)

In this subsection, we show how to convert the problem (LMP) into a non-convex programming
problem (EP), and introduce (2p− 1)-dimension vector y to obtain the initial hyper-rectangle Y0.

First, the new variable yj = cT
j x + dj(j = 1, 2, · · · , p) is introduced for the item ∏

p
j=1(c

T
j x + dj) in the

objective function of the problem (LMP), and then there is the formula

p

∏
j=1

(cT
j x + dj) =

p

∏
j=1

yj.

Let yp+s = yp+s−1yp−s, s = 1, 2, · · · , p− 1 satisfy

y2p−1 = y2p−2y1 = y2p−3y2y1 = · · · =
p

∏
j=1

yj. (1)

by taking advantage of the internal structure of ∏
p
j=1 yj. Thus, the (2p − 1)-dimensional variable y is

established, that is, y = (y1, y2, · · · , yp, yp+1, yp+2, · · · , y2p−1)
T .

Secondly, two different operations are used to construct an initial hyper-rectangle Y0 of variable
y in two stages. In the first stage, we construct the hyper-rectangle Ŷ0, and, in the second stage,
the hyper-rectangle Ỹ0 is also constructed, thus the hyper-rectangle Y0 can be represented as Y0 = Ŷ0× Ỹ0.
To obtain Ŷ0, let

y0
j
= min

x∈X
cT

j x + dj, y0
j = max

x∈X
cT

j x + dj, j = 1, 2, · · · , p, (2)

and Ŷ0 = [ŷ0, ŷ0
], ŷ0 = (y0

1
, y0

2
, · · · , y0

p
)T , ŷ0

= (y0
1, y0

2, · · · , y0
p)

T . The upper and lower bounds of each

variable yp+s(s = 1, 2, · · · , p− 1) are defined by both ends of the following inequality Equation (3), that is,

0 < y0
p+s

= y0
p+s−1

y0
p−s
≤ yp+s = yp+s−1yp−s ≤ y0

p+s−1y0
p−s = y0

p+s. (3)

Then, the initial hyper-rectangle Ỹ0 of the variable yp+s can be recorded as Ỹ0 = [ỹ0, ỹ0
] with ỹ0 =

(y0
p+1

, y0
p+2

, · · · , y0
2p−1

)T , ỹ0
= (y0

p+1, y0
p+2, · · · , y0

2p−1)
T . The initial hyper-rectangle Y0 for the variable y

can be represented as

Y0 = Ŷ0 × Ỹ0 =
p

∏
j=1

[y0
j
, y0

j]×
p−1

∏
s=1

[y0
p+s

, y0
p+s] =

2p−1

∏
j=1

[y0
j
, y0

j]

Mathematics 2020, 8, 315 4 of 34

by using the representation of the Cartesian product. Of course, for each sub-rectangular Yk ⊆ Y0, we also
define

0 < yk
p+s

= yk
p+s−1

yk
p−s
≤ yp+s = yp+s−1yp−s ≤ yk

p+s−1yk
p−s = yk

p+s, (4)

and

Yk = Ŷk × Ỹk =
p

∏
j=1

[yk
j
, yk

j]×
p−1

∏
s=1

[yk
p+s

, yk
p+s] =

2p−1

∏
j=1

[yk
j
, yk

j].

Finally, through the above content, we naturally establish the problem (LMP) in the following form of
the equivalent optimization problem (EOP), that is,

(EOP) := min y2p−1, s.t.

cT

j x + dj = yj, j = 1, 2, · · · , p,
yp+s = yp+s−1yp−s, s = 1, 2, · · · , p− 1,

x ∈ X, y ∈ Y0.

In particular, it is observed that (EOP) has n + 2p − 1 variables. We define the function h(x, y) =

CT(xT , yT)T = y2p−1 with C = (0, 0, · · · , 0, 1)T ∈ Rn+2p−1, and then (EOP) can be rewritten as the
equivalent problem (EP):

(EP) := min h(x, y) = CT(xT , yT)T , s.t.

cT

j x + dj = yj, j = 1, 2, · · · , p,
yp+s = yp+s−1yp−s, s = 1, 2, · · · , p− 1,

x ∈ X, y ∈ Y0.

Theorem 1. If x∗ is the globally optimal solution of the problem (LMP), if and only if (x∗, y∗) is the globally
optimal solution of the problem (EP), the equations y∗j = cT

j x∗ + dj, j = 1, 2, · · · , p and y∗p+s = y∗p+s−1y∗p−s,
s = 1, 2, · · · , p− 1 are also established.

Proof of Theorem 1. If x∗ is a globally optimal solution for problem (LMP), we have y
j
≤ y∗j = cT

j x∗ +

dj ≤ yj and y∗p+s = y∗p+s−1y∗p−s, j = 1, 2, · · · , p, s = 1, 2, · · · , p− 1. Then, (x∗, y∗) is the feasible solution
of (EP), and there is also the corresponding objective function value, that is,

h(x∗, y∗) = y∗2p−1 =
p

∏
j=1

y∗j =
p

∏
j=1

cT
j x∗ + dj = f (x∗).

Let (x, y) be any feasible solution of the problem (EP), and naturally there is the equation

yj = cT
j x + dj, j = 1, 2, · · · , p,

yp+s = yp+s−1yp−s, s = 1, 2, · · · , p− 1,

which also means

f (x) =
p

∏
j=1

cT
j x + dj =

p

∏
j=1

yj = y2p−1 = h(x, y).

Mathematics 2020, 8, 315 5 of 34

By using the optimal property of x∗,

y∗2p−1 = h(x∗, y∗) ≤ h(x, y) = y2p−1.

must be valid. Therefore, with x∗ ∈ X and y∗ ∈ Y, a globally optimal solution of problem (EP) can be
obtained, that is, (x∗, y∗).

On the other hand, we assume that (x∗, y∗) is a globally optimal solution of the (EP) problem, then

y∗j = cT
j x∗ + dj, j = 1, 2, · · · , p,

y∗p+s = y∗p+s−1y∗p−s, s = 1, 2, · · · , p− 1.

and

h(x∗, y∗) = y∗2p−1 =
p

∏
j=1

y∗j =
p

∏
j=1

cT
j x∗ + dj = f (x∗).

must also hold. For the problem (LMP) arbitrary feasible solution x, if

yj = cT
j x + dj, j = 1, 2, · · · , p,

yp+s = yp+s−1yp−s, s = 1, 2, · · · , p− 1,

then (x, y) is a feasible solution of the (EP) problem and the objective function value is h(x, y).
Through the optimality of (x∗, y∗) and the feasibility of x, there is

h(x) =
p

∏
j=1

cT
j x + dj = y2p−1 ≥ y∗2p−1 = h(x∗, y∗) = f (x∗).

According to the above inequality, we can obtain that x∗ is a globally optimal solution of the problem
(LMP). The conclusion is completely proved.

Combined with (1), we can notice that the objective function of the problem (EP) has such a property,
that is, h(x, y) = CT(xT , yT)T = y2p−1 = y2p−2y1 = · · · = ∏

p
j=1 yj = ∏

p
j=1(c

T
j x + dj) = f (x). The above

property ensures that h(x, y) in the following sections can be replaced by f (x), that is, h(x, y) = f (x).
Although the constraint yp+s = yp+s−1yp−s, s = 1, 2, · · · , p − 1 of (EP) is still nonlinear, we can

also solve the problem (EP) with a branch-and-bound algorithm based on rectangular subdivisions
of the set Y0 = Ŷ0 × Ỹ0. Let Ξ = {Yk : k = 1, 2, · · · , K} denote a rectangular partition of Y0, i.e.,

Yk = Ŷk × Ỹk = ∏
p
j=1[y

k
j
, yk

j]×∏
p−1
s=1 [y

k
p+s

, yk
p+s],

K⋃
k=1

Yk = Y0, intYk ∩ intYz = ∅if k 6= z. In the process

of subdivision of rectangular Yk ∈ Y0, we must point out that the rectangle Ŷk of the first part of Yk is
subdivided by the standard dichotomous method, and then Ỹk of the second half is compressed directly.
This compression method is described in detail below. Our rectangular branch-and-bound algorithm
systematically reduces the rectangular region containing y∗ by repeating seven basic steps.

Output-Space Branch-and-Bound Reduction Procedure

Step 0. (Initialization) Set the tolerance ε > 0. The initial upper bound UB0, lower bound LB0, best
solution x∗, and (x∗, y∗) are obtained by solving the initial lower bound subproblem over Y0.
Step 1. (Termination criteria) If UBk − LBk ≤ ε or Ξ = ∅, then the algorithm is terminated, and the
ε-globally optimal solution (x∗, y∗) and the ε-globally optimal value h(x∗, y∗) of the (EP) problem are

Mathematics 2020, 8, 315 6 of 34

output immediately, and the ε-globally optimal solution x∗ and the ε-globally optimal value f (x∗) =

h(x∗, y∗) of (LMP) are also output immediately. Otherwise, go to Step 2.
Step 2. Select an appropriate Yk from Ξ and set Ξ = Ξ\Yk, Yk satisfies LBk < UBk − ε and (x∗, y∗) is the
best feasible solution thus far.
Step 3. (Branching operation) Divide Yk into two rectangles Yk1 and Yk2.
Step 4. (rectangle − reducing operation) Using the rectangle-reduction technique, the two rectangles
generated by Step 3 are refined separately, and the index set of the remaining rectangle after the reduction
is represented by Γ, obviously |Γ| ≤ 2.
Step 5. (Bounding operation) Compute the lower bound LB(Yki)(i = Γ) on the minimum value of h over
Yki ∩ {y ∈ Rn+2p−1 : yj = cT

j x + dj, yp+s = yp+s−1yp−s, j = 1, 2, · · · , p, s = 1, 2, · · · , p − 1, x ∈ X}. If

LB(Yki) < UBk − ε with UBk = h(x∗, y∗) = f (x∗), put Yki into Ξ, i.e., Ξ = Ξ ∪Yki.
Step 6. (Updating the upper and lower bound) The new feasible solution is used to update the upper bound.
Thus far, the least optimal value of all known sub-problems is chosen as the new lower bound.

Obviously, Step 5 is the key to improve the efficiency of the algorithm. In the next subsection, we give
a linear relaxation-subproblem of the problem (EP) to provide an efficient lower bound for the optimal
value.

2.2. Novel Linear Relaxation Approach

An important operation of the branch-and-bound procedure for solving (EP) is to establish and solve
a series of lower bound relaxer problems of (EP) on Yk ∈ Ξ = {Yk : k = 1, 2, · · · , K}. We then define the
associated sub-problems of (EP) as follows:

(EPk) := min h(x, y) = CT(xT , yT)T , s.t.

cT

j x + dj = yj, j = 1, 2, · · · , p,
yp+s = yp+s−1yp−s, s = 1, 2, · · · , p− 1,

x ∈ X, y ∈ Yk.

The main idea of our relaxation method is to linearize the nonlinear constraint of (EPk) and finally
obtain its linear lower bound relaxation problem. Next, we give Theorem 2, which is associated with the
proposed linearization-method.

Theorem 2. Let Ω = {(z, w) ∈ R2| −∞ ≤ z ≤ z ≤ z ≤ ∞,−∞ ≤ w ≤ w ≤ w ≤ ∞}. For any δ > 0, define:

ϕ(z) = z2, ϕu(z) = (z + z)z− zz, ϕl(z) = (z + z)z− (z + z)2

4
,

∆(z) = ϕ(z)− ϕl(z),∇(z) = ϕu(z)− ϕ(z), ψ(z, w) = zw,

ψl(z, w) =
1
2
[(w + w)z + (z + z)w +

(z− δw)(z− δw)

2δ
− (z + z + δ(w + w))2

8δ
],

ψu(z, w) =
1
2
[(w + w)z + (z + z)w +

(z + z− δ(w + w))2

8δ
− (z + δw)(z + δw)

2δ
],

∆(z, w) = ψ(z, w)− ψl(z, w),∇(z, w) = ψu(z, w)− ψ(z, w).

Then, the following conclusion holds:
(a) ϕl(z) ≤ ϕ(z) ≤ ϕu(z);
(b) ψl(z, w) ≤ ψ(z, w) ≤ ψu(z, w); and
(c) ∆(z)→ 0, ∇(z)→ 0, ∆(z, w)→ 0, ∇(z, w)→ 0, as z− z→ 0, w− w→ 0.

Mathematics 2020, 8, 315 7 of 34

Proof of Theorem 2. (a) Through the linear underestimation and overestimation functions defined by the
single variable quadratic function ϕ(z) = z2 over the interval [z, z], we have

ϕu(z) = (z + z)z− zz ≥ ϕ(z) ≥ ϕl(z) = (z + z)z− (z + z)2

4
, (5)

which is ϕl(y) ≤ ϕ(y) ≤ ϕu(y).
(b) Define

ϕ(z + δw) = (z + δw)2, ϕ(z− δw) = (z− δw)2,

ϕl(z + δw) = [z + z + δ(w + w)](z + δw)− (z + z + δ(w + w))2

4
,

ϕu(z + δw) = [z + z + δ(w + w)](z + δw)− (z + δw)(z + δw),

ϕl(z− δw) = [z + z− δ(w + w)](z− δw)− (z + z− δ(w + w))2

4
,

ϕu(z− δw) = [z + z− δ(w + w)](z− δw)− (z− δw)(z− δw),

Suppose that z + δw and z− δw are univariate, ϕ(z + δw) = (z + δw)2 and ϕ(z− δw) = (z− δw)2 are
convex functions of variables z + δw and z− δw defined on interval [z + δw, z + δw] and [z− δw, z− δw],
respectively. Then, using inequality (5), we have

ϕl(z + δw) ≤ ϕ(z + δw) ≤ ϕu(z + δw), (6)

and

ϕl(z− δw) ≤ ϕ(z− δw) ≤ ϕu(z− δw). (7)

By (5)–(7), we can find that

ψ(z, w) =
1
4δ

[(z + δw)2 − (z− δw)2] =
1
4δ

[ϕ(z + δw)− ϕ(z− δw)],

≥ 1
4δ

[(z + δw + z + δw)(z + δw)− (z + δw + z + δw)2

4
−

((z− δw + z− δw)(z− δw)− (z− δw)(z− δw))],

=
1
4δ

[ϕl(z + δw)− ϕu(z− δw)],

=
1
2
[(w + w)z + (z + z)w +

(z− δw)(z− δw)

2δ
− (z + z + δ(w + w))2

8δ
],

= ψl(z, w),

Mathematics 2020, 8, 315 8 of 34

and
ψ(z, w) =

1
4δ

[(z + δw)2 − (z− δw)2] =
1
4δ

[ϕ(z + δw)− ϕ(z− δw)],

≤ 1
4δ

[(z + δw + z + δw)(z + δw)− (z + δw)(z + δw)−

((z− δw + z− δw)(z− δw)− (z− δw + z− δw)2

4
)],

=
1
4δ

[ϕu(z + δw)− ϕl(z− δw)],

=
1
2
[(w + w)z + (z + z)w +

(z + z− δ(w + w))2

8δ
− (z + δw)(z + δw)

2δ
],

= ψu(z, w).

Therefore, we have ψl(z, w) ≤ ψ(z, w) ≤ ψu(z, w).

(c) Since function ∆(z) = ϕ(z) − ϕl(z) = z2 − (z + z)z + (z+z)2

4 is a convex function defined by
variable z over the interval [z, z], the maximum value of function ∆(z) can reach at the point z or z, that is,

0 ≤ ∆(z) = ϕ(z)− ϕl(z) ≤ (z− z)2

4
= max

z∈[z,z]
∆(z). (8)

Similarly,

0 ≤ ∇(z) = ϕu(z)− ϕ(z) ≤ (z− z)2

4
= max

z∈[z,z]
∇(z). (9)

By using (8) and (9), we have max
z∈[z,z]

∆(z) = max
z∈[z,z]

∇(z) → 0, with z− z → 0, and of course, ∆(z) →

0,∇(z)→ 0, with z− z→ 0.
Now, let us define

∆(z + δw) = ϕ(z + δw)− ϕl(z + δw),∇(z + δw) = ϕu(z + δw)− ϕ(z + δw),

∆(z− δw) = ϕ(z− δw)− ϕl(z− δw),∇(z− δw) = ϕu(z− δw)− ϕ(z− δw).

Through Equation (8) and the definition of functions ϕ(z + δw), ϕl(z + δw), ϕu(z− δw), and ϕ(z−
δw), we can draw the following conclusion:

∆(z, w) = ψ(z, w)− ψl(z, w),

=
1
4δ

[(ϕ(z + δw)− ϕl(z + δw)) + (ϕu(z− δw)− ϕ(z− δw))],

=
1
4δ

[∆(z + δw) +∇(z− δw)],

≤ 1
4δ

[max
z+δw∈[z+δw,z+δw]

∆(z + δw) + max
z−δw∈[z+δw,z+δw]

∇(z− δw)],

=
(z− z + δ(w− w))2

8δ
= max

z∈[z,z],w∈[w,w]
∆(z, w).

(10)

Mathematics 2020, 8, 315 9 of 34

Similarly, through Equation (9) and the definition of functions ϕ(z + δw), ϕu(z + δw), ϕl(z− δw),
and ϕ(z− δw), we also have

∇(z, w) =
1
4δ

[∇(z + δw) + ∆(z− δw)] ≤ (z− z + δ(w− w))2

8δ
= max

z∈[z,z],w∈[w,w]
∇(z, w). (11)

Then, by using (10) and (11), we have max
z∈[z,z],w∈[w,w]

∆(z, w) = max
z∈[z,z],w∈[w,w]

∇(z, w)→ 0 with z− z→

0,w − w → 0, and, of course, ∆(z, w) → 0, ∇(z, w) → 0 with z − z → 0, w − w → 0. At this point,
the conclusion is proved.

It is noted that at the right most end of inequalities (10) and (11), the size of positive number δ has

an effect on the upper and lower estimates of function ψ(z, w). Let a = z− z, b = w− w, g(δ) = (a+δb)2

8δ ,

obviously a > 0, b > 0. According to the derivative function g′(δ) = δ2b2−a2

8δ2 of g(δ), we can know that,
when g(δ) is defined on the interval (0,+∞), it is a convex function, and it is also easy to know that,
if g(δ) gets the minimum value (z−z)(w−w)

2 , then δ = a
b = z−z

w−w . At this time, max
z∈[z,z],w∈[w,w]

∆(z, w) and

max
z∈[z,z],w∈[w,w]

∆(z, w) take the minimum value (z−z)(w−w)
2 , and the gap between ψ(z, w) and its upper and

lower estimation functions reaches the minimum value range, and the upper and lower estimation values
are more stable.

For any sub-rectangle Yk ⊆ Ξ and each s = 1, 2, · · · , p− 1, there is no loss of generality, with the
following definition:

ψs(yp−s, yp+s−1) = yp−syp+s−1 =
(yp−s + δk

s yp+s−1)
2 − (yp−s − δk

s yp+s−1)
2

4δk
s

, δk
s =

yk
p−s − yk

p−s

yk
p+s−1 − yk

p+s−1

,

ψk
s
(yp−s, yp+s−1) =

1
2
[(yk

p+s−1 + yk
p+s−1

)yp−s + (yk
p−s + yk

p−s
)yp+s−1+

(yk
p−s
− δk

s yk
p+s−1)(y

k
p−s − δk

s yk
p+s−1

)

2δk
s

−
(yk

p−s + yk
p−s

+ δk
s (y

k
p+s−1 + yk

p+s−1
))2

8δk
s

],

ψ
k
s(yp−s, yp+s−1) =

1
2
[(yk

p+s−1 + yk
p+s−1

)yp−s + (yk
p−s + yk

p−s
)yp+s−1+

(yk
p−s + yk

p−s
− δk

s (y
k
p+s−1 + yk

p+s−1
))2

8δk
s

−
(yk

p−s
+ δk

s yk
p+s−1

)(yk
p−s + δk

s yk
p+s−1)

2δk
s

].

Using Theorem 2, for each s = 1, 2, · · · , p− 1, let z = yp−s, w = yp+s−1, the function ψs(yp−s, yp+s−1),

ψk
s
(yp−s, yp+s−1) and ψ

k
s(yp−s, yp+s−1) also satisfies 0 ≤ ψs(yp−s, yp+s−1) − ψk

s
(yp−s, yp+s−1) → 0, 0 ≤

ψ
k
s(yp−s, yp+s−1)− ψs(yp−s, yp+s−1)→ 0, as yk

p−s − yk
p−s
→ 0, yk

p+s−1 − yk
p+s−1

→ 0.

Theorem 3. For any sub-rectangle Yk ⊆ Ξ and y ∈ Yk, let ε = max{yk
j − yk

j
: j = 1, 2, · · · , p}, we have

yp+s − ψk
s
(yp−s, yp+s−1)→ 0, s = 1, 2, · · · , p− 1 as ε→ 0.

Mathematics 2020, 8, 315 10 of 34

Proof of Theorem 3. According to Theorem 2 and the definition of ψk
s
(yp−s, yp+s−1), we easily know that

0 ≤ yp+s − ψk
s
(yp−s, yp+s−1) ≤

(yk
p−s − yk

p−s
+ δk

s (y
k
p+s−1 − yk

p+s−1
))2

8δk
s

=
|yk

p−s − yk
p−s
| · |yk

p+s−1 − yk
p+s−1

|

2
.

(12)

If s = 1, the conclusion is obviously true, thus we only discuss the case of s ∈ {2, 3, · · · , p− 1}. For each
s = 2, 3, · · · , p− 1, we have

|yp+s − yk
p+s
| = |yp−syp+s−1 − yk

p−s
yk

p+s−1
|,

≤ |yp−syp+s−1 − yp−syk
p+s−1

|+ |yp−syk
p+s−1

− yk
p−s

yk
p+s−1

|,

≤ |yp−s| · |yp+s−1 − yk
p+s−1

|+ |yp−s − yk
p−s
| · |yk

p+s−1
|,

≤ |yk
p−s| · |y

k
p+s−1 − yk

p+s−1
|+ |yk

p−s − yk
p−s
| · |yk

p+s−1
|,

≤ |y0
p−s| · |y

k
p+s−1 − yk

p+s−1
|+ |yk

p−s − yk
p−s
| · |y0

p+s−1|,

= |y0
p−s| · |y

k
p+s−1 − yk

p+s−1
|+ |yk

p−s − yk
p−s
| ·

p

∏
j=p−s+1

|y0
j |,

(13)

and

|yk
p+s − yp+s| = |yk

p−syk
p+s−1 − yp−syp+s−1|,

≤ |yk
p−syk

p+s−1 − yk
p−syp+s−1|+ |yk

p−syp+s−1 − yp−syp+s−1|,

≤ |yk
p−s| · |y

k
p+s−1 − yp+s−1|+ |yk

p−s − yp−s| · |yp+s−1|,

≤ |yk
p−s| · |y

k
p+s−1 − yk

p+s−1
|+ |yk

p+s−1| · |y
k
p−s − yk

p−s
|,

≤ |y0
p−s| · |y

k
p+s−1 − yk

p+s−1
|+ |y0

p+s−1| · |y
k
p−s − yk

p−s
|,

= |y0
p−s| · |y

k
p+s−1 − yk

p+s−1
|+ |yk

p−s − yk
p−s
| ·

p

∏
j=p−s+1

|y0
j |.

(14)

Then, by using trigonometric inequalities to combine inequalities (13) and (14), we obtain the following
recurrence formulas:

|yk
p+s − yk

p+s
| ≤ |yk

p+s − yp+s|+ |yp+s − yk
p+s
| ≤ Ns

1 · |yk
p+s−1 − yk

p+s−1
|+ Ns

2 · |yk
p−s − yk

p−s
|, (15)

where

Ns
1 = 2|y0

p−s|, Ns
2 = 2

p

∏
j=p−s+1

|y0
j |, s = 2, 3, · · · , p− 1.

Mathematics 2020, 8, 315 11 of 34

Furthermore, according to Equation (15), it is necessary to have

|yk
p+s − yk

p+s
| ≤ Ns

1 · |yk
p+s−1 − yk

p+s−1
|+ Ns

2 · |yk
p−s − yk

p−s
|,

≤ Ns
1 · [Ns−1

1 · |yk
p+s−2 − yk

p+s−2
|+ Ns−1

2 · |yk
p−s+1 − yk

p−s+1
|] + Ns

2 · |yk
p−s − yk

p−s
|,

≤ · · · ,

≤
s

∏
q=1

Nq
1 · |y

k
p − yk

p
|+

p−1

∑
j=p−s+1

(
s

∏
u=p+1−j

Nu
1 · N

p−j
2) · |yk

j − yk
j
|+ Ns

2 · |yk
p−s − yk

p−s
|,

≤ Ns ·
p

∑
j=p−s

|yk
j − yk

j
|.

(16)

where

Ns = max{
s

∏
q=1

Nq
1 , Ns

2,
s

∏
u=p+1−j

Nu
1 · N

p−j
2 : j = p− s + 1, p− s + 2, · · · , p− 1}.

By combining Equations (12) and (16), we can deduce

yp+s − ψk
s
(yp−s, yp+s−1) ≤

1
2
|yk

p−s − yk
p−s
| · |yk

p+s−1 − yk
p+s−1

|,

≤ 1
2

Ns−1 · |yk
p−s − yk

p−s
| ·

p

∑
j=p−s+1

|yk
j − yk

j
|.

(17)

It can be noted that, in the most right of inequality (17), when s = 2, 3, · · · , p− 1, there is (p− s) ∈
{1, 2, · · · , p− 2}. Because ε→ 0 means yk

j − yk
j
→ 0 for each j = 1, 2, · · · , p, then the right side of inequality

(17) tends to zero, and then yp+s − ψk
s
(yp−s, yp+s−1)→ 0, s = 1, 2, · · · , p− 1. The proof is complete.

Below, by using the above pre-given conclusions, the linear relaxation problem (LRPk) is obtained by
relaxing the nonlinear constraints of the equivalent problem (EPk), which is expressed as follows:

(LRPk) := min f k(x, y) = CT(xT , yT)T , s.t.

cT

j x + dj = yj, j = 1, 2, · · · , p,
ψk

s
(yp−s, yp+s−1) ≤ yp+s, s = 1, 2, · · · , p− 1,

x ∈ X, y ∈ Yk.

Of course, the relaxation subproblem (LRP0) defined on the rectangle Y0 is shown as follows:

(LRP0) := min f 0(x, y) = CT(xT , yT)T , s.t.

cT

j x + dj = yj, j = 1, 2, · · · , p,
ψ0

s
(yp−s, yp+s−1) ≤ yp+s, s = 1, 2, · · · , p− 1,

x ∈ X, y ∈ Y0.

Theorem 3 shows that the feasible domain of the linear relaxation subproblem described above will
gradually approximate the feasible domain of the equivalent problem (EP) as the algorithm gradually
refines the first part Ŷ0 of the hyper-rectangular Y0.

There is a needless to say fact: if (LRPk) is not feasible, then (EPk) is also not feasible;
otherwise, for any optimal solution (xk, ỹk) of (LRPk), f (xk) = h(xk, yk) ≥ f k(xk, ỹk) is
obvious. In particular, if ỹk and yk are defined as ỹk = (ỹk

1, ỹk
2, · · · , ỹk

p, ỹk
p+1, ỹk

p+2, · · · , ỹk
2p−1)

T and

Mathematics 2020, 8, 315 12 of 34

yk = (yk
1, yk

2, · · · , yk
p, yk

p+1, yk
p+2, · · · , yk

2p−1)
T = (ỹk

1, ỹk
2, · · · , ỹk

p, yk
p+1, yk

p+2, · · · , yk
2p−1)

T , then yk
p+s =

yk
p+s−1ỹk

p−s, s = 1, 2, · · · , p− 1.
Finally, our bounding operation of the branch-and-bound procedure can be expressed as:

Step 5.(Bounding operation) Set LB(Yk) := f k(xk, yk). If LB(Yk) ≤ UBk− ε with UBk = h(x∗, y∗) = f (x∗),
put Yk into Ξ, i.e., Ξ = Ξ ∪Yk.

Remark 1. In this paper, we obtain the lower bound relaxation problem (LRPk) by using ψk
s
(yp−s, yp+s−1) ≤ yp+s

to relax the feasible domain of the equivalence problem (EPk). If we solve the linear maximum multiplicative
programming problem, we only need to use ψ

k
s(yp−s, yp+s−1) ≥ yp+s to do similar upper bound relaxation.

Remark 2. If a linear function is added to the objective function of the problem (LMP), then there is a similar
equivalent transformation and proof to Section 2.2, which is because we only make the equivalent transformation of
the product term of the objective function. In this section, of course, there is a similar relaxation subproblem, and the
rectangular partition method in the next subsection is similar, but then the reduction method of the hyper-rectangle
is a little different, and we give it after Section 2.4.

2.3. Subdivision and Refinement of Hyper-Rectangle

Branching operation is also indispensable in Branch-and-bound procedure. In this subsection, we
give the branch-refinement rule of any Yk = [yk, yk] ∈ Ξ, where Yk = Ŷk × Ỹk.

According to Equations (1) and (4) and yp+s = yp+s−1yp−s, s ∈ {1, 2, · · · , p− 1}, the generation of
rectangular Ỹk mainly depends on the successive multiplication of the coordinate components of the lower
left vertex and the upper right vertex of Ŷk. Therefore, we only use the standard dichotomy to segment
the former part Ŷk of the sub-rectangle Yk, and then refine the latter part Ỹk according to Equation (4).
The specific operations of Step 3 are as follows:

(i) For the rectangle Ŷk = ∏
p
j=1[y

k
j
, yk

j], let yk
µ − yk

µ
= max{yk

j − yk
j

: j = 1, 2, · · · , p}, yk
µ =

yk
µ
+yk

µ

2 .

By using yk
µ, the interval [yk

µ
, yk

µ] corresponding to the µ-edge of rectangle Ŷk is divided into two intervals

[yk
µ
, yk

µ] and [yk
µ, yk

µ], and then Ŷk is also divided into two sub-rectangles Ŷk1 and Ŷk2. Their forms can be

expressed as

Ŷk1 =
µ−1

∏
j=1

[yk
j
, yk

j]× [yk
µ

, yk
µ]×

p

∏
j=µ+1

[yk
j
, yk

j] =
p

∏
j=1

[yk1
j

, yk1
j],

Ŷk2 =
µ−1

∏
j=1

[yk
j
, yk

j]× [yk
µ, yk

µ]×
p

∏
j=µ+1

[yk
j
, yk

j] =
p

∏
j=1

[yk2
j

, yk2
j].

by the Cartesian product.
(ii) For the segmentation and thinning of hyper-rectangle Ỹk, the upper right vertex of Ŷk1 and the

lower left vertex of Ŷk2 are used, respectively. In this way, we finally get two hyper-rectangles, Ỹk1 and Ỹk2.
According to yp+s = yp+s−1yp−s, s ∈ {1, 2, · · · , p− 1}, the Cartesian product forms of hyper-rectangle
Ỹk1 and Ỹk2 are

Ỹk1 =
p−1

∏
s=1

[yk
p+s

, min{yk
p+s, yk1

p+s−1yk1
p−s}] =

p−1

∏
s=1

[yk1
p+s

, yk1
p+s],

Ỹk2 =
p−1

∏
s=1

[max{yk
p+s−1

, yk2
p+s−1

yk2
p−s
}, yk

p+s] =
p−1

∏
s=1

[yk2
p+s

, yk2
p+s].

Mathematics 2020, 8, 315 13 of 34

Obviously, Yk1 ∩Yk2 = ∅.
Although Yk is a hyper-rectangular space of 2p − 1−dimension, it can be seen from the

Branch-refinement method of hyper-rectangle Yk mentioned above that we only branch the rectangle Ŷk,
and the boundary of Ỹk1(Ỹk2) can be obtained directly according to the boundary of Ŷk1(Ŷk2), thus the
branching process of the branch-and-bound algorithm is completed in p−dimensional space Ŷk.

2.4. Reduction of the Hyper-Rectangle

In this subsection, we give a reduction technique for hyper-rectangles to delete the sub-rectangle
Yk that do not contain the globally optimal solution or to delete a part of the sub-rectangle Yk that do
not have a globally optimal solution. In this way, the number of rectangles in the set Ξ will be reduced
or the effect of refinement of rectangles in Ξ will be achieved, and then the bounding operation will be
accelerated.

Without losing the generality, it is assumed that the current hyper-rectangle to be reduced is Yk =

Ŷk × Ỹk = ∏
p
j=1[y

k
j
, yk

j] ×∏
p−1
s=1 [y

k
p+s

, yk
p+s] ∈ Ξ, and the best objective function value obtained by the

algorithm, thus far, is UBk. Because y2p−1 = ∏
p
j=1 yj ≤ UBk, for each t = 1, 2, · · · , p, v = 1, 2, · · · , p− 2,

define

γk = min{UBk, yk
2p−1}, αk

t =
γk

p
∏

j=1,j 6=t
yk

j

, βk
0 = γk, βk

v =
βk

v−1

yk
v

.

It is easy to know that, if the problem (EP) has a globally optimal solution in the rectangular Yk, there
must be a necessary condition, that is, yk

2p−1
≤ y2p−1 ≤ γk. This necessary condition is also used in the

following two rectangular reduction theorems.
In view of the characteristics that the super rectangle Yk consists of two parts Ŷk and Ỹk, we reduce

it in two steps. For this reason, we give Theorems 4 and 5, and prove that they have set forth the
super-rectangular reduction technique in this section.

Theorem 4. For each t = 1, 2, · · · , p, if αk
t < yk

t
, the original problem (EP) has no globally optimal solution on the

rectangle Yk; otherwise, if αk
t < yk

t , the rectangle Yk1 does not contain the globally optimal solution of the problem
(EP), where

Yk1 = Ŷk1 × Ỹk ⊆ Yk && Ŷk1
j =

Ŷk
j , j 6= t,

(αk
t , yk

t] ∩ Ŷk
j , j = t.

Proof of Theorem 4. If there is a t ∈ {1, 2, · · · , p} that satisfies αk
t < yk

t
, there will be

γk = min{UBk, yk
2p−1} = αk

p

∏
j=1,j 6=t

yk
j
<

p

∏
j=1

yk
j
≤

p

∏
j=1

yj = y2p−1,

then, there is no globally optimal solution of (EP) on Yk. Next, we prove that there is γk < y2p−1 for each
y ∈ Yk1. When y ∈ Yk1, we consider the tth element yt of y, because yt ∈ (αk

t , yk
t] ∩ Ŷk

t , we have

αk
t < yt ≤ yk

t , t = 1, 2, · · · , p.

Mathematics 2020, 8, 315 14 of 34

According to the definition of αk
t and the above inequality, we also have

γk = min{UBk, yk
2p−1} = αk

p

∏
j=1,j 6=t

yk
j
< yt

p

∏
j=1,j 6=t

yk
j
<

p

∏
j=1

yj = y2p−1.

This means that, for all y ∈ Yk1, there is γk < y2p−1. Therefore, there is no globally optimal solution
for the problem (EP).

To facilitate the description of Theorem 5, we still record the hyper-rectangle reduced by Theorem 4
as Yk = Ŷk × Ỹk = ∏

p
j=1[y

k
j
, yk

j]×∏
p−1
s=1 [y

k
p+s

, yk
p+s] ⊆ Y0. It can be seen that the second part of Yk does

not change, and Theorem 5 is given below to reduce Ỹk.

Theorem 5. For each v = 1, 2, · · · , p− 1, if βk
p−v−1 < yk

p+v, the problem (EP) has no globally optimal solution

on the hyper-rectangle Yk2, where

Yk2 = Ŷk × Ỹk2 ⊆ Yk && Ỹk2
s =

{
Ỹk

s , s 6= v,

(βk
p−v−1, yk

p+v] ∩ Ỹk
s , s = v.

Proof of Theorem 5. First, according to the definition of βk
v, we have

βk
v =

βk
v−1

yk
v

=
βk

v−2

yk
v
yk

v−1

= · · · =
βk

1
yk

v
yk

v−1
· · · yk

2

=
βk

0
v

∏
l=1

yk
l

=
γk

v
∏
l=1

yk
l

.

Second, we prove that, for any y ∈ Yk2, there is γk < y2p−1. If v = p − 1, obviously, yp+v =

y2p−1 > βk
0 = γk; Then, Yk2 does not contain the globally optimal solution of the problem (EP). If

v ∈ {1, 2, · · · , p− 2} exists and βk
p−v−1 < yk

p+v is satisfied, we continue to consider the (p + v)th element

yp+v of y. If yp+v ∈ (βk
p−v−1, yk

p+v] ∩ Ỹk
v , then βk

p−v−1 < yp+v ≤ yk
p+v. Because βk

p−v−1 = γk

p−v−1
∏

l=1
yk

l

, which

means that, for all y ∈ Yk2, there is

γk = βk
p−v−1

p−v−1

∏
l=1

yk
l
< yp+v

p−v−1

∏
l=1

yk
l = yp+v−1

p−v

∏
l=1

yk
l = · · · = yp

p−1

∏
l=1

yk
l = y2p−1.

Therefore, there is no globally optimal solution for the original problem (EP) on the hyper-rectangular
Yk2.

According to Theorems 4 and 5, we can construct the following reduction techniques to reduce the
hyper-rectangle Yk, which makes the compressed hyper-rectangle thinner and removes the part of the
hyper-rectangle Yk that does not contain the globally optimal solution, so that the search-space required
for the algorithm to solve the problem (EP) is reduced, thus speeding up the convergence of the algorithm.
Step 4.(rectangle− reducing operation)

(i) For each t = 1, 2, · · · , p, if αk
t < yk

t
, let Yk = ∅. Otherwise, if αk

t < yk
t , let yk

t = αk
t .

(ii) For each v = 1, 2, · · · , p− 1, if βk
p−v−1 < yk

p+v, let yk
p+v = βk

p−v−1.
In addition, if the objective function of the problem (LMP) contains an additional linear function, then,

to make the above reduction method valid, we need to make an adjustment to UBk because it is affected by
the additional linear term. Assuming that this additional linear term is eTx + f , then, before the algorithm

Mathematics 2020, 8, 315 15 of 34

begins, we need to solve a linear programming problem ξ = min
x∈X

eTx + f , so that there is UBk = UBk − ξ.

Of course, e is an n-dimensional column vector while f is a constant. Obviously, the adjusted UBk also
satisfies the conditions of the above two theorem.

2.5. Output-Space Branch-and-Bound Reduction Algorithm

In this subsection, we combine the output-space branch-and-bound reduction procedure with the
bounding operation, branching operation, and rectangle-reducing operation, and then construct a new
deterministic global optimization algorithm for solving the problem (EP), namely the Output-Space
Branch-and-Bound Reduction Algorithm (OSBBRA).

To describe the algorithm smoothly, we explain the relevant symbols of the algorithm iteration
to step k as follows: Yk is the hyper-rectangle to be subdivided in the current iteration step; Θ is
the set of feasible solutions stored in the current iteration step of the problem (EP); Ξ is the set of
sub-rectangles remaining after the pruning step; UBk is the upper bound of the global optimal value
of the problem (EP) in the current iteration step; LBk is the lower bound of the globally optimal
value of the problem (EP); and LB(Yk) and (x, y) represent the optimal value and solution of the
subproblem (LRPk) on the rectangle Yk, respectively. In addition, any feasible point x of (LMP)
must have (x, ÿ), with ÿk = (ÿk

1, ÿk
2, · · · , ÿk

p, ÿk
p+1, ÿk

p+2, · · · , ÿk
2p−1)

T , ÿk
j = cT

j x + dj, j = 1, 2, · · · , p, and

ÿk
p+s = ÿk

p+s−1ÿk
p−s, s = 1, 2, · · · , p − 1. being a feasible point for (EP). The specific steps of algorithm

(OSBBRA) are as follows:
Step 0. (Initialization) Set the tolerance ε > 0. The initial hyper-rectangular Y0 is constructed by

using Equations (2) and (3), whereas solving each feasible solution x of the (LMP) obtained from the linear
programming problem (2) corresponds to one feasible solution (x, ÿ) of (EP), and then stores all such
feasible solutions of (EP) into the set Θ. Solve the initial subproblem LRP0 on hyper-rectangular Y0. Then,
the optimal value and solution corresponding to the initial subproblem are L(Y0) and (x0, y0), respectively.
Let Θ = Θ ∪ {(x0, ÿ0)}. Thus, LB0 = L(Y0) can be used as the initial lower bound of the globally optimal
value of the problem (EP). The initial upper bound is UB0 = min{h(x, y) : (x, y) ∈ Θ}. The initial best
solution to the original problem (EP) is (x∗, y∗) = arg UB0. If UB0− LB0 ≤ ε, then stop, and the ε-globally
optimal solution of the problem (EP) is (x∗, y∗). Otherwise, set Ξ = {Y0}, H = ∅, Θ = ∅, the iteration
number k = 1, and go to Step 2.

Step 1. (Termination criteria) If UBk − LBk ≤ ε or Ξ = ∅, then the algorithm is terminated, and the
ε-globally optimal solution (x∗, y∗) and the ε-globally optimal value h(x∗, y∗) of the (EP) problem are
output immediately, and the ε-globally optimal solution x∗ and the ε-globally optimal value f (x∗) =
h(x∗, y∗) of (LMP) are also output immediately. Otherwise, go to Step 2.

Step 2. According to LBk = LB(Yk), select the sub-rectangle Yk from the set Ξ and set Ξ = Ξ\Yk,
and then go to Step 3.

Step 3. (Branching operation) By using the subdivision and refinement methods in Section 2.3, Yk is
divided into two sub-rectangles: Yk1 and Yk2 that satisfy Yk1 ∩Yk2 = ∅. Then, go to Step 4.

Step 4. (rectangle − reducing operation) Through the reduction in Section 2.4, we compress the
two sub-rectangles Yk1 and Yk2 obtained in the previous iteration, and the index set of the remaining
sub-rectangles after compression is expressed as Γ. Obviously, |Γ| ≤ 2.

Step 5. (Bounding operation) For any LB(Yki) < UBk − ε(i ∈ Γ), let H = H ∪ {Yki : i ∈ Γ},
Θ = Θ ∪ {(xi, ÿi)}(i ∈ Γ). If H = ∅ and Ξ 6= ∅, return to Step 2. Else, if H = ∅ and Ξ = ∅, return to
Step 1. Else, set Ξ = Ξ ∪ H.

Step 6. (Updating the upper and lower bound) Let U = min{UBk, h(x, y) : (x, y) ∈ Θ}. If U 6= UBk,
update the current best solution to (x∗, y∗) ∈ arg min{h(x, y) : (x, y) ∈ Θ} and set UBk = U. Let
LBk = min{LB(Y) : Y ∈ Ξ}; Set k := k + 1, H = ∅, Θ = ∅, and return to Step 1.

Mathematics 2020, 8, 315 16 of 34

Remark 3. In Step 5, we save the super-rectangle Yki of LB(Yki) < UBk − ε into Ξ after each compression, which
implies the pruning operation of the algorithm.

Remark 4. As can be seen from Steps 4–6, the number of elements in Θ does not exceed two in each algorithm loop.
At the same time, the phase of updating the upper bound in Step 5 computes at most two function values.

Remark 5. The branch search space of our OSBBRA algorithm is p-dimensional. When p is much smaller than the
dimension n of decision variables, the convergence rate of the algorithm is relatively faster than that of n-dimensional
decision space search.

3. Analysis of the Computational Complexity of the Algorithm

In this subsection, we deduce the maximum number of iterations of the proposed algorithm by
analyzing the computational complexity of the algorithm. For this reason, for the convenience of narration,
we first define the longest edge of the first part of the rectangle Yk = Ŷk × Ỹk ⊆ Y0, that is, the longest
edge of

Ŷk =
p

∏
j=1

[yk
j
, yk

j], (18)

using

4(Ŷk) = max{yk
j − yk

j
: j = 1, 2, · · · , p}. (19)

In addition, we also define

hs =
1
2
|yk

p−s − yk
p−s
| · |yk

p+s−1 − yk
p+s−1

|, s = 1, 2, · · · , p− 1, (20)

ς =
∑

p−1
s=2 s · Ns−1 + 1

2
, (21)

$ = max{1,
s

∏
j=1
|y0

j | : s = 1, 2, · · · , p− 2}, (22)

where y0
j is given by (2).

Lemma 1. For the given convergence tolerance ε ≥ 0, if there is a rectangle Yk = Ŷk × Ỹk satisfying4(Ŷk) ≤√
ε

$ς when the algorithm is running to the kth cycle, then we have

UB− LB(Yk) ≤ ε,

where LB(Yk) is the optimal value of the problem (LRPk) and UB denotes the current best upper bound of the
equivalent problem (EP).

Proof of Lemma 1. If (xk, yk) is assumed to be the optimal solution of the linear relaxation problem (LRPk),
obviously yk

j = cT
j xk + dj, j = 1, 2, · · · , p, in addition, let

ỹk
p = yk

p, ỹk
p+s = ỹk

p+s−1yk
p−s, s = 1, 2, · · · , p− 1,

Mathematics 2020, 8, 315 17 of 34

and
ỹk = (yk

1, yk
2, · · · , yp

j , ỹk
p+1, ỹk

p+2, · · · , ỹk
2p−1)

T ,

then (xk, ỹk) is a feasible solution of the equivalent problem (EPk). By using the definitions of LB(Yk) and
UB, we have

f k(xk, yk) = LB(Yk) ≤ UB ≤ h(xk, ỹk) = f (xk),

Therefore, from Equations (1) and (18)–(22), there is the following

UB− LB(Yk) ≤ f (xk)− f k(xk, yk),

= h(xk, ỹk)− f k(xk, yk),

= ỹk
2p−1 − yk

2p−1,

≤ ỹk
2p−1 − ψk

p−1
(y1, y2p−2),

= (ỹk
2p−2yk

1 − yk
2p−2yk

1) + (yk
2p−2yk

1 − ψk
p−1

(y1, y2p−2)),

≤ yk
1(ỹ

k
2p−2 − yk

2p−2) +
1
2
|yk

1 − yk
1
| · |yk

2p−2 − yk
2p−2
|,

≤ y0
1(ỹ

k
2p−2 − yk

2p−2) + hp−1,

≤ y0
1y0

2(ỹ
k
2p−3 − yk

2p−3) + y0
1hp−2 + hp−1,

≤ · · · ,

≤
p−2

∏
j=1

y0
j h1 +

p−3

∏
j=1

y0
j h2 + · · ·+

2

∏
j=1

y0
j hp−3 + y0

1hp−2 + hp−1,

≤ $
p−1

∑
s=1

hs.

Then, by using (17), we have

UB− LB(Yk) ≤ $
p−1

∑
s=1

hs,

= $
p−1

∑
s=1

(
1
2
|yk

p−s − yk
p−s
| · |yk

p+s−1 − yk
p+s−1

|),

=
$

2
[
p−1

∑
s=2

(|yk
p−s − yk

p−s
| · |yk

p+s−1 − yk
p+s−1

|) + (|yk
p−1 − yk

p−1
| · |yk

p − yk
p
|)],

≤ $

2
[
p−1

∑
s=2

(|yk
p−s − yk

p−s
| · Ns−1 ·

p

∑
j=p−s+1

|yk
j − yk

j
|) + (|yk

p−1 − yk
p−1
| · |yk

p − yk
p
|)],

≤ $

2
(4(Ŷk))2(

p−1

∑
s=2

s · Ns−1 + 1),

= $ς(4(Ŷk))2.

Thus, according to the above inequality and combined with4(Ŷk) ≤
√

ε
$ς , we can obtain that

UB− LB(Yk) ≤ $ς(4(Ŷk))2 ≤ ε.

Mathematics 2020, 8, 315 18 of 34

Finally, the proof of Lemma 1 is completed.

On the premise of Lemma 1, if the 4(Ŷk) ≤
√

ε
$ς is satisfied, then the sub-rectangular Yk can be

deleted. Thus, according to Step 5 of the algorithm, it can be appreciated that when each sub-rectangular Yk

obtained by the refinement of Y0 satisfies4(Ŷk) ≤
√

ε
$ς , the algorithm terminates the iteration. Therefore,

we can derive the maximum number of iterations of the algorithm through Lemma 1. Theorem 6 gives a
specific process.

Theorem 6. For the given convergence tolerance ε ≥ 0, the maximum number of iterations required by the
algorithm OSBBRA to obtain the ε−globally optimal solution of the problem (LMP) is

N = 2

p
∑

j=1
dlog2

√
$ς(y0

j −y0
j)√

ε
e
− 1,

where ς and $ are given by (21) and (22), respectively. In addition, the definition of Ŷ0 =
p

∏
j=1

Ŷ0
j with Ŷ0

j = [y0
j
, y0

j]

is given by (2).

Proof of Theorem 6. It is assumed that Y = Ŷ × Ỹ with Ŷ =
p

∏
j=1

Ŷj =
p

∏
j=1

[y
j
, yj] is the rectangle that the

algorithm is selected from Ξ when it is cycled to a certain Step 3. It is supposed that after k j iterations,

there is a subinterval Ŷ
kj
j = [y

kj
j , y

kj
j] of Ŷ0

j = [y0
j
, y0

j] satisfying

y
kj
j − y

kj
j ≤

√
ε

$ς
, j = 1, 2, · · · , p. (23)

Let us consider the branching process of Step 4, and then there is

y
kj
j − y

kj
j =

1

2kj
(y0

j − y0
j
), j = 1, 2, · · · , p. (24)

By combining (23) with (24), we have

1

2kj
(y0

j − y0
j
) ≤

√
ε

$ς
, j = 1, 2, · · · , p.

That is,

k j ≥ log2

√
$ς(y0

j − y0
j
)

√
ε

, j = 1, 2, · · · , p.

Let

kj = dlog2

√
$ς(y0

j − y0
j
)

√
ε

e, j = 1, 2, · · · , p.

Then, after K1 =
p
∑

j=1
kj iterations, the algorithm will generate at most K1 + 1 rectangles, denoted by

Y1, Y2, · · · , YK1+1, and they must all satisfy

4(Ŷt) = 2K1−t4(ŶK1) = 2K1−t4(ŶK1+1), t = K1, K1 − 1, · · · , 2, 1, (25)

Mathematics 2020, 8, 315 19 of 34

where4(ŶK1) = 4(ŶK1+1) = max{ykj
j − y

kj
j : j = 1, 2, · · · , p} and

Ŷ0 =
K1+1⋃
t=1

Ŷt. (26)

Now, put the K1 + 1 rectangles into the set ΞK1+1, that is,

ΞK1+1 = {Yt : t = 1, 2, · · · , K1 + 1},

and, according to (23), we have

4(ŶK1) = 4(ŶK1+1) ≤
√

ε

$ς
. (27)

Here, we let4 = 4(ŶK1) = 4(ŶK1+1) in order to facilitate the smooth description of the following.
Combined with (27), we can see that

4 ≤
√

ε

$ς
(28)

is obvious. Then, YK1 and YK1+1 will be thrown out of the set ΞK1+1 after using Lemma 1 and Step 5
of the algorithm, because there is no globally optimal solution of the problem (EP) in YK1 and YK1+1.
Furthermore, the remaining rectangles will be placed in the set ΞK1 , where

ΞK1 = ΞK1+1\{YK1 , YK1+1} = {Yt : t = 1, 2, · · · , K1 − 1}.

Of course, the new set ΞK1 will continue to be considered.
Next, let us focus on YK1−1. According to (25) and combined with the branch rule of Section 2.3,

YK1−1 will be immediately divided into two sub-rectangles YK1−1,1 and YK1−1,2 satisfying

ŶK1−1 = ŶK1−1,1 ∪ ŶK1−1,2 (29)

and

4(ŶK1−1) = 24(ŶK1−1,1) = 24(ŶK1−1,2) = 24. (30)

Therefore, YK1−1 is thrown out of the set ΞK1 by using (28)–(30), and we can know that the algorithm
iterates once again. At the same time, the remaining rectangles are put into the set ΞK1−1, that is,

ΞK1−1 = ΞK1\{YK1−1} = ΞK1+1\{YK1−1, YK1 , YK1+1} = {Yt : t = 1, 2, · · · , K1 − 2}.

Of course, YK1−2 will also be immediately divided into YK1−2,1 and YK1−2,2 satisfying

ŶK1−2 = ŶK1−2,1 ∪ ŶK1−2,2 (31)

and

4(ŶK1−2) = 24(ŶK1−2,1) = 24(ŶK1−2,2) = 24(ŶK1−1) = 224. (32)

Mathematics 2020, 8, 315 20 of 34

Then, both YK1−2,1 and YK1−2,2 must be divided again for once to satisfy (28); that is, for YK1−2,
the algorithm must iterate 22 − 1 = 3 times for YK1−2 to be thrown out of the set ΞK1−1. Then, put the
remaining rectangles in the set ΞK1−2, that is,

ΞK1−2 = ΞK1−1\{YK1−2} = ΞK1+1\{YK1−2, YK1−1, YK1 , YK1+1} = {Yt : t = 1, 2, · · · , K1 − 3}.

Similar to (31) and (32), for a rectangular Yt(t = 1, 2, · · · , K1 − 1), we also have

Ŷt = Ŷt,1 ∪ Ŷt,2

and

4(Ŷt) = 24(Ŷt,1) = 24(Ŷt,2) = 24(Ŷt+1) = 224(Ŷt+2) = · · · = 2K1−1−t4(ŶK1−1) = 2K1−t4. (33)

According to (28) and (33), the algorithm must iterate 2K1−t − 1 at most before Yt is thrown out of its
corresponding set Ξt+1.

Then, put the remaining rectangles in the set Ξt, that is,

Ξt = Ξt+1\{Yt} = ΞK1+1\{Yt, Yt+1, · · · , YK1−2, YK1−1, YK1 , YK1+1}, t = 1, 2, · · · , K1 − 1. (34)

Therefore, when t is taken from K1 − 1 to 1, the algorithm iterates

K = K1 +
K1−1

∑
t=1

(2K1−t − 1) = 2K1 − 1 = 2

p
∑

j=1
dlog2

√
$ς(y0

j −y0
j)√

ε
e
− 1

times at most. In addition, according to (26) and (34), we have

Ξ1 = ΞK1+1\{Y1, Y2, · · · , YK1−2, YK1−1, YK1 , YK1+1},
= ΞK1+1\{Ŷ1 × Ỹ1, Ŷ2 × Ỹ2, · · · , ŶK1 × ỸK1 , ŶK1+1 × ỸK1+1},
= ∅.

then the algorithm will stop running, using Step 5 of the algorithm.

Remark 6. Through Theorem 6, when the proposed algorithm OSBBRA finds the ε−globally optimal solution of
the problem (LMP), we can use

2KT(m + 6p− 3, n + 2p− 1)

as the upper bound of the running time of the algorithm, where T(m + 6p− 3, n + 2p− 1) denotes the time taken
to solve a linear programming problem with n + 2p− 1 variables and m + 6p− 3 constraints.

Remark 7. Theorem 6 is fully capable of ensuring that the algorithm OSBBRA is completed in a finite number
of iterations, because of the existence of such the most extreme number of iterations.

4. Numerical Examples

In this section, we present many random experiments of different scales through the proposed
algorithm. We also provide the performance comparison results compared with the previous methods to
solve the problem (LMP).

Mathematics 2020, 8, 315 21 of 34

The code of our algorithm was compiled on Matlab (2016a). All calculation processes were carried
out on personal PCs with Intel(R) Core(TM)i5-4210M 2.60 GHz power processor 4 GB memory and the
operating system used is Microsoft Windows 7. In the process of numerical experiment, the linprog
solver of MATLAB(2016a) was used to solve all linear programming problems, while the quadratic convex
programming problem in [27] was solved by quadprog solver in MATLAB(2016a). We use the following
notation:

• Solution: the optimal solution
• Optimum: the optimal value
• Opt.val: the average of the optimal values for the 10 problems arising from the 10 sets of random

coefficients calculated using the commercial software package BARON
• Iter: the number of iterations
• ε: tolerance
• Ref: reference
• Time: the CPU running time
• Avg: average performance of an algorithm for a set of random problems
• Std: standard deviation of performance of an algorithm for a set of random problems
• “-”: the problem cannot be solved in 2400 s
• “∗”: problems of this size not solved in [41]

4.1. Feasibility Tests

In this subsection, we give several exact examples to illustrate that the algorithm OSBBRA is effective
and feasible.
Example 1 [23,25,26,42]

min(x1 + x2)(x1 − x2 + 7) s.t.

2x1 + x2 ≤ 14,
x1 + x2 ≤ 10,
−4x1 + x2 ≤ 0,
2x1 + x2 ≥ 6,
x1 + 2x2 ≥ 6,
x1 − x2 ≤ 3,
x1 + x2 ≥ 0,

x1 − x2 + 7 ≥ 0,
x1, x2 ≥ 0.

Example 2 [25,26,39,42]

min f (x) = (0.813396x1 + 0.67440x2 + 0.305038x3 + 0.129742x4 + 0.217796)

× (0.224508x1 + 0.063458x2 + 0.932230x3 + 0.528736x4 + 0.091947)

s.t.

0.488509x1 + 0.063565x2 + 0.945686x3 + 0.210704x4 ≤ 3.562809,
−0.324014x1 − 0.501754x2 − 0.719204x3 + 0.099562x4 ≤ −0.052215,

0.445225x1 − 0.346896x2 + 0.637939x3 − 0.257623x4 ≤ 0.427920,
−0.202821x1 + 0.647361x2 + 0.920135x3 − 0.983091x4 ≤ 0.840950,
−0.886420x1 − 0.802444x2 − 0.305441x3 − 0.180123x4 ≤ −1.353686,
−0.515399x1 − 0.424820x2 + 0.897498x3 + 0.187268x4 ≤ 2.137251,
−0.591515x1 + 0.060581x2 − 0.427365x3 + 0.579388x4 ≤ −0.290987,

0.423524x1 + 0.940496x2 − 0.437944x3 − 0.742941x4 ≤ 0.373620,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Mathematics 2020, 8, 315 22 of 34

Example 3 [23]
min(cT

1 x + d1)(cT
2 x + d2) s.t. Ax = b,x ≥ 0. .

where
b = (81, 72, 72, 9, 9, 9, 8, 8)T , d1 = 0, d2 = 0,

c1 = (1, 0,
1
9

, 0, 0, 0, 0, 0, 0, 0, 0)T , c2 = (0, 1,
1
9

, 0, 0, 0, 0, 0, 0, 0, 0)T .

A =

9 9 2 1 0 0 0 0 0 0 0
8 1 8 0 1 0 0 0 0 0 0
1 8 8 0 0 1 0 0 0 0 0
7 1 1 0 0 0 −1 0 0 0 0
1 7 1 0 0 0 0 −1 0 0 0
1 1 7 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1

.

From the literature [23], we know that Example 3 can be transformed into the following forms:

(LMP) := min (x1 +
1
9

x3)(x2 +
1
9

x3) s.t.

9x1 + 9x2 + 2x3 ≤ 81,
8x1 + x2 + 8x3 ≤ 72,
x1 + 8x2 + 8x3 ≤ 72,
7x1 + x2 + x3 ≥ 9,
x1 + 7x2 + x3 ≥ 9,
x1 + x2 + 7x3 ≥ 9,

0 ≤ x1 ≤ 8,
0 ≤ x2 ≤ 8,
0 ≤ x3 ≤ 9.

Then, we obtained the global optimal solution of the problem (LMP): x = (0.0, 8.0, 1.0)T , and got the
global optimal solution of Example 3: x = (0.0, 8.0, 1.0, ...)T , where the remaining components were
chosen such that Ax = b.

Example 4 [26,42]

min x1 + (x1 − x2 + 5)(x1 + x2 − 1) s.t.

−2x1 − 3x2 ≤ −9,
3x1 − x2 ≤ 8,
−1x1 + 2x2 ≤ 8,
x1 + 2x2 ≤ 12,

x1 − x2 + 5 ≥ 0,
x1 + x2 − 1 ≥ 0,

x1 ≥ 0.

Example 5 [26,42]

min(x1 + x2)(x1 − x2) + (x1 + x2 + 1)(x1 − x2 + 1) s.t.

x1 + 2x2 ≤ 10,
x1 − 3x2 ≤ 20,

0 ≤ x1 ≤ 3,
0 ≤ x2 ≤ 3.

Mathematics 2020, 8, 315 23 of 34

The objective function of Example 5 can be transformed into 2(x1 − x2 + 3)(x1 + x2 + 1)− 6x1 − 4x2 − 5.
Example 6 [26,42]

min(x1 + x2)(x1 − x2) + (x1 + x2 + 2)(x1 − x2 + 2) s.t.

x1 + 2x2 ≤ 10,
x1 − 3x2 ≤ 20,

0 ≤ x1 ≤ 4,
0 ≤ x2 ≤ 4.

The objective function of the Example 6 can be transformed into 2(x1 − x2 + 4)(x1 + x2)− 4x1 − 8x2 + 4.
Example 7

min (−x1 + 2x2 + 6)(x1 + x2 − x3 + 3)(x1 + x2 − 2x3 + 7) s.t.

x2 − 2x3 ≤ 1,

3x1 − 3x2 + 4x3 ≤ 12,
3x2 − 5x3 ≥ −14,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 8
min f (x) = (−4x1 − 2x4 + 3x5 + 21)(4x1 + 2x2 + 3x3 − 4x4 + 4x5 − 3)

× (3x1 + 4x2 + 2x3 − 2x4 + 2x5 − 7)(−2x1 + x2 − 2x3 + 2x5 + 11)

s.t.

4x1 + 4x2 + 5x3 + 3x4 + x5 ≤ 25,
−x1 − 5x2 + 2x3 + 3x4 + x5 ≤ 2,
x1 + 2x2 + x3 − 2x4 + 2x5 ≥ 6,

4x2 + 3x3 − 8x4 + 11x5 ≥ 8,
x1 + x2 + x3 + x4 + x5 ≤ 6,

x1 ≥ 1, x2 ≥ 1, x3 ≥ 1, x4 ≥ 1, x5 ≥ 1.

As shown in Table 1, the algorithm OSBBRA can accurately obtain the globally optimal solution of
these eight low-dimensional examples, which shows that the algorithm is effective and feasible. We can
see that the algorithm OSBBRA only needs one iteration in solving Example 2 and takes the least time
compared with other algorithms. For Example 3, the time and the number of iterations are the most,
but only five iterations are required. Examples 1 and 4 need only two iterations to obtain the solution,
and the algorithm in this paper only needs very little time to solve them. In the process of solving
Example 1, the running speed of this algorithm is much faster than that in Refs. [23,25]. For Examples 5
and 6, because of the special structure of the case, OSBBRA uses more iterations and time to solve such
problems than other algorithms, but it can also get the globally optimal solution in less than 0.5 s, which
indicates that our relaxation bound method can be further generalized. Examples 7 and 8 are two examples
constructed by us, and the results of this algorithm were compared with those of the software package
BARON [43]. It can be seen that the calculation results of this algorithm are the same as those of BARON,
but the running time of CPU used in our algorithm is less than that of BARON, especially the number of
iterations used by BARON in solving Example 8 is much higher than that of algorithm OSBBRA.

Mathematics 2020, 8, 315 24 of 34

Table 1. Comparison of results in Examples 1–8.

Ref. Solution Optimum Iter Time ε

1 [23] (1.9999998, 7.9999988) 10.0000090 41 0.02 10−5

[25] (2.0, 8.0) 10.0 48 5.0780 10−3

[26] (2.0, 8.0) 10.0 1 0.0128 10−6

[42] (2.0, 8.0) 10.0 1 0.046 10−4

OSBBRA (2.0000, 8.0000) 10.0000 2 0.0182 10−6

2 [25] (1.3148, 0.1396, 0.0, 0.4233) 0.8902 1 0.1880 10−3

[26] (1.3148, 0.1396, 0.0, 0.4233) 0.8902 1 0.0601 10−6

[39] (1.3148, 0.1396, 0.0000, 0.4233) 0.890190 3 0.047 0.05
[42] (1.3148, 0.1396, 0.0000, 0.4233) 0.8902 1 0.093 10−4

OSBBRA (1.3148, 0.1396, 0.0000, 0.4233) 0.8902 1 0.0226 10−6

3 [23] (8.0, 0.0, 1.0, ...) 0.901235 3 0.00 10−3

[27] (0.0, 8.0, 1.0, ...) 0.901235 3 0.0469 −
OSBBRA (0.0, 8.0, 1.0, ...) 0.901235 5 0.0743 10−3

4 [26] (0.0, 4.0) 3 1 0.0693 10−6

[42] (0, 4) 3 1 0.062 10−4

OSBBRA (0.0000, 4.0000) 3.0000 2 0.0218 10−6

5 [26] (1.0, 3.0) −13 1 0.0868 10−6

[42] (1, 3) −13 1 0.047 10−4

OSBBRA (1.0000, 3.0000) −13.0000 16 0.1845 10−6

6 [26] (1.0, 4.0) −22 1 0.0849 10−6

[42] (1, 4) −22 1 0.046 10−4

OSBBRA (1.0000, 4.0000) −22.0000 19 0.2143 10−6

7 BARON (0.0000, 0.0000, 2.8000) 1.6800 1 0.3824 10−6

OSBBRA (0.0000, 0.0000, 2.7999) 1.6800 9 0.1377 10−6

8 BARON (1.0000, 1.9999, 1.0000, 1.0000, 1.0000) 9503.9999 155 1.4662 10−6

OSBBRA (1.0000, 2.0000, 1.0000, 1.0000, 1.0000) 9503.9999 2 0.0691 10−6

The above eight small-scale examples only illustrate the validity and feasibility of the algorithm
OSBBRA, but we cannot know the other performance of the algorithm in solving the problem (LMP).
Therefore, in the next subsection, we describe the other features of the algorithm by performing a series of
random tests. The experimental results of random tests are presented in Tables 2–9, and the information
disclosed, in these eight tables, is analyzed to illustrate the performance and applicable conditions of the
algorithm.

4.2. Testing of Random Problems

To test the other features of the algorithm, we used three random problem generation schemes to
generate random (LMP):

(LMP1) : min
p

∏
j=1

cT
j x s.t.

{
∑n

i=1 Asixi ≤ bs, s = 1, 2, · · · , m,
0 ≤ xi ≤ 1, i = 1, 2, · · · , n.

(LMP2) : min
2

∏
j=1

(cT
j x + 1) s.t.

{
∑n

i=1 Asixi ≤ bs, s = 1, 2, · · · , m,
xi ≥ 0, i = 1, 2, · · · , n.

Mathematics 2020, 8, 315 25 of 34

In (LMP1) and (LMP2), Asi is randomly generated in the interval [−1,1], and the value of the right bs

is generated by ∑n
i=1 Asi + 2π, where π is randomly generated in the interval [0,1]. This is consistent with

the methods in Refs. [19,41].

(LMP3) : min
p

∏
j=1

cT
j x s.t.

{
∑n

i=1 Asixi ≥ bs, s = 1, 2, · · · , m,
xi ≥ 0, i = 1, 2, · · · , n.

The Asi, bs and cj of (LMP3) were randomly generated in the interval [0, 100]. This agrees that the
random number is generated in Ref. [19].

In addition, for all problems, we solves 10 different random instances for each size, and give the
statistical information of the results. In addition, the tolerance was set to 10−6 for all random problems.

Remark 8. Each random example is based on the size of (p, m, n) a set of random coefficients that randomly generate
the problem in a given interval, and then solved by the algorithms of OSBBRA, BARON, Reference [27],
Reference [38], Reference [19], Reference [41] respectively, to obtain the corresponding calculation results.

4.2.1. Testing of Random Problem (LMP1)

For the problem (LMP1), we compared the algorithm OSBBRA with the algorithm in Ref. [27] and the
Primal algorithm in Ref. [38], respectively, and used the optimal value obtained by commercial software
package BARON as a standard to evaluate the quality of the optimal solution obtained by these three
algorithms. For each group (p, m, n), 10 groups of examples were randomly generated to obtain the
average value of the calculated results. For the measurement of the quality of the optimal solution,
we used the following formula:

Optimum.ratio = | f (x∗)−Opt.val
Opt.val

|

where x∗ is the final optimal solution of the three algorithms and f (x∗) is the optimal value corresponding
to the three algorithms. To see the optimal value quality clearly, we used Optimum.ratio× 105, and the
corresponding calculation results are listed in Table 2.

As can be seen in Table 2, in terms of the quality of the obtained optimal solution, the three algorithms
are arranged in the order of optimal to lowest order: OSBBRA, Ref. [38], and Ref. [27]. This means that the
optimal value obtained by our algorithm is the most accurate. For the CPU running time of the algorithm,
the following cases are discussed:

(i) For (p, m, n) = (2, 20, 200), (2, 30, 300), (2, 40, 400), the time spent is arranged as OSBBRA, Ref. [38],
Ref. [27] in order from less to more. Furthermore, the time occupied by OSBBRA is the least in the
three algorithms.

(ii) In the case of (p, m, n) = (2, 10, 100) and p = 3, 4, the time occupied by OSBBRA is the most in the
three algorithms, followed by the algorithm in Ref. [27], and the time of the algorithm in the Ref. [38] is
the least.

It can be seen that, in Case (ii), our algorithm OSBBRA takes the most time, but, in Case (i), OSBBRA
takes less time than the other two algorithms. This is because, in the first case, p� n can better reflect the
advantages of our algorithm, which can also be seen in the higher scale experimental results in Table 3.
This feature of algorithm OSBBRA is also reflected in Tables 4 and 5. Of course, the data in Tables 8 and 9
also imply this reason, which we mention again below.

Mathematics 2020, 8, 315 26 of 34

Table 2. The average result of 10 low-dimensional random problems (LMP1).

(p, m, n) Opt.val
Optimum Optimum.ratio× 105 Time

OSBBRA Ref. [27] Ref. [38] OSBBRA Ref. [27] Ref. [38] OSBBRA Ref. [27] Ref. [38]

(2, 10, 100) 29.9097 29.9097 29.9187 29.9157 0.067 33.6192 2.2411 0.5537 0.4737 0.1615
(2, 20, 200) 133.3865 133.3866 133.434 133.4183 0.0023 34.3035 2.2944 0.5746 1.2424 0.6026
(2, 30, 300) 182.721 182.721 182.7537 182.7428 0.0072 24.6207 1.6412 1.8197 3.194 1.9535
(2, 40, 400) 351.5904 351.5926 351.754 351.6994 0.6039 43.3172 2.8874 2.2338 6.4919 4.5876
(3, 10, 100) 96.6445 96.6445 96.6546 96.6514 0.0643 14.0031 9.5493 0.6325 0.5851 0.286
(3, 20, 200) 1375.6595 1375.6434 1375.9541 1375.8571 1.17 43.1338 2.8891 2.2412 1.4385 0.7983
(3, 30, 300) 6510.4561 6510.0954 6514.145 6512.9254 5.54 51.3809 34.4346 3.796 3.6375 2.3271
(3, 40, 400) 10,302.6134 10,303.1708 10,306.0578 10,304.9265 5.41 27.5294 18.5314 13.1311 8.0374 5.6722
(4, 10, 100) 521.4775 521.4759 521.7151 521.6364 0.293 48.6827 32.5493 2.6662 1.1085 0.4045
(4, 20, 200) 22,512.6836 22,511.8327 22,527.3196 22,522.4657 3.78 65.0123 43.4513 19.8316 2.4383 0.9227
(4, 30, 300) 248,728.2167 248,734.8081 248,898.3767 248,841.8108 2.65 68.4121 45.6699 25.0813 8.8808 5.8772
(4, 40, 400) 170,323.0981 170,338.2399 170,446.6353 170,405.9477 8.89 72.5311 48.6425 27.3393 12.6321 7.5582

Mathematics 2020, 8, 315 27 of 34

Table 3. The average result of 10 high-dimensional random problems (LMP1).

(p, m, n)
Optimum Time

OSBBRA Ref. [27] Ref. [38] OSBBRA Ref. [27] Ref. [38]

(5, 50, 1000) 1.5534 × 108 1.5541 × 108 1.5539 × 108 941.3086 873.6958 723.1655
(5, 60, 2000) 6.5945 × 108 6.5985 × 108 6.5972 × 108 449.8872 1529.7757 917.3199
(5, 70, 3000) 8.0127 × 109 8.0144 × 109 8.0138 × 109 782.0679 1639.8610 1323.6961
(5, 80, 4000) 4.0686 × 109 – 4.0692 × 109 1007.6914 – 1796.8545
(6, 50, 1000) 2.5156 × 109 2.5166 × 109 2.5163 × 109 1202.9066 1332.1953 1081.1864
(6, 60, 2000) 1.8276 × 1010 1.8281 × 1010 1.8279 × 1010 1101.4307 1542.3941 1484.3904
(6, 70, 3000) 2.0195 × 1011 2.0208 × 1011 2.0204 × 1011 1360.1356 1927.7173 1619.3256
(6, 80, 4000) 3.5453 × 1011 – – 1404.9818 – –
(7, 50, 1000) 2.0887 × 1011 2.0892 × 1011 2.0890 × 1011 1500.4977 1661.2653 1321.2203
(7, 60, 2000) 1.4108 × 1013 1.4111 × 1013 1.4110 × 1013 1690.9317 2169.4610 1923.1707
(7, 70, 3000) 5.0654 × 1013 – 5.0655 × 1013 1893.3633 – 2164.7689
(7, 80, 4000) 2.6370 × 1014 – – 2116.0214 – –

For the problem (LMP1), we also performed higher-dimensional numerical experiments and record
the results in Table 3. In the high dimensional example, we did not use the software package BARON to
calculate, because BARON takes a long time to solve the higher-dimensional (LMP1) problem, and, in
Table 2, we only use the results of BARON to evaluate the optimal worth quality of the three algorithms.
In Table 3, the optimal quality of our algorithm is still the best, followed by Refs. [27,38]. Especially
when solving the 4000-dimensional problem, the algorithm in Ref. [27] cannot find the optimal solution
in 2400 s, and, when p = 6, 7, the algorithm in Ref. [38] also fails to solve the optimal solution of the
problem within 2400 s. In addition, the results in Tables 2 and 3 also show that the computing power
of the algorithm in Ref. [38] is better than that in Ref. [27]. The results in Table 3 show that, when
(p, m, n) = (5, 50, 1000), the OSBBRA takes less time than the other two algorithms, whereas, in the case
of (p, m, n) = (6, 50, 1000), (7, 50, 1000), the OSBBRA takes less time only in the case of other larger-scale
problems in [27]. In addition, although the time spent on these three algorithms increases with the size of
the problem, OSBBRA always takes less than 2400 s. This shows that our algorithm is more suitable to
solve large-scale optimization problems (LMP) than other algorithms under certain circumstances.

The phenomenon reflected in the results of Tables 2 and 3 is mainly due to the characteristics of
each algorithm itself. Through the understanding of Ref. [27], each iteration of its algorithm to solve the
problem (LMP) requires solving a quadratic programming problem, which does take less time to solve
small-scale problems in a certain range than the algorithm OSBBRA, but it takes longer than OSBBRA to
solve some large-scale problems. Although the original algorithm in Ref. [38] needs to solve only two linear
programming problems in each iteration, and indeed has less time to solve small-scale problems than the
other two algorithms, it is a tangent plane algorithm, thus increasing the number of constraints for each
iteration. As the scale of the problem increases to a certain extent, its advantages will disappear because
the increased constraints will gradually increase the storage space of the computer as it progresses and
eventually slow down the speed of the computer. At the same time, the algorithms in both Ref. [27,38] need
to store a large number of vertices, which will also affect the running time of the computer. The algorithm
OSBBRA needs to store the hyper-rectangle whose length is 2p− 1, and at most two hyper-rectangles are
added in each iterative step. Through the pruning operation and rectangle reduction technology of the
branch-and-bound algorithm, the hyper-rectangle without the globally optimal solution will be reduced,
so that the computer storage space will be saved, and the influence of the storage space on the performance
of the algorithm will be reduced as much as possible. Therefore, the computational performance of the
algorithm OSBBRA is affected by the length 2p− 1 of the hyper-rectangle.

Mathematics 2020, 8, 315 28 of 34

Next, we performed additional numerical experiments on the problem (LMP1) with OSBBRA and
recorded the results in Tables 4 and 5. The main purpose of Tables 4 and 5 is to explore the case that the
number of computer-stored consumption-matrixes varies by the size of (p, m, n) in the search for optimal
solutions. Meanwhile, the average consumption time and the number of iterations in this process are also
recorded in the table.

Table 4. The results of random calculation for (LMP1).

(m, n) p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

(10, 20) Ave.Time 0.1452 0.3205 0.6654 1.2609 1.7287 19.2006
Ave.Iter 4.6 10.7 10.8 45.7 43.8 458.8

Ave.Node 1.4 2.9 2.2 11.8 12.8 139.2

(20, 40) Ave.Time 0.1514 0.3286 1.1668 1.3929 6.6506 23.8151
Ave.Iter 3.9 9.7 25.1 45.7 77.0 496.6

Ave.Node 1.3 2.8 5.1 13.9 25.6 131.7

(30, 60) Ave.Time 0.1720 0.4581 1.8145 7.6766 11.1125 64.3865
Ave.Iter 5.1 11.5 32.6 184.6 101.9 1013.5

Ave.Node 1.2 2.3 8.6 31.7 28.7 157.7

(40, 80) Ave.Time 0.2441 0.7060 2.2780 10.4108 16.3945 86.1229
Ave.Iter 5.2 12.9 46.4 117.6 133.1 1177.3

Ave.Node 1.1 3.1 6.2 21.0 40.0 166.9

(50, 100) Ave.Time 0.4178 1.3477 2.5277 15.5902 22.0331 127.1028
Ave.Iter 6.1 15.3 42.6 167 271.2 1398

Ave.Node 1.4 3.2 15.4 27.2 55.8 186.9

(60, 120) Ave.Time 0.6179 2.7911 6.5797 18.3711 25.2491 155.5248
Ave.Iter 6.8 20.8 76.5 143.4 387.1 640.2

Ave.Node 1.5 4.2 10.8 23.5 85.1 109.2

(70, 140) Ave.Time 1.8234 3.8380 8.1493 38.7537 63.8334 185.5591
Ave.Iter 9.0 24.0 62.2 212.5 766.5 1197.4

Ave.Node 1.6 5.3 13.4 30.4 69.4 196.0

(80, 160) Ave.tTime 1.9886 6.7688 14.7688 81.1816 98.5674 278.3208
Ave.Iter 6.5 27.5 43.8 310.2 315.3611 891.1

Ave.Node 1.5 4.1 11.4 39.4 72.4 122.3

(90, 180) Ave.Time 2.4104 8.8114 19.2281 93.8722 110.7434 293.8722
Ave.Iter 6.9 26.6 37.2 298.4 444.2 816.7

Ave.Node 1.2 4.2 16.6 32.4 91.2 131.6

(100, 200) Ave.Time 4.1027 14.2772 46.8494 114.7671 120.0034 321.4063
Ave.Iter 8.4 31.0 79.2 230.6 657.8 469.3

Ave.Node 1.7 5.2 15.8 26.1 116.9 97.0

Mathematics 2020, 8, 315 29 of 34

Table 5. The results of random calculation for (LMP1).

(p, m, n) Ave.Iter Ave.Time Ave.Node

(10, 10, 2) 10.9 0.3576 1.3
(20, 10, 2) 2349 48.5707 1891.8
(30, 10, 2) 11,369.5 240.4569 8072.5
(40, 10, 2) 5060.4 120.8821 4937.7
(2, 10, 1000) 15.5 2.6293 4.0
(2, 10, 2000) 28.5 14.0012 75.9
(3, 10, 1000) 101.8 19.3235 25.3
(3, 10, 2000) 185.4 90.3898 37.0
(4, 10, 1000) 757.6 156.5649 134.7
(4, 10, 2000) 1352.1 995.4707 257.3

The data of two groups of numerical experiments are separately calculated by the algorithm OSBBRA,
which is used to observe how the size of p and n affects the performance (Ave.Time and Ave.Iter) of the
algorithm.The first group is to fix p to 2, 3, 4, 5, 6, and 7 in turn, take n = 2m, take m as from 10 to 100 by
steps of 10, and the calculated results are shown in Table 4. The results in Table 4 show that, when p is fixed,
the average CPU running time Ave.Time increases as the dimension n of the decision variable becomes
larger, and the average maximum number of nodes Ave.Node and the average number of iterations
Ave.Iter of the algorithm stored in the branching and delimiting tree either increases or decreases. For fixed
(m, n), as p increases, the size of the Ave.Time, Ave.Iter, and Ave.Node are increased; in particular, when p
transitions from 6 to 7, the rise speed of these three increases sharply, which indicates that the effect of
the size of p on the performance of the algorithm is sharp. The results of Tables 2–4 show that p and n
have an effect on the algorithm calculation. In more extreme cases, we did another set of experiments.
As can be seen from the first four rows of data in Table 5, when fixed (m, n) = (10, 2) and p in order of
10, 20, 30, and 40, t Ave.Time, Ave.Iter, and Ave.Node are increasing and increasing rapidly, at which
point p is larger than n. From the last six rows of data in Table 5, we can also see that when p is much
less than n, the algorithm can obtain the globally optimal solution of the problem (LMP) in a short time,
and the performance of the algorithm is very sensitive to the size of p, which is mainly because our branch
operation is to branch the p-dimensional space Ŷk (it is the same as the definition in Section 2.3).

4.2.2. Testing of Random Problem (LMP2)

Through the previous experiments, we know the computational effect of OSBBRA, which is influenced
by (p, m, n). Next, we conducted numerical experiments on the special scheme (LMP2), and we fixed p = 2
to observe the effect of (m, n) on the algorithm. For the random generation scheme (LMP2), the algorithm
OSBBRA was compared with the calculated results in Ref. [19,41], and the related data are recorded in
Table 6. According to the method in Ref. [19], the normalized CPU running time and the number of
iterations of the problem (LMP2) with respect to the 10× 20 were obtained using the formula

Time(Iter) on m× n problem
Time (Iter) on 10× 20 problem

,

respectively, and the data are recorded in Table 7.

Mathematics 2020, 8, 315 30 of 34

Table 6. Computational results on (LMP2) (p = 2) and comparison with results reported in [19,41].

LMP2 Ref. [19] Ref. [41] OSBBRA

(m, n) Avg(Std)Time Avg(Std)Iter Avg(Std)Time Avg(Std)Iter Avg(Std)Time Avg(Std)Iter

(10, 20) 0.1 (0.1) 6.2 (4.3) 0.6062 (0.0695) 14.2 (1.5492) 0.2083 (0.3861) 2.6 (6.2561)
(20, 20) 0.2 (0.1) 7.0 (2.8) 0.8368 (0.0756) 17.4 (1.7127) 0.2814 (0.5504) 4.8 (6.9793)
(22, 20) 0.2 (0.1) 8.8 (4.2) 0.9460 (0.1235) 18.5 (1.9003) 0.3231 (0.9257) 6.0 (12.2564)
(20, 30) 0.3 (0.1) 8.0 (3.6) 1.0781 (0.0674) 19.9 (0.5676) 0.3302 (0.4899) 6.4 (7.4951)
(35, 50) 1.0 (0.4) 11.0 (3.5) 1.8415 (0.1338) 21.2 (0.4316) 0.4267 (0.8646) 8.1 (11.6772)
(45, 60) 1.2 (0.3) 13.3 (4.9) 2.4338 (0.1016) 23.0 (0.6667) 0.4867 (0.8930) 8.7 (14.2688)
(45, 100) 3.9 (1.2) 15.2 (6.0) 5.1287 (0.0935) 35.7 (1.1595) 0.6049 (0.9664) 11.9 (12.3809)
(60, 100) 5.6 (1.2) 14.8 (3.8) 6.8143 (0.1713) 36.1 (0.7379) 0.7955 (1.2783) 9.7 (12.9822)
(70, 100) 6.5 (3.0) 17.5 (7.2) 8.1967 (0.2121) 36.6 (1.2649) 0.8152 (1.3057) 8.3 (11.6638)
(70, 120) 9.0 (1.8) 17.2 (4.8) 9.5642 (0.2975) 39.1 (1.6633) 0.9693 (1.3529) 10.1 (14.6462)
(100, 100) 7.6 (1.0) 13.3 (4.3) 13.0578 (0.3543) 37.5 (2.1731) 1.1889 (1.2506) 11.1 (9.0549)
(102, 150) 15.9 (2.9) 24.8 (7.0) ∗ ∗ 1.7051 (0.9492) 12.6 (8.9361)
(102, 190) 21.4 (3.5) 28.4 (7.5) ∗ ∗ 1.8014 (1.7103) 8.4 (8.0443)
(72, 199) 18.3 (6.2) 25.5 (8.3) ∗ ∗ 1.5827 (2.1399) 9.7 (9.6171)
(110, 199) 22.7 (3.0) 21.7 (5.7) ∗ ∗ 2.9039 (4.1332) 9.7 (16.5476)

Table 7. Computational results of Normalized values on (LMP2).

(LMP2) Normalized Values(p = 2)

(m, n)
Ref. [19] Ref. [41] OSBBRA

(Avg)Time (Avg)Iter (Avg)Time (Avg)Iter (Avg)Time (Avg)Iter

(10, 20) 1 1 1 1 1 1
(20, 20) 1 1 1 1 1 2
(20, 30) 2 1 2 1 2 2
(45, 60) 8 2 4 2 2 3

(70, 100) 46 3 14 3 4 3
(100, 100) 54 2 22 2 6 4
(102, 150) 114 4 ∗ ∗ 8 5
(110, 199) 162 4 ∗ ∗ 14 4

First, the results of Table 6 show that the stability of our algorithm is not as good as the other two.
Table 7 shows that our algorithm has the best performance in the average case in terms of time, but, in
terms of the number of iterations, the performance of our algorithm OSBBRA in the average case is slightly
worse than that of the other two algorithms. When (m, n) = (110, 199), the matrix size of the solved
problem is 109 times larger than that of the basic problem, and the time used by the algorithm OSBBRA is
only 14 times larger than that of the basic problem. Whereas the algorithm in Ref. [19] used 162 times
more time than the basic problem. In the case of (m, n) = (100, 100), we solved the problem with only
six times the time of the fundamental problem, which is 50 times larger than the fundamental problem
in terms of the size of the constraint matrix, whereas the algorithm of Ref. [41] takes 22 times the time,
and the algorithm of Ref. [41] takes 54 times the time.

To sum up, the algorithm OSBBRA has less computational time increase than the algorithms in
Ref. [19,41], in this particular case of fixed p = 2. In the next subsection, we take the case of p = 2 as the
basic problem to test the the growth of computing time requirements of algorithm OSBBRA compared to
the Ref. [19].

Mathematics 2020, 8, 315 31 of 34

4.2.3. Testing of Random Problem (LMP3)

The results in Section 4.2.2 show that, in the case of p = 2, our algorithm OSBBRA takes far less time
to solve a relatively large-scale problem than the algorithm in Ref. [19], but less stable. In this subsection,
we use a stochastic scheme (LMP3) with a wider range of values of random coefficients to verify the
growth of computing time requirements (measured by rp, and the definition of rp is given below) of our
algorithm based on the premise of p = 2. In addition, To better contrast with Ref. [19] and reduce the
problem of unnecessary computation, we simply extracted the data that can be compared in Ref. [19] and
used our algorithm to calculate, and record the experimental results in Table 8, while recording the values
of rp in Table 9. For p = 2, 3, 4 and 5, rp was obtained by calculating the formula

rp =
AvgTime f or p = i
AvgTime f or p = 2

.

Table 8. Computational results on (LMP3) and comparison with results reported in [19].

p (m, n) Ref. [19] OSBBRA
Avg(Std)Time Avg(Std)Iter Avg(Std)Time Avg(Std)Iter

2 (20, 30) 0.3(0.1) 9.0(3.1) 0.1(0.1) 2.3(5.5)
(100, 100) 5.8(2.0) 17.5(8.5) 0.4(1.2) 2.5(7.5)
(120, 120) 8.9(2.7) 15.8(6.8) 0.9(1.8) 3.0(7.4)
(200, 200) 50.1(13.0) 25.8(6.2) 8.8(22.6) 8.3(18.6)

3 (20, 30) 0.8(0.3) 39.4(20.2) 0.2(0.9) 2.3(6.6)
(100, 100) 25.6(9.6) 90.6(24.4) 1.2(3.4) 7.8(23.2)
(120, 120) 35.3(10.0) 82.1(40.9) 2.1(6.5) 6.3(21.3)
(200, 200) 149.0(60.2) 87.3(46.9) 18.8(92.4) 9.9(43.1)

4 (20, 30) 2.6(0.8) 158.2(64.8) 0.2(1.2) 7(56.9)
(100, 100) 61.0(21.1) 243.8(117.8) 5.7(50.0) 17.9(160.3)
(120, 120) 94.2(23.3) 271.4(70.2) 17.2(94.5) 35.3(186.4)
(200, 200) 396.3(189.4) 301.4(171.7) 127.0(812.3) 47.6(301.1)

5 (20, 30) 6.0(2.0) 370.8(108.2) 0.4(3.3) 13.9(122.3)
(100, 100) 197.9(38.4) 830.8(148.3) 16.5(152.3) 56.7(528.4)
(120, 120) 245.4(97.0) 686.0(285.2) 21.5(196.0) 46.4(430.7)
(200, 200) 1381.1(860.1) 1047.5(693.1) 122.8(1137.1) 52.4(491.5)

Table 9. Computational results on (LMP3) and comparison with results reported in [19].

(LMP3) Normalized AvgTime

(m, n) Ref. [19] OSBBRA
r2 r3 r4 r5 r2 r3 r4 r5

(20,30) 1 3 10 23 1 2 2 4
(100,100) 1 4 10 34 1 3 14 41
(120,120) 1 4 11 28 1 2 19 24
(200,200) 1 3 8 28 1 2 14 14

The calculated results in Table 8 show that the stability of OSBBRA is still poor, which also has an
effect on the value of rp. Our algorithm is particularly sensitive to the values of p, as can be seen from
the experimental data and analysis in Tables 4 and 5, and in the case of p = 2, 3 or (m, n) = (20, 30) the
growth of computing time requirements is slower. In the case of (m, n) = (100, 100), (120, 120), (200, 200)
and p = 4, 5, the growth of computing time requirements increases. However, when (m, n) = (200, 200),
the growth of computing time requirements for p = 5 is similar to that for p = 4, but the random coefficient

Mathematics 2020, 8, 315 32 of 34

values are diverse, and the stability of our algorithm is slightly poor; it is also acceptable to produce such
a result. Furthermore, the results in Table 9 show that the computational requirements of the algorithm
OSBBRA increase more rapidly than those of [19] only in (p, m, n) = (4, 100, 100), (4, 120, 120), (4, 200, 200),
and (5, 100, 100). When n is relatively large compared to p, the value of rp is relatively small, which is
because our algorithm has a distinct advantage in solving this case. The results of Tables 4 and 5 also show
that, in the case of p � n, the growth of computing time requirements of the algorithm grows slowly,
which also implies in another aspect the reason the value of rp in Table 9 is relatively small, which also
means that our algorithm has obvious advantages in solving this case.

From the experimental results in Sections 4.2.1–4.2.3, we can summarize that our algorithm compared
with other algorithms is characterized by the high accuracy of the calculated optimal value, slightly poor
stability, and the computational effect of solving large-scale problems with high dimensions in the case of
p� n is more advantageous than other algorithms. In fact, in practical problems, the numerical size of p
in problem (LMP) is generally not more than 10, and the dimension n of decision variable is much larger
than p. In the process of branching, the number of vertices of the divided p−dimensional rectangle is 2p,
which is very small compared with the n−dimensional hyper-rectangle with the partition number of 2n,
which is the main reason our algorithm performs better than those in Ref. [19,27,38,41] in solving this kind
of large-scale problems. We can also see from Theorem 5 in Ref. [44] that p and n affect the convergence
rate of the output space algorithm.

5. Conclusions

In this paper, an output-space branch-and-bound reduction algorithm (OSBBRA) is proposed to
solve the problem (LMP). Based on a new bilinear function relaxation technique, the linear relaxation
problem of the equivalent problem (EP) is constructed, and other related parts of the algorithm OSBBRA
(Bounding operation, Branching operation and rectangle-reducing operation) are given. In Section 4,
the feasibility, effectiveness, and other performance metrics of the algorithm are fully illustrated by a large
number of numerical experiments, and it is pointed out that the algorithm is more effective in solving
high-dimensional problems under the condition of p� n. The method in this paper can also be directly
extended and used to solve the linear maximum multiplicative programming problem. In a broader sense,
it can also be indirectly promoted, and we will also consider this issue in future academic research.

Author Contributions: B.Z. and Y.G. conceived of and designed the study. B.Z. and X.L. performed the experiments.
B.Z. wrote the paper. Y.G. and X.H. reviewed and edited the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China under Grant (11961001),
the Construction Project of first-class subjects in Ningxia higher Education (NXY LXK2017B09), and the major
proprietary funded project of North Minzu University (ZDZX201901).

Acknowledgments: The authors are grateful to the responsible editor and the anonymous references for their valuable
comments and suggestions, which have greatly improved the earlier version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

LMP linear multiplicative programming
EP equivalent nonlinear programming
LRP linear relaxation programming
T transpose of a vector or matrix

Mathematics 2020, 8, 315 33 of 34

References

1. Maranas, C.D.; Androulakis, I.P.; Floudas, C.A.; Berger, A.J.; Mulvey, J.M. Solving long-term financial planning
problems via global optimization. J. Econ. Dyn. Control 1997, 21, 1405–1425. [CrossRef]

2. Konno, H.; Shirakawa, H.; Yamazaki, H. A mean-absolute deviation-skewness portfolio optimization model.
Ann. Oper. Res. 1993, 45, 205–220. [CrossRef]

3. Nicholas, R.; Layard, P.R.G.; Walters, A.A. Microeconomic Theory. Economica 1980, 47, 211.
4. Mulvey, J.M.; Vanderbei, R.J.; Zenios, S.A. Robust Optimization of Large-Scale Systems. Oper. Res. 1995, 43,

264–281. [CrossRef]
5. Bennett, K.P. Global tree optimization: A non-greedy decision tree algorithm. Comput. Sci. Stat. 1994, 26, 156.
6. Benson, H.P. Vector maximization with two objective functions. J. Optim. Theory Appl. 1979, 28, 253–257.

[CrossRef]
7. Dennis, D.F. Analyzing Public Inputs to Multiple Objective Decisions on National Forests Using Conjoint

Analysis. For. Sci. 1998, 44, 421–429.
8. Dorneich, M.C.; Sahinidis, N.V. Global optimization algorithms for chip layout and compaction. Eng. Optim.

1995, 25, 131–154. [CrossRef]
9. Kuno, T. Globally determining a minimum-area rectangle enclosing the projection of a higher-dimensional set.

Oper. Res. Lett. 1993, 13, 295–303. [CrossRef]
10. Mititelu, Ş.; Treanţǎ, S. Efficiency conditions in vector control problems governed by multiple integrals. J. Appl.

Math. Comput. 2018, 57, 647–665. [CrossRef]
11. Treanţǎ, S. On Locally and Globally Optimal Solutions in Scalar Variational Control Problems. Mathematics 2019,

7, 829. [CrossRef]
12. Treanţǎ, S. Multiobjective fractional variational problem on higher-order jet bundles. Commun. Math. Stat. 2016,

4, 323–340. [CrossRef]
13. Treanţǎ, S. On a new class of vector variational control problems. Numer. Funct. Anal. Optim. 2018, 39, 1594–1603.

[CrossRef]
14. Saghand, P.G.; Charkhgard, H.; Kwon, C. A branch-and-bound algorithm for a class of mixed integer linear

maximum multiplicative programs: A bi-objective optimization approach. Comput. Oper. Res. 2019, 101, 263–274.
[CrossRef]

15. Grötschel, M.; Lovász, L.; Schrijver, A. Geometric Algorithms and Combinatorial Optimization; Springe: Berlin,
Germany, 1988.

16. Charkhgard, H.; Savelsbergh, M.; Talebian, M. A linear programming based algorithm to solve a class of
optimization problems with a multi-linear objective function and affine constraints. Comput. Oper. Res. 2018, 89,
17–30. [CrossRef]

17. Matsui, T. NP-Hardness of linear multiplicative programming and related problems. J. Glob. Optim. 1996, 9,
113–119. [CrossRef]

18. Kuno, T. A finite branch-and-bound algorithm for linear multiplicative programming. Appl. Math. Comput. 2001,
20, 119–135.

19. Ryoo, H.S.; Sahinidis, N.V. Global optimization of multiplicative programs. J. Glob. Optim. 2003, 26, 387–418.
[CrossRef]

20. Kuno, T. Solving a class of multiplicative programs with 0-1 knapsack constraints. J. Optim. Theory Appl. 1999,
103, 121–135. [CrossRef]

21. Benson, H.P. An outcome space branch and bound-outer approximation algorithm for convex multiplicative
programming. J. Glob. Optim. 1999, 15, 315–342. [CrossRef]

22. Jiao, H. A branch and bound algorithm for globally solving a class of nonconvex programming problems.
Nonlinear Anal. Theory Methods Appl. 2009, 70, 1113–1123. [CrossRef]

23. Chen, Y.; Jiao, H. A nonisolated optimal solution of general linear multiplicative programming problems. Comput.
Oper. Res. 2009, 36, 2573–2579. [CrossRef]

http://dx.doi.org/10.1016/S0165-1889(97)00032-8
http://dx.doi.org/10.1007/BF02282050
http://dx.doi.org/10.1287/opre.43.2.264
http://dx.doi.org/10.1007/BF00933245
http://dx.doi.org/10.1080/03052159508941259
http://dx.doi.org/10.1016/0167-6377(93)90052-I
http://dx.doi.org/10.1007/s12190-017-1126-z
http://dx.doi.org/10.3390/math7090829
http://dx.doi.org/10.1007/s40304-016-0087-0
http://dx.doi.org/10.1080/01630563.2018.1488142
http://dx.doi.org/10.1016/j.cor.2018.08.004
http://dx.doi.org/10.1016/j.cor.2017.07.015
http://dx.doi.org/10.1007/BF00121658
http://dx.doi.org/10.1023/A:1024700901538
http://dx.doi.org/10.1023/A:1021725517203
http://dx.doi.org/10.1023/A:1008316429329
http://dx.doi.org/10.1016/j.na.2008.02.005
http://dx.doi.org/10.1016/j.cor.2008.11.002

Mathematics 2020, 8, 315 34 of 34

24. Shen, P.; Bai, X.; Li, W. A new accelerating method for globally solving a class of nonconvex programming
problems. Nonlinear Anal. Theory Methods Appl. 2009, 71, 2866–2876. [CrossRef]

25. Wang, C.F.; Liu, S.Y.; Shen, P.P. Global minimization of a generalized linear multiplicative programming. Appl.
Math. Model. 2012, 36, 2446–2451. [CrossRef]

26. Wang, C.F.; Bai, Y.Q.; Shen, P.P. A practicable branch-and-bound algorithm for globally solving linear
multiplicative programming. Optimization 2017, 66, 397–405. [CrossRef]

27. Gao, Y.; Xu, C.; Yang, Y. An outcome-space finite algorithm for solving linear multiplicative programming. Appl.
Math. Comput. 2006, 179, 494–505. [CrossRef]

28. Kuno, T.; Yajima, Y.; Konno, H. An outer approximation method for minimizing the product of several convex
functions on a convex set. J. Glob. Optim. 1993, 3, 325–335. [CrossRef]

29. Pardalos, P.M. Polynomial time algorithms for some classes of constrained quadratic problems. Optimization
1990, 21, 843–853. [CrossRef]

30. Liu, X.J.; Umegaki, T.; Yamamoto, Y. Heuristic methods for linear multiplicative programming. J. Glob. Optim.
1999, 15, 433–447. [CrossRef]

31. Benson, H.P.; Boger, G.M. Multiplicative programming problems: Analysis and efficient point search heuristic.
J. Optim. Theory Appl. 1997, 94, 487–510. [CrossRef]

32. Benson, H.P.; Boger, G.M. Outcome-space cutting-plane algorithm for linear multiplicative programming.
J. Optim. Theory Appl. 2000, 104, 301–332. [CrossRef]

33. Konno, H.; Kuno, T.; Yajima, Y. Global minimization of a generalized convex multiplicative function. J. Glob.
Optim. 1994, 4, 47–62. [CrossRef]

34. Konno, H.; Yajima, Y.; Matsui, T. Parametric simplex algorithms for solving a special class of nonconvex
minimization problems. J. Glob. Optim. 1991, 1, 65–81. [CrossRef]

35. Van Thoai, N. A global optimization approach for solving the convex multiplicative programming problem.
J. Glob. Optim. 1991, 1, 341–357. [CrossRef]

36. Youness, E.A. Level set algorithm for solving convex multiplicative programming problems. Appl. Math. Comput.
2005, 167, 1412–1417. [CrossRef]

37. Liu, S.; Zhao, Y. An efficient algorithm for globally solving generalized linear multiplicative programming.
J. Comput. Appl. Math. 2016, 296, 840–847. [CrossRef]

38. Shao, L.; Ehrgott, M. Primal and dual multi-objective linear programming algorithms for linear multiplicative
programmes. Optimization 2016, 65, 415–431. [CrossRef]

39. Peiping, S.; Lufan, W. A Fully Polynomial Time Approximation Algorithm for Generalized Linear Multiplicative
Programming. Math. Appl. 2018, 31, 208–213.

40. Benson, H.P. Decomposition branch-and-bound based algorithm for linear programs with additional
multiplicative constraints. J. Optim. Theory Appl. 2005, 126, 41–61. [CrossRef]

41. Wang, C.F.; Liu, S.Y. A new linearization method for generalized linear multiplicative programming. Comput.
Oper. Res. 2011, 38, 1008–1013. [CrossRef]

42. Shen, P.; Huang, B. Global algorithm for solving linear multiplicative programming problems. Optim. Lett. 2019,
2019, 1–18. [CrossRef]

43. Sahinidis, N. BARON User Manual v.19.7.13 [EB/OL]. 2019. Available online: http://minlp.com (accessed on
7 November 2019).

44. Liu, X.; Gao, Y.L.; Zhang, B.; Tian, F.P. A New Global Optimization Algorithm for a Class of Linear Fractional
Programming. Mathematics 2019, 7, 867. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.na.2009.01.142
http://dx.doi.org/10.1016/j.apm.2011.09.002
http://dx.doi.org/10.1080/02331934.2016.1269765
http://dx.doi.org/10.1016/j.amc.2005.11.111
http://dx.doi.org/10.1007/BF01096774
http://dx.doi.org/10.1080/02331939008843615
http://dx.doi.org/10.1023/A:1008308913266
http://dx.doi.org/10.1023/A:1022600232285
http://dx.doi.org/10.1023/A:1004657629105
http://dx.doi.org/10.1007/BF01096534
http://dx.doi.org/10.1007/BF00120666
http://dx.doi.org/10.1007/BF00130830
http://dx.doi.org/10.1016/j.amc.2004.08.028
http://dx.doi.org/10.1016/j.cam.2015.11.009
http://dx.doi.org/10.1080/02331934.2015.1051534
http://dx.doi.org/10.1007/s10957-005-2655-4
http://dx.doi.org/10.1016/j.cor.2010.10.016
http://dx.doi.org/10.1007/s11590-018-1378-z
http://minlp.com
http://dx.doi.org/10.3390/math7090867
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Output-Space Branch-and-Bound Reduction Algorithm for (LMP)
	Convert (LMP) into an Equivalent Problem (EP)
	Novel Linear Relaxation Approach
	Subdivision and Refinement of Hyper-Rectangle
	Reduction of the Hyper-Rectangle
	Output-Space Branch-and-Bound Reduction Algorithm

	Analysis of the Computational Complexity of the Algorithm
	Numerical Examples
	Feasibility Tests
	Testing of Random Problems
	Testing of Random Problem (LMP1)
	Testing of Random Problem (LMP2)
	Testing of Random Problem (LMP3)

	Conclusions
	References

