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Abstract: The graph coloring problem is an NP-hard combinatorial optimization problem and can be
applied to various engineering applications. The chromatic number of a graph G is defined as the
minimum number of colors required to color the vertex set V(G) so that no two adjacent vertices are of
the same color, and different approximations and evolutionary methods can find it. The present paper
focused on the asymptotic analysis of some well-known and recent evolutionary operators for finding
the chromatic number. The asymptotic analysis of different crossover and mutation operators helps in
choosing the better evolutionary operator to minimize the problem search space and computational
complexity. The choice of the right genetic operators facilitates an evolutionary algorithm to achieve
faster convergence with lesser population size N through an adequate distribution of promising
genes. The selection of an evolutionary operator plays an essential role in reducing the bounds for
minimum color obtained so far for some of the benchmark graphs. This research also focuses on
the necessary and sufficient conditions for the global convergence of evolutionary algorithms. The
stochastic convergence of recent evolutionary operators for solving graph coloring is newly analyzed.

Keywords: approximation methods; chromatic number; combinatorial optimization; complexity
analysis; evolutionary approach; genetic algorithm; graph coloring; NP-hard; stochastic convergence

1. Introduction

A simple graph G = (V, E) consists of a set of vertices V = {v1, v2, v3 . . . vn} and a set of edges
E = {e1, e2, e3 . . . em} such that each ei (1 ≤ i ≤ m) is uniquely associated with an unordered pair of
vertices (vj, vk) (1 ≤ j, k ≤ n) and j , k [1,2]. Its adjacency matrix is denoted by A(G), an n × n symmetric
matrix where A(j, k) = 1 (1 ≤ j, k ≤ n) if (vj, vk) ε E(G); and A(j, k) = 0 (1 ≤ j, k ≤ n) otherwise [2].

χ(G), the chromatic number of G, is defined as the minimum number of colors required for V(G)
so that no two adjacent vertices are of the same color [2]. The graph coloring problem (GCP) finds the
value for χ(G) and applies it to register allocation, channel assignment, image segmentation, resource
utilization, and scheduling [3–10]. With the increasing values of n, the complexity of determining χ(G)
also increases. GCP is an NP-hard combinatorial optimization problem. Hence, a fast evolutionary
and approximation method is expected to reduce the problem search space by maximizing the
number of successful runs [1,11–16]. Tabu search [17], backtracking [18], branch and bound [11],
evolutionary algorithm [19–21], branch and cut [22], particle swarm optimization (PSO) [23–26],
ant colony optimization (ACO) [27], local and cuckoo search [28,29] are some existing methods for
finding χ(G). Some recent applications of GCP are selective graph coloring [30,31], signed graphs
coloring [32,33], scheduling, and resource allocation [7–10,34–38]. In comparison to other methods,
GA is useful for solving multi-objective optimization problems with vast search space. Hence, it is
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expected to design new evolutionary operators to achieve faster stochastic convergence with minimal
generations. Some recent evolutionary operators have achieved near-optimal solutions for some
benchmark graphs [4,39–41]. Moreover, some recent genetic operators have increased the number of
successful runs and reduced expected generations g , expected crossovers c, and the expected mutations
m. The notations g , c, and m indicate respectively the average number of generations, the average
number of crossovers, and the average number of mutations performed to obtain the near-optimal
solution for the specified number of total runs and generations during the execution of the program.
This paper focused on the asymptotic analysis and stochastic convergence of some well-known and
current evolutionary operators.

Some of the recent recombination operators are similar to mutation and are executed in place of
recombination operation [2]. Some of the well-known and recent recombination operators operate on
multiple parent gene sequences [2]. The order-based uniform crossover operator [42] uniformly selects
genes from various parents. The penalty based crossover operator [43] generates offspring, which
results in a minimum penalty. The one-point and two-point crossover operators generate random
numbers and inherit genes from their parents. The graph adapted crossover generates genes based on
conflicting and neighboring vertices. The union independent set (UIS) crossover [44] operator unifies
the pairs of independent color sets from the selected parents. The greedy partition crossover (GPX) [45]
operator divides V(G) into k-sets and generates offspring. The multi-parent crossover [46] operator
is the extension of GPX, which creates offspring from multiple parents. The well-informed partition
crossover (WIPX) [47] operator selects the color classes from the randomly chosen parents based on
a scoring function. The penalty-based color partitioning crossover (PCPX) [48] operator generates
offspring based on the partition of V(G) and its penalty. The degree based crossover (DBX) [48] operator
applies the heuristics of the largest degree ordering (LDO) to order-based crossover or permutation
one point crossover (POP) [40]. POP crossover performs an order-based permutation operation. The
multi-point guided crossover (MPGX) [48] operator incorporates problem-specific knowledge. The
merging crossover (MOX) [40] operator merges two-parent gene sequences and generates order-based
offspring. The merging independent sets (MIS) [40] crossover groups the color sets of parents and
generates offspring.

A recent crossover operator, the single parent conflict gene crossover (SPCGX), similar to mutation,
is applied to the single parent to identify the conflicting genes and generate better offspring [49]. SPCGX
is combined with the conflict gene removal (CGR) procedure to identify and remove some conflicting
genes [50]. SPCGX is also connected with the advanced local guided search (ALGS) operator [2] to
fine-tune the offspring further and also to reduce the computational complexity. The single parent
conflict gene extended crossover (SPCGEX) operator is applied to the selected single parent for fixed
iterations. Extended SPCGEX (ESPCGEX) extends SPCGEX with CGR for fixed iterations to produce
better offspring. The multipoint SPCGX (MSPCGX) performs several crossovers for conflicting genes.
Some of the recent genetic operators have achieved the better solution for some large DIMACS
benchmark graphs in the reasonable expected generations [2].

The mutation operators operate on offspring generated by crossover operations. The random
mutation operator [43] randomly swaps the color of each vertex with low mutation probability pm. The
polynomial mutation operator rounds off the floating-point color values. The swap mutation is applied
to offspring generated by the DBX operator [51]. Problem-specific mutation [51] operators operate on
the offspring generated by the MPGX operator. The order mutation (OM) [52] operator generates a
random number r and performs r interchanges between vertices. The block mutation (BM) [52] performs
the translation of blocks of successive vertices. The color spread mutation (CSM) [52] randomly selects
the conflicting edges and moves the genes to new positions. The bad edge stretch mutation (BESM) [52]
reduces the number of conflicting edges. The conflict gene mutation (CGM) [2] assigns the conflict-free
integers to the offspring and performs fixed iterations. The CGM-CGR operator further reduces the
number of conflicts in the offspring. The extended CGM (ECGM) operator fine-tunes the offspring by
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extending CGM for finite iterations. The multipoint CGM (MCGM) performs multipoint mutations at
the conflicting vertices to reduce the number of conflicts.

Section 2 explains the need for complexity analysis and stochastic convergence for evolutionary
operators. Section 3 focuses on the general structure of the genetic algorithm for solving GCP. Sections 4
and 5 explain some of the well-known and recent recombination and mutation operators. The necessary
and sufficient condition for the global convergence of evolutionary algorithms and the stochastic
convergence of recent genetic operators are newly analyzed in Section 6. Conclusions and future
research directions are delineated in Section 7.

2. The Need for Complexity Analysis and Stochastic Convergence of Evolutionary Operators

GCP is very challenging for genetic algorithms because of its vast solution space. Hence, designing
and choosing the right genetic operators in population-based methods are important for the following
reasons [53–56]:

1. Solution space of GCP consists of nn candidate solutions, and nn rapidly grows with n. The
computational complexity of finding χ(G) is proportional to m and n. If the solutions are
represented using χ(G) < n, then the solution space contains χ(G)n assignments. Therefore, the
total number of different assignments in the solution space is χ(G)!

2. The computational complexity of GCP is reduced only when the values of c, m , and g
are minimized.

3. The evolutionary operators are expected to improve the performance of the genetic algorithm by
reducing the search space as well as by increasing the successful runs.

4. The evolutionary operators should improve the near-optimal solution obtained from the existing
methods [11,22,25–27,57–59].

5. The evolutionary operators should avoid additional memory resources and complex
computational operations.

6. The performance of operators depends on how many parent gene sequences are considered for
crossover and mutation. It also depends on the update of gene sequences [4,39–41].

7. A smaller population size (N ≤ 15) is expected to reduce the complexity and to achieve a sufficient
convergence rate. The crossover and mutation operations can be embedded with the right search
operators to reduce the value of g further.

8. The evolutionary operators should effectively distribute the promising genes from one generation
to the next generation in order to reduce the fitness function values.

9. The graph characteristics, graph instances such as n, m, and graph density, can be considered for
choosing the right genetic operators [60].

10. The evolutionary operators should quickly converge with the reduced computational complexity.

3. The General Structure of Genetic Algorithm for Solving GCP

Notations

1. Degree, δ(G) and ∆(G) The number of edges incident on vi (1 ≤ i ≤ n) is the degree, d(vi) in
G. Let ∆(G) = max

1≤i≤n
{d(vi)|vi ∈ V(G)} and δ(G) = min

1≤i≤n
{d(vi)|vi ∈ V(G)} be the maximum and

minimum degrees of G respectively.
2. Encoding of Gene Sequence The color values of V(G) are encoded as (g1, g2, g3 . . . gn), where

gj (1 ≤ j ≤ n) is a non-zero integer.
3. Density The density of G is 2m

n(n−1) .

4. Population Size, Crossover, Mutation Probability pc is the crossover probability, and the mutation
probability is denoted as pm. Pg is the population, which represents the collection of gene
sequences for generation g. N = |Pg| defines the population size for g.
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5. Fitness Function f (G), the general fitness function of G, is the number of distinct genes in the gene
sequence [2]. The main objective of GCP is to minimize f (G), hence, χ(G) – f (G) = 0.

6. Conflicting Genes When ga = gb and (va, vb) ∈ E(G), the genes ga (1 ≤ a ≤ n) and gb (1 ≤ b ≤ n)
corresponding to vertices va and vb conflict with the gene sequence (g1, g2, g3 . . . gn).

The general structure of the genetic algorithm for solving GCP is presented below.
Step 1: Initialization
First, initialize g = 0. The initialization of Pg randomly or heuristically generates values in

[1, minimum color].
Step 2: Evaluation of Fitness Function and Selection of Individuals
The fitness of individuals in the population is evaluated, and one or more parent gene sequence(s)

are selected for the generation of the subsequent gene sequences. Different selection methods can be
applied to select gene sequences for crossover operation.

Step 3: Recombination or Crossover Operation
The recombination operation is performed on the selected gene sequence(s) with probability pc

(high value of pc, for example, pc = 0.8) to generate offspring.
Step 4: Performing Mutation
The crossover gene sequences or offspring are mutated with the chosen mutation probability pm

(low value of pm, for example, pm = 0.2) to generate new offspring.
Step 5: Termination
Find Fg (offspring) for the updated gene sequence. If Fg (offspring) = 0, the generation of offspring

stops; otherwise, Pg is updated (g = g + 1). If Fg (offspring) < Fg−1 (worst), Pg is updated by replacing
the worst gene with offspring. Then transfer the control to Step 2 for the next generation.

The pseudo-code of the general genetic algorithm is presented below.

// Pseudo code of the Genetic Algorithm

1: Initialization of individuals;
2: While termination conditions are not satisfied, do
3: Evaluate the fitness function and select better individuals;
4: Perform the recombination operation;
5: Perform the mutation operation;
6: Apply elitism operation;
7: Print the near-optimal results;

4. Asymptotic Analysis of Some Existing Well-known and Recent Crossover Operators

Some of the existing well-known and recent crossover or recombination operators for solving
GCP are presented in this section. The asymptotic complexity of these operators is also analyzed in
Table 1. The simple control constructs if and if-else statements that can be implemented in a constant
complexity, Θ(c). The control constructs for, while, do-while, and repeat-until can be implemented in
a linear complexity, Θ(n). The quadratic complexity is represented in Θ(n2). For example, color
assignments of V(G) can be verified in Θ(n2) complexity.

1. Order-based Uniform Crossover

The order-based uniform crossover operator uniformly selects the genes from multiple parents. The
procedure can be described in the following steps.

a. Select two parent gene sequences, say p1 and p2.
b. Generate the offspring by selecting the first n/2 length of genes from p1 and the next n/2 length of

genes from p2.
c. Randomly select any two vertices, vi and vj in the offspring, and scramble all vertices between vi

and vj.
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Analysis: Steps (a), (b) and (c) take Θ(n) complexity. Thus the order-based uniform crossover takes
Θ(n) complexity.

2. Penalty Based Crossover

The penalty based crossover operator generates the offspring, which results in a minimum penalty.
The procedure is described in the following steps.

a. Select two parent gene sequences, say p1 and p2.
b. Generate the offspring by determining the color for each vertex in every parent by assigning

colors, which results in a minimum penalty.

Analysis: Step (a) takes Θ(n) complexity. Step (b) takes Θ(n2 χ(G)) complexity. The computational
complexity of penalty based crossover is Θ(n2 χ(G)).

3. One-point Crossover

The one-point crossover operator generates random numbers and inherits genes from their parents.
The procedure is described in the following steps.

a. Select two parent gene sequences, say p1 and p2.
b. Choose a random point r in between [1, n].
c. Generate the offspring based on r by inheriting genes from both parents.

Analysis: Step (a) takes Θ(n) complexity. Step (b) can be implemented in constant running time. Step (c)
requires Θ(n) complexity. Thus the one-point crossover takes Θ(n) complexity.

4. Two-point Crossover

The two-point crossover operator generates random numbers and inherits genes from their parents.
The procedure is described in the following steps.

a. Select two parent gene sequences, say p1 and p2.
b. Choose two random points, r and s in between [1, n].
c. Generate the offspring based on r and s by inheriting genes from both parents.

Analysis: Step (a) takes Θ(n) complexity. Step (b) can be implemented in constant running time. Step (c)
requires Θ(n) complexity. Thus the two-point crossover takes Θ(n) complexity.

5. Graph Adapted Crossover

The graph adapted crossover generates genes based on the conflicting and neighboring vertices. The
procedure is described in the following steps.

a. Select two parent gene sequences, say p1 and p2.
b. Choose a random vertex v in V(G).
c. Color the vertices with respect to the parents that have no conflicts for vertex v.
d. If p1 and p2 have conflicts with vertex v then assign the least color to its neighboring vertices.

Analysis: Step (a) takes Θ(n) complexity. Step (b) requires constant running time. Step (c) requires
Θ(n2) complexity. Step (d) requires Θ(n2) complexity. The complexity of graph adapted crossover
is Θ(n2).
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6. UIS Crossover

The UIS crossover operator unifies a pair of independent color sets from the selected parents. The
procedure is described in the following steps.

a. Select two parent gene sequences, say p1 and p2.
b. Find the largest conflict-free subset of vertices having a color c in p1.
c. Find the largest conflict-free subset in p2 such that a common number of vertices in these subsets

are maximal.
d. Repeat the steps (b) and (c) for every color.
e. Generate the offspring o1 and o2 by performing set union operation.

Analysis: Steps (a), (b) and (c) require Θ(n) complexity. Step (d) requires Θ(n χ(G)) complexity. Step (e)
requires Θ(n) complexity. Thus the complexity of UIS crossover is Θ(n χ(G)).

7. Multi-Parent Crossover

Multi-parent crossover is an extension of GPX, which creates offspring from multiple parents. The
procedure is described in the following steps.

a. Select the parent color classes from multiple parents.
b. Select the largest color class c in the population.
c. Add the color class c to the offspring.
d. Remove all vertices in c from all parent color classes.
e. Repeat the operation until the required number of color classes has reached.
f. Add the remaining vertices randomly to the color class.

Analysis: Steps (a), (b), (c) require Θ(n) complexity. Steps (d) and (e) require Θ(n2) complexity. Step (f)
requires Θ(n) complexity. Thus the complexity of multi-parent crossover is Θ(n2).

8. WIPX Crossover

The WIPX operator selects the color classes from the randomly selected parents based on a scoring
function. The procedure is described in the following steps.

a. Select the color classes from the randomly chosen parents based on a scoring function.
b. Determine the score of the color set as:

Number of conflicts−
1
|v|

(classSize + classDegree/(n ∗m))

where classSize is the cardinality of the color set, and classDegree is the sum of the degrees of the
color class vertices.

c. Apply the multi-parent crossover operation.

Analysis: Step (a) requires Θ(n) complexity. Step (b) requires Θ(n2) complexity. Step (c) requires Θ(n2)
complexity. Thus the complexity of WIPX crossover is Θ(n2).

9. GPX Crossover

GPX operator partitions V(G) into k sets and generates the offspring. The procedure is described in the
following steps.

a. Choose two parent configurations p1 = (v1
1, v2

1, v3
1 . . . vk

1) and p2 = (v1
2, v2

2, v3
2 . . . vk

2) where
k is the number of color classes.
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b. For each j (1 ≤ j ≤ k) do If j is odd then s =1, else s = 2; Select i such that vi
s has maximum vertices;

vj = vi
s; Remove vj from both p1 and p2

c. Choose a random color class and assign V−(v1 ∪ v2 ∪ v3 . . . ∪ vk).
d. Generate an offspring o1 = (v1, v2, v3 . . . vk).

Analysis: Step (a) requires Θ(n) complexity. Step(b) requires Θ(n2) complexity. Steps (c) and (d) require
Θ(n) complexity. Thus GPX crossover takes Θ(n2) complexity.

10. PCPX Crossover

PCPX crossover operator generates offspring based on partitions of V(G) and its penalty. The procedure
is described in the following steps.

a. Select two parent gene sequences, say p1 and p2.
b. Consider one parent at a time.
c. Extract a subpartition V’(G), which results in a minimum penalty among V(G) of the main partition.
d. Color V’(G) for the selected parent.
e. Remove V’(G) in both parents.
f. Find the largest color partition for the next parent.
g. Repeat the procedure until all vertices in the offspring are colored.

Analysis: Step (a) requires Θ(n) complexity. Step(b) takes constant running time. Steps (c), (d), (e), (f)
and (g) take Θ(n2) complexity. Thus PCPX crossover takes Θ(n2) complexity.

11. DBX Crossover

DBX crossover operator applies the heuristics of LDO in order based crossover or POP. The procedure
is described in the following steps.

a. Apply the heuristics of LDO in order based crossover or POP operator.
b. Select a pair of random individuals, say P1 and P2.
c. Select a random crossover point r in P1.
d. Copy the vertex colors starting at an initial point to r in P1 into the offspring O1;
e. Choose a vertex u in P2 and v in O1.
f. If u is not assigned an order in O1 and if degree(v) < degree(u) then Find the vertex v having

minimum order in O1 with degree(v) < degree(u); Increment the vertex orders by 1 for all vertices
having order ≥ v; Assign vertex u to the order of vertex v; Else assign the least available order to
vertex u.

Analysis: Step (a) requires Θ(n2) complexity. The selection and copy operations in steps (b), (d), and
(e) require Θ(n) complexity. Step(c) takes a constant running time. Step (f) requires Θ(n2) complexity.
Thus DBX takes Θ(n2) complexity.

12. MPGX Crossover

MPGX operator incorporates problem-specific knowledge. The procedure is described in the
following steps.

a. Select a pair of random individuals, say P1 and P2;
b. Choose a random crossover point;
c. Assign count = Pc * n;
d. While count , 0 do Select a random vertex i; c1= color[i] in P1; c2 = color[i] in P2; If c1 , c2 and if

penalty of P1 reduces with c2 then replace c1 by c2; If c1 , c2 and if penalty of P2 reduces with c1

then replace c2 by c1; count = count − 1
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e. Generate offspring.

Analysis: Step (a) requires Θ(n) complexity. Steps (b), (c), and (e) take a constant running time. Step (d)
takes Θ(n2) complexity. Thus MPGX crossover takes Θ(n2) complexity.

13. POP Crossover

POP crossover performs an order based permutation operation. The procedure is described in the
following steps.

a. Select two parent gene sequences, say p1 and p2.
b. Choose a random point r in between [1, n].
c. Apply order based crossover.
d. Swap the first portion of strings and apply permutation on the remaining unused vertices copied

in the sequence.

Analysis: Steps (a) and (c) require Θ(n) complexity. Step (b) requires a constant running time. Step (d)
requires Θ(n2) complexity. Thus the complexity of POP crossover is Θ(n2).

14. MOX Crossover

The MOX operator performs merging of two-parent gene sequences and generates the order based
offspring. The procedure is described in the following steps.

a. Select two parent gene sequences, say p1 and p2.
b. Merge p1 and p2 randomly into a single list, which consists of 2n elements.
c. Assign the first occurrence of each gene to offspring1.
d. Assign the second occurrence of each gene to offspring2.

Analysis: Steps (a) and (b) require Θ(n) complexity. Steps (c) and (d) take Θ(n2) complexity. The
complexity of MOX crossover is Θ(n2).

15. MIS Crossover

The MIS crossover operator groups the color sets of parents and generates the offspring. The procedure
is described in the following steps.

a. Select two parent gene sequences, say p1 and p2.
b. Group the color sets in both p1 and p2.
c. Copy the whole color sets from p1 and p2 into a single merged list.
d. Assign the first occurrence of each gene into offspring1.
e. Assign the second occurrence of each gene into offspring2.

Analysis: Steps (a), (b) and (c) require Θ(n) complexity. Steps (d) and (e) take Θ(n2) complexity. The
complexity of MIX crossover is Θ(n2).

16. SPCGX Crossover

SPCGX operation is applied to the selected gene sequences, i and j, to generate two new gene sequences
as offspring. The offspring, i′ and j′ are generated by a chosen crossover probability pc. SPCGX
operator is defined as follows [50]:

a. Let i = (i1, i2, i3 . . . iq . . . ir . . . in) and j = (j1, j2, j3 . . . js . . . jt . . . jn) be the two selected sequences.
b. Generate random probability pcr.

c. If pcr > pc go to step (d).
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d. Find all pairs of conflicting edges in i and j.
e. Let (q, r) and (s, t) be such two pairs of conflicting edges (i.e., iq = ir and js = jt) in i and j, then

generate two offspring: (i1, i2, i3 . . . iq . . . ir+1 . . . in) and (j1, j2, j3 . . . js . . . jt+1 ... jn).
f. Repeat step (e) of crossover operation to all the identified conflicting pairs in step (d) of crossover

operation and generate updated gene sequences i’ = (i1’, i2’, i3’ . . . if’ . . . ig’ . . . in’) and j’ = (j1’, j2’,
j3’ . . . jk’ . . . jl’ . . . , jn’).

Analysis: Step (a) requires Θ(n) complexity. Steps (b), (c), and (e) take a constant running time.
Steps (d) and (f) require Θ(n2) complexity. SPCGX takes Θ(n2) complexity.

17. SPCGX-CGR Crossover

SPCGX is applied with a CGR procedure with a chosen pc. SPCGX-CGR is given in the following
steps [50]:

a. Apply the steps (a) to (e) of SPCGX crossover.
b. Check if the new genes at r and t (i.e., ir and jt) corresponding to an edge (r, t) are in conflict with

its corresponding adjacent genes. If so, generate ir = ir + 1 and jt = jt + 1 such that ir + 1 ≤ χ(G)
and jt + 1 ≤ χ(G).

c. Repeat step (f) of SPCGX with CGR procedure to all the conflicting pairs and generate updated
gene sequences: i’ = (i1’, i2’, i3’ . . . in’) and j’ = (j1’, j2’, j3’ . . . jn’).

Analysis: Steps (a) and (c) require Θ(n2) complexity. Step (b) takes a constant running time.
SPCGX-CGR takes Θ(n2) complexity.

18. SPCGEX Crossover

The SPCGEX operator is applied on the selected gene sequences i = (i1, i2, i3 . . . in) and j = (j1, j2, j3 . . .
jn) as follows [2]:

a. Randomly select any two most conflicting vertices, r, and t in gene sequences i and j.
b. Generate offspring (i1, i2, i3 . . . ir+1 . . . in) and (j1, j2, j3 . . . jt+1 . . . jn) such that ir + 1 ≤minimum

color and 1 + jt ≤ minimum color.
c. Repeat the steps (a) and (b) for fixed iterations to obtain the updated offspring i’ and j’ as (i1’, i2’,

i3’ . . . in’) and (j1’, j2′ , j3’ . . . jn’).

Analysis: Steps (a) and (c) require Θ(n2) complexity. Step (b) takes a constant running time.
SPCGEX takes Θ(n2) complexity.

19. ESPCGEX Crossover

The steps in ESPCGEX crossover are defined as follows [2].

a. Perform SPCGEX crossover steps (a) and (b).
b. If the new genes ir and jt are conflicting, then apply SPCGEX at the conflicting edges (q, r) and

(s, t).
c. Repeat the steps (a) and (b) for fixed iterations to obtain the updated offspring i’ and j’ as (i1’, i2’,

i3’ . . . in’) and (j1’, j2’, j3’ . . . jn’).

Analysis: Steps (a), (b) and (c) require Θ(n2) complexity. Hence ESPCGEX takes Θ(n2) complexity.

20. MSPCGX Crossover

The steps in MSPCGX crossover are defined as follows [2].

a. Find the conflicting edges that count to every vertex in gene sequences j and i.



Mathematics 2020, 8, 303 10 of 20

b. Determine the conflicting vertices in j and i.
c. Select arbitrarily conflicting vertices, r in i and t in j.
d. Update i and j as (i1, i2, i3 . . . ir+1 . . . in) and (j1, j2, j3 . . . jt+1 . . . jn) such that minimum color ≥ ir +

1 and minimum color ≥ jt + 1.
e. If the new genes ir and jt are conflicting, then generate ir = ir + 1 and jt = jt + 1 such that minimum

color ≥ ir + 1 and minimum color ≥ jt + 1.
f. Repeat the steps (d)–(e) for remaining conflicting vertices and update i’ and j’ as (i1’, i2’, i3’ . . . in’)

and (j1’, j2’, j3’ . . . jn’).

Analysis: Steps (a), (b), (e) and (f) require Θ(n2) complexity. Step (c) takes Θ(n) complexity. Step (d)
takes a constant running time. MSPCGX takes Θ(n2) complexity.

Table 1. Asymptotic Complexity of Well-known and Recent Crossover Operators.

SNo Crossover Operator Asymptotic Complexity

1 Order-based Uniform Crossover Θ(n)
2 Penalty Based Crossover Θ(n2 χ(G))
3 One-point Crossover Θ(n)
4 Two-point Crossover Θ(n)
5 Graph Adapted Crossover Θ(n2)
6 UIS Crossover Θ(n χ(G))
7 Multi-Parent Crossover Θ(n2)
8 WIPX Crossover Θ(n2)
9 GPX Crossover Θ(n2)

10 PCPX Crossover Θ(n2)
11 DBX Crossover Θ(n2)
12 MPGX Crossover Θ(n2)
13 POP Crossover Θ(n2)
14 MOX Crossover Θ(n2)
15 MIS Crossover Θ(n2)
16 SPCGX Crossover Θ(n2)
17 SPCGX-CGR Crossover Θ(n2)
18 SPCGEX Crossover Θ(n2)
19 ESPCGEX Crossover Θ(n2)
20 MSPCGX Crossover Θ(n2)

5. Asymptotic Analysis of Some Existing Well-known and Recent Mutation Operators

Some of the existing well-known and recent mutation operators for solving GCP are presented in
this section. The asymptotic complexity of these operators is also analyzed. The asymptotic complexity
of these operators is also analyzed in Table 2.

1. Random Mutation

The random mutation operator randomly swaps the color of each vertex with a low mutation probability
pm. The procedure is described in the following steps.

a. Select crossover offspring o1.
b. Randomly swap the color class of each vertex with a low pm.

Analysis: Step (a) requires a constant running time. Step (b) takes Θ(n) complexity. Thus the random
mutation takes Θ(n) complexity.

2. Polynomial Mutation

The polynomial mutation operator rounds off real values of colors to the nearest integer. The procedure
is described in the following steps.
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a. Select crossover offspring o1.
b. Choose the random point and round off real values of colors to the nearest integer.

Analysis: Steps (a) and (b) require a constant running time. Thus the polynomial mutation takes
Θ(c) complexity.

3. Problem-Specific Mutation 1

The problem-specific mutation operator is defined with problem-specific knowledge. It is operating on
the offspring generated by MPGX operator. The procedure is described in the following steps.

a. Select crossover offspring o1.
b. Find the missing color c1 in the range of maximum color [1, maximum color] used.
c. Identify all the vertices V’(G) assigned with maximum color.
d. Replace colors of V’(G) by c1.

Analysis: Step (a) requires a constant running time. Steps (b) and (c) take Θ(n2) complexity. Step (d)
takes Θ(n) complexity. This mutation takes Θ(n2) complexity.

4. Problem-Specific Mutation 2

The problem-specific mutation operator is defined with problem-specific knowledge. It operates on
the offspring generated by MPGX operator. The procedure is described in the following steps.

a. Choose color c1 randomly within one less than [1, maximum color].
b. Identify all the vertices V’(G) assigned to a maximum color.
c. Replace colors of V’(G) by c1.

Analysis: Step (a) requires a constant running time. Step (b) takes Θ(n2) complexity. Step (c) takes Θ(n)
complexity. This mutation takes Θ(n2) complexity.

5. Problem-Specific Mutation 3

The problem-specific mutation operator is defined with problem-specific knowledge. It operates on
the offspring generated by MPGX operator. The procedure is described in the following steps.

a. Choose a vertex v randomly.
b. Choose a color c randomly for v.
c. If the penalty is reduced to v with color c, then set color[v] = c.

Analysis: Steps (a) and (b) require a constant running time. Step (c) takes Θ(n2) complexity. This
mutation takes Θ(n2) complexity.

6. OM

The OM operator generates a random number r and performs r interchanges between vertices. The
procedure is described in the following steps.

a. Let (v1, v2, v3 . . . vn) be the crossover offspring.
b. Generate a random number r;
c. Generate the offspring by performing r interchanges between vertices.

Analysis: Steps (a) and (b) require a constant running time. Performing r interchanges in Step(c) can
also be done in linear time. The OM mutation takes Θ(n) complexity.
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7. BM

The BM operation performs a translation of blocks of k > 0 successive vertices. The procedure is
described in the following steps.

a. Let (v1, v2, v3 . . . vn) be the crossover offspring.
b. If k = 2 and i ∈ [1, n−1], j ∈ [1, n] are randomly generated then generate the offspring (v1, . . . .vi−1,

vi+2 . . . vj, vi, vi+1, vj+1 . . . ).

Analysis: Step (a) requires a constant running time. Step (b) can take Θ(n) complexity. Thus BM
operation takes Θ(n) complexity.

8. CSM

The CSM randomly selects the conflicting edge and moves the genes to new positions. The procedure
is described in the following steps.

a. Let (v1, v2, v3 . . . vn) be the crossover offspring.
b. Choose a randomly selected bad edge e = (vi, vj) and e’ = (vk, vl) be the next bad edge such that

(i < j < k < l).
c. Move the vertices from positions i + 1 to l − 1 to randomly chosen new positions.

Analysis: Step (a) requires a constant running time. Steps (b) and (c) need Θ(n) complexity.

9. BESM

The BESM operation reduces the number of conflicting edges. The procedure is described in the
following steps.

a. Let (v1, v2, v3 . . . vn) be the crossover offspring.
b. Choose a random bad edge e = (vi, vj).
c. Choose a direction either left-to-right or right-to-left randomly.
d. Let vk be the farthest vertex adjacent to vi so that k > j.
e. Let e’ = (vl, vm) be the first bad edge so that l > k.
f. If there is no vertex vk or edge e’ with the specified properties, the mutation is void. Otherwise,

the vertex vi is moved to the position m + 1.

Analysis: Steps (a), (c) require a constant running time. Step (b) takes Θ(n2) complexity. Steps (d), (e)
and (f) take Θ(n) complexity. Hence BESM takes Θ(n2) complexity.

10. CGM

The CGM operates on offspring i’ and j’. The steps are given below [49]:

a. Select any two conflicting genes i’f′ = i’g’ and j’k’ = j’l’ in i’ and j’.
b. Update i’ and j’ as (i1’, i2′ , i3’ . . . if’−1 . . . in’) and (j1’, j2’, j3’ . . . jk’−1 . . . jn’) such that 1 ≤ if’−1 and

1 ≤ jk’−1.
c. Update i” and j” as (i1”, i2”, i3” . . . in”) and (j1”, j2”, j3” . . . jn”) by repeating steps (a)-(b) for

fixed iterations.

Analysis: Steps (a) and (c) require Θ(n2) complexity. Step (b) requires a constant running time.
Hence CGM mutation takes Θ(n2) complexity.
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11. CGM-CGR Mutation

The CGM-CGR mutation is applied to the offspring i’ and j’ and its steps are given below [50]:

a. Perform CGM steps (a)–(b).
b. If the new genes if ′ and jk′ are conflicting then update if’ = if’−1 and jk’ = jk’−1 such that 1 ≤ if’−1

and 1 ≤ jk’−1.
c. Update i” and j” as (i1”, i2”, i3” . . . in”) and (j1”, j2”, j3” . . . jn”) by repeating steps (a)–(b) for

fixed iterations.

Analysis: Steps (a), (b) and (c) require Θ(n2) complexity. Hence CGM-CGR mutation takes
Θ(n2) complexity.

12. ECGM

The ECGM operation is defined as follows [2]:

a. Perform CGM steps (a) and (b).
b. If new genes i’f’ and j’k’ are conflicting, then perform CGM at f ’ and k’.
c. Update i” and j” as (i1”, i2”, i3” . . . in”) and (j1”, j2”, j3” . . . jn”) by repeating steps (a) and (b) for

fixed iterations.

Analysis: Steps (a), (b) and (c) require Θ(n2) complexity. Hence ECGM takes Θ(n2) complexity.

13. MCGM

The MCGM operation is defined as follows [2]:

a. Find the conflict edges count to every vertex in i’ and j’.
b. Determine the conflict vertices in i’ and j’.
c. Select arbitrarily two conflicting vertices f ’ in i’ and k’ in j’.
d. Update i’ and j’ as (i1’, i2’, i3’ . . . if’−1 . . . in’) and (j1’, j2’, j3’ . . . jk’−1 . . . jn’) such that 1 ≤ if’−1

and 1 ≤ jk’−1.
e. If new genes i’f’ and j′k’ are conflicting then perform CGM at f ’ and k’.
f. Update i” and j” as (i1”, i2”, i3” . . . in”) and (j1”, j2”, j3” . . . jn”) by repeating steps (d) and (e) for

fixed iterations.

Analysis: Steps (a), (b), (e) and (f) require Θ(n2) complexity. Steps (c) and (d) take Θ(c) complexity.
Hence MCGM takes Θ(n2) complexity.

Table 2. Asymptotic Complexity of Well-known and Recent Mutation Operators.

SNo Mutation Operator Asymptotic Complexity

1 Random Mutation Θ(n)
2 Polynomial Mutation Θ(c)
3 Problem-Specific Mutation 1 Θ(n2)
4 Problem-Specific Mutation 2 Θ(n2)
5 Problem-Specific Mutation 3 Θ(n2)
6 OM Θ(n)
7 BM Θ(n)
8 CSM Θ(n)
9 BESM Θ(n2)

10 CGM Θ(n2)
11 CGM-CGR Θ(n2)
12 ECGM Θ(n2)
13 MCGM Θ(n2)
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6. Global Convergence of Evolutionary Algorithms and Stochastic Convergence of Recent
Genetic Operators

The necessary and sufficient condition for the global convergence of evolutionary algorithms is
proved in this section [61,62]. The stochastic convergence of some recent genetic operators for solving
GCP is also proved in the present section [2].

6.1. Markov Chain Model of Evolutionary Algorithms

Consider the following optimization problem:
Optimize {f (x); x ∈ S} where S is a measurable space, f (x) is the objective or fitness function where

the absolute value of (f (x)) is < +∞.
Represent the optimal solution set by S* = {x* such that f (x*) = optimize f (x), x ∈ S}.
Let µ(S) be a measure to space S with µ(S*) > 0.
Consider the set S*

δ = {x such that f (x*) − f (x) < δ} where δ > 0 is a small number.
Choose an appropriate δ to satisfy µ(S*

δ) > 0.
The space S is called an individual space where each state s in S is called an individual.
N represents population size.
X = SN is the population space.
Denote the elements in x as x = {x1, x2, x3 . . . xN}.
Denote the optimal solution set X* = {x* such that ∃ xi ∈ x: xi ∈ S*}.
An evolutionary algorithm to solve this optimization problem is formulated as follows:

a. Initialization: Generate initial population P0 at generation g = 0.
b. Crossover operation: Update the new population Pt by a crossover operator PC(g).
c. Mutation operation: Update the new population Pt by a mutation operator PM(g).
d. Selection operation: Select a new population from PM(g) by a selection operator PS(g).
e. Termination: If termination conditions hold, then stop; otherwise g = g + 1 and update Pg.

Since the state of Pg+1 is only dependent on the state of Pg, then {Pg: g = 0, 1, 2 . . . } can be modeled
by a Markov chain with the following transition function [61,62]:

P(g; x, dy) = P(Pg+1 = dy such that Pg = x) =
∫

u∈X

∫
v∈X

PC(g; x, du)PM(g; u, dv)PS(g; v, dy) (1)

Then {Pg: g = 0, 1, 2 . . . } converges to X*, if for any initial population P0,

lim
g→+∞

µg(X∗) = 1 where µg(X∗)= µ(Pg ∈ X∗
)
.

6.2. Convergence Conditions of Evolutionary Algorithms

The necessary and sufficient condition for the convergence of evolutionary algorithms is as
follows [61,62]:

Let {Pg: g = 0, 1, 2 . . . } be the Markov chain given by (1). Define α(g) as the difference between
flow from the non-optimal solution set to the optimal solution set and vice versa.

α(g) =
∫

x < X∗

P(Pg+1 ∈ X∗| Pg = x) µg(dx) −
∫

x ∈ X∗

P(Pg+1 < X∗| Pg = x) µg(dx)

Then {Pg: g = 0, 1, 2 . . . } converges to the optimal solution set X* iff

+∞∑
g=0

α(g) = 1− µ0(X∗)
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Proof: For any given generation g, we have

µg+1(X∗) =
∫

x < X∗

P(Pg+1 ∈ X∗| Pg = x) µg (dx) +
∫

x ∈ X∗

P(Pg+1 < X∗| Pg = x) µg (dx)

µg+1(X∗) = µg(X∗) −
∫

x ∈X∗

P(Pg+1 < X∗| Pg = x) µg(dx) +
∫

x <X∗

P(Pg+1 ∈ X∗| Pg = x) µg(dx)

µg+1(X∗) − µg(X∗) = α(g)

µg+1(X∗) − µ0(X∗) =
g∑

k=0

α(k)

lim
g→+∞

µg+1(X∗) = 1 ⇐⇒
+∞∑
k=0

α(k) = 1− µ0(X∗)

The initial population P0 is not optimal, that is, µ0(X∗) = 0. Then

+∞∑
g=0

α(g) = 1

6.3. Stochastic Convergence of Recent Evolutionary Operators

Some of the recent genetic operators like SPCGX, SPCGEX, ESPCGEX, ECGM, MSPCGX, and
MCGM modify Pg through successive stochastic transformations, which can be analyzed by the
Markovian model. The subsequent value of Pg+1 is generated stochastically, and the evolutionary
algorithm converges when the reachability and monotone conditions are fulfilled [2,41,63]. Some of
the recent genetic operators converge stochastically.

6.3.1. Analyzing the Reachability Condition from j’

If j and j” be any two individuals in the finite search space S, then j” is reachable from individual j.
That is, j’ = (j1’, j2’, j3’ . . . jn’) and j”= (j1”, j2”, j3” . . . jn”) are the two gene sequences generated from
the gene sequences j = (j1, j2, j3 . . . jn) and j’ = (j1’, j2’, j3’ . . . jn’) respectively. If (0 < Probability {j” =

(crossover (j) & mutation (j’))} < 1) then the individual j” is reachable from individual j′ [2].
First, consider the effect of crossover operation. Let S be the finite search space of the problem.

Consider a gene sequence j ∈ S such that j = (j1, j2, j3 . . . jn). The proposed crossover operators
(incremental operators) SPCGX and SPCGEX produce a new gene as jr = jr + 1 if minimum color ≥ jr
+ 1. Hence the new gene takes one of the values in (jr, jr+1). The CGR operator further checks the
conflict at vertex r. If there is a conflict, then the new gene at vertex r is generated as jr = jr + 1 such that
minimum color ≥ jr + 1. Clearly, jr assumes the value in (jr, jr + 1, jr + 2). Thus the required probability
of assigning a new gene at the conflicting vertex is 1/3 for a single crossover operation. Assume that
the crossover operation is performed for k times.

é Probability {j’ = crossover (j)} = 1/3k > 0 (1 ≤ j, j’ ≤ N), k > 0 (2)

Now consider the effect of mutation operation. The recent mutation operators set a value of the
conflicting gene in [1, f (G)]. Thus the required probability of assigning a gene at the conflicting vertex
is 1/f(G) for a single mutation operation. Assume that the mutation operation is performed for l times.

é Probability {j” = mutation (j’)} = 1/f (G)l > 0, l > 0. (3)
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For the chosen crossover probability pc and mutation probability pm, the probability of generating
new gene sequence j” is computed using the multiplication theorem of probability. The crossover and
mutation operations are mutually independent. Hence the required probability of generating j” is
computed as follows:

Probability of {j” = (crossover (j) & mutation (j’))} ≥

(Crossover probability) × (Probability of generating j’ from j) × (Mutation
probability) × (Probability of generating j” from j’)

That is

Probability of {j” = (crossover (j) & mutation (j’))} ≥ pc. Probability {j’ = Crossover
(j)}.pm. Probability {j” = Mutation (j’)}

(4)

Probability of ( j” = (crossover( j) & mutation( j’))
}
≥ pc pm

1
3k

1

(f(G))l
>0

Hence the gene sequence j” is reachable from j’.

6.3.2. Analyzing whether Pg is Monotone

During the iterations of an evolutionary algorithm, Pg is modified by successive probabilistic
transformations. The proportionate fitness selection selects one worst and two better gene sequences
in every generation as follows:

a. Evaluate Fg(a) for each gene sequence a (1 ≤ a ≤ N) in Pg.
b. Determine p(a) using

p(a) = Fg(a)/
N∑

a=1

Fg(a)

c. Compute E(a) = N p(a) for all a (1 ≤ a ≤ N).
d. Select the better gene sequences i and j and the worst gene sequence w.

The probability of selection of i and j is always greater than zero. Pg is then updated by performing
the elitism operation.

The recombination and mutation operations are performed based on the values of pcr and pmr.
For small graphs, some of the recent operators monotonically reduce Fg (i) and Fg (j) during the
modification of population by a finite number of probabilistic transformations [2]:

1. The values of Fg (i) and Fg (j) monotonically decreases in subsequent generations and converge to
a better near-optimal solution.

That is, either F0(i) ≥ F1(i) ≥ F2(i) ≥ . . . ≥ (Fq(i) = 0) or F0(j) ≥ F1(j) ≥ F2(j) ≥ . . . ≥ (Fq(j) = 0).

2. Fg (i) and Fg (j) monotonically decrease for a finite number of generations (say t).

i.e., F0(i) ≥ F1(i) ≥ F2(i) ≥ . . . ≥ Ft(i) and F0(j) ≥ F1(j) ≥ F2(j) ≥ . . . ≥ Ft(j).
Then, based on the values of pcr and pmr, the fitness-function values again increase for a finite

number of generations (say s).
i.e., Ft(i) ≤ Ft+1(i) ≤ . . . ≤ Fs(i) and Ft(j) ≤ Ft+1(j) ≤ . . . ≤ Fs(j).
For complex graphs, the successive probabilistic transformations find a better near-optimal

solution after a finite number of generations. Hence, the successive probabilistic changes utilize
Pg as a monotone in some of the subsequent generations to achieve a better near-optimal solution.
These successive probabilistic changes, applying for over a large number of generations, for example,
1000 runs each with 5,000,000 generations of the genetic algorithm, achieve a better near-optimal
solution [2].
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7. Conclusions and Future Work

GCP is an NP-hard combinatorial optimization problem and can be applied to innumerable
engineering problems. χ(G) can be obtained using different approximations and evolutionary methods.
In comparison to other methods, genetic algorithms are useful in solving multi-objective optimization
problems with vast search space [2]. Hence, it is expected to design new evolutionary operators to
achieve faster stochastic convergence with a minimal number of generations.

This paper explored the asymptotic analysis of some well-known and recent evolutionary operators
for finding chromatic numbers. The asymptotic analysis of different crossover and mutation operators
helps in minimizing problem search space and computational complexity. The choice of the right genetic
operators facilitates an evolutionary algorithm to achieve faster convergence with lesser population
size (N) through an effective distribution of promising genes. The selection of evolutionary operators
also plays an essential role in reducing the bounds for minimum color obtained for the benchmark
graphs [2]. The necessary and sufficient condition for global convergence of the evolutionary algorithm
and the stochastic convergence of some recent evolutionary operators for solving GCP are analyzed in
this paper.

Our current work enlightens some new research directions [64–66].

i. The recent genetic operators can be combined with better local search strategies in order to further
reduce the computational complexity of GCP.

ii. The self-adaptive evolutionary operators with heuristics can be designed to find chromatic
numbers as well as can be applied to channel allocation problem (CAP) and scheduling problems.
CAP is an extension of GCP, which assigns channels to mobile stations.

iii. The performances of some recent operators can be evaluated under different parameter values,
such as graph density, N, pc, and pm.

iv. Some of the recent operators can be combined to reduce g.
v. The stochastic convergence of genetic algorithms can be extended to multi-objective optimization

problems, and the necessary conditions for the global convergence of multi-objective optimization
problems can be analyzed mathematically.

vi. An algebraic framework that may lead to a unification of different evolutionary operators for
combinatorial problems can be designed and analyzed [64–66].
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