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Abstract: This article proposes adaptive iterative splitting methods to solve Multiphysics problems,
which are related to convection–diffusion–reaction equations. The splitting techniques are based on
iterative splitting approaches with adaptive ideas. Based on shifting the time-steps with additional
adaptive time-ranges, we could embedded the adaptive techniques into the splitting approach. The
numerical analysis of the adapted iterative splitting schemes is considered and we develop the underlying
error estimates for the application of the adaptive schemes. The performance of the method with respect
to the accuracy and the acceleration is evaluated in different numerical experiments. We test the benefits
of the adaptive splitting approach on highly nonlinear Burgers’ and Maxwell–Stefan diffusion equations.
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1. Introduction

In this paper, we propose adaptive splitting schemes to solve nonlinear differential equations.
We consider spatially discretized convection–diffusion–reaction equations, which we could apply as
semi-discretized nonlinear systems of ordinary differential equations. Based on the nonlinearities, it
is important to deal with adaptive schemes, whereas we can control the local errors of the underlying
schemes, see [1–4].In general, the splitting methods have local splitting errors, which can be controlled
with the time- or spatial steps of the underlying schemes, see [1,2,5,6].

In this work, we consider time-splitting methods, and here, we distinguish between

• Non-iterative methods, e.g., Lie–Trotter, see [7]; Strang-splitting methods, see [8]; or exponential
splitting schemes, see [1,9].

• Iterative methods, e.g., iterative splitting methods, see [3,10], or Waveform-Relaxation methods, see,
e.g., [11,12]

For the non-iterative methods, e.g., Lie–Trotter and Strang-splitting schemes, first works exist and
discuss the ideas of the adaptive time splitting methods, see [6,8]. Although for the iterative methods only
some first ideas exist, see [13], based on dealing with different time-step approaches, our new contributions
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are based on the novel strategy of ε-shifting, see [14], of the underlying splitting method. We obtain
so-called shifted iterative splitting methods, which can be compared with the standard iterative splitting
methods, i.e., without the shifting. The local error estimate can be computed with the solution of the shifted
and non-shifted iterative splitting approaches. Then, the effective error control is given as a function of the
local error estimates and an error-tolerance parameter.

Such a novel adaptive splitting approach is important to reduce the computational time, while we
decompose into sub-operators, which can be simulated with faster and more accurate numerical schemes.
Further, the novel approach can be optimized with an effective and maximal splitting time step, see
also [5,14]. We combine these two ideas of adaptivity and splitting into a novel strategy to control and
reduce the local splitting error for the iterative splitting methods. Then, we can obtain more accurate
results with a maximal time step and reduce the computational cost.

In this paper, we present the novel adaptive splitting techniques as follows.

• In the first step, we consider the standard splitting techniques with the underlying error analysis,
see [3], and

• in the second step, we introduce the adaptive techniques, which is based on the ε-shift technique,
see [14], such that we can control the local splitting error.

Then, an error-estimate is computed, such that we are allowed to evaluate a maximum splitting
time-step with respect to the shifted and non-shifted iterative splitting approach. The analysis is based on
the standard iterative splitting approaches, see [13,15], and the additional adaptive techniques, see [5,6].
In the numerical applications, which are based on convection–diffusion–reaction equations, we present
the verification and the benefits of the novel adaptive iterative splitting approaches.

The paper is outlined as following. In Section 2, we explain the adaptive splitting approaches. Further,
in Section 3, we discuss the error analysis of the adaptive splitting schemes. The applications to different
convection–diffusion–reaction equations are done in Section 4. In Section 5, we discuss the theoretical and
practical results.

2. Adaptive Splitting Approaches

We take inspiration for our studies, which are presented below, from real-life simulations of nonlinear
convection–diffusion–reaction equations with the help of splitting approaches, see [3,16–18].

We deal with convection–diffusion–reaction equations, which can be written as

∂tu(t) + ∂xv(u)− ∂x(D(u)∂xu) = f (u(t)), x ∈ IRd, t > 0, (1)

u(x, 0) = u0(x), x ∈ IRd, t = 0, (2)

where f : IRn → IRn is the reaction term; u : IRd × IR→ IRn is the solution; and D(u) is the diffusion matrix,
which is a tensor of order d× d× n and the velocity vector, which is of order d× n.

In the present paper, we apply spatial discretization methods, such that we consider the spatial
discretized partial differential equations with the included boundary conditions, which are given as
ordinary differential equations:

∂tu(t) = A(u(t)) u(t) + B(u(t)) u(t) , t ∈ (0, T), (3)

where u(0) = u0 is the initial condition. A(u) and B(u) are operators, which are spatially discretized.
For example, A(u) is the discretized in space convection operator and B(u) is the discretized in space
diffusion operators. For convenience, the nonlinear operators are bounded, e.g., bounded matrices.
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In our proposed scheme, we embed the idea of the ε-shift, which is explained in [14], to the iterative
splitting methods, see [3]. Then, we obtain a new so called ε-shifted iterative splitting method, which is a
new contribution. Such shifted iterative splitting approach are used to design new adaptive time-splitting
methods, which can be applied with maximal time-steps and compute the error-controls of the local
splitting-errors.

In the following, we discuss the standard and the shifted splitting approaches.

2.1. Standard Splitting Approaches

In this section, we describe the standard splitting methods.
We deal with two splitting schemes:

• Non-iterative splitting scheme (Strang splitting), see [8].
• Iterative splitting scheme (fixpoint scheme), see [3].

2.1.1. Strang-Marchuk Splitting (SMS)

In the SMS method, in the first step, the operator A is solved in the left half of interval [tn, tn+1];
then, in the second step, the operator B is solved in the whole interval [tn, tn+1]; and in the third step,
the operator A is solved in the right half of the interval [tn, tn+1]. By the initial conditions, the three
subproblems are connected, see

dũ(t)
dt

= A(ũ(t))ũ(t), with ũ(tn) = u(tn), and t ∈ [tn, tn + τ/2],

d ˜̃u(t)
dt

= B( ˜̃u(t)) ˜̃u(t), with ˜̃u(tn) = ũ(tn + τ/2), and t ∈ [tn, tn+1],

du(t)
dt

= A(u(t))u(t), with u(tn + τ/2) = ˜̃u(tn+1)and t ∈ [tn + τ/2, tn],

(4)

where τ = ∆(tn) = tn+1 − tn is the time step.

2.1.2. Iterative Splitting Methods

The iterative splitting method defined in [13] and extensively studied for ordinary and partial
differential equations in [3,10,15,19,20] are alternative operator splitting methods, which are based on
iterative techniques.

We apply two versions of the iterative splitting methods:

• Linear Iterative Splitting (LIS)

The LIS solves in the first equation the linear part of operator A with the given right hand side of
operator B. Then, it solves in the second equation the linear part of operator B with the right hand
side of operator A, using the solution of the first equation. The two solver steps are iterated m times
before we pass to the next interval.

dũi(t)
dt

= A(ui−1(t))ũi(t) + B(ui−1(t))ui−1(t), with ũi(tn) = u(tn),

dui(t)
dt

= A(ũi(t))ũi(t) + B(ũi(t))ui(t), with ui(tn) = u(tn),
(5)

where i = 1, 2, . . . , m. For the initialisation of the iteration, we start with function u0(t), which verifies
the initial condition u0(0) = u0. After, we have performed m iterations of the LIS, we apply the
approximated solution u(tn+1) = um(tn+1) for the next time-step, till the final step n + 1 = N.
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• Quasilinear Iterative Splitting (QIS)

The QIS solves in the first equation the nonlinear part of operator A with the given right hand side
of operator B. Then, it solves in the second equation the nonlinear part of operator B with the right
hand side of operator A, using the solution of the first equation. The two solver steps are iterated m
times before we pass to the next interval.

dũi(t)
dt

= A(ũi(t))ũi(t) + B(ui−1(t))ui−1(t), with ũi(tn) = u(tn),

dui(t)
dt

= A(ũi(t))ũi(t) + B(ui(t))ui(t), with ui(tn) = u(tn),

where i = 1, 2, . . . , m. For the initialisation of the iteration, we start with function u0(t), which verifies
the initial condition u0(0) = u0. After, we have performed m iterations of the QIS, we apply the
approximated solution u(tn+1) = um(tn+1) for the next time-step, till the final step n + 1 = N.

2.2. Shifted Splitting Approaches for Error Estimations

In this section, we describe the modified splitting methods to apply error-estimates. We propose
shifted splitting as a novel method to design error estimates, see [14].

We deal with two shifted splitting schemes:

• Non-iterative splitting scheme (Strang splitting), see [14].
• Iterative splitting scheme (fixpoint scheme), see [3].

2.2.1. Shifted Strang-Marchuk Splitting (SSMS)

In this method, in interval [tn, tn+1], we first solve for operator A with a half time step minus a small
ε, means τ/2− ε, then we solve B with the full time-step τ, and again for A with a half time step plus a
small ε, means τ/2 + ε. The three subproblems are connected by the initial conditions, according to

dũ(t)
dt

= A(ũ(t))ũ(t), with ũ(tn) = u(tn) and t ∈ [tn, tn + τ/2− ε], time-step τ/2− ε,

d ˜̃u(t)
dt

= B( ˜̃u(t)) ˜̃u(t), with ˜̃u(tn) = ũ(tn + τ/2− ε), and t ∈ [tn, tn+1], time-step τ,

du(t)
dt

= A(u(t))u(t), with u(tn + τ/2− ε) = ˜̃u(tn+1) and t ∈ [tn + τ/2− ε, tn+1],

time-step τ/2 + ε.

(6)

The ε value is a small fraction of τ, for example ε = 0.005τ, so that the shifted interval is close to the
original one. The error estimate is given as

err = ||uStrang(tn+1)− uStrang,ε(tn+1)||. (7)

If the error estimate err is higher than a given tolerance η, we redo the computations with a smaller step
according to the refinement scheme

∆tnew = ν∆t
√

η

err
, (8)
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where we apply ν > 0, near 1 as a security factor. Otherwise, if err ≤ η, we accept the obtained
value uStrang(tn+1), and proceed with the next time interval. In this case, in order to avoid the usage of
unnecessary small time steps, we apply a coarsening scheme

∆tnew = (1 + κ)∆t, (9)

where κ is a small positive value depending on the tolerance η.
The Algorithm is given in Algorithm 1:

Algorithm 1.

1. Compute the local time-steps with the Strang and shifted Strang method, means ustrang(tn+1) and
ustrang,ε(tn+1).

2. Compute the error estimation according to (7).
3. If err > η, reject the time-step and restart the recent time-interval with the ∆tn = ∆tnew obtained from (8).

If err ≤ η, then we are in the error tolerance. Proceed with the next time interval with the increased time step
∆tn+1 = ∆tnew given by (9).

Remark 1. The theoretical results of the Algorithm 1, which is based on the ε-shifted Strang-splitting method, are
given in the literature [4,5]. Here, the authors applied the shifted Strang-splitting method and could apply a local
error estimate of the first and second splitting resolution, see [14].

In the Figure 1, we have the graphically introduction of the shifting ideas.

c(t     )

nc(t  )

c(t     )

B

A (1/2+ε)

A(1/2−ε)

Shifted Strang

Splitting

Standard

Strang Splitting

B

A/2

n+1 n+1

nc(t  )

Figure 1. Standard Strang splitting and shifted Strang splitting method.

2.2.2. Shifted Iterative Splitting Methods

In this section, we apply the shifting time-step ideas to the iterative splitting methods. First, we solve
for the first iterative step with time-step τ − ε, then we solve for the second iterative step with time-step
τ + ε.

We modify the two versions of the iterative splitting methods:

• Shifted Linear Iterative Splitting (SLIS)

The SLIS solves in the first equation the linearized part of operator A with the given right hand side
of operator B for a minus shift of ε in the time-step. Then, it solves the second equation the linearized
part of operator B with a given right hand side of operator A for a plus shift of ε in the time-step,
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using the solution of the first equation. The two solver steps are iterated m times before we pass to
the next interval.

dũi(t)
dt

= A(ui−1(t))ũi(t) + B(ui−1(t))ui−1(t), with ũi(tn) = u(tn), time-step τ − ε,

dui(t)
dt

= A(ũi(t))ũi(t) + B(ũi(t))ui(t), with ui(tn) = u(tn), time-step τ + ε,
(10)

where i = 1, 2, . . . , m. For the initialization of the iteration, we start with function u0(t), which verifies
the initial condition u0(0) = u0. After we have performed m iterations of the SLIS, we apply the
approximated solution u(tn+1) = um(tn+1) for the next time-step, until the final step n + 1 = N.

We apply the error-estimates as in Algorithm 2 and then we go to the next time-step.

Here, we decided i = 1, but the error estimates also work for i = 1, 2, . . . , m.
• Shifted Quasilinear Iterative Splitting (SQIS)

The SQIS solves in the first equation the nonlinear part of operator A with the given right hand side
of operator B for a minus shift of ε in the time-step. Then, it solves the second equation the nonlinear
part of operator B with a given right hand side of operator A for a plus shift of ε in the time-step,
using the solution of the first equation. The two solver steps are iterated m times before we pass to
the next interval.

dũi(t)
dt

= A(ũi(t))ũi(t) + B(ui−1(t))ui−1(t), with ũi(tn) = u(tn), time-step τ − ε,

dui(t)
dt

= A(ũi(t))ũi(t) + B(ui(t))ui(t), with ui(tn) = u(tn), time-step τ + ε,
(11)

where i = 1, 2, . . . , m. For the initialization of the iteration, we start with function u0(t), which verifies
the initial condition u0(0) = u0. After we have performed m iterations of the SQIS, we apply the
approximated solution u(tn+1) = um(tn+1) for the next time-step, till the final step n + 1 = N.

We apply the error-estimates as in Algorithm 2 and then we go to the next time-step.

Here we decided i = 1, but the error estimates also works for i = 1, 2, . . . , m.

The error estimate is given as

err = ||ui(tn+1)− ui,ε(tn+1)|| ≤ η, (12)

whereas η is a given error tolerance, e.g., η = 10−5.
Further the adaptive time-stepping is

∆tnew = ν∆t
( η

err

)1/(2i)
, (13)

where we apply ν > 0, near 1 as a security factor.
The Algorithm is given in Algorithm 2:

Algorithm 2.

1. We compute the local time-steps with the iterative and shifted iterative method, means ui(tn+1) and ui,ε(tn+1)



Mathematics 2020, 8, 302 7 of 23

2. We compute the error estimation

err = ||ui(tn+1)− ui,ε(tn+1)|| ≤ η, (14)

3. If err ≤ η, then we are in the error tolerance and we accept the time-step means u(tn+1) = ui(tn+1) and the
next time-step is ∆tn+1 = ∆tnew.

Otherwise, we reject the time-step and restarted the recent time-interval with ∆tn = ∆tnew

In the Figure 2, we have the graphically introduction of the shifting ideas.
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Figure 2. Unshifted iterative splitting and shifted iterative splitting method.

3. Error Analysis

The error analysis of the methods are done in the following.
We deal with the following assumptions to the nonlinear operators:

Assumption 1.

• Estimation of the nonlinear operators:

||A(ei(t))|| ≤ ||Ã||, tn ≤ t ≤ tn+1, i = 0, 1, . . . , I, (15)

||B(ei(t))|| ≤ ||B̃||, tn ≤ t ≤ tn+1, i = 0, 1, . . . , I, (16)

where Ã and B̃ are bounded operators, such that the Taylor expansion of the operators can be applied.
• For the nonlinear operators A and B, we estimated the linearized parts as bounded operators Ã, B̃ : X → X,

where X is an appropriate Banach space. Further, we have a Banach-norm for the vector and the matrices, which
is given as ‖ · ‖.

In Theorem 1, we derive the consistency order of the shifted iterative operator-splitting.

Theorem 1. The operators A, B ∈ L(X) are nonlinear bounded operators with the Assumption 1. The abstract
Cauchy problem is given as

∂tc(t) = A(c(t))c(t) + B(c(t))c(t), 0 < t ≤ T,

c(0) = c0.
(17)

The abstract Cauchy problem (17) has an existent and unique solution. Then, the shifted iterative splitting
method (11) is consistent with the order of the consistency O(τ2i

n ) with i = 1, . . . , m.
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Proof. We assume Ã + B̃ ∈ L(X) and we assume that the linear operators are generator of a uniformly
continuous semigroup, such that we have a unique solution c(t) = exp((Ã + B̃)t)c0.

In the following, we consider the local time-interval [tn, tn+1].
ei(t) = c(t)− c̃i(t) and ei+1(t) = c(t)− ci(t) are the local error functions.

The error functions for the shifted time-intervals are computed as

∂tei(t) = Ãei(t) + B̃ei−1(t), t ∈ (tn, tn+1 − ε],
ei(tn) = 0,

(18)

and
∂tei+1(t) = Ãei(t) + B̃ei+1(t), t ∈ (tn, tn+1 + ε],

ei+1(tn) = 0,
(19)

for i = 1, 3, 5, . . . , with e1(0) = 0 and e0(t) = c(t).
Based on the Assumptions 1, we can assume that the linearized operators Ã and B̃ are generators of

the one-parameter C0 semigroup, which are given as (exp(Ã(t))t≥0 and (exp(B̃(t))t≥0.
In the following, we can write the abstract Cauchy problem with homogeneous initial conditions as

ei(t) =
∫ t

tn exp(Ã(t− s))B̃ei−1(s)ds, t ∈ [tn, tn+1 − ε],
ei+1(t) =

∫ t
tn exp(B̃(t− s))Ãei+1(s)ds, t ∈ [tn, tn+1 + ε],

(20)

We apply the norms for the vectors and matrices and we can estimate

‖ei(t)‖ ≤ ‖B̃‖‖ei−1‖
∫ t

tn ‖ exp(Ã(t− s))‖ds, t ∈ [tn, tn+1 − ε],
‖ei+1(t)‖ ≤ ‖Ã‖‖ei‖

∫ t
tn ‖ exp(B̃(t− s))‖ds, t ∈ [tn, tn+1 + ε],

(21)

We assume, that (Ã(t))t≥0 and (B̃(t))t≥0 are generators of semigroups and we apply the so-called
growth estimation. Then, we can estimate

‖ exp(Ãt)‖ ≤ K exp(ωt); t ≥ 0,
‖ exp(Ãt)‖ ≤ K̃ exp(ω̃t); t ≥ 0,

(22)

where the estimations are held for some numbers K ≥ 0 and ω, ω̃ ∈ IR.
In the following, we distinguish between the following two operator-types.

• We assume (Ã(t))t≥0 and (B̃(t))t≥0 are bounded operators, which generates stable semigroups,
meaning ω, ω̃ ≤ 0, see [13,21], or

• We assume (Ã(t))t≥0 and (B̃(t))t≥0 are operators with exponential growth, which generates stable
semigroups, means ω, ω̃ > 0, see [13,21].

Then, we have the following two estimates of the two groups of operators:

• Bounded operators.
They are estimated as

‖ exp(Ãt)‖ ≤ K, t ≥ 0,
‖ exp(B̃t)‖ ≤ K̃, t ≥ 0,

(23)

and we apply the estimations to (21) and obtain the relation

‖ei‖(t) ≤ K‖B̃‖(τn − ε)‖ei−1‖, t ∈ [tn, tn+1 − ε],
‖ei+1‖(t) ≤ K̃‖Ã‖(τn + ε)‖ei‖, t ∈ [tn, tn+1 − ε].

(24)
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• Operators with exponential growth.
Here, we assume that (exp(Ãt))t≥0, (exp(B̃t))t≥0 are exponentially growing with some ω > 0, ω̃ > 0.
Therefore, we can estimate∫ t

tn
‖exp(Ã(t− s))‖ds ≤ Kω(t), t ∈ [tn, tn+1 − ε], (25)∫ t

tn
‖exp(B̃(t− s))‖ds ≤ K̃ω(t), t ∈ [tn, tn+1 + ε], (26)

where

Kω(t) =
K
ω

(exp(ω(t− tn))− 1) , t ∈ [tn, tn+1 − ε], (27)

K̃ω̃(t) =
K̃
ω̃

(exp(ω(t− tn))− 1) , t ∈ [tn, tn+1 + ε]. (28)

Further, we apply

Kω(t) ≤
K
ω

(exp(ωτn)− 1) = Kτn +O(τ2
n), (29)

K̃ω̃(t) ≤
K̃
ω̃

(exp(ω̃τn)− 1) = K̃τn +O(τ2
n). (30)

The estimations (24) and (30) result in

‖ei‖ ≤ (K‖B̃‖(τn − ε)‖ei−1‖+O((τn − ε)2), (31)

‖ei+1‖ ≤ (K̃‖Ã‖(τn + ε)‖ei‖+O((τn + ε)2), (32)

and we can apply recursively the error-estimation of Equations (31) and (32) and we obtain,

‖ei+1‖ ≤ K B̃‖Ã‖‖B̃‖||ei−1||(τ2
n − 2ετn) +O(τ3

n) +O(ετ2
n). (33)

Then, we recursively applied the Equation (33) and obtain the proved statement.

Remark 2. Based on the derivation of the error of the shifted iterative method, we obtain the error

err = ‖ui(tn+1)− ui,ε(tn+1)‖ ≤ η, (34)

whereas err = C(∆t2i−1) and also η = C(∆t2i−1
new ), and we obtain

∆tnew = ν ∆t
( η

err

)2i−1
. (35)

Remark 3. In realistic applications, an optimal relation between the time-step τn and the number of iterative steps
2i− 1, see Equation (35), is necessary. In practical experiments, we saw that ν > 0, but near to 1 and i ≈ 3, 4, 5
iterations are sufficient, such that we obtain an optimal new time-step ∆tnew. To improve the criterion for stopping
the iterative processes, we can additionally define an error bound. For example |ci − ci−1| ≤ err with err = 10−4

can be used to restrict us to an appropriate low number of iterative steps.

The order of accuracy can be improved by the choice of the initial iteration function, e.g., additional
pre-steps with standard splitting approaches, see [13].
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Based on our assumption about the initial solutions, we initialize with exact solutions or we apply
higher order interpolated split solutions. This assumption allow to derive a theory for the exactness of the
iterative methods, see also [13].

4. Numerical Results

In this section, we present the numerical results based on our novel iterative splitting methods
for nonlinear ordinary and partial differential equation. We verified our theoretical results of the
error-estimates and applied the shifted iterative splitting methods as a new-solver class.

4.1. First Numerical Example: Bernoulli Equation

In the first example, we apply a nonlinear differential equation, which is given as the Bernoulli
equation, see

∂u(t)
∂t

= (λ1 + λ3)u(t) + (λ2 + λ4)(u(t))p, t ∈ [0, T], with u(0) = 1. (36)

For the Bernoulli equation, we can derive analytical solutions as reference solutions, see [15,22].
The analytical solutions are given as

u(t) = exp((λ1 + λ3)t)
[
−λ2 + λ4

λ1 + λ3
exp((λ1 + λ3)(p− 1)t) + c

]1/(1−p)
.

Using u(0) = 1 we find that c = 1 + λ2+λ4
λ1+λ3

, so

u(t) = exp((λ1 + λ3)t)
{

1 +
λ2 + λ4

λ1 + λ3
[1− exp((λ1 + λ3)(p− 1)t)]

}1/(1−p)
. (37)

For the applications, we apply the following parameters, p = 2 , λ1 = −1, λ2 = −0.5, λ3 = −100,
λ4 = −20 , T = 0.2, and u(0) = 1.

We apply the following operators for the splitting.

• operator A: A = (λ1 + λ3),
• operator B: B(u) = (λ2 + λ4)(u(t))p−1.

We apply backward Euler method to approximate the derivative in each subinterval [tn, tn+1], n =

0, 1, . . . , N, and solve the resulting equation by using the fixed point method and Newton’s method
with tolerance 10−12 allowing a maximum of three iterations. The accuracy of the methods is assessed
by comparing the numerical result unum with the analytical solution u given by (37). We compute the
maximum and mean difference at the nodes tn, according to

emax = max
n
|unum(tn)− u(tn)|,

and
emean =

1
N ∑

n
|unum(tn)− u(tn)|.

For the Shifted Strang–Marchuk splitting, we analyze the accuracy (with respect to the analytic
solution) and the cost of the algorithm for different tolerances η and coarsening factors 1 + κ, where we
have set κ = 4η

1
4 . Taking larger values of κ reduces the number of time intervals, but increases the number
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of tentative steps, where the ∆tn must be reduced in order to satisfy the error tolerance criterion. The value
of κ has been experimentally chosen in order to minimize the total number of steps.

In each splitting step, the differential equation is approximated by back-Euler’s method and solved
using the fixed point (BEFP) or Newton’s (BEN) methods. The cost of the algorithm and the final accuracy
depend on the error tolerance η and the coarsening factor 1 + κ. We compare the shifted ABA-operator
splitting method with the shifted variants of the iterative splitting methods above considered.

Table 1 shows that the accuracy is roughly proportional to the square root of the tolerance η, and the
number of functional evaluations is inversely proportional to the same quantity. Newton’s method requires
less iterations to fulfill the tolerance; thus, if the number of time steps is similar to that of the fixed point
method, it needs less functional evaluations. Nevertheless, Newton’s method also evaluates the derivative,
which reduces its advantage over the fixed point method.

Table 1. Shifted Strang–Marchuk splitting method for Bernoulli’s equation.

Solver Tolerance Coarsening Time Tentative Total Functional Max Error Mean Error
η 1 + κ Steps Steps Steps Evaluations emax emean

BEFP

1.0 10−6 1.1265 47 16 63 1091 6.1055 10−3 2.5916 10−3

1.0 10−8 1.0400 344 80 424 7530 7.3088 10−4 3.2822 10−4

1.0 10−10 1.0126 3048 303 3351 59938 9.4175 10−5 3.5575 10−5

1.0 10−12 1.0040 29706 1055 30761 550518 1.2504 10−5 3.6420 10−6

BEN

1.0 10−6 1.1265 47 16 63 838 6.1709 10−3 2.6494 10−3

1.0 10−8 1.0400 341 79 420 5742 7.6231 10−4 3.2987 10−4

1.0 10−10 1.0126 3047 303 3350 40100 9.4168 10−5 3.5588 10−5

1.0 10−12 1.0040 29706 1055 30761 368648 1.2526 10−5 3.6422 10−6

For the Shifted Linear Iterative Splitting method, we take κ = 4
√

η. We obtain similar accuracies
to Strang–Marchuk’s algorithm working now with higher error tolerances η, as it is shown in Table 2.
The accuracy is of the same order as η, whereas the computational cost is slightly higher than the cost of
Strang–Marchuk’s algorithm.

Table 2. Shifted linear iterative splitting method for Bernoulli’s equation.

Solver Tolerance Coarsening Time Tentative Total Functional Max Error Mean Error
η 1 + κ Steps Steps Steps Evaluations emax emean

BEFP

1.0 10−4 1.0400 109 7 116 1358 7.0454 10−3 3.0242 10−3

1.0 10−5 1.0126 692 39 731 8656 8.4372 10−4 4.1488 10−4

1.0 10−6 1.0040 5752 164 5916 70530 9.1785 10−5 4.7166 10−5

1.0 10−7 1.0013 54105 585 54690 654195 9.5495 10−6 4.9235 10−6

BEN

1.0 10−4 1.0400 108 7 115 912 7.1531 10−3 3.0507 10−3

1.0 10−5 1.0126 690 39 729 5824 8.5046 10−4 4.1542 10−4

1.0 10−6 1.0040 5748 164 5912 47288 9.2284 10−5 4.7179 10−5

1.0 10−7 1.0013 54170 586 54756 438040 9.3885 10−6 4.9213 10−6

The results for the Shifted Quasilinear Iterative Splitting, see Table 3, are quite alike to the ones of the
linear splitting. Increasing the number of iterations, iter = 2, 3, . . ., results in a linear increment of the cost
without any accuracy improvement.
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Table 3. Shifted quasilinear iterative splitting method for Bernoulli’s equation.

Solver Tolerance Coarsening Time Tentative Total Functional Max Error Mean Error
η 1 + κ Steps Steps Steps Evaluations emax emean

BEF

1.0 10−4 1.0400 108 7 115 1350 7.1191 10−3 3.0513 10−3

1.0 10−5 1.0126 691 39 730 8652 8.4635 10−4 4.1525 10−4

1.0 10−6 1.0040 5750 164 5914 70534 9.1939 10−5 4.7178 10−5

1.0 10−7 1.0013 54179 586 54765 655207 9.4160 10−6 4.9210 10−6

BEN

1.0 10−4 1.0400 107 7 114 1108 7.2075 10−3 3.0781 10−3

1.0 10−5 1.0126 689 39 728 7146 8.5547 10−4 4.1556 10−4

1.0 10−6 1.0040 5747 164 5911 58464 9.2240 10−5 4.7190 10−5

1.0 10−7 1.0013 54168 586 54754 438030 9.3864 10−6 4.9214 10−6

4.2. Second Numerical Example: Mixed Convection–Diffusion and Burgers Equation

In the second numerical example, we apply coupled partial differential equation (PDE). We apply
a coupling of a convection–diffusion equation with a Burgers’ equation in 2D, which is called mixed
convection–diffusion and Burgers equation (MCDB), and given as

∂tu = −1
2

u(∂xu + ∂yu)− 1
2
(∂xu + ∂yu)

+ µ(∂xxu + ∂yyu) + f (x, y, t), (x, y, t) ∈ Ω× [0, T], (38)

u(x, y, 0) = uana(x, y, 0), (x, y) ∈ Ω,

u(x, y, t) = uana(x, y, t), (x, y, t) ∈ ∂Ω× [0, T],

where the domains are given as Ω = [0, 1]× [0, 1] and T = 1.25. The viscosity is µ.
For such an mixed PDE, we can derive an analytical solution, which is

uana(x, y, t) =
(

1 + exp
(

x + y− t
2µ

))−1
+ exp

(
x + y− t

2µ

)
,

where we can derive the right hand side f (x, y, t).
By considering the following operators

A(u)v = −1
2

u(∂xv + ∂yv) +
1
2

µ(∂xxv + ∂yyv),

Bv = −1
2
(∂xv + ∂yv) +

1
2

µ(∂xxv + ∂yyv) + f (x, y, t).

The MCDB Equation (38) is splitted into the Burgers’ term, A and the convection–diffusion term,
B and we obtain the operators:

∂tu = A(u)u + Bu.

We deal with different viscosities: low viscosity µ = 0.5, high viscosity, µ = 5. The spatial domain is
discretized taking a rectangular mesh with nx = ny = 16 intervals and applying standard second order
divided difference approximations. The resulting differential system is solved by the same methods as in
the previous example. The coarsening strategy applied here when err < η is

∆tnew = min(1 + η2/err, 2)∆t,
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where err = ‖ui,j‖ is the vector norm of the computed values in the nodes (xi, yj) at each time step.
For the shifted Strang–Marchuk splitting method we take ε = 0.05 and different values of η.
Table 4 shows the results of solving the equation with low viscosity µ = 0.5 using different tolerances.

The solutions of the differential equations are approximated by using back-Euler fixed point method
(BEFP) or back-Euler–Newton’s method (BEN). Both methods perform similarly in cost and accuracy in
this case.

The corresponding results for solving the equation with high viscosity, µ = 5, are shown in Table 5.
BEFP requires much more time steps then BEN, but reaches more accuracy.

Table 4. Solution of mixed convection–diffusion and Burgers (MCDB) equation for µ = 0.5 using the shifted
Strang–Marchuk splitting method.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP

1.0 10−1 336 211 547 8752 1.8537 10−2 1.5565 10−3

1.0 10−2 493 38 531 8496 7.7173 10−3 1.0212 10−3

1.0 10−3 1581 5 1586 25376 2.8237 10−3 4.6368 10−4

1.0 10−4 6356 2 6358 101728 9.6438 10−4 2.6878 10−4

BEN

1.0 10−1 65 28 93 1302 4.6585 10−2 6.1648 10−3

1.0 10−2 381 18 399 5586 9.8225 10−3 1.2524 10−3

1.0 10−3 1566 5 1571 21994 2.8012 10−3 4.6639 10−4

1.0 10−4 6353 2 6355 88970 9.6547 10−4 2.6882 10−4

Table 5. Solution of MCDB equation for µ = 5 using the shifted Strang–Marchuk splitting method.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP
1.0 10−1 4899 1077 5976 95616 7.9463 10−3 1.0352 10−4

1.0 10−2 3375 977 4352 69632 6.2542 10−4 1.4242 10−5

1.0 10−3 2980 159 3139 50224 1.7561 10−5 8.0790 10−6

1.0 10−4 3382 4 3386 54176 1.2602 10−5 6.7706 10−6

BEN

1.0 10−1 11 0 11 154 1.6393 10−3 4.0286 10−4

1.0 10−2 43 1 44 616 9.7024 10−4 3.0109 10−4

1.0 10−3 339 0 339 4746 1.4041 10−4 6.0483 10−5

1.0 10−4 1118 1 1119 15662 2.3620 10−5 1.9871 10−5

For the linear and quasilinear shifted iterative splitting methods we take ε = 0.5 and the same
coarsening strategy. Tables 6–9 show the cost and the accuracy in the low and high viscosity cases for the
shifted linear and quasilinear iterative splitting methods using the back-Euler fixed point method and
back-Euler Newton’s method as solvers.

The shifted linear and quasilinear iterative splitting methods give similar results in all the considered
cases. The behavior of the back-Euler fixed point method is worse in the low viscosity case than in the
high viscosity case, as in the shifted Strang–Marchuk splitting method.
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Table 6. Results of the shifted linear iterative splitting for the MCDB equation with µ = 0.5.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP

1.0 10−1 646 303 949 11388 5.0943 10−3 9.7351 10−4

5.0 10−2 642 238 880 10560 2.7441 10−3 3.9256 10−4

2.5 10−2 788 172 960 11520 1.6284 10−3 1.5681 10−4

1.25 10−2 1343 152 1495 17940 5.9673 10−4 1.5654 10−4

BEN

1.0 10−1 222 164 386 3860 1.4076 10−2 6.1344 10−4

5.0 10−2 388 157 545 5450 4.7347 10−3 2.0174 10−4

2.5 10−2 706 152 858 8580 1.5222 10−3 1.3188 10−4

1.25 10−2 1337 150 1487 14870 2.6003 10−3 1.5871 10−4

Table 7. Results of the shifted linear iterative splitting for the MCDB equation with µ = 5.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP

1.0 10−1 6530 2962 9492 113904 1.9099 10−2 1.0672 10−3

5.0 10−2 6458 2022 8480 101760 1.9099 10−2 5.1457 10−4

2.5 10−2 6440 1250 7690 92280 1.1951 10−3 2.2108 10−4

1.25 10−2 6407 807 7214 86568 5.1211 10−4 8.9769 10−5

BEN

1.0 10−1 37 21 58 580 5.3262 10−2 6.0472 10−3

5.0 10−2 63 20 83 830 2.6259 10−2 2.5666 10−3

2.5 10−2 109 18 127 1270 9.7793 10−3 9.2603 10−4

1.25 10−2 188 15 203 2030 3.4315 10−3 3.1950 10−4

Table 8. Results of the shifted quasi linear iterative splitting for the MCDB equation with µ = 0.5.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP

1.0 10−1 647 321 968 11616 5.2855 10−3 9.7675 10−4

5.0 10−2 643 238 881 10572 2.4622 10−3 3.9273 10−4

2.5 10−2 788 173 961 11532 1.7081 10−3 1.5881 10−4

1.25 10−2 6419 809 7228 86736 7.2082 10−4 8.9011 10−5

BEN

1.0 10−1 221 163 384 3840 1.3667 10−2 5.5944 10−4

5.0 10−2 388 157 545 5450 4.6486 10−3 2.0269 10−4

2.5 10−2 706 152 858 8580 2.2658 10−3 1.3493 10−4

1.25 10−2 1343 152 1495 17940 6.2250 10−4 1.5775 10−4
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Table 9. Results of the shifted quasi linear iterative splitting for the MCDB equation with µ = 5.

Solver Tolerance Time Tentative Total Functional Max Error Mean Error
η Steps Steps Steps Evaluations emax emean

BEFP

1.0 10−1 6525 2974 9499 113988 1.9100 10−2 1.0647 10−3

5.0 10−2 6461 2024 8485 101820 1.9100 10−2 5.1301 10−4

2.5 10−2 6445 1235 7680 92160 1.1921 10−3 2.1909 10−4

1.25 10−2 6419 809 7228 86736 7.2082 10−4 8.9011 10−5

BEN

1.0 10−1 37 21 58 580 5.3071 10−2 6.0407 10−3

5.0 10−2 63 20 83 830 2.6196 10−2 2.5650 10−3

2.5 10−2 109 18 127 1270 9.7690 10−3 9.2559 10−4

1.25 10−2 188 15 203 2030 3.4299 10−3 3.1941 10−4

4.3. Third Numerical Example: Convection-Diffusion-Reaction Equation

In the third numerical example, we deal with a PDE, which is a convection–diffusion–reaction
equation in 3D (CDR), see the example in [23]:

∂tu = −v · ∇u +∇D∇u− ku, (x, y, z, t) ∈ Ω× [t0, T], (39)

u(x, y, z, t0) = u0(x, y, z), (x, y, z) ∈ Ω,

u(x, y, z, t) = 0 ∈ ∂Ω× [t0, T],

where we have v = (vx, vy, vz)t, D ∈ IR3 × IR3 a diffusion matrix, u ∈ is the velocity field, k is a reaction
parameter, and Ω = [0, 4]3 × [t0, T], T = 10.0.

We can have a special analytical solution for an instantaneous point source, which is given as:

uana(x, y, z, t) =
M

4πt
√

D11D22D33t
exp

(
− ((x− x1)− vxt)2

4D11t
− (y− y1)

2

4D22t
− (z− z1)

2

4D22t

)
.

We have the following parameters.

• instantaneous point source: (x1, y1, z1) = (1, 1, 1), M = 1.0,
• initial start at t0 = 1, where we initialise the equation with u0(x, y, z) = uana(x, y, z, t0),
• the diffusion parameters are given as D11 = 0.01, D22 = 0.02, D33 = 0.03 all other parameters are 0,
• the velocity is given as (vx, vy, vz) = (0.1, 0, 0),
• the reaction parameter is given as k = 0.1.

By considering the following operators, we decouple into the fast velocity–reaction part and the slow
diffusion parts:

A = ∇D∇,

B = −v · ∇ − k,

we split (50) in fast and slow parts

∂tu = Au + Bu.

The equation is spatially discretized taking a number, nx, ny, nz, of equal subintervals in each
direction in Ω, and approximating the spatial derivatives by standard second order divided differences,
resulting in a linear differential system.
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We first check that the discretization error decreases with the size of the spatial subintervals by solving
the differential system using Heun’s method and Strang–Marchuk method with different number of spatial
subintervals. The numerical results unum in the node points (xi, yj, zk) are compared with the analytical
solution uana in the same points at the final time T = 10, computing the maximum and the mean absolute
differences as before. Table 10 shows that there is no significant difference between both methods.

Table 10. Differences between the analytical solution of convection–diffusion–reaction (CDR) equation
and the numerical solutions obtained by direct (Heun) integration and by Strang–Marchuk method with
different number of spatial subintervals.

Spatial Time Heun Strang-Marchuk
Subintervals Steps emax emean emax emean

8 16 0.342564 0.019429 0.338664 0.019334
12 24 0.108504 0.006381 0.104289 0.006366
16 32 0.065986 0.002939 0.063730 0.002901
20 40 0.044801 0.001792 0.043494 0.001774

Now we fix the number of spatial subintervals nx = ny = nz = 16, and analyze the performance of
the adaptive methods for the CDR example. To estimate the convergence of the methods, we compare
their results with the approximation obtained by integrating the differential equation by Heun’s method
using the same time steps. Table 11 shows the results of the shifted Strang–Marchuk splitting and the
shifted linear iterative splitting for different tolerances, η. Lower tolerances produce lower maximum and
mean errors but require more time steps. The relationship between the number of time steps and the mean
error is depicted in Figure 3.
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Figure 3. Mean error emean of the shifted Strang-Marchuk splitting (SSMS) and the shifted linear iterative
splitting (SLIS) for the CDR equation for different tolerances, η.

Remark 4. In the Figure 3, we see the differences in the convergence behaviour between the shifted Strang–Marchuk
splitting (SSML) and the shifted linear iterative splitting (SLIS) method. We see in the figure, that the SSML method
has only a linear convergence order ≤ 1, the SLIS method has higher order of convergence, here we have at least an
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order ≥ 2. Therefore the adaptive iterative scheme is much more effective and accurate than the noniterative splitting
scheme. The result verified the proposition, that the iterative splitting scheme is a higher order scheme, see [3,15],
and that we also conserve the higher order approach in the adaptive version.

Table 11. Results of the shifted Strang–Marchuk’s splitting, (SSMS), and the shifted linear iterative splitting,
SLIS, for the CDR equation for different tolerances.

Shifted Tolerance Time Tentative Functional Max Error Mean Error
Method η Steps Steps Evaluations emax emean

SSMS

1.0 10−4 28 4 372 4.1517 10−3 1.0990 10−4

2.5 10−5 54 11 768 9.1570 10−4 2.5527 10−5

6.25 10−6 107 24 1560 2.2147 10−4 6.2970 10−6

1.5625 10−6 211 52 3144 5.6628 10−5 1.6200 10−6

3.90625e− 7 416 103 6216 1.5064 10−5 4.3245e− 7

SLIS

6.4 10−2 33 3 280 1.1334 10−2 1.0145 10−3

1.6 10−2 68 4 568 1.2867 10−2 9.4605 10−4

4.0 10−3 150 17 1328 9.4607 10−3 6.7794 10−4

1.0 10−3 570 130 5592 6.1880 10−3 3.3441 10−4

2.5 10−4 2256 577 22656 1.4651 10−3 8.0392 10−5

4.4. Fourth Numerical Example: Nonlinear Diffusion Equation

Our fourth numerical example is a partial differential equation which is nonlinear diffusion equation
in 2D, see the example in [24].

The multicomponent diffusion equation is based on the idea of a Maxwell–Stefan diffusion equation,
which is highly nonlinear, see [20,24]:

∂tu = ∇A(u)∇u, (x, y, t) ∈ Ω× [t0, T], (40)

u(x, y, t0) = u0(x, y), (x, z) ∈ Ω,

u(x, y, t) = 0 ∈ ∂Ω× [t0, T],

where we have A ∈ IR3 × IR3 × IR3 a nonlinear diffusion matrix and Ω = [0, 1]3 × [t0, T], t0 = 0, T = 1.0.
An application of such a nonlinear diffusion (NLD) is given by

∂tu1 = D12∇ · ∇u1, (x, y, t) ∈ Ω× [t0, T], (41)

∂tu2 = ∇ ·
(
(

1
D23

+ βu1)
−1(∇u2 + βD12u2∇u1)

)
, (x, y, t) ∈ Ω× [t0, T], (42)

u(x, y, t) = 0 ∈ ∂Ω× [t0, T],

where we have α =
(

1
D12
− 1

D13

)
and β =

(
1

D12
− 1

D23

)
.

Further, we apply with the following parameters in the NLD Equations (41) and (42).
The parameters and the initial and boundary conditions are given as:

• Uphill example, which is known as semi-degenerated Duncan and Toor experiment, see [25]:
D12 = D13 = 0.833 and D23 = 0.168, where we have α = 0.
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• Asymptotic example, which is known as asymptotic Duncan and Toor experiment, see [25]:
D12 = 0.0833, D13 = 0.680 and D23 = 0.168, where we have α 6= 0.

• We apply J = 140, where J is the number of spatial grid points.
• Based on the explicit discretization method, we have to fulfill the time-step-restriction, which is given

as CFL-condition:
∆t ≤ (∆x)2

2 max{D12,D13,D23}
.

• The computational domains are given with: Ω = [0, 1] is the spatial domain and [0, T] = [0, 1] is the
time domain.

• The initial conditions are as follows.

1. Uphill example

uin
1 (x) =


0.8 if 0 ≤ x < 0.25,
1.6(0.75− x) if 0.25 ≤ x < 0.75,
0.0 if 0.75 ≤ x ≤ 1.0,

(43)

uin
2 (x) = 0.2, for all x ∈ Ω = [0, 1]. (44)

2. Asymptotic example

uin
1 (x) =

{
0.8 if 0 ≤ x ∈ 0.5,
0.0 else,

(45)

uin
2 (x) = 0.2, for all x ∈ Ω = [0, 1]. (46)

• For the boundary conditions, we apply no-flux type conditions:

u1 = u2 = 0, on ∂Ω× [0, 1]. (47)

We apply the following splitting of the operators with the one-dimensional spatial derivations:

∂tu = (A(u) + B(u))u, (48)

where we have the operators in the following decomposition of the u1 and u2 parts with ξ ∈ [0, 1]:

A(u) =

(
ξ D12

∂2

∂x2 0

ξ ∂
∂x

(
( 1

D23
+ βu1)

−1βD12u2
∂

∂x

)
(1− ξ) ∂

∂x

(
( 1

D23
+ βu1)

−1 ∂
∂x

) ) (49)

B(u) =

(
(1− ξ)D12

∂2

∂x2 0

(1− ξ) ∂
∂x

(
( 1

D23
+ βu1)

−1βD12u2
∂

∂x

)
ξ ∂

∂x

(
( 1

D23
+ βu1)

−1 ∂
∂x

) ) (50)

where we have ξ = 0.5 a symmetric decomposition.
We first check that the non adaptive methods require a very small time step to converge and estimate

its convergence by comparing the results doubling successively the number of time steps. The results are
shown in Table 12 for the direct integration and for the unshifted Strang–Marchuk method. The errors are
computed measuring the difference between the result obtained with a given number of time steps and
the result with twice that number at every shared temporal and spatial node. The error estimates for the
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Strang–Marchuk splitting in the case of 40,000 time steps are not available because the method diverges
with 20,000 time steps.

Figure 4 illustrates the uphill phenomenon, where the solutions u1 and u2 increase before reaching
the stationary state.

The adaptive methods result in an important reduction of the number of time steps obtaining similar
error estimations. Tables 13 and 14 show the results for the uphill case and for the asymptotic case of the
nonlinear diffusion equation, respectively. Here, the errors are computed by comparing the solution of the
shifted methods with the ones obtained by direct integration, using the same time steps as the adaptive
method.

Figure 4. Evolution of the magnitudes u1 and u2 in the uphill example.

.

Table 12. Cost and error estimates of the Heun integration (HI) and the Strang–Marchuk (SM) splitting for
the nonlinear diffusion equation.

Uphill Example Asymptotic Behavior
Solver Time Functional Max Error Mean Error Max Error Mean Error

Steps Evaluations emax emean emax emean

HI
120000 240000 1.2050 10−2 7.0883 10−7 1.0045 10−1 5.7176e− 7
240000 480000 2.1710 10−3 1.1072 10−7 1.8856 10−2 1.0060 10−7

480000 960000 4.5606 10−4 1.8113 10−8 4.1844 10−3 2.0626 10−8

SM
40000 240000 1.9853 10−2 7.3680 10−7 — —
80000 480000 4.3103 10−3 1.7807e− 7 2.2560 10−1 7.4157 10−7

160000 960000 8.2574 10−4 4.2266 10−8 3.3259 10−2 2.4397 10−7

The shifted Strang-Marchuk method behaves better for ε = 0.03, whereas the shifted linear and
quasilinear splitting methods work well for ε = 0.03, except for in Table 15, where the behavior of the
considered splitting methods is studied for different splitting weights ξ.

Figure 5 depicts the regions in the space-time plane where the uphill phenomenon takes place, that is
where N2 and ∂xu2 have the same sign. The equation is solved by the shifted linear iterative splitting with
η = 1.0 10−5.
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Figure 5. Regions in the space-time domain where N2 and ∂xu2 have the same sign.

Table 13. Results of the shifted Strang–Marchuk’s splitting (SSMS) the shifted linear iterative splitting
(SLIS), and the shifted quasilinear iterative splitting (SQIS), for the uphill case of the NLD equation.

Shifted Parameter Time Tentative Functional Max Error Mean Error
Method η Steps Steps Evaluations emax emean

SSMS 1.0 10−2 22711 477 278256 4.4092 10−1 5.4509 10−2

1.0 10−3 12113 1297 160920 8.4409 10−2 4.1336 10−3

ε = 0.03 1.0 10−4 12105 1290 160740 4.5592 10−3 1.6081 10−4

1.0 10−5 12109 1314 161076 6.9255 10−4 1.4140 10−5

SLIS 1.0 10−2 19788 3177 183720 9.3208 10−2 1.6424 10−2

1.0 10−3 19787 3133 183360 7.2316 10−3 9.9959 10−4

ε = 0.01 1.0 10−4 19878 3158 184288 1.1644 10−3 9.4958 10−5

1.0 10−5 25126 4880 240048 1.1369 10−4 8.2151 10−6

SQIS 1.0 10−2 20021 3119 185120 8.3612 10−1 1.5261 10−1

1.0 10−3 19784 3194 183824 7.0992 10−3 1.5841 10−3

ε = 0.01 1.0 10−4 19879 3145 184192 1.1644 10−3 9.5553 10−5

1.0 10−5 25125 4895 240160 1.1370 10−4 8.1793 10−6
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Table 14. Results of the shifted Strang–Marchuk’s splitting (SSMS), the shifted linear iterative splitting
(SLIS), and the shifted quasilinear iterative splitting (SQIS), for the uphill case of the NLD equation with
η = 1 10−5 and different values of the weight parameter ξ.

Shifted Parameter Time Tentative Functional Max Error Mean Error
Method ξ Steps Steps Evaluations emax emean

SSMS
0 40160 4775 539,220 2.2711 10−1 4.0969 10−2

0.25 21036 3991 300,324 6.1904 10−2 1.2819 10−2

ε = 0.03
0.5 12105 1290 160740 4.5592 10−3 1.6081 10−4

0.75 12094 527 151452 3.8271 10−3 1.9800 10−5

1 16435 1581 216192 3.9292 10−3 1.4966 10−4

SLIS
0 39313 7195 372064 9.0557 10−4 1.5864 10−4

0.25 29515 5859 282992 9.5854 10−4 2.1259 10−4

ε = 0.01
0.5 19878 3158 184288 1.1644 10−3 9.4958 10−5

0.75 22010 2272 194256 1.8200 10−3 2.9126 10−5

1 30867 2064 263448 2.5255 10−3 2.4335 10−5

SQIS
0 39313 7233 372368 8.2133 10−4 1.6467 10−4

0.25 29515 5933 283584 1.0667 10−3 2.2256 10−4

ε = 0.01
0.5 19879 3145 184192 1.1644 10−3 9.5553 10−5

0.75 22077 2384 195688 1.8200 10−3 3.0349 10−5

1 30906 2084 263920 2.5255 10−3 2.5535 10−5

Table 15. Results of the shifted Strang–Marchuk’s splitting (SSMS), the shifted linear iterative splitting
(SLIS), and the shifted quasilinear iterative splitting (SQIS) for the asymptotic case of the NLD equation.

Shifted Parameter Time Tentative Functional Max Error Mean Error
Method η Steps Steps Evaluations emax emean

SSMS 1.0 10−2 31442 238 380160 9.1699 10−1 1.2015 10−2

1.0 10−3 12810 546 160272 5.1000 10−1 4.5127 10−3

ε = 0.03 1.0 10−4 10223 511 128808 7.6494 10−2 1.6126 10−4

1.0 10−5 10508 854 136344 7.2481 10−3 8.4180 10−6

SLIS 1.0 10−2 15087 1748 134680 1.5719 10−1 2.7535 10−2

1.0 10−3 14736 1702 131504 1.2306 10−2 5.0463 10−4

ε = 0.01 1.0 10−4 15047 1815 134896 2.2724 10−3 3.9500 10−5

1.0 10−5 24371 5071 235536 2.2461 10−4 8.5634 10−6

SQIS 1.0 10−2 16502 1509 144088 2.7868 10−1 7.1696 10−2

1.0 10−3 14709 1683 131136 1.2001 10−2 2.1926 10−3

ε = 0.01 1.0 10−4 15049 1819 134944 1.9668 10−3 4.4380 10−5

1.0 10−5 24381 5042 235384 1.9277 10−4 6.6005 10−6

5. Conclusions and Discussion

We present a novel adaptive iterative splitting approach for partial differential equations of the type
convection–diffusion–reaction equation. The numerical analysis shows the convergence of the schemes,
while we could apply a shift in time of the methods. In the numerical experiments, we apply different
state-of-the-art nonlinear convection–diffusion equations, where we receive benefits in the computational
time and also in the accuracy of the methods. The adaptive splitting schemes allow to control the errors of
the scheme and reduce the computational time, while we could apply smaller and larger time-steps.
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