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Abstract: A novel topological index, the face index (FI), is proposed in this paper. For a molecular
graph G, face index is defined as FI(G) = ∑ f∈F(G) d( f ) = ∑v∼ f , f∈F(G) d(v), where d(v) is the degree
of the vertex v. The index is very easy to calculate and improved the previously discussed correlation
models for π − electron energy and boiling point of benzenoid hydrocarbons. The study shows that
the multiple linear regression involving the novel topological index can predict the π-electron energy
and boiling points of the benzenoid hydrocarbons with correlation coefficient r > 0.99. Moreover,
the face indices of some planar molecular structures such as 2-dimensional graphene, triangular
benzenoid, circumcoronene series of benzenoid are also investigated. The results suggest that the
proposed index with good correlation ability and structural selectivity promised to be a useful
parameter in QSPR/QSAR.

Keywords: vertex degree; face degree; faces of a graph; face index; polycyclic aromatic hydrocarbons;
π-electron energy; boiling point.

1. Introduction

In application of mathematical and statistical methods one of the most important purposes
is to find a relationship between molecular structure and values of physical, chemical and
biological properties. As a result, quantitative structure-property relationship (QSPR) and quantitative
structure-activity relationship (QSAR) have been studied.

In QSPR/QSAR studies topological indices(molecular descriptors) are key tools [1–4].
A topological index is a graph invariant number calculated from a graph associated to a molecule.

Properties estimation can help to minimize the time and cost in producing new chemical
materials with desired properties. For estimation some of the statistical tests are discussed in [5].
The physiochemical properties of molecular compounds are important in many fields. A lot of work
has done on prediction of physiochemical properties of different compounds [6–11].

Molecules can be represented by molecular graphs, where vertices represent the atoms and
edges represent the bonds between them. For a molecular graph G = (V, E), V and E represent the
set of vertices and the set of edges, respectively. The graph theory-based structure descriptors can
be determined by considering graph edges, vertices, or both. Rather simple arithmetic operations
are carried out to get numerical indices. These indices are suppose to comprise information on
properties/activities of the molecules.

The vertex-connectivity index χ(G) of a (molecular) graph G was introduced by Randić in
1975 [12]:

χ(G) = ∑
uv∈E(G)

[
d(u)d(v)

]−1/2
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where d(u) is the degree of the vertex u in G.
The edge-connectivity index ε(G) of a (molecular) graph G was introduced by Estrada [11]:

ε(G) = ∑
e∼ f

[
d(e)d( f )

]−1/2

where e ∼ f shows that the edges e and f are adjacent and d(e) = d(u) + d(v)− 2 for e = uv.
In [13] Nikolić and Trinajstić made a comparison between the vertex and edge connectivity

indices for benzenoid hydrocarbons. They showed that the π-electron energies (E) of benzenoids can
be computed by means of either the vertex connectivity index or the edge connectivity index. Their
best quadratic model based on the edge-connectivity index can predict the π-electron energies of
benzenoids within the error range of 0.8%–2%. While their best structure-boiling point (bp) model
was a quadratic model that can predict the boiling points of benzenoid hydrocarbons within the error
range of 1.3%–4%. Their best models are as follows

E = 2.257(±0.020)ε + 1.486(±0.229) (1)

n = 23; r = 0.9993; r2(adjusted) = 0.9984; s = 0.278; F = 3276

bp = −0.868(±0.152)ε2 + 58.768(±2.986)− 81.692(±13.998) (2)

n = 23; r = 0.9982; r2(adjusted) = 0.9962; s = 8.0; F = 2859 where n is the number of
benzenoids, r is the correlation coefficient, r2(adjusted) is the adjusted correlation coefficient, s is the
standard error of estimate and F is the Fisher ratio.

We introduced the novel topological index to improve the efficiency of the above equations.

1.1. Definition of the Face Index

When a connected graph can be drawn on the plane without crossing any edges, it is called a
planar graph. When a planar graph is drawn in this way, it divides the plane into regions called faces.
The unbounded region is called the infinite face.

Let G = (V(G), E(G), F(G)) be a finite simple connected planar graph, where V(G), E(G) and
F(G) represent the vertex, edge and face sets, respectively. A face f ∈ F(G) is incident to an edge
e ∈ E(G) if e is one of those edges which surrounds the face. Similarly, a face f ∈ F(G) is incident to a
vertex v in G if v is at the end of one of those incident edges.

The molecular graph of benzene ring is a cycle consist of six vertices and edges each and two
faces. The molecular graph of benzenoid hydrocarbons contain considerable number of faces.

In the present study, we introduced a new topological index, the face index (FI), using the degree
of the vertices incident with the faces of a graph. For a planar graph G, FI can be defined as

FI(G) = ∑
f∈F(G)

d( f ) = ∑
v∼ f , f∈F(G)

d(v)

v ∼ f represents the incidency of the vertex v with the face f .
In benzenoid graphs (BG), vertices have either degree two or three; the vertices with degree two

are incident with two faces and vertices with degree three are incident with three faces. Let v2 and
v3 denote the number of vertices with degree two and three in BG, then the definition of FI for BG
becomes

FI(BG) = 2× 2× v2 + 3× 3× v3 = 4v2 + 9v3

Hence, FI of any BG can be investigated by just knowing the number of vertices of degree two and
three. In case of perylene (P) as shown in Figure 1 v2 = 12 and v3 = 8 , so FI(P) = 120. Authors
in [14], discussed theoretical study of singlet fission in oligorylenes.
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Figure 1. Vertices degree of the perylene benzenoid graph (P).

2. Discussion

The novel topological index is used to construct the structure-energy and structure-boiling point
models and the obtained results are comparable with the results obtained in [10,13,15]. We computed
FI for 21 common benzenoid hydrocarbons. The values of FI for these hydrocarbons are given in
Table 1 along with the π-electron energies (β) and boiling points (◦C ). The π-electron energies have
been taken from the tabulation of Coulson and Streiwieser [16] . The experimental values of boiling
points were taken from Basak et al. [17].

Table 1. The face index (FI), Randić index (χ), edge-connectivity index (ε), π-electron energies (E) in β

and boiling points (bp) in oC of studied benzenoid hydrocarbons.

Benzenoid Hydrocarbons FI χ ε E bp

benzene 24 3 3 8 80.1
naphthalene 50 4.966 5.455 13.683 218.0

phenanthrene 76 6.95 7.926 19.448 338.0
anthracene 76 6.933 7.942 19.314 340.0
chrysene 102 8.933 10.247 25.192 431.0

benzanthracene 102 8.916 10.414 25.101 425.0
triphenylene 102 8.95 10.414 25.275 429.0

tetracene 102 8.899 10.43 25.188 440.0
benzo(a)pyrene 120 9.916 11.897 28.22 496.0
benzo(e)pyrene 120 9.933 11.897 28.336 493.0

perylene 120 9.933 11.897 28.245 497.0
anthanthrene 138 10.899 13.397 31.253 547.0

benzoperylene 146 10.916 13.379 31.425 542.0
dibenzo(a,c)anthracene 128 10.916 12.902 30.942 535.0
dibenzo(a,h)anthracene 128 10.899 12.885 30.881 535.0
dibenzo(a,i)anthracene 128 10.899 13.218 30.88 531.0

picene 128 10.915 12.686 30.943 519.0
coronene 156 11.899 14.863 34.572 590.0

dibenzo(a,h)pyrene 146 11.566 14.385 33.928 596.0
dibenzo(a,g)pyrene 146 11.491 14.385 33.954 594.0

pyrene 94 7.933 9.408 22.506 393.0

2.1. Relationships between the Face Index and Vertex and Edge Connectivity Indices for
Benzenoid Hydrocarbons

We first considered the relationships between the face index and the vertex-connectivity index
and between the face index and the edge connectivity index for benzenoid hydrocarbons. Plots of FI
versus χ and FI versus ε for benzenoids is given in Figures 2 and 3 and the obtained mathematical
models are:

FI = 0.68(±0.002)χ + 1.741(±0.262) (3)
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n = 21; r = 0.9896; r2(adjusted) = 0.9783; s = 4.8962; F = 906.241

FI = 0.091(±0.002)ε + 1.023(±0.222) (4)

n = 21; r = 0.996; r2(adjusted) = 0.991; s = 3.1325; F = 2241.371
From above equations we can see that the face index is more closely related with edge connectivity

index rather the vertex connectivity index.

Figure 2. Plot of the face index versus vertex connectivity index for 21 benzenoid hydrocarbons.

Figure 3. Plot of the face index versus edge connectivity index for 21 benzenoid hydrocarbons.

2.2. Linear mathematical models of the face index (FI) for the π-electron energy (E).

In this section, we constructed the linear and multiple linear relationships between the π-electron
energies of considered benzenoid hydrocarbons and the face index. The linear and multiple linear
correlation plots are shown in Figures 4 and 5.

The regression analysis gives the following relationships for π-electron energy (E):
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Linear Correlation:
E = 0.074(±0.003)FI + 5.491(±0.766) (5)

n = 21; r = 0.9933; r2(adjusted) = 0.9859; s = 0.8129; F = 1368.287
Multivariate Correlation:

E = 0.002(±0.016)FI + 1.123(±0.308)ε + 1.480(±0.261)χ + 0.095(±0.294) (6)

n = 21; r = 0.9996; r2(adjusted) = 0.9991; s = 0.2015; F = 7709.838
The Equation (6) gives the best correlation with energy.

Figure 4. The linear correlation between the first face index and the energy for benzenoid hydrocarbons.

Figure 5. The multiple linear correlation for the energy of benzenoid hydrocarbons.

2.3. Linear Mathematical Models of the Face Index (FI) for the Boiling Points (bp).

We considered the linear and multiple linear relationships between the boiling points (bp) of
benzenoid hydrocarbons and the face index. The corresponding plots of linear and multiple linear
correlation is shown in Figures 6 and 7.
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The regression analysis gives the following relationships for the boiling points (◦C ) of
benzenoid hydrocarbons:

Linear Correlation:
bp = 3.822(±0.136)FI + 30.881(±15.878) (7)

n = 21; r = 0.9886; r2(adjusted) = 0.9782; s = 19.8306; F = 784.290

Multivariate Correlation:

bp = −0.008(±0.001)FI2 + 1.867(±0.752)FI + 38.195(±6.687)ε− 68.627(±11.542) (8)

n = 21; r = 0.9985; r2(adjusted) = 0.9965; s = 7.5990; F = 1904.216

Clearly, Equation (8) gives the best result.

Figure 6. The linear correlation between the first face index and the boiling points for benzenoid
hydrocarbons.

3. Computational Techniques for the Face Index

In this section, we computed the face index of some planar molecular graphs. Method of
partitioning of face set based on the degrees of the faces in the graph is used to find the face index.
f ∞ will denote the unbounded face of the graph. The face index of graphene, triangular benzenoid
and circumcoronene series of benzenoid is computed in the following subsections. There are several
papers in which authors used different techniques to calculate the certain topological indices of some
special molecular graphs [18–25].
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Figure 7. The multiple linear correlation for the boiling points for benzenoid hydrocarbons.

3.1. Face Index of Graphene G(n, s)

Graphene is a 2-dimensional planar sheet of carbon atoms which is densely packed in a
honeycomb crystal lattice, and it is the major element of certain carbon allotropes including charcoal,
fullerenes and graphite, see Figure 8. It is represented by G(s, n) where n is number of rows and s
is number of benzene rings in each row. In the review [26], authors gave a brief introduction on the
recent advances in the study of graphene edges, including edge formation energy, edge reconstruction,
method of graphene edge synthesis and the recent progress on metal-passivated graphene edges.

Figure 8. 2D graphene structure with ‘n’ rows and ‘s’ benzene rings in each row.

Theorem 1. Let G(n, s) be a graphene structure, where ‘n’ is the number of rows and ‘s’ is the benzene rings
in each row and n ≥ 1 and s ≥ 1. The face index of G(n, s) is given as

FI(G(n, s)) =

{
18ns + 8(n + s)− 10, if n 6= 1,

26s− 2, if n = 1.

Proof. Consider the graphene structure, G(n, s), with ‘n’ rows and each row has ‘s’ benzene rings. Let
f j denotes a face having degree j, i.e., ∑

v∼ f
d(v) = j and | f j| denotes the number of faces with degree j.

2-dimensional structure of graphene (shown in Figure 8) contains five types of internal faces f14, f15,
f16, f17, f18 and an external face. For n = 1 sum of degrees of vertices of external face is 10s + 2, For
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n = 2 sum of degrees of vertices of external face is 10s + 12, for n = 3 sum of degrees of vertices of
external face is 10s + 22 and similarly when graphene structure has n rows then sum of degrees of
vertices of external face is 10(n + s)− 8. Table 2 shows the details of the number of faces with a degree
in each row.

Case 1. From the definition of face index and Table 2 for n 6= 1, we have

FI(G(n, s)) = ∑
v∼ f∈F(G)

d(v)

= ∑
v∼ f15∈F(G)

d(v) + ∑
v∼ f16∈F(G)

d(v) + ∑
v∼ f17∈F(G)

d(v) + ∑
v∼ f18∈F(G)

d(v)

+ ∑
v∼ f ∞∈F(G)

d(v)

= | f15|(15) + | f16|(16) + | f17|(17) + | f18|(18) + 10n + 10s− 8

= 2(15) + n(16) + 2(s− 2)(17) + (n− 2)(s− 1)(18) + 10n + 10s− 8

= 18ns + 8(n + s)− 10

Table 2. Numbers of f14, f15, f16, f17, f18 in each row.

Rows | f14| | f15| | f16| | f17| | f18|
1 2 - s-2 - -
2 - 2 2 2(s-2) -
3 - 2 3 2(s-2) (s-1)
4 - 2 4 2(s-2) 2(s-1)
. . . . . .
. . . . . .
. . . . . .
n - 2 n 2(s-2) (n-2)(s-1)

Case 2. When 2-dimensional structure of graphene has just 1 row then it has two types of internal
faces | f14|, | f16| and one external face whose sum of degrees is 10s + 2 .

For n = 1, | f14| = 2 and | f16| = s− 2 as shown in Figure 9, and the face index is

FI(G(n, s)) = ∑
v∼ f∈F(G)

d(v)

= ∑
v∼ f14∈F(G)

d(v) + ∑
v∼ f16∈F(G)

d(v)

= | f14|(14) + | f16|(16) + 10s + 2

= 2(14) + (s− 2)(16) + 10s + 2

= 26s− 2

Figure 9. 2-dimensional structure of graphene with one row having s benzene rings.

This completes the proof.
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3.2. Face index of Triangular Benzenoid T(n)

Now, we calculate the face index of a triangular benzenoid graph T(n) where n represents the
number of rows depicted in Figure 10. For synthesis and characterization of π-extended triangulene
we refer [27].

Figure 10. Molecular graph of triangular benzenoid.

Theorem 2. Let T(n) be a triangular benzenoid gragh where n represents the number of rows and n ≥ 1. The
face index of T(n) is equal to

FI(T(n)) = 9n2 + 21n− 6.

Proof. Let f j denotes the face having degree j, i.e., ∑
v∼ f j

d(v) = j. Triangular benzenoid graph contains

four types of internal faces f14, f15, f17 and f18 and an external face. When triangular benzenoid has
just 1 row then sum of degrees of vertices of external face is 12, when triangular benzenoid has 2 rows
then sum of degrees of vertices of external face is 27, when triangular benzenoid has 3 rows then sum
of degrees of vertices of external face is 42, and similarly when triangular benzenoid has n rows then
sum of degrees of vertices of external face is 15n− 3. The number of internal faces with the degree in
each row is mentioned in Table 3.

From Table 3 and according to the definition of face index, we have

FI(T(n)) = ∑
v∼ f∈F(G)

d(v)

= ∑
v∼ f15∈F(G)

d(v) + ∑
v∼ f17∈F(G)

d(v) + ∑
v∼ f18∈F(G)

d(v) + ∑
v∼ f ∞∈F(G)

d(v)

= | f15|(15) + | f17|(17) + | f18|(18) + 15n− 3

= 3(15) + 3(n− 2)(17) +
n2 − 5n + 6

2
(18) + 15n− 3

= 9n2 + 21n− 6

Hence, this is our required result.
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Table 3. Number of f14, f15, f17, f18 in each row.

Rows | f12| | f15| | f17| | f18|
1 1 - - -
2 - 3 - -
3 - 3 3 -
4 - 3 6 1
5 - 3 9 3
6 - 3 12 6
. . . . .
. . . . .
. . . . .
n - 3 3(n-2) 1

2 (n− 3)(n− 2)

3.3. Face Index of Circumcoronene Series of Benzeniod Hk

A circumcoronene homologous series of benzenoid Hk (k is the number of generations) consist of
many copies of benzene C6 on circumference. First three molecule of this series is shown in Figure 11
and the generalized circumcoronene series is shown in Figure 12.

Theorem 3. Let Hk be a molecular graph of circumcoronene series of benzenoid, where k ≥ 1. The face index of
this graph is given by

FI(Hk) = 54k2 − 30k.

Figure 11. The first, second and third molecular graphs H1, H2 and H3 from the circumcoronene series
of benzenoid.

Proof. First we consider a circumcoronene series of benzeniod Hk for k = 1, 2, 3 presented in Figure 11
where k denotes the number of generations. Let f j denotes a face having ∑

v∼ f j

d(v) = j and | f j| denotes

the number of faces having degree j. In H1 both internal and external faces have degree 12. In H2 there
is two types of internal faces f18, f16 and 1 external face f42. In H3 there are 3 types of internal faces f18,
f17 , f16 and 1 external face f72. Figure 12 shown the circumcoronene series of benzenoid Hk for k ≥ 1.

FI(H1) = ∑
w∼ f12∈F(G)

dw + ∑
w∼ f ∞∈F(G)

dw

= | f12|(12) + 12 = 24

FI(H2) = ∑
w∼ f18∈F(G)

dw + ∑
w∼ f16∈F(G)

dw + ∑
w∼ f ∞∈F(G)

dw

= | f18|(18) + | f16|(16) + | f42|(42)

= 1(18) + 6(16) + 42

= 156
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Figure 12. The circumcoronene series of benzenoid Hk for k ≥ 1.

Now we calculate the face index FI for H1, H2 ... H5.

FI(H3) = ∑
w∼ f18∈F(G)

dw + ∑
w∼ f16∈F(G)

dw + ∑
w∼ f17∈F(G)

dw + ∑
w∼ f ∞∈F(G)

dw

= | f18|(18) + | f16|(16) + | f17|(17) + | f72|(72)

= 7(18) + 6(16) + 6(17) + 72

= 396

FI(H4) = ∑
w∼ f18∈F(G)

dw + ∑
w∼ f16∈F(G)

dw + ∑
w∼ f17∈F(G)

dw + ∑
v∼ f ∞∈F(G)

dw

= | f18|(18) + | f16|(16) + | f17|(17) + | f102|(102)

= 19(18) + 6(16) + 12(17) + 102

= 744

FI(H5) = ∑
w∼ f18∈F(G)

dw + ∑
w∼ f16∈F(G)

dw + ∑
w∼ f17∈F(G)

dw + ∑
w∼ f ∞∈F(G)

dw

= | f18|(18) + | f16|(16) + | f17|(17) + | f132|(132)

= 37(18) + 6(16) + 18(17) + 132

= 1200

From above information we get a recurrence relation;

FI(Hk) = FI(Hk−1) + 108k− 84

By solving this recurrence relation we get the following;

FI(Hk) = 54k2 − 30k
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This is our required result.

From above result we can obtain the face index of circumcoronene with a window which is
FI(CWk) = 54k2− 30k− 232. Where CWk is the molecular structure of circumcoronene with a window
as shown in Figure 13.

Figure 13. Molecular structure of circumcoronene with a window.

4. Conclusions

In this paper a new topological index, the face index (FI), is proposed which is based on the
degrees of the vertices incident to the face of a graph. We showed that novel face index can be computed
by the vertex and edge connectivity indices within the error of 6%–9% and 2%–6%, respectively. Which
shows that the novel index is more closely correlate with edge connectivity index. The model Equation
(6) involve the face index that improved the Nikolić Equation (1) and can predict the energy of the
benzenoid within the error range of 0.6%–1.5%. Equation (8) improved the Nikolić Equation (2) and
can compute the boiling point within the range of 1.2%–3.5%. The results warrant further studies on
the properties and uses of the face index. In the later section, we considered 2-dimensional graphene,
triangular benzenoid and circumcoronene series of benzenoid to study the topological property using
their faces. The analytical closed formulas of FI for these molecular graphs are determined.

Author Contributions: Conceptualization, M.K.J.; Formal analysis, K.A.S.; Funding acquisition, M.I.;
Investigation, M.K.J. and M.I.; Software, M.K.J. and K.A.S.; Writing—original draft, K.A.S.; Writing—review and
editing, M.K.J. and M.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the UPAR Grants of United Arab Emirates, Al-Ain, UAE via Grant No.
G00002590 and G00003271.

Conflicts of Interest: Authors declare there is no conflict of interest in publishing the article.

References

1. Balaban, A.T. Topological indices and their uses: A new approach for coding of alkanes. J. Mol. Struct.
Theochem 1988, 165, 243–253. [CrossRef]

2. Estrada, E.; Ivanciuc, O.; Gutman, I.; Gutierrez, A.; Rodrìguez, L. Extended Wiener indices. A new set of
descriptors for quantitative structure-property studies. New J. Chem. 1998, 22, 819–823. [CrossRef]

3. Taherpour, A.A.; Shafiei, F. The structural relationship between Randić indices, adjacency matrixes, distance
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