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Abstract: Fractional calculus is a couple of centuries old, but its development has been less embraced
and it was only within the last century that a program of applications for physics started. Regarding
quantum physics, it has been only in the previous decade or so that the corresponding literature
resulted in a set of defying papers. In such a context, this manuscript constitutes a cordial invitation,
whose purpose is simply to suggest, mostly through a heuristic and unpretentious presentation, the
extension of fractional quantum mechanics to cosmological settings. Being more specific, we start
by outlining a historical summary of fractional calculus. Then, following this motivation, a (very)
brief appraisal of fractional quantum mechanics is presented, but where details (namely those of
a mathematical nature) are left for literature perusing. Subsequently, the application of fractional
calculus in quantum cosmology is introduced, advocating it as worthy to consider: if the progress of
fractional calculus serves as argument, indeed useful consequences will also be drawn (to cite from
Leibnitz). In particular, we discuss different difficulties that may affect the operational framework
to employ, namely the issues of minisuperspace covariance and fractional derivatives, for instance.
An example of investigation is provided by means of a very simple model. Concretely, we restrict
ourselves to speculate that with minimal fractional calculus elements, we may have a peculiar tool to
inspect the flatness problem of standard cosmology. In summary, the subject of fractional quantum
cosmology is herewith proposed, merely realised in terms of an open program constituted by several
challenges.
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1. Historical (Introduction)

Fractional calculus follows from a question [1]: Can the meaning of derivatives (of integral order
dny
dxn

)
be extended to have the case where n is any number, i.e., irrational, fractional or complex?

L’Hospital asked Leibnitz (Leibnitz invented the above notation) about the possibility that n be a
fraction, who, delphically, then suggested “(. . . ) useful consequences will be drawn.” As if complying
to the oracle, Lacroix later advocated the formula (Γ is Legendre’s symbol, a generalized factorial)

d
1
2 y

dx
1
2
=

Γ(a + 1)

Γ
(

a + 1
2

) xa− 1
2 , (1)
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which expresses the derivative of order 1/2 of the function xa. For y = x

d
1
2 x

dx
1
2
=

2
√

x√
π

. (2)

Abel applied fractional calculus to the tautochrone problem [1], whose elegant solution enthused
Liouville. Riemann while a student set the path to the present day Riemann-Liouville definition of a
fractional derivative [1].

Nonetheless, fractional calculus is not yet generally known. The challenge is to establish results,
serving as justifications, so as to lead and popularize the topic. This would, hopefully, further
enthuse scientists to either explore or apply it into their research. Fractional calculus has assisted
in rheology, quantitative biology, electrochemistry, scattering theory, diffusion, transport theory,
probability, potential theory and elasticity [1]. Thus, whereas the theory of fractional calculus has been
developing, its subsequent use needs encouragement, specifically towards physical phenomena that
can be treated with the elegance of fractional calculus [2,3].

Therefore, it was only sensible to embrace fractional calculus and explore it within quantum
mechanics, which has led to very interesting features indeed (we mention the possibility of relating
fractal features to fractional (quantum) mechanics, see [4] and references therein) cf. [4–8], see also [9,10].
As we will briefly point out, a generalized path integral lays importantly at the essence of fractional
quantum mechanics [4].

On the other hand, it has been established how the Wheeler–DeWitt equation, a paradigmatic tool
in quantum cosmology, can be assembled from the Brownian–Feynman path integral [11–13] So, could
that procedure (the generalized path integral, central in fractional quantum mechanics) be extended
towards a fractional (minisuperspace) quantum cosmology set-up? What would be the obstacles to
address? Should heuristic insights be taken aboard, providing complementary targets to investigate?
Trustfully, importing from Leibnitz’s omen [1], useful consequences would be drawn, whatever the
conclusions to be extracted.

The paper is organized as follows. In Section 1 a very brief historical summary of fractional
calculus is presented; an outstanding review can be found in [1], but we also suggest [4]. Fractional
quantum mechanics (and calculus) is unveiled in Section 2, constituting now a subject with a vast
domain and whose literature is getting wider; for further technical aspects, we suggest the works [4,6]
indicated in the bibliography. Then, in Section 3, we describe a few features of quantum cosmology
and path integral formalism [11,12], in particular discussing them within the scope of a (general) path
integral, that intrinsically assists fractional quantum mechanics [4,6,9,10]. In Section 4 we speculate on
the application of fractional calculus in quantum cosmology. An example is heuristically provided,
whereby we only consider (as application) the flatness problem of standard cosmology. Finally,
in Section 5 we conclude the work and speculate on future challenges to be addressed.

2. Fractional Quantum Mechanics

Canonically, the Hamiltonian function has the form

H(p, r) :=
p2

2m
+ V(r), (3)

where p and r are, respectively, the momentum and space coordinate of a particle with mass m and V(r)
is the potential energy. Quantum mechanically, p and r become operators p̂ and r̂ and the Hamiltonian
proceeds towards

Ĥ(p̂, r̂) :=
p̂2

2m
+ V̂(r̂), (4)

where V̂(r̂) is the potential energy operator.
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As in the previous section, let us import another quite ‘unexpected’ question: are there other
forms (for the kinematic term in Equations (3) and (4)) which do not contradict the fundamental
principles of classical mechanics and quantum mechanics [4]?

In essence, addressing that challenge has been achieved and let us present a very succinct
summary. Being more concrete, fractional quantum mechanics emerged from a generalized path
integral framework, from which a (generalized) fractional Schrödinger equation can extracted [4,6,9,10].
So, as far as the current approach to fractional quantum mechanics is concerned, it is necessary to
consider two stages. On the one hand, to widen the tooling range from the straight, albeit useful,
canonical methodology, towards the language of the path integral. The canonical representation and
the path integral description are inter-related [13]. For instance, the Schrödinger equation follows from
either. Nevertheless, the path integral is far wider as operational application (allowing to sum different
paths; for example, different geometries within distinctive topological classes, concerning quantum
cosmology). On the other hand, to navigate the path integral within fractional calculus, we need to
employ the larger context of Lévy paths.

2.1. Lévy Paths

Lévy and Brownian paths (the latter is a particular case of the former) are associated with stochastic
(or Wiener) processes, with segment-like motion proceeding between spatial points, described from
a few mathematical assumptions. Namely, some degree of continuity (for the Brownian process)
or not at all: Brownian motion has continuous paths, whereas others (fitting within the wide Lévy
scope) may not. The admission of ‘jumps’ in the wider Lévy (and not Brownian) context for paths,
has been of interest in exploring, namely in quantum physics [4]. If the reader is interested, please
consult [2,4,6,14–16] and references therein.

A brief selection of a few particulars follows [14]:

• Feynman’s path integral operates over Brownian-like paths. Nevertheless, Brownian motion
is a special case of α-stable (In probability theory, a distribution is said to be stable if a linear
combination of two independent random variables with this distribution has the same distribution;
please see [14]) probability distributions;

– Will the sum of N independent identically distributed random quantities X = X1 + X2 +

· · ·+ XN have the same probability distribution as each single pi(Xi), i = 1,. . . N ?
– Each pi(Xi) proceeds to be a Gaussian (cf. central limit theorem);
– Furthermore, a sum of N Gaussian functions is again a Gaussian.

• However, there exist the possibility to generalize the central limit theorem;

– There is a class of non-Gaussian α-stable probability distributions, bearing a parameter α,
designated as Lévy index, with range as 0 < α ≤ 2;

– When α = 2, we recover Brownian motion (If the fractal dimension [4] of the Brownian path
is d f ractal = 2, then the Lévy motion has fractal dimension d = α, where α now 1 < α ≤ 2)

Therefore, the Lévy index α would become a fundamental parameter in (fractional) classical and
quantum mechanics. And with a distinction between the (fractal) dimensions of the Brownian and
Lévy paths [4], that would imply significant differences concerning the behaviour of physical systems.

Let us mention, also briefly, that having been pursued within applied mathematics domains,
fractional quantum mechanics has not been systematically explored with a view towards laboratory
experiments. Nevertheless, discussions and papers have emerged; references [17,18] constitute a
sample from the literature, although not reporting actual work, directly involving fractional quantum
features. Specifically, in [17], solid state physics was regarded, involving the effective mass m(k),
in concrete Bose-Einstein condensate systems. To the best of our knowledge, virtually no concrete
observational or experimental progress has been attempted; solely theoretical features and a few
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quantities with specific formulae or ranges were computed. Fractional quantum mechanics has not yet
been tested, but it is falsifiable plus consistent, in that includes standard quantum mechanics (as clear
limiting cases through parameter variation).

2.2. (Quantum) Mechanics

The Hamiltonian function specifically becomes Hα(p, r), as

Hα(p, r) := Dα|p|α + V(r), 1 < α ≤ 2, (5)

with Dα being a coefficient. We stress that Lévy path integrals allow to generalize standard quantum
mechanics, based on the well-known Feynman path integral: the latter yields the Schrödinger equation,
whereas the former (over Lévy trajectories) leads to the corresponding fractional Schrödinger equation.

Therefore, let us just unveil that the fractional Schrödinger equation will include a derivative over
spatial coordinates but of order α, instead of the usual second order space derivative.

The operators are introduced as follows,

E→ ih̄
∂

∂t
, p→ −ih̄∇, (6)

with, as usual, ∇ = ∂
∂r and h̄ being Planck’s constant over 2π. The fractional Schrödinger equation is

written as

ih̄
∂ψ(r, t)

∂t
= Ĥα(p̂, r̂)ψ(r, t) := Dα(−h̄2∆)α/2ψ(r, t) + V(r, t)ψ(r, t), (7)

with 1 < α ≤ 2 and (−h̄2∆)α/2 being a generalization of the fractional (quantum) Riesz derivative [4],
written as

(−h̄2∆)α/2ψ(r, t) =
1

(2πh̄)3

∫
d3 pei p·r

h̄ |p|α ϕ(p, t), (8)

by means of Fourier transforms, to relate ψ(r, t) and ϕ(p, t); ∆ is the Laplacian. For the special case
when α = 2 and D2 = 1/2m, where m is the particle mass (Extracting from [19], in Brownian-like
motion a diffusion constant D is associated, proportional to h̄, as h̄ = DM, M with mass dimensions,
varying from case (i.e., particle) to case. M can be matched experimentally with good accuracy to the
inertial mass; the inertial mass (equal to the gravitational mass) would thus be associated with the
‘quantum’ mass and both originating from energy momentum tensor emerging in the Wheeler–DeWitt
equation), we recover the standard Schrödinger equation.

Before proceeding, let us mention a pertinent aspect within fractional calculus. From a purely
mathematical point of view, the use of dimensions and hence of homogeneity within formulae
with dimensional quantities (physical observables) is meaningless. However, this may be different
if proceeding eventually towards equations for a physical system to be tested. This issue could
become of importance when bringing fractional quantum mechanics (and cosmology) towards realistic
experiments. It would be therefore of relevance to investigate issues of dimensionality arising from
fractional derivatives; if (and how), they could become hidden in the constants, taken as parameters to
fit. Cf. e.g., [20,21].

2.3. The Case of Hα = 0

Let us very briefly comment on the special case [4] when the Hamiltonian Hα does not depend
explicitly on the time (Although the content in this subsection is entirely non-relativistic (see [4]), this
case study is of interest (strictly in formal terms, we emphasize) in quantum cosmology, whereby the
Wheeler–DeWitt equation also bears a H = 0 character, albeit quite different in context and meaning)
Accordingly, there exist the solution of the form (we take the one-dimensional case for ease of notation)

ψ(x, t) = exp
(
− iEt

h̄

)
φ(x), (9)
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where φ(x) satisfies (please cf. [4] for details)

Hαφ(x) := −Dα(h̄∇)αφ(x) + (V(x)− E)φ(x) = 0, (10)

with, recalling, 1 < α ≤ 2.
Equation (10) is the time-independent fractional Schrödinger equation. Likewise, we could

speculate and assign, in this ‘fractional’ context, the probability to find a particle at x as the absolute
square of the wave function |ψ|2 or |φ|2, as above.

2.4. Harmonic Oscillator and Beyond

A physical application of traditional fruitfulness is with a potential given by [4]

V(|ri − rj|) ' |ri − rj|β, (11)

with β > 0.
The corresponding fractional Hamiltonian operator Hα,β is provided as

Hα,β = Dα(−h̄2∆)α/2 + |r|β. (12)

For the special case, when α = β, assuming 1 < α ≤ 2, the Hamiltonian can be considered as the
fractional generalization of the harmonic oscillator Hamiltonian of standard quantum mechanics.

The one-dimensional fractional oscillator [4] provides pertinent semiclassical features. Setting
E ≡ Dα|p|α + |x|β, remembering that |p| = 0 at the turning points, the standard Bohr-Sommerfeld
quantization rule instructs to take

2πh̄
(

n +
1
2

)
=
∮

pdx = 4
∫ xm

0
pdx = 4

∫ xm

0
D−1/α

α (E− |x|β)1/αdx, (13)

where
∮

indicates the integral over one complete period of the classical motion; xm ∼ E1/β is the
turning point of classical motion. There are turning points at |x| = xm and the integral in (13) is from 0
to xm, not in between the turning points. The latter would make a factor of 2 to be used but in (13),
a different description was clearly taken; please see [4,13].

The energy can be presented as

En =

 πh̄βD1/α
α

2B
(

1
β , 1

α + 1
)


αβ
α+β (

n +
1
2

) αβ
α+β

(14)

and for α = β = 2 we recover the result (The B-function is defined by B(u, v) =
∫ 1

0 dyyu−1(1− y)v−1)
of the standard quantum mechanical oscillator. It is curious to emphasize that for

1
α
+

1
β
= 1, (15)

the spectrum is equidistant, and that when assuming 1 < α, β ≤ 2, that is only allowed for α = β = 2.

2.5. Tunneling

The tunneling of a particle is a paradigmatic feature of quantum mechanics. The tunneling
problem within fractional quantum mechanics has been solved for various potential configurations
(cf. [9,10] and references therein). Interestingly, the Hartman effect (concretely, the tunneling time
being independent of the width of the barrier for sufficient thickness) seems non-existent in fractional
quantum mechanics [4,9,10]. In particular, for a square barrier with potential V(x) = V (V a constant)



Mathematics 2020, 8, 313 6 of 15

confined to 0 ≤ x ≤ b and zero elsewhere, the general solution of the corresponding fractional
Schrödinger equation is

ψ(x) =


Aeikα + BAe−ikα , x < 0,
C cos kα + D sin kα, 0 < x < b,
Feikα + Ge−ikα , x > b,

(16)

where

kα =

(
E

Dα h̄α

) 1
α

(17)

and

kα =

(
E−V
Dα h̄α

) 1
α

. (18)

From (16)–(18) (or the explicit expressions associated with other potentials and cases) we can extract,
e.g., transmission coefficients, depending on α [9,10].

The essential feature to bear in mind is that in fractional quantum mechanics the path integral is
taken over Lévy paths, meaning a higher probability for particles to travel farther per ‘jump’ in contrast
to Brownian–Feynman paths [4,6,9,10]. This emerges from the fact that Lévy paths are generalizations
of Brownian-segments, meaning that they account for probability distributions, allowing infinite
variance and inducing a non-negligible probability to reach far away points over a longer step,
in comparison to the standard ones from Brownian–Feynman’s (cf. [4,6,9,10,14]).

Another interesting feature is retrieved in the case of delta and double-delta [10] potential: There
is tunneling, even at zero energy. This comes from the application of the uncertainty principle, which
in fractional quantum mechanics is [10]

〈|∆x|µ〉
1
µ 〈|∆px|µ〉

1
µ >

h̄

(2α)
1
µ

, (19)

with µ < α, 1 < α ≤ 2; the standard quantum mechanics expression is recovered for µ = α = 2. It
should then be noticed that for E = 0, we can have energies as

∆E ∼ 〈|∆p|µ〉
2
µ

2m
, (20)

with momentum 〈|∆p|µ〉
1
µ .

3. Quantum Cosmology and (General) Path Integral

Generically, a relationship between the canonical (specifically, Dirac-like) and path-integral
quantization was discussed in [11,12] for minisuperspace models (i.e., quantum cosmology). Merely
extracting and summarizing the essential guideline from the abstract in [11], let us add the main point.
It was shown that the path-integral framework allowed to obtain expressions, that were shown to
satisfy the constraints, namely the Wheeler–DeWitt equation. Notwithstanding the significant and
fundamental contribution from [11], a derivation of the Wheeler–DeWitt equation in full quantum
gravity was not given, either there or elsewhere [11,12]. Moreover, criticisms and appraisals were
raised for other (strictly formal) approaches and papers therein cited, concerning their purposes.

On the grounds of the results obtained in [11] as well as the framework constructed for such,
we can (in view of the previous sections) ponder on the surmise towards using Lévy paths in the
context of minisuperspace cosmology. Concretely, investigating if a fractional quantum cosmology,
with a (consistently) generalized Wheeler–DeWitt equation, can be obtained. In more detail, this
would mean extending the general path integral (at the basis of the current line conveying fractional
quantum mechanics) towards minisuperspace configurations. In other words, exploring if the notion
of Lévy paths can be used thereby. The task of ascending this summit would be immense, if we
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aim at retrieving a generalized (fractional) version for the Wheeler–DeWitt equation, in view of the
obstacles described in [11,12]. Hence, it would either be this route or, instead, perhaps complementary
heuristic insights could be employed, to provide any meaningful results (or at least, useful bearings)
to guide us.

In line with the previous paragraph, let us moreover add the following. In the procedure to
retrieve the Schrödinger equation, within the Brownian–Feynman path integral (for standard quantum
mechanics), segments as xi(t), denoting spatial coordinates in classical time, are used. Whereas a
relativistic extension could presume the use of space-time coordinates Xµ(τ), τ an affine parameter (or
just a proper time) for word-line segments in a Minkoswskian framework (assuming no curvature
effects); the symmetries in the former would be merely translations and spatial rotations, whereas in
the latter Lorentzian boosts would be necessary. If including curvature, then generic diffeomorphisms
would be required.

4. Fractional Quantum Cosmology: An Heuristic Approach

This section bears twofold content. On the one hand, in Section 4.1 we speculate how a
fractional Wheeler–DeWitt could be written. We take, if we can express ourselves in these terms,
a ’mathematically heuristic’ stand: it advances a discussion, declared not to be optimal, but which is
nevertheless able to bring issues to ponder about. On the other hand, in Section 4.2 we try to be a bit
more savvy. Establishing a perfect setting to investigate is impractical and thus, heuristic methods are
instead used to finding a simple case for discussion. These are shortcuts that ease our analysis, we do
declare it.

4.1. Speculating about a Fractional Wheeler–DeWitt Equation

An extension of Lévy paths towards a description of relativistic space-time (or even a
(mini)superspace) is still quite absent. Therefore, much that can be proposed meanwhile is entirely
heuristic, some in the form of ‘educated guesses’, which is what convey in this subsection.

In most of fractional quantum mechanics, the energy operator still merely becomes ∂
∂t (as in the

usual set up), whereas the Laplacian instead becomes (see Equations (7) and (8))

Dα

(
−h̄2∆

) α
2 ≡ Dα

(
−h̄2 ∑

i

∂2

∂x2
i

) α
2

. (21)

However, the Wheeler–DeWitt is (formally) a Klein–Gordon-like equation. In particular,
the d’Alembertian can be cast (simplified) as (It is important to remember that the Schrödinger
equation is a variant of the ‘heat equation’ i.e., a parabolic type of PDE, whereas the Klein–Gordon is a
wave equation, an hyperbolic PDE (which upon Wick rotation can become elliptic); this characteristic
is shared by the Wheeler–DeWitt equation for quantum cosmology. This is pertinent, in terms of
proceeding to either extract it from a suitable Lévy process or, as we discuss in this section, heuristically
build a suitable quantum cosmological framework for that. Concerning the latter, the nature of
the mathematical PDE types, plus bearing a (classical) Euclidean space or a ‘relativistic’ Lorentzian
signature for minisuperspace is of importance. All this can be relevant when opting to discuss a
whole fractional Wheeler–DeWitt equation or, instead, just a fractional Schrödinger equation, bearing
gravitational quantum induced corrections [19]. In addition, expression (21) bears an Euclidean
signature, whereas in (22) a Lorentzian (Riemannian) manner widens the scope) , e.g.,

� ≡ − ∂2

∂a2 + ∑
i

∂2

∂φ2
i

:= gij(a, φk)
∂

∂qi

∂

∂qj
, (22)

with gij being a metric for a (a, φi) minisuperspace. The challenge is that there is yet no relativistic
fractional quantum mechanics formulation. It it would, that could guide us into better (beyond



Mathematics 2020, 8, 313 8 of 15

heuristic or just mere speculative) lines towards fractional quantum cosmology. In particular, would
the Riesz derivative be placed, too simply, as

�α ≡ −
∂2

∂a2 + Dα

(
−h̄2 ∑

i

∂2

∂x2
i

) α
2

(23)

or instead, still simplified,

�α ≡ Dα

(
h̄2 ∂2

∂a2 − h̄2 ∑
i

∂2

∂φ2
i

) α
2

, (24)

with �α as generalized d’Alembertian, induced from Lévy path integrals. Perhaps more reasonably,
something as

�α̂ ≡
(

D(qi)
α̃

) 1
2
(

D
(qj)

α

) 1
2
[
−h̄2gij(qk)

∂

∂qi

∂

∂qj

] α̂
2

, (25)

will be retrieved, with, e.g., {qk} ≡
{

a, φj
}

. Equation (25) is aiming at matching minisuperspace
covariance (see [22]). Moreover, the Lévy index was coined within an Euclidean setting whereas a
(Lorentzian) minisuperspace may now require and ‘mix’ different α’s, per minisuperspace variable,
qi, qj, allowing for the several path components, now in the configuration space, parametrized by an
affine term, e.g., τ. Hence, the labels α̃ and α, for qi, qj, respectively, whereas α̂ symbolically points
to the possibility to allow for this ‘mixing’ and not assuming a unique Lévy parameter in the more
general settings herein. Possibly extending from Equations (7) and (8), we could further add, writing
for �α in (25), that

�α̂Ψ(qk; τ) = P
∫

dDπk exp
(

iπkqk/h̄
)
|πk|α̂Φ(πk; τ), (26)

with P a prefactor related to the minisuperpcace dimensionD, πk the canonical conjugated momentum
to qk; α̂ in |πk|α̂ needs to be specified, as related to the possible range of α’s allowed but it may be that
a sole Lévy parameter is ever-present.

The issue of a fractional time derivative brought into the Schrödinger equation is of interest to
mention at this point. In fact (see [23] and the many references therein on the issue), fractional time
derivatives have been considered, allowing to discuss issues such as non-unitarity and strictly taking a
canonical approach. Extending the framework of Lévy paths and fractional (quantum) mechanics to
relativistic settings, it could impose to adequately import the results from the explorations in [23] and
alike. However, if bearing intrinsic minisuperspace covariance [22], would then unitarity be regained?
Let us just mention that non-unitarity also emerges in discussions about semiclassical quantum
gravity [19], namely from a Wheeler–DeWitt expansion towards obtaining a Schrödinger equation (as
well a WKB-like "many-fingered" functional time) in the presence of quantum gravitational corrections,
whereby that covariance is lost.

4.2. Fractional Quantum FLRW Cosmology: A Simple Case Study

As a simple toy model, let us consider a Friedmann-Lemaître-Robertson-Walker (FLRW) universe
with the following line element

ds2 = −N2(t)dt2 + a2(t)
[ dr2

1− kr2 + r2dΩ2
]
, (27)

where N(t) is the lapse function, a(t) is the scale factor and k = ±1, 0 represents the spatial 3-curvature
of a homogeneous and isotropic 3-dimensional (compact and without boundary) hypersurface, Σt.
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The compactness of universe indicate that its 3-volume Vk is finite. The ADM action functional of the
gravitational part plus matter fields (herein a perfect fluid with energy density ρ) is [24]

S =
1

16πG

∫ t f

ti

dt
∫

Σt
d3xN

√
h
((3)

R + KijKij − K2
)
−
∫ t f

ti

dt
∫

Σt
d3xN

√
hρ, (28)

where (3)R, Kij and hij are the Ricci scalar, the extrinsic curvature and the induced metric of Σt

respectively. For this FLRW universe, the action will simplify to

S =
3Vk
8πG

∫ t f

ti

(
− aȧ2

N
+ kNa

)
− Vk

∫ t f

ti

Na3ρdt, (29)

where a overdot denotes differentiation with respect time coordinate t. Let us assume the matter
content of universe is non-interacting dust and radiation, i.e., ρ = ργ + ρd, where ργ and ρd are the
corresponding energy density of radiation and dust respectively. The conservation of the perfect fluids
ργ and ρd leads to ργ = ργ0(a/a0)

−4 and ρd = ρd0(a/a0)
−3, where a0 and ρ0 are the values of the scale

factor and the energy density of a fluid, at a measurement epoch t0. By using the following definitions

Ω0,γ := 8πGργ0

3H2
0

, Ω0,d := 8πGρd0
3H2

0
, Ω0,k := − k

a2
0 H2

0
,

Ñ(t) := N(t)
H0x(t) , x(t) := a

a0
+

Ω0,d
2Ω0,k

, dη := H0dt, M := 3Vka3
0 H0

8πG ,
(30)

where H0 is the Hubble parameter at the measurement time t0, action (29) further simplifies to

S = −M
2

∫ t f

ti

( ẋ2

Ñ
+ Ñ

(
Ω0,kx2 + Ωγ −

Ω2
0,d

4Ω0,k

))
dη, (31)

where now an over-dot denotes differentiation respect to a new time coordinate, η. Note that all density
parameters Ω0,i defined in (30) are constants and their values are associated with a measurement time,
say t0. The Hamiltonian constraint is

H = Ñ
[
− p2

2M
+

1
2

MΩ0,kx2 +
M
2

(
Ω0,γ −

Ω2
0,d

4Ωk

)]
≈ 0, (32)

where p = −M
Ñ ẋ is the conjugate momenta of scale factor x. At t0 the above Hamiltonian constraint

gives us the following well-known relation between density parameters

Ω0,γ + Ω0,d + Ω0,k = 1. (33)

In order to have a setting to comparatively appraise, we now elaborate on the model herein but
yet without any fractional calculus (induced) features. I.e., it will be standard quantum cosmology.

In the coordinate representation p̂ := −ih̄d/dx x̂ := x, the WDW equation is retrieved as

− h̄2

2M
d2ψ(x)

dx2 +
1
2

Mω2x2ψ(x) =
M
2

(
Ω0,γ −

Ω2
0,d

4Ω0,k

)
ψ(x), (34)

where ω2 := −Ω0,k =
1

H2
0 a2

0
. Let us investigate the closed universe (positive sectional curvature) where

k = 1; for more details, see [24]. In this case, Σt = S3/Γ where Γ is the discrete subgroups of SO(4)
without fixed point, acting freely and discontinuously on S3. Hence, Vk=1 = 2π2

|Γ| , where |Γ| is the
order of the group Γ. For topologically complicated spherical 3-manifolds, |Γ| becomes large and
consequently the volume is small, 0 < Vk=1 ≤ 2π2. There is no lower bound since Γ can have an
arbitrarily large number of elements.
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We further note that the domain of definition of the scale factor is x ∈ R+. Consequently,
the operator H := − h̄2

2M
d2

dx2 + 1
2 Mω2x2 in the left hand side of (34) is defined on a dense domain

C∞(R+) and it is in the limit point case at +∞ and in the limit circle case at x = 0. Hence, H is not
essentially a self-adjoint operator. It constitutes a symmetric Hermitian operator if

〈ψ1|Hψ2〉 = 〈Hψ1|ψ2〉, ψ1, ψ2 ∈ D(H), (35)

or equivalently

lim
x→0+

(
dψ∗1
dx

ψ2 − ψ∗1
dψ2

dx

)
= 0. (36)

To guarantee the validity of this condition, it is necessary and sufficient that(
dψ(x)

dx
+ γψ(x)

)
x=0+

= 0, ∀ψ(x) ∈ D(H), (37)

where γ is an arbitrary real constant. This shows that the parameter γ characterize a one-parameter
family of self-adjoint extensions of H. The general square-integrable solution of Equation (34) is

ψ(x) =
√

πe−
Mω

2 x2
1F1

(
1
4 −

E
2ω ; 1

2 ; Mω
2 x2

)
−
√

πMωxe−
Mω

2 x2
2

3
4

E
2ω

Γ( 1
4−

E
2ω )

1F1

(
3
4 −

E
2ω ; 3

2 ; Mω
2 x2

)
, (38)

where E := M
2

(
Ωγ −

Ω2
d

4Ωk

)
, Γ(a) is Gamma function and 1F1(a; b; x) is confluent hypergeometric

function. By using the properties 1F1(a; b; 0) = 1 and d
dx 1F1(a; b; x) = a

b 1F1(a + 1; b + 1; x), we can
rewrite the Robin boundary condition (i.e., expression (37)) as

γ = 2
√

Mω
Γ( 3

4 −
E

2ω )

Γ( 1
4 −

E
2ω )

. (39)

Regarding that the parameter γ has dimension of inverse of length (as pointed out in [25]), then γ

would be a new fundamental constant of theory. However, as addressed in [26], the origin of this
unwanted new constant is the effective matter field Lagrangian in action (28). If we use a “real” matter
field, for example a scalar field or the Maxwell’s field Lagrangian instead of ρ in (28), then the value of
γ will be fixed to only following two acceptable values

γ = 0, or
1
γ
= 0. (40)

Using these values of γ, we obtain simple harmonic oscillator states, with eigenvalues

E = h̄ω

(
n +

1
2

)
, (41)

where n is an even or odd integer corresponding to the first or the second value of γ in (40), respectively.
The relation (41) gives us the eigenvalues of WDW Equation (34)

κ

2ω3

(
Ω0,γ −

Ω2
0,d

4ω2

)
= h̄ω

(
n +

1
2

)
, (42)
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where κ := 3Vk
8πGH2

0
. For large values of the quantum number n (or very small values of κ) and also for

finite values of density parameters Ω0,γ, Ω0,d and Ω0,k, the above eigenvalue relation will reduce to
the following three relations

Ω0,k ' − 1
2

(
κ

h̄(n+ 1
2 )

) 1
2

,

Ω0,d '
(

2κ
h̄(n+ 1

2 )

) 1
4

,

Ω0,γ ' 1.

(43)

If we assume the universe has displayed (circa its beginning) a grand unified setting, by t0 ' 10−43s [27,
28], following the Planck epoch, tPl ' 10−44s, then

κ =
3Vk

8πGH2
0
' 15h̄π

2|Γ| . (44)

Therefore, at the beginning of a grand unified theory dominance, the values of density parameter Ωk
and Ωd will reduce to

Ω0,k ' −
(

15π

8|Γ|(n + 1
2 )

) 1
2

, Ω0,d '
(

15π

|Γ|(n + 1
2 )

) 1
4

, Ω0,γ ' 1. (45)

These relations show that for a large value of quantum number n (or for a complicated geometry,
S3/Γ), the emerged classical universe will be very close to spatially flat and radiation dominated.

We now study the fractional quantum cosmology of the model. Following Equation (10),
an applicable (and simplified to be workable) fractional version of the Wheeler–DeWitt Equation (34)
for k = 1 will be

−M
2

(
h̄
M

)α dαψ

dxα
+

1
2

Mω2xβψ =
M
2

(
Ω0,γ +

Ω0,d

4ω2

)
ψ, (46)

where ω2 = −Ω0,k. Moreover, following [2], we assumed that Dα := M
2

(
h̄
M

)α
. The semiclassical

eigenvalue of this equation has already been obtained in Section 2.4. So, relation (14) gives us

Ω0,γ +
Ω2

0,d

4ω2 '
(

πh̄β(n + 1
2 )

κB( 1
β , 1

α + 1)

) αβ
α+β

ω
3αβ+3β−α

α+β . (47)

Again, for α = β = 2, we recover (42). Therefore, for finite values of density parameters and large
values of quantum number n (or for complicated geometries) at the beginning of grand unified theory
the values of density parameters for fractional quantum cosmology will be

Ω0,k ' −

 15πB( 1
β , 1

α +1)

2
α+β+αβ

α+β β|Γ|(n+ 1
2 )


2αβ

2αβ+3β−α

→ 0,

Ω0,d '
√
−2Ω0,k → 0,

Ω0,γ ' 1.

(48)
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Figure (1) shows the graph of Ω0,k for n = 500000 and |Γ| = 1, as an example. It shows an interesting
feature of the fractional quantum cosmology of this simple model: the smaller values α→ 2 and β→ 1,
give us the smaller values for the density parameters of sectional curvature Ω0,k → −0.0002 and dust
Ω0,d → 0.02.

Figure 1. The plot of Ω0,k=1 for n = 500000 and |Γ| = 1.

We could conclude that with fractional quantum cosmology we have a powerful tool to control
and maybe remove the flatness problem of standard cosmology, without any need to invoke the
inflation paradigm.

5. Discussion and Outlook

Let us summarize and close this paper by mentioning the following.
By means of this merely introductory paper, we presented herewith a set of heuristic ideas that

will, surely, constitute motivation and enthuse more work on a compelling subject, which we hold as
enticing. We stress that, isolated, those ideas (cf. Sections 1–3) exist elsewhere in the literature [1,4,11,
12]; embracing them altogether now (cf. Section 4) is the advancing step we bring herewith. Further
elements and features beyond the explicit content in Section 4 are postponed to e.g., either [24] or
forthcoming publications, hopefully from other authors. An allegory for the overture we convey is
that of an unlocked window disclosing a potential fruitful but trying landscape, rather than displaying
an (albeit new) orderly preset ground, where to quickly cultivate fine-tuned seeds and cleanly harvest
from them. Reiterating, either from the Abstract or the Introduction hereby, the objective of this
manuscript was solely to bequeath to its readers a set of probationary lines, sometimes implicitly in
the text, for future assessment within the eventual construction of a fractional quantum cosmology.

However, fairness dictates that we emphasize that Section 4 indeed risks the surmise of bearing
few specific claims, which, we keep pointing out, may nevertheless prove worthwhile into questioning
and improve the current state of affairs. If this occurs, then the aim of advancing and following
from the title of this paper will be satisfied. Indeed, much more and significant progress is needed.
Notwithstanding the eagerness of this paper purpose, we advocate meanwhile a few tentative
discussions, tempered with adequate reserve. A few lines to consider for investigation would be as
follows:

1. To begin with, let us recall (cf. Section 2) that implementing a viewpoint and methodological
change, namely from Brownian towards Lévy paths, conducted to fractional quantum
mechanics [1,4]. Interesting applications include the (harmonic) oscillator, particular cases of
tunneling and the Hydrogen atom. Employing Lévy paths into quantum cosmology would lead
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to a fractional Wheeler–DeWitt equation, we conjecture. In other words, to generalize straight
from [11] but within Lévy paths. This may bring us a far more robust and mathematical coherent
(generalized) fractional Wheeler–DeWitt equation.

A serious (and also important) issue to explore and settle would be about minisuperspace
covariance [22], explicit within the d’Alembertian as pointed out in textbooks of quantum
cosmology [12,22]. However, within fractional quantum cosmology, extracted from Lévy
paths, would a generalized Wheeler–DeWitt equation maintain it, alter it or eliminate it?
Moreover, a fractional Wheeler–DeWitt (likewise for the Schrödinger) equation could be be
an integro-differential equation. Besides complicated analytical considerations, numerical
ingredients and analysis would be mandatory.

2. When retrieving the Schrödinger equation from the Brownian–Feynman path integral (i.e.,
standard quantum mechanics), segments as xi(t), representing classical spatial coordinates
in classical time, are considered. For a relativistic extension, space-time coordinates Xµ(τ) (τ
possibly just a proper time) for word-line segments could be contemplated. This step is yet to be
attempted (to these author’s knowledge) in fractional quantum mechanics, namely bring it within
Lévy paths [4,6,14]. Only then (mini)superspace configurations would be properly discussed,
bearing some of Section 2.1 features [4,14]; any extension of Lévy paths towards a description of
curved space-time (or instead a (mini)superspace) is still absent. A fair contribution towards a
rigorous description is needed, to proceed beyond heuristic appraisals.

3. From a strict, purely mathematical point of view, the use of dimensions within formulae with
physical observables is meaningless. However, if proceeding towards a physical system,
this issue could become of importance. When bringing fractional derivatives, how will
realistic tests and data comparison be done? There are publications discussing it or at least,
the mathematical-physical framework. Simplistically, as pointed out, could the physical (i.e.,
dimensional) consequences of using fractional derivatives become hidden in constants, taken as
parameters to fit [20,21]?

4. Related to the above item and as we have mentioned, fractional quantum mechanics has not
been taken and discussed concerning experimentation, even if just for Gedankenexperiment. It
is not yet reachable with the current technology. However, let us revisit the discussions about
effective mass in concrete Bose-Einstein condensates [17]. Nevertheless, no experimental lines
have provided any guidance concerning any of the parameters, such as the Lévy index, etc.
However, cf. references [17,18]. Fractional quantum mechanics has not yet been tested, though it
is falsifiable. ‘Situation room’: fairness points that it is, to this age, consistent, in that includes
standard quantum mechanics (as clear limiting cases through parameter variation).

So, would fractional quantum cosmology be able to provide predictions that would prove
observational inconsistent or narrowed for consistency? Significant more work is needed to
achieve that stage.

5. Albeit working on a rather simplified FLRW cosmological model, we envisaged how fractional
calculus induced elements (imported to some judicious extent) could change very specific features.
Namely, the discussion on a particular application within a FLRW model: it allowed to speculate
on the flatness problem of standard cosmology. We are aware of the perhaps uncomplicated
assumptions we took in employing therein fractional calculus. Proceeding into more rigorous
mathematical computations may require to use far more elaborated expressions, possibly not
even those in (23)–(26) but other improved formulae.

Other issues, such as the horizon or structure formation should of course be considered. This
surely must and will be discussed in subsequent publications, possibly by other authors whom we
challenge to contribute as well. Likewise, other broader cosmologies or matter contents would be
important to investigate: more should be done towards appraising fractional quantum cosmology.
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6. A paradigmatic setting in quantum cosmology has been the (harmonic) oscillator, used, within the
FRW one-dimensional minisuperspace models, with H = p2

a + U(a), U(a) ∼ a2, then UΛ(a) ∼
a2 −Λa4; cf. solutions as DeSitter and conformally coupled scalar field minisuperspace [12].

A rather specific issue, relevant for quantum cosmological applications, would be to have
fractional quantum mechanics further explored and elaborated, particularly concerning tunneling
within a WKB approach for e.g., potentials of the form UΛ(a) ∼ a2 −Λa4. Being more concrete,
exploring the situation (with either E = 0 or E 6= 0) of nucleation from classical forbidden to
allowed regions or a transition from classical allowed, through classical forbidden, towards
classically allowed domains. Within quantum cosmology, tunneling (nucleation) is usually taken
with E = 0 (as following from the H = 0 constraint) but a Erad 6= 0 has been explored in [29,30]
(cf. references therein, too), within concrete applications for the wave function of the universe
and (initial) conditions.

Furthermore, since variance can emerge as asymptotic infinite in fractional quantum mechanics
[4,6,9,10], then processes could be more likely to occur (or not) regarding Universe nucleation,
initial conditions for inflation and its likelihood within standard quantum cosmology versus
a fractional framework. This modified setting could be explored with respect to sampling
initial conditions.

7. Finally, simply take and ‘play’, aiming to induce a fractional (quantum gravitational modified)
Schrödinger equation, within the principles present in [19]. We could simply directly modify,
ad-hoc, the Laplacian therein (in the Schrödinger equation) to further probe it. For instance,
about the Bunch–Davies state or a deviation, now within a fractional quantum mechanics setting.
Or instead about non-unitarity following from the quantum gravitational corrected Schrödinger
equation [19]; could that non-unitarity be re-cast as a consequence either of minisuperspace
covariance being lost or, equivalently, fractional time derivative emerging?

It would be thus immensely interesting if a Schrödinger equation bearing gravitational quantum
induced corrections [19], but within fractional quantum mechanics, could be investigated,
eventually applied to concrete cases. In addition, discussing whether the seeding process from
fluctuations in a scalar field δφ would be ‘easier’ to emerge cf. [9,10]). Or would the Bunch–Davies
vacuum, associated with Gaussian states and a Schrödinger equation for matter fields (when
dealing with quantum gravitational corrections [12,19,22]) be removed and other quite different
state be retrieved (by means of a suitable fractional Schrödinger equation)?

In addition, there is plenty still to be done. Thus, remembering and respectfully borrowing from
Leibnitz [1], “(. . . ) useful consequences will be drawn”.
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