
mathematics

Article

A Deep Learning Algorithm for the Max-Cut Problem
Based on Pointer Network Structure with Supervised
Learning and Reinforcement Learning Strategies

Shenshen Gu *,† and Yue Yang

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444,
China; yangyue0328@shu.edu.cn
* Correspondence: gushenshen@shu.edu.cn
† Current address: 99 Shangda Road, Shanghai 200444, China.

Received: 5 January 2020; Accepted: 20 February 2020; Published: 22 February 2020
����������
�������

Abstract: The Max-cut problem is a well-known combinatorial optimization problem, which has
many real-world applications. However, the problem has been proven to be non-deterministic
polynomial-hard (NP-hard), which means that exact solution algorithms are not suitable for
large-scale situations, as it is too time-consuming to obtain a solution. Therefore, designing heuristic
algorithms is a promising but challenging direction to effectively solve large-scale Max-cut problems.
For this reason, we propose a unique method which combines a pointer network and two deep
learning strategies (supervised learning and reinforcement learning) in this paper, in order to address
this challenge. A pointer network is a sequence-to-sequence deep neural network, which can extract
data features in a purely data-driven way to discover the hidden laws behind data. Combining the
characteristics of the Max-cut problem, we designed the input and output mechanisms of the pointer
network model, and we used supervised learning and reinforcement learning to train the model
to evaluate the model performance. Through experiments, we illustrated that our model can be
well applied to solve large-scale Max-cut problems. Our experimental results also revealed that
the new method will further encourage broader exploration of deep neural network for large-scale
combinatorial optimization problems.

Keywords: Max-cut problem; combinatorial optimization; deep learning; pointer network;
supervised learning; reinforcement learning

1. Introduction

Combinatorial optimization is an important branch of operations research. It refers to solving
problems of variable combinations by minimizing (or maximizing) an objective function under given
constraints, and is based on the research of mathematical methods to find optimal arrangements,
groupings, orderings, or screenings of discrete events. As a research hot-spot in combinatorial
optimization, the Max-cut problem is one of the 21 typical non-deterministic polynomial (NP)-complete
problems proposed by Richard M. Karp [1]. It refers to obtaining a maximum segmentation for a given
directed graph, such that the sum of the weights across all edges of two cutsets is maximized [2].
The Max-cut problem has a wide range of applications in engineering problems, such as Very Large
Scale Integration (VLSI) circuit design, statistical physics, image processing, and communications
network design [3]. As a solution of the Max-cut problem can be used to measure the robustness of
a network [4] and as a standard for network classification [5], it can also be applied to social networks.

It has been discovered that many classic combinatorial optimization problems derived from
engineering, economics, and other fields are NP-hard. The Max-cut problem concerned in this paper

Mathematics 2020, 8, 298; doi:10.3390/math8020298 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8020298
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/2/298?type=check_update&version=2

Mathematics 2020, 8, 298 2 of 20

is among these problems. For combinatorial optimization problems, algorithms can be roughly
divided into two categories: one is represented by exact solution approaches, including enumeration
methods [6] and branch and bound methods [7], etc. The other category is represented by heuristic
algorithms including genetic algorithms, ant colony algorithms, simulated annealing algorithms,
neural networks, Lin–Kernighan Heuristic (LKH) algorithms, and so on [8]. However, there is
no polynomial time solvable algorithm to find a global optimal solution for NP-hard problems.
Compared with the exact approach, heuristic algorithms are able to deal with large-scale problems
efficiently. They have certain advantages in computing efficiency and can be applied to solving
large-scale problems with huge amount of variables. In order to solve the Max-cut problem, a large
number of heuristic algorithms have been proposed, such as evolutionary algorithms and ant colony
algorithms. However, for these algorithms, the most obvious disadvantage of them is that they are
easy to fall into local optima. For this reason, more and more experts have begun working on the
research and innovation of some novel and effective algorithms for large-scale Max-cut problems.

Deep learning is a research field which has developed very rapidly in recent years, achieving
great success in many sub-fields of artificial intelligence. From its root, deep learning is a sub-problem
of machine learning. Its main purpose is to automatically learn effective feature representations
from a large amount of data, such that it can better solve the credit assignment problem (CAP) [9];
that is, the contribution or influence of different components in a system or their parameters to the
output of the final system. The emergence of deep neural networks has provided the possibility
for solving large-scale combinatorial optimization problems. In recent years, with the development
of the combination of deep neural networks and operations research for large-scale combinatorial
optimization problems, scholars have explored how to apply deep neural networks in these fields,
and have achieved certain results. The related research has mainly focused on the algorithm design
for combinatorial optimization problems based on pointer networks. Vinyals used the attention
mechanism [10] to integrate a pointer structure into the sequence-to-sequence model, thus creating the
pointer network. Bello improved the pointer network structure and used a strategy gradient algorithm
combined with time-series difference learning to train the pointer network in reinforcement learning to
solve the combinatorial optimization problem [11]. Mirhoseini removed the coding part of a recurrent
neural network (RNN) and used the embedded input to replace the hidden state of the RNN. With this
modification, the computational complexity was greatly reduced and the efficiency of the model
was improved [12]. In Reference [13], a purely data-driven method to obtain approximate solutions
of NP-hard problems was proposed. In Reference [14], a pointer network was used to establish
a flight decision prediction model. Khalil solved classical combinatorial optimization problems by
Q-learning [15]. The pointer network model has also been used, in Reference [16], to solve the
weightless Max-cut problem. Similarly, solved the unconstrained boolean quadratic programming
problem (UBQP) through the pointer network [17].

The section arrangement of this paper is as follows. Section 2 mainly introduces the Max-cut
problem and the method for generating its benchmark. Section 3 demonstrates the pointer network
model, including the Long Short-Term Memory network and Encoder–Decoder. Section 4 introduces
two ways to train the pointer network model to solve the Max-cut problem, namely supervised
learning and reinforcement learning. Section 5 illustrates the details of the experimental procedure
and the results. Section 6 provides the conclusions.

2. Motivation and Data Set Structure

2.1. Unified Model of the Max-Cut Problem

The definition of the Max-cut problem is given as follows.

Mathematics 2020, 8, 298 3 of 20

An undirected graph G= (V, E) consists of a set of vertices V and a set of edges E, where V =

{1, 2, ..., n} is its set of vertices, and E ⊆ V ×V is its set of edges, and wi,j is the weight on the edge
connecting vertex i and vertex j. For any proper subset S of the vertex set V, let:

δ(S) = {ei,j ∈ E; i ∈ S, j ∈ V−S}, (1)

where δ(S) is a set of edges, one end of which belongs to S and the other end belongs to V−S.
Then, the cut cut(S) determined by S is:

cut(S) = ∑
ei,j∈δ(S)

wi,j. (2)

In simple terms, the Max-cut problem is to find a segmentation (S, V−S) of a vertex set V,
where the maximum weight of the edges is segmented.

2.2. Benchmark Generator of the Max-Cut Problem

When applying deep learning to train and solve the Max-cut problem, whether supervised
learning or reinforcement learning, a large number of training samples are necessary. The method of
data set generation introduced here is to transform the {−1,1} quadratic programming problem into
the Max-cut problem.

First of all, the benchmark generator method for the boolean quadratic programming (BQP)
problem, proposed by Michael X. Zhou [18], is used to generate random {−1,1} quadratic programming
problems, which can be solved in polynomial time. Next, inspired by [19], we transform the
results of the previous step into solutions of the Max-cut problem. The specific implementation
is described below.

Michael X. Zhou transformed the quadratic programming problem shown by Equation (3) into
the dual problem shown by Equation (4) through the Lagrangian dual method.

min { f (x) =
1
2

xTQx− cTx
∣∣x ∈ {−1, 1}n }, (3)

where Q = QT ∈ Rn×n is a given indefinite matrix, and c ∈ Rn is a given non-zero vector.
The dual problem is described as follows:

find Q, c, x, λ

s.t. (Q + diag(λ)) = c
Q + diag(λ) > 0
x ∈ {−1, 1}n

. (4)

Then, according to the paper [19], the solution of the {−1,1} quadratic programming problem can
be transformed into the solution of the Max-cut problem.

The integer programming for the Max-cut problem is given by:

max 1
2 ∑

i<j
wi,j(1− xi · xj)

s.t. xi ∈ {−1, 1}, ∀i = 1, · · ·, n,
(5)

where i in xi ∈ {−1, 1} represents the vertex i, and −1 and 1 represent the values of the two sets.
If xi · xj is equal to 1 and the vertices of edge (i, j) are in the same set, then (i, j) ∈ E is not a cut
edge; if xi · xj is equal to −1 and the vertices of the edge (i, j) are not in the same set, then (i, j) ∈ E
is the cut edge. If (i, j) ∈ E is a cut edge, (1− xi · xj)

/
2 is equal to 1; if (i, j) ∈ E is not a cut edge,

(1− xi · xj)
/

2 is equal to 0. Thus, the objective function represents the sum of the weights of the

Mathematics 2020, 8, 298 4 of 20

cut edges of the Max-cut. Define S = {i : xi = 1}, S = {i : xi = −1}, and the weight of the cut is
w(S, S) = ∑

i<j
wi,j(1− xi · xj)

/
2.

The pseudocode for generating the benchmark of the Max-cut problem is shown in Algorithm 1,
where the parameter base is used to control the value range of the elements in matrix Q.

Algorithm 1 A benchmark generator for the Max-cut problem

Input: Dimension: n; base = 10;

Output: Matrix: Q; Vector: x

1: Randomly generate an n-dimensional matrix that conforms to the standard normal distribution to

obtain Q;

2: Q = base×Q;

3: Convert Q to a symmetric matrix with Q+QT

2 ;

4: Generate random numbers in the range (0,1) of n rows and 1 column as a vector x;

5: x = 2x− 1;

6: Take the absolute value of Q and sum it over the rows, assigning the result to λ;

7: Place the value of the vector λ on the main diagonal of the square matrix Q′ in order, and let the

values of Q′ (except the main diagonal) be zero.

8: c = (Q + Q′)× x;

9: Set an additional variable woj, woj =
1
4 (

i−1
∑

j=1
qji+

n
∑

j=i+1
qij) +

1
2 ci , 1 ≤ j ≤ n, and wij=

1
4 qij , 1 ≤ i <

j ≤ n;

10: Update Q: Q = (qT
1j, qT

2j, ..., qT
(n+1)j)← (wT

0j, wT
1j, ..., wT

nj);

11: Set an additional variable x0 = 1, and let x = 2x + 1;

12: Update x: x = (x1, x2, ..., xn+1)← (x0, x1, ..., xn).

This method for obtaining Max-cut benchmark data sets effectively solves the difficulty in training
the network to solve the Max-cut problem model when lacking a large number of training samples.
However, there is a common defect in this method: in the training set obtained using the dual problem
to deduce the solution of the original problem, its data samples obey certain rules. This may lead to
difficulty in learning the general rule of the Max-cut problem when training with the method by deep
learning.

Therefore, in addition to the above method, we consider using the benchmark generator in the Biq
Mac Library to solve the Max-cut problem. The Biq Mac Library offers a collection of Max-cut instances.
Biq Mac is a branch and bound code based on semi-definite programming (SDP). The dimension
of the problems (i.e., number of variables or number of vertices in the graph) ranges from 60–100.
These instances are mainly used to test the pointer network model for the Max-cut problem.

3. Models

3.1. Long Short-Term Memory

It is difficult for traditional neural networks to classify subsequent events by using previous event
information. However, an RNN can continuously operate information in a cyclic manner to ensure that
the information persists, thereby effectively processing time-series data of any length. Given an input

Mathematics 2020, 8, 298 5 of 20

sequence x1:T = (x1, x2, ..., xt, ..., xT), the RNN updates the activity value ht of the hidden layer with
feedback and calculates the output sequence y1:T = (y1, y2, ..., yt, ..., yT) using the following equations:

ht = sigmoid(Mhxxt + Mhhht−1), (6)

yt = Myhht. (7)

As long as the alignment between input and output is known in advance, an RNN can easily
map sequences to sequences. However, the RNN cannot solve the problem when the input and
output sequences have different lengths or have complex and non-monotonic relationships [20]. In
addition, when the input sequence is long, the problem of gradient explosion and disappearance
will occur [21]; which is also known as the long-range dependence problem. In order to solve these
problems, many improvements have been made to RNNs; the most effective way, thus far, is to use
a gating mechanism.

A long short-term memory (LSTM) network [22] is a variant of RNN, which is an outstanding
embodiment of RNN based on the gating mechanism. Figure 1 shows the structure of the loop unit of
a LSTM. By applying the LSTM loop unit of the gating mechanism, the entire network can establish
long-term timing dependencies to better control the path of information transmission. The equations
of the LSTM model can be briefly described as:

c̃t

ot

it

ft

 =

tanh

σ

σ

σ

(

M

[
xt

ht−1

]
+ b

)
, (8)

ct = ft � ct−1 + it � c̃t, (9)

ht = ot � tanh(ct), (10)

where xt ∈ Re is the input at the current time; M ∈ R4d×(d+e) and b ∈ R4d are the network parameters;
σ(·) is the Logistic function, with output interval (0, 1); ht−1 is the external state at the previous time;
� is the product of vector elements; ct−1 is the memory unit at the previous moment; and c̃t is the
candidate state obtained by the non-linear function. At each time t, the internal state ct of the LSTM
records historical information up to the current time. The three gates used to control the path of
information transmission are ft, it, and ot. The functions of three gates are:

• The forget gate ft controls how much information the previous state ct−1 needs to forget;
• The input gate it controls how much information the candidate state c̃t needs to be saved at the

current moment; and
• The output gate ot controls how much information the internal state ct−1 of the current moment

needs to be output to the external state ht−1.

1tc -

1th - th

tc

tct

tx

tf ti to

tanh

s s stanh

vector product vector sum vector stitching

Figure 1. Long short-term memory (LSTM) loop unit structure.

Mathematics 2020, 8, 298 6 of 20

In our algorithm, the purpose of the LSTM is to estimate the conditional probability
p(y1, ..., yT′ |x1, ..., xT), where (x1, ..., xT) is the input sequence, y1, ..., yT′ is the corresponding output
sequence, and the length T′ may be different from T. The LSTM first obtains a fixed dimension
representation X of the input sequence (x1, ..., xT) (given by the last hidden state of the LSTM),
then calculates y1, ..., yT′ , whose initial hidden state is set to x1, ..., xT :

p(y1, ..., yT′ |x1, ..., xT) =
T′

∏
t=1

p(yt|X, y1, ..., yt−1), (11)

where each p(yt|X, y1, ..., yt−1) distribution is represented by the softmax of all variables in the input
Max-cut problem matrix.

3.2. Encoder–Decoder Model

The encoder–decoder model is also called the asynchronous sequence-to-sequence model; that is,
the input sequence and the output sequence neither need to have a strict correspondence relationship,
nor do they need to maintain the same length. Compared with traditional structures, it greatly expands
the application scope of the model. It can directly model sequence problems in a pure data-driven
manner and can train the model using an end-to-end method. It can be seen that it is very suitable for
solving combinatorial optimization problems.

In the encoder–decoder model (shown in Figure 2), the input is a sequence x1:T = (x1, ..., xT) of
length T, and the output is a sequence y1:T′ = (y1, ..., yT′) of length T′. The implementation process
is realized by first encoding and then decoding. Firstly, a sample x is input into an RNN (encoder)
at different times to obtain its encoding hT . Secondly, another RNN (decoder) is used to obtain the
output sequence ŷ1:T′ . In order to establish the dependence between the output sequences, a non-linear
autoregressive model is usually used in the decoder:

ht = f1(ht−1, xt), ∀t ∈ [1, T], (12)

hT+t = f2(hT+t−1, ŷt−1), ∀t ∈ [1, T′], (13)

yt = g(hT+t), ∀t ∈ [1, T′], (14)

where f1(·) and f2(·) are RNNs used as encoder and decoder, respectively; g(·) is a classifier; and ŷt

are vector representations used to predict the output.

2
h Th 1Th + 2Th +

< EOS >
1
x

2
x Tx

1
y
1 2

y
2

1
h

. . .

. . .

'T Th
+

'T
y

'T
y

Figure 2. Encoder–decoder model.

3.3. Pointer Network

The amount of information that can be stored in a neural network is called the network capacity.
Generally speaking, if more information needs to be stored, then more neurons are needed or the
network must be more complicated, which will cause the number of necessary parameters of the neural
network to increase exponentially. Although general RNNs have strong capabilities, when dealing
with complex tasks, such as processing large amounts of input information or complex computing

Mathematics 2020, 8, 298 7 of 20

processes, the computing power of computers is still a bottleneck that limits the development of neural
networks.

In order to reduce the computational complexity, we use the mechanisms of the human brain to
solve the information overload problem. In such a way, we add an attention mechanism to the RNN.
When the computing power is limited, it is used as a resource allocation scheme to allocate computing
resources to more important tasks.

A pointer network is a typical application for combining an attention mechanism and a neural
network. We use the attention distribution as a soft pointer to indicate the location of relevant
information. In order to save computing resources, it is not necessary to input all the information
into the neural network, only the information related to the task needs to be selected from the input
sequence X. A pointer network [9] is also an asynchronous sequence-to-sequence model. The input is
a sequence X = x1, ..., xT of length T, and the output is a sequence y1:T′ = y1, y2, ..., yT′ . Unlike general
sequence-to-sequence tasks, the output sequence here is the index of the input sequence. For example,
when the input is a group of out-of-order numbers, the output is the index of the input number
sequence sorted by size (e.g., if the input is 20, 5, 10, then the output is 1, 3, 2).

The conditional probability p(y1:T′ |x1:T) can be written as:

p(y1:T′ |x1:T) =
m
∏
i=1

p(yi |y1:i−1 , x1:T)

≈
m
∏
i=1

p(yi
∣∣xy1 , ..., xyi−1 , x1:T),

(15)

where the conditional probability p(yi
∣∣xy1 , ..., xyi−1 , x1:T) can be calculated using the attention

distribution. Suppose that an RNN is used to encode xy1 , ..., xyi−1 , x1:T to obtain the vector hi, then

p(yi |y1:i−1 , x1:T) = softmax(si,j), (16)

where si,j is the unnormalized attention distribution of each input vector at the ith step of the
encoding process,

si,j = vTtanh(U1xj + U2hi), ∀j ∈ [1, T], (17)

where v, U1, and U2 are learnable parameters.
Figure 3 shows an example of a pointer network.

1
x

2
x

3
x

4
x

5
x

4
x

3
x

1
x

2
x

Figure 3. The architecture of pointer network (encoder in green, decoder in purple).

4. Learning Mechanism

Machine learning methods can be classified according to different criteria. Generally speaking,
according to the information provided by the training samples and different feedback mechanisms,
we classify machine learning algorithms into three categories: supervised learning, unsupervised
learning, and reinforcement learning. Our algorithm uses supervised learning (SL) and reinforcement

Mathematics 2020, 8, 298 8 of 20

learning (RL) to train the pointer network model to obtain the solution of the Max-cut problem, which
will be described in detail below.

4.1. Supervised Learning

4.1.1. Input and Output Design

The feature of the Max-cut problem is that its variable is either 0 or 1, such the problem is
equivalent to selecting a set of variables from all variables with a value of 1 to maximize the objective
function. This is a typical choice problem in combinatorial optimization problems. The goal of
supervised learning is to learn the relationship between the input x and the output y by modeling
y = f (x; θ) or p(y |x ; θ). For the Max-cut problem, the pointer network uses an n × n symmetric
matrix Q to represent the input sequence of the n nodes, where qij is an element in the symmetric
matrix, which represents the weight of the connection between vertex i vertex and vertex j (qij ≥ 0,
qij = 0 means there is no connection between vertex i and vertex j). The output sequence of the pointer
network is represented by X = x1, x2, ..., xn, which contains two variables; that is 0 and 1. Vertices with
0 and vertices with 1 are divided into two different sets. The result of summing weights with all edges
across the two cut sets is the solution to the Max-cut problem.

The following example is used to explain the input and output design of the pointer network to
solve the Max-cut problem.

Example 1.
f (x) = 3x1x2 + 4x1x4 + 5x2x3 + 2x2x4 + x3x4

xi ∈ {0, 1} , (i = 1, ..., 4)
. (18)

The symmetric matrix Q of the above problem can be expressed as:

Q =

0 3 0 4
3 0 5 2
0 5 0 1
4 2 1 0

,

and the characteristics of the variables x1, x2, x3, and x4 are represented by the vectors q1 = (0, 3, 0, 4)T ,
q2 = (3, 0, 5, 2)T , q3 = (0, 5, 0, 1)T , and q4 = (4, 2, 1, 0)T , respectively.

For the Max-cut problem, the optimal solution of the above example is x. The sequence
(q1, q2, q3, q4) is the input of the pointer network, and the known optimal solution is used to train the
network model and guide the model to select q1 and q3. The input vector selected by the decoder
represents the corresponding variable value of 1, while the corresponding variable value of the
unselected vector is 0.

For the output part of the pointer network model, for the n× n matrix, we design a matrix of
dimension (n + 1) to represent the network output. Exactly as in Example 1, the output result is a label
that be described by the matrix Olabel :

Olabel =

0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

.

The relationship between Olabel and the variable x is:

xj =

1 , if oij = 1, j 6= 0;

EOS , if oij = 1, j = 0;

0 , others.

(19)

Mathematics 2020, 8, 298 9 of 20

We use EOS = (1, 0, · · · , 0)T to indicate the end of the pointer network solution process. After the
model training is completed, the probability distribution of the softmax of the output matrix is obtained.
The corresponding result may be as described by the matrix Opredict. In the solution phase, we select
the one with the highest probability in the output probability distribution and set it to 1, and the rest
of the positions to 0. According to the result of Opredict, the pointer network selects the variables x1

and x3 with a value of 1, and the remaining variables have a value of 0—which is consistent with the
result selected by Olabel :

Opredict =

0.03 0.8 0.02 0.1 0.05
0.1 0 0.2 0.7 0
0.9 0.03 0.03 0.01 0
1 0 0 0 0
1 0 0 0 0

.

4.1.2. Algorithm Design

When training deep neural networks, for N given training samples
{(

x(n), y(n)
)}N

n=1
, the softmax

regression in supervised learning uses cross entropy as a loss function and uses gradient descent to
optimize the parameter matrix W. The goal of neural network training is to learn the parameters
which minimize the value of the cross-entropy loss function. In practical applications, the mini-batch
stochastic gradient descent (SGD) method has the advantages of fast convergence and small
computational overhead, so, it has gradually become the main optimization algorithm used in
large-scale machine learning [23]. Therefore, during the training process, we use mini-batch SGD.
At each iteration, we randomly select a small number of training samples to calculate the gradient and
update the parameters. Assuming that the number of samples per mini-batch is K, the training process
of softmax regression is: initialize W0 ← 0, and then iteratively update by the following equation

Wt+1 ←Wt + α(
1
K

N

∑
n=1

x(n)(y(n) − ŷ(n)Wt
)

T
), (20)

where α is the learning rate and ŷ(n)Wt
is the output of the softmax regression model when the parameter

is Wt.
The training process of mini-batch SGD is shown in Algorithm 2.

Algorithm 2 Mini-batch SGD of pointer network

Input: training set: D = {(x(n), y(n))}N
n=1; mini-batch size: K; number of training steps: L; learning

rate: α;

Output: optimal: W

1: random initial W;

2: repeat

3: randomly reorder the samples in training set D;

4: for t = 1, ..., L do

5: select samples (x(n), y(n)) from the training set D;

6: update parameters: Wt+1 ←Wt + α(1
K

N
∑

n=1
x(n)(y(n) − ŷ(n)Wt

)
T
);

7: end for

8: until the error rate of model f (x; W) no longer decreases.

Mathematics 2020, 8, 298 10 of 20

4.2. Reinforcement Learning

Reinforcement learning is a very attractive method in machine learning. It can be described
as an agent continuously learning from interaction with the environment to achieve a specific goal
(such as obtaining the maximum reward value). The difference between reinforcement learning and
supervised learning is that reinforcement learning does not need to give the “correct” strategy as
supervised information, it only needs to give the return of the strategy and then adjust the strategy to
achieve the maximum expected return. Reinforcement learning is closer to the nature of biological
learning and can cope with a variety of complex scenarios, thus coming closer to the goal of general
artificial intelligence systems.

The basic elements in reinforcement learning include:

• The agent can sense the state of the external environment and the reward of feedback, then make
decisions;

• The environment is everything outside the agent, which is affected by the actions of the agent by
changing its state and feeding the corresponding reward back to the agent;

• s is a description of the environment, which can be discrete or continuous, and its state space is S;
• a is a description of the behavior of the agent, which can be discrete or continuous, and its action

space is A;
• The reward r(s, a, s′) is a scalar function—that is, after the agent makes an action a based on the

current state s, the environment will give a reward to the agent. This reward is related to the state s′

at the next moment.

For simplicity, we consider the interactions between agent and environment as a discrete
time-series in this paper. Figure 4 shows the interaction between an agent and an environment.

Agent

Environment

state action reward

t
s

1t
r
+ t

a

Figure 4. Agent–environment interaction.

4.2.1. Input and Output Design

The pointer network input under reinforcement learning is similar to that under supervised
learning. The only difference is that, when applying reinforcement learning, a special symbol Split
needs to be added, as reinforcement learning only focuses on those variables selected before the
variable Split. Split is a separator that divides a variable into two types. We use the following rules:
when inputting into the pointer network, all variables before Split are set to 1, and all variables after
Split are set to 0. We use the zero vector to represent the Split. Therefore, in order to change the
n-dimensional matrix Q into n + 1 dimensions, we add a row and a column of 0 to the last row and
the last column of matrix Q. Under this rule, taking Example 1 as an example, to convert the matrix Q
into the matrix P, the input sequence of the pointer network is (p1, p2, p3, p4, Split):

Mathematics 2020, 8, 298 11 of 20

P =

0 3 0 4 0
3 0 5 2 0
0 5 0 1 0
4 2 1 0 0
0 0 0 0 0

.

Similar to supervised learning, at the output of the pointer network, a symbol EOS is added to
divide the set of output vertices. As in Example 1, the output of the pointer network is (1, 3, EOS, 2, 4),
which means that the four vertices are divided into two sets, which are (1, 3) and (2, 4). The numbers
in front of EOS indicate that the value at these vertex positions is 1, and the numbers after EOS indicate
that the value at these positions is 0. Thus, the max-cut value can be calculated according to the divided
sets, and it is this value that is used as the reward in reinforcement learning.

4.2.2. Actor–Critic Algorithm

The actor–critic algorithm is a reinforcement learning method which combines a policy gradient
and temporal difference learning. We combine the input–output structure characteristics of the Max-cut
problem with the actor–critic algorithm in reinforcement learning to train the pointer network model.
The actor–critic algorithm used for solving such combinatorial optimization problems uses the same
pointer network encoder for both the actor network and the critic network. First, the actor network
encodes the input sequence. Next, the decoder part selects the variable with value 1, according to
the probability. The critic network encodes the input sequence, then predicts the optimal value of the
Max-cut problem using a value function.

In the actor–critic algorithm, φ(s) is the input to the actor network, which corresponds to the
given symmetric matrix Q in the Max-cut problem; that is, Q is used as the input sequence of the
actor network. The actor refers to the policy function πθ(s, a), which can learn a strategy to obtain
the highest possible reward. For the Max-cut problem, πθ(s, a) represents the strategy scheme in
which variables are selected as 1. The critic refers to the value function Vφ(s), which estimates the
value function of the current strategy. With the help of the value function, the actor–critic algorithm
can update the parameters in a single step, without having to wait until the end of the round to
update. In the actor–critic algorithm, the policy function πθ(s, a) and the value function Vφ(s) are both
functions that need to be learned simultaneously during the training process.

Assuming the return G (τt:T) from time t, we use Equation (21) to approximate it:

Ĝ (τt:T) = rt+1 + γVφ (st+1) , (21)

where st+1 is the state at t + 1 and rt+1 is the instant reward.
In each step of the update, the strategy function πθ(s, a) and the value function Vφ(s) are learned.

On one hand, the parameter φ is updated, such that the value function Vφ(st) is close to the estimated
real return Ĝ (τt:T):

min
φ

(
Ĝ (τt:T)−Vφ (st)

)2 . (22)

On the other hand, the value function Vφ(st) is used as a basis function to update the parameter,
in order to reduce the variance of the policy gradient:

θ ← θ + αγt (Ĝ (τt:T)−Vφ (st)
) ∂

∂θ
log πθ (at|st) . (23)

In each update step, the actor performs an action a, according to the current environment state s
and the strategy πθ(a |s); the environment state becomes s′ and the actor obtains an instant reward r.
The critic (value function Vφ(s)) adjusts its own scoring standard, according to the real reward given
by the environment and the previous score (r + γVφ(s′)), such that its own score is closer to the real
return of the environment. The actor adjusts its strategy πθ according to the critic’s score, and strives

Mathematics 2020, 8, 298 12 of 20

to do better next time. At the beginning of the training, actors performs randomly and critic gives
random marks. Through continuous learning, the critic’s ratings become more and more accurate, and
the actor’s movements become better and better.

Algorithm 3 shows the training process of the actor–critic algorithm.

Algorithm 3 Actor–critic algorithm

Input: state space: S; action space: A; differentiable strategy function: πθ(a |s); differentiable state

value function: Vφ(s); discount rate: γ; learning rate: α > 0, β > 0;

Output: strategy: πθ

1: random initial θ, φ;

2: repeat

3: initial starting state s;

4: λ = 1;

5: repeat

6: In state s, select an action a = πθ(a |s);
7: perform the action a to get an instant reward r and a new state s′;

8: δ← r + γVφ (s′)−Vφ(s);

9: φ← φ + βδ ∂
∂φ Vφ(s);

10: θ ← θ + αλδ ∂
∂θ log πθ(a|s);

11: λ← γλ;

12: s← s′;

13: until s is the termination state;

14: until θ converges.

5. Experimental Results and Analysis

Based on the TensorFlow framework, this paper uses two learning strategies (supervised learning
and reinforcement learning) to train and predict the Max-cut problem with a pointer network.
The model is trained on a deep learning server platform consisting of two NVIDIA TITAN Xp GPUs
and an Intel Core i9-7960X CPU.

The initial parameters in the pointer network are randomly generated by a uniform distribution
in [−0.08, 0.08], and the initial learning rate is 0.001. During the training process, when supervised
learning is applied to train the pointer network, the model uses a single-layer LSTM with 256 hidden
units and is trained with mini-batch SGD. When applying reinforcement learning to train the pointer
network, the model uses three layers of LSTMs, with each layer consisting of 128 hidden units,
and is trained with the actor–critic algorithm. In the prediction stage, the heat parameter in the
pointer network is set to 3, and the initial reward baseline is set to 100. The model tested during
the prediction phase is the last iteration of the training phase. For the Max-cut problem of different
dimensions, except for increasing the sequence length, the other hyperparameter settings are the same.
In the implementation, we use the Adam algorithm to adjust the learning rate. Adam algorithm can
make effective dynamic adjustments to the model to make the changes in hyperparameters relatively
stable [24].

We constructed a data set based on the method mentioned in Section 2.2 (using the {−1,1}
quadratic programming problem transformed into the Max-cut problem), which we refer to as the
Zhou data set. In order not to lose generality, we also used the Binary quadratic and Max cut Libraries

Mathematics 2020, 8, 298 13 of 20

(Biq Mac Library), which are the most commonly used benchmark generators for the Max-cut problem.
We performed experiments on the Zhou data set and the Biq Mac Library data set, respectively.

5.1. Experiments on Zhou Data Set

According to the method for randomly generating Max-cut problems in Section 2.2, a large
number of Max-cut problems with known exact solutions were obtained, which we formed into data
sets with specified input and output formats. The training set and the test set are both data generated
from the same probability distribution, and the density of the input matrix Q in the data sample is
94.6%. Each sample in the training and test sets is unique. Then, we divided the data sets randomly
into training and test sets according to the ratio of 10:1. For different dimensions, the training set
contained 1000 samples and the test set contained 100 samples. The maximum number of training
iterations was set to 100,000. The accuracy of the solution trained by the model is defined as:

Accuracy =
v (Ptr-Net)

v (Opt)
× 100%, (24)

where v (Ptr-Net) is the solution of trained pointer network model, and v (Opt) is the optimal value of
the Max-cut problem.

We first used supervised learning to train the pointer network on the 10-, 30-, 50-, 60-, 70-, 80-, 90-,
100-, 150-, and 200-dimensional Max-cut problems, respectively. Table 1 shows average accuracy of the
Max-cut problem of the above dimensions. And the detailed experimental results are listed in Table 2.

Table 1. Average accuracies and training times for Max-cut problems with different dimensions by SL.

Dimensions Average Accuracy Average Training Time

10 100% 1:13:20
30 98.78% 2:12:35
50 97.56% 5:29:16
60 94.51% 6:37:10
70 90.95% 7:33:42
80 88.64% 8:39:08
90 86.35% 9:58:06

100 80.50% 11:14:57
150 74.94% 14:52:46
200 71.95% 19:28:25

Mathematics 2020, 8, 298 14 of 20

Table 2. Detailed solutions and accuracies for Max-cut problems with different dimensions by
supervised learning (SL).

Sample Optimum Solution Accuracy Sample Optimum Solution Accuracy

S10.1 330 330 100% S80.1 85,462 74,634 87.33%
S10.2 281 281 100% S80.2 94,552 83,357 88.16%
S10.3 240 240 100% S80.3 100,512 82,782 82.36%
S10.4 236 236 100% S80.4 92,108 83,735 90.91%
S10.5 171 171 100% S80.5 89,311 79,299 88.79%
S10.6 124 124 100% S80.6 100,862 97,624 97.79%
S10.7 208 208 100% S80.7 88,919 81,996 92.21%
S10.8 230 230 100% S80.8 91,045 79,974 87.84%
S10.9 245 245 100% S80.9 87,873 75,870 86.34%

S10.10 257 257 100% S80.10 111,327 95,374 85.67%
S30.1 4861 4861 100% S90.1 136,959 114,251 83.42%
S30.2 5820 5698 97.90% S90.2 134,022 124,033 92.55%
S30.3 4708 4617 98.07% S90.3 145,727 115,448 79.22%
S30.4 6123 6123 100% S90.4 132,287 117,391 88.74%
S30.5 6033 6008 99.59% S90.5 134,420 126,341 93.99%
S30.6 5380 5342 99.29% S90.6 133,817 116,491 87.05%
S30.7 6927 6799 98.15% S90.7 142,957 123,292 86.24%
S30.8 4914 4741 96.48% S90.8 120,026 104,207 86.82%
S30.9 6401 6340 99.05% S90.9 145,635 120,749 82.91%

S30.10 5185 5147 99.27% S90.10 141,741 117,019 82.56%
S50.1 24,468 23,386 95.58% S100.1 174,947 144,963 82.86%
S50.2 22,462 21,646 96.37% S100.2 199,441 181,966 91.24%
S50.3 23,246 23,246 100% S100.3 166,682 130,995 78.59%
S50.4 19,776 19,273 97.46% S100.4 179,885 146,426 81.40%
S50.5 25,057 23,947 95.57% S100.5 184,363 146,653 79.55%
S50.6 27,510 27,037 98.28% S100.6 191,636 165,283 86.25%
S50.7 26,698 26,368 98.76% S100.7 189,959 136,784 72.01%
S50.8 20,627 20,261 98.23% S100.8 177,545 144,373 81.32%
S50.9 20,493 20,213 98.63% S100.9 181,022 145,642 80.46%

S50.10 22,130 21,404 96.72% S100.10 189,239 134,965 71.32%
S60.1 43,173 40,062 92.79% S150.1 542,081 453,348 83.63%
S60.2 42,057 39,280 93.40% S150.2 571,793 390,333 68.26%
S60.3 43,190 40,360 93.45% S150.3 678,393 551,327 81.27%
S60.4 54,174 53,138 98.09% S150.4 574,523 481,574 83.82%
S60.5 43,638 40,180 92.08% S150.5 545,008 412,718 75.73%
S60.6 38,255 37,333 97.59% S150.6 613,130 467,820 76.30%
S60.7 52,689 49,260 93.49% S150.7 545,500 354,314 64.95%
S60.8 43,902 40,741 92.80% S150.8 632,578 521,155 82.39%
S60.9 39,098 37,980 97.14% S150.9 612,560 349,406 57.04%

S60.10 41,005 38,655 94.27% S150.10 630,733 479,420 76.01%
S70.1 64,914 59,371 91.46% S200.1 1,444,264 1,080,545 74.82%
S70.2 63,306 62,872 99.31% S200.2 1,488,701 1,006,851 67.63%
S70.3 71,127 62,855 88.37% S200.3 1,368,359 1,052,517 76.92%
S70.4 65,673 57,286 87.23% S200.4 1,352,301 1,102,923 81.56%
S70.5 59,045 54,864 92.92% S200.5 1,309,815 1,152,570 87.99%
S70.6 60,016 50,337 83.87% S200.6 1,338,423 928,162 69.35%
S70.7 63,158 57,117 90.44% S200.7 1,311,058 805,257 61.42%
S70.8 63,478 59,211 93.28% S200.8 1,462,304 822,691 56.26%
S70.9 67,019 60,871 90.83% S200.9 1,350,077 1,114,423 82.55%

S70.10 70,616 64,818 91.79% S200.10 1,347,381 822,037 61.01%

Then the pointer network based on reinforcement learning was also trained with the Zhou data
set, on 10-, 50-, 150-, 200-, 250-, and 300-dimensional Max-cut problems. Table 3 shows the average
accuracy of the Max-cut problem for the above dimensions. And the detailed experimental results are
listed in Table 4.

Mathematics 2020, 8, 298 15 of 20

Table 3. Average accuracies and training times for Max-cut problems with different dimensions by RL.

Dimensions Average Accuracy Average Training Time

10 100% 0:10:07
50 98.28% 0:23:03
100 96.32% 0:42:33
150 95.06% 1:03:57
200 92.38% 1:27:18
250 89.88% 1:53:28
300 87.64% 2:21:30

Table 4. Detailed solutions and accuracies for Max-cut problems with different dimensions by
reinforcement learning (RL).

Sample Optimum Solution Accuracy Sample Optimum Solution Accuracy

R10.1 233 233 100% R150.6 584,968 572,689 97.90%
R10.2 248 248 100% R150.7 553,878 453,361 81.86%
R10.3 193 193 100% R150.8 618,615 583,545 94.33%
R10.4 192 192 100% R150.9 529,739 522,427 98.62%
R10.5 302 302 100% R150.10 559,414 513,463 91.79%
R10.6 187 187 100% R200.1 1,274,866 1,267,884 99.45%
R10.7 341 341 100% R200.2 1,392,200 1,165,174 83.69%
R10.8 133 133 100% R200.3 1,358,320 1,345,870 99.07%
R10.9 301 301 100% R200.4 1,320,006 1,118,705 84.75%

R10.10 272 272 100% R200.5 1,368,199 1,020,056 74.55%
R50.1 25,565 25,302 98.97% R200.6 1,397,432 1,292,628 92.50%
R50.2 22,528 22,441 99.61% R200.7 1,421,061 1,420,172 99.94%
R50.3 25,426 24,783 97.47% R200.8 1,376,229 1,357,875 98.67%
R50.4 25,787 25,425 98.60% R200.9 1,344,436 1,266,442 94.20%
R50.5 21,030 19,755 93.94% R200.10 1,388,152 1,332,225 95.97%
R50.6 25,079 24,614 98.15% R250.1 2,590,918 2,242,263 86.54%
R50.7 22,077 21,820 98.84% R250.2 2,700,294 2,503,768 92.72%
R50.8 28,899 28,715 99.36% R250.3 2,542,443 2,230,460 87.73%
R50.9 29,101 28,614 98.33% R250.4 2,542,413 2,357,060 92.71%

R50.10 25,729 25,607 99.53% R250.5 2,702,833 2,547,463 94.25%
R100.1 187,805 182,369 97.02% R250.6 2,764,901 2,750,197 99.47%
R100.2 197,470 193,171 97.82% R250.7 2,777,948 2,027,296 72.98%
R100.3 187,495 185,929 99.16% R250.8 2,671,835 2,530,103 94.70%
R100.4 216,339 211,431 97.73% R250.9 2,593,131 2,031,284 78.33%
R100.5 161,961 161,067 99.45% R250.10 2,596,843 2,579,798 99.34%
R100.6 178,737 176,723 98.87% R300.1 4,430,263 3,858,903 87.10%
R100.7 183,560 183,315 99.87% R300.2 4,363,482 2,344,354 53.73%
R100.8 155,038 154,292 99.52% R300.3 4,459,682 4,248,761 95.27%
R100.9 191,120 142,059 74.33% R300.4 4,562,319 2,369,015 51.93%
R100.10 174,202 173,729 99.73% R300.5 4,404,895 4,113,113 93.38%
R150.1 568,452 554,128 97.48% R300.6 4,497,912 4,483,644 99.68%
R150.2 549,303 542,731 98.80% R300.7 4,364,640 4,298,760 98.49%
R150.3 672,601 628,655 93.47% R300.8 4,589,744 4,372,106 95.26%
R150.4 590,417 553,860 93.81% R300.9 4,655,631 4,652,613 99.94%
R150.5 563,674 561,554 99.62% R300.10 4,956,332 4,944,887 99.77%

It can be seen, from Tables 1 and 3 that, regardless of whether supervised learning or reinforcement
learning was used, the average accuracy of the pointer network solution decreased as the number of
dimensions increased. However, the average accuracy of reinforcement learning decreased very slightly.
Secondly, by comparing the two tables, we find that the pointer network model obtained through
reinforcement learning was more accurate than that obtained by supervised learning. Finally, it can
be seen that the time taken to train the model with reinforcement learning was faster than that for
supervised learning. Figure 5 shows the accuracy of the solution for the Max-cut problem samples
trained with supervised learning and reinforcement learning.

Mathematics 2020, 8, 298 16 of 20

0 50 100 150 200 250 300

Dimensions

0

35

70

75

80

85

90

95

100

A
cc

ur
ac

y(
%

)

RL
SL

Figure 5. Average accuracies of SL and RL.

5.2. Experiments on Biq Mac Library

In order to further verify the generalization ability of the pointer network model, ten groups
of 60-, 80-, and 100-dimensional Max-cut samples were selected from the Biq Mac Library (http:
//biqmac.uni-klu.ac.at/biqmaclib.html). As the Max-cut problem data set of each dimension in the
Biq Mac Library only has ten groups of data, the amount of data was not enough to train the pointer
network (training the pointer network model requires at least 100 groups of data), so we only used the
Biq Mac Library as the test set; the Zhou data set was still used as the training set.

Table 5 shows the detailed experimental results of the Max-cut problem with 60, 80, and
100 dimensions using the Biq Mac Library by reinforcement learning.

Table 5. Solution and accuracy on Biq Mac Library data set by RL.

Sample Optimum Solution Accuracy Sample Optimum Solution Accuracy

R60.1 536 441 82.28% R80.6 926 817 88.23%
R60.2 532 478 89.85% R80.7 929 773 83.21%
R60.3 529 463 87.52% R80.8 929 785 84.50%
R60.4 538 478 88.85% R80.9 925 830 89.73%
R60.5 527 486 92.22% R80.10 923 640 69.34%
R60.6 533 479 89.87% R100.1 2019 1530 75.78%
R60.7 531 438 82.49% R100.2 2060 1507 73.16%
R60.8 535 473 88.41% R100.3 2032 1461 71.90%
R60.9 530 468 88.30% R100.4 2067 1573 76.10%
R60.10 533 483 90.62% R100.5 2039 1433 70.28%
R80.1 929 829 89.24% R100.6 2108 1483 70.35%
R80.2 941 753 80.02% R100.7 2032 1464 72.04%
R80.3 934 824 88.22% R100.8 2074 1585 76.42%
R80.4 923 819 88.73% R100.9 2022 1477 73.05%
R80.5 932 805 86.37% R100.10 2005 1446 72.20%

The average prediction results are shown in Table 6.

http://biqmac.uni-klu.ac.at/biqmaclib.html
http://biqmac.uni-klu.ac.at/biqmaclib.html

Mathematics 2020, 8, 298 17 of 20

Table 6. Average accuracies of different dimensional Max-cut problems using the Biq Mac Library by RL.

Dimensions Average Accuracy

60 88.05%
80 84.76%
100 73.09%

It can be seen, from Tables 3 and 6, that the average accuracies when predicting the Biq Mac Library
using reinforcement learning were lower than the accuracies on Zhou dataset. This is because the Biq
Mac Library is composed of data samples with different distributions, which can better characterize
the essential characteristics of the Max-cut problem. We believe that, in future research, if the model
can be trained on a larger training set with the distribution of the Biq Mac Library, its performance can
be definitely improved.

6. Conclusions

In this paper, we proposed an effective deep learning method based on a pointer network
for the Max-cut problem. We first analyzed the structural characteristics of the Max-cut problem
and introduced a method to generate a large data set of Max-cut problems. Then, the algorithmic
frameworks for training the pointer network model under two learning strategies (supervised
learning and reinforcement learning) were introduced in detail. We applied supervised learning
and reinforcement learning strategies separately to train the pointer network model, and experimented
with Max-cut problems with different dimensions. The experimental results revealed that, for the
low-dimensional Max-cut problem (below 50 dimensions), the models trained by supervised learning
and reinforcement learning both have high accuracy and that the accuracies are basically consistent.
For high-dimensional cases (above 50 dimensions), the accuracy of the solution in the training mode
using reinforcement learning was significantly better than that with supervised learning. This
illustrates that reinforcement learning can better discover the essential characteristics behind the
Max-cut problem and can mine better optimal solutions from the data. This important finding will
instruct us to further improve the performance and potential of pointer networks as a deep learning
method for Max-cut problems and other combinatorial optimization problems in future research.

Author Contributions: S.G. put forward the idea and algorithms. S.G. investigated and supervised the project.
Y.Y. and S.G. simulated the results. Y.Y. validated and summarized the results in tables. S.G. and Y.Y. prepared
and wrote the article. All authors have read and agreed to the published version of the manuscript.

Funding: The work described in the paper was supported by the National Science Foundation of China under
Grant 61876105.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
NP-hard Non-deterministic Polynomial-hard
NP Non-deterministic Polynomial
VLSI Very Large Scale Integration
LKH Lin–Kernighan Heuristic
CAP Credit Assignment Problem
RNN Recurrent Neural Network
UBQP Unconstrained Boolean Quadratic Programming
BQP Boolean Quadratic Programming
SDP Semi-Definite Programming
LSTM Long Short-Term Memory
SL Supervised Learning
RL Reinforcement Learning
SGD Stochastic Gradient Descent

Mathematics 2020, 8, 298 18 of 20

Variables

The following variables are used in this manuscript:
D Training set
E Edge set, E ⊆ V ×V
G Undirected graph of the Max-cut problem, G = (V, E)
G (τt:T) The return from time t in actor–critic
K The mini-batch size
L Number of training steps
M Network parameter in LSTM, M ∈ R4d×(d+e)

Olabel Label matrix of the output
Opredict The probability distribution of the output matrix
P The transformed reinforcement learning input matrix
Q Adjacency matrix, Q = QT = (qij)n×n and qij(i = j) are zero
S Subset of vertex set
U Learnable parameter in attention mechanism
V Vertex set, V = {1, 2, ..., n}
Vφ Value function of actor–critic algorithm
W Parameter matrix to be updated in mini-batch SGD
X Input sequence, X = x1:T
Y Output sequence, Y = y1:T
a Action in agent–environment interaction
b Network parameter in LSTM, b ∈ R4d

c Non-zero vector, c ∈ Rn

ct Memory unit for the current moment
ft Forget gate for the current moment
f (x) f (x) = 1

2 xTQx− cT x
h Hidden layer
it Input gate for the current moment
n Dimensions of the Max-cut problem
ot Output gate for the current moment
p Conditional probability
r Reward of agent-environment interaction
s State of agent-environment interaction
si,j Non-normalized attention distribution of each input vector
v Learnable parameter in attention mechanism
wi,j The weight on the edge connecting vertex i and vertex j
α Learning rate in mini-batch SGD
β Learning rate in actor–critic algorithm
γ Discount rate in actor–critic algorithm
θ Parameters to be updated in strategy function
λ Lagrange multiplier, λ ∈ Rn

πθ Strategy function of actor–critic algorithm
σ Logistic function in LSTM
φ Parameters to be updated in value function

Mathematics 2020, 8, 298 19 of 20

References

1. Goemans, M.X. Improved approximation algorithms for maximum cut and satisfiability problems using
semidefinite programming. J. ACM 1995, 42, 1115–1145. [CrossRef]

2. Mcmahan, H.B.; Holt, G.; Sculley, D.; Young, M.; Kubica, J. Ad click prediction: A view from the trenches.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining,
Chicago, IL, USA, 14 August 2013.

3. Barahona, F.; Grötschel, M.; Junger, M.; Reinelt, G. An application of combinatorial optimization to statistical
physics and circuit layout design. Oper. Res. 1988, 36, 493–513. [CrossRef]

4. Xi, Y.J.; Dang, Y.Z. The method to analyze the robustness of knowledge network based on the weighted
supernetwork model and its application. Syst. Eng. Theory Pract. 2007, 27, 134–140. [CrossRef]

5. Dreiseitla, S.; Ohno-Machadob, L. Logistic regression and artificial neural network classification models:
A methodology review. J. Biomed. Inf. 2002, 35, 352–359. [CrossRef]

6. Croce, F.D.; Kaminski, M.J.; Paschos, V.T. An exact algorithm for max-cut in sparse graphs. Oper. Res. Lett.
2007, 35, 403–408. [CrossRef]

7. Krishnan, K.; Mitchell, J.E. A semidefinite programming based polyhedral cut and price approach for the
maxcut problem. Comput. Optim. Appl. 2006, 33, 51–71. [CrossRef]

8. Funabiki, N.; Kitamichi, J.; Nishikawa, S. An evolutionary neural network algorithm for max cut problems.
In Proceedings of the International Conference on Neural Networks (ICNN’97), Houston, TX, USA, 12 June 1997.

9. Denrell, J.; Fang, C.; Levinthal, D.A. From t-mazes to labyrinths: Learning from model-based feedback.
Manag. Sci. 2004, 50, 1366–1378. [CrossRef]

10. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. In Advances in Neural Information Processing Systems;
MIT Press: Cambridge, MA, USA, 2014; pp. 2692–2700.

11. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement
learning. arXiv 2016, arXiv:1611.09940.

12. Mirhoseini, A.; Pham, H.; Le, Q.V.; Steiner, B.; Larsen, R.; Zhou, Y. Device placement optimization with
reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning, Sydney,
Australia, 11 August 2017; pp. 2430–2439.

13. Milan, A.; Rezatofighi, S.H.; Garg, R.; Dick, A.; Reid, I. Data-Driven Approximations to NP-Hard Problems.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA,
4 February 2017; pp. 1453–1459.

14. Mottini, A.; Acuna-Agost, R. Deep Choice Model Using Pointer Networks for Airline Itinerary Prediction.
In Proceedings of the 23rd ACM SIGKDD International Conference, Halifax, NS, Canada, 13–17 August
2017; pp. 1575–1583.

15. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate.
In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA,
USA, 7–9 May 2015.

16. Gu, S.; Yang, Y. A Pointer Network Based Deep Learning Algorithm for the Max-Cut Problem. ICONIP 2018,
LNCS 11301, 238–248.

17. Gu, S.; Hao, T.; Yao, H. A Pointer Network Based Deep Learning Algorithm for Unconstrained Binary
Quadratic Programming Problem. Neurocomputing 2020, (accepted).

18. Zhou, M.X. A benchmark generator for boolean quadratic programming. Comput. Sci. 2015, arXiv:1406.4812.
19. Barahona, F.; Michael, J.; Reinelt, G. Experiments in quadratic 0-1 programming. Math. Program. 1989, 44,

127–137. [CrossRef]
20. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Advances in

Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 3104–3112.
21. Jing, L.; Shen, Y.; Dubc̆ek, T.; Peurifoy, J.; Skirlo, S.; Lecun, Y.; Tegmark, M. Tunable efficient unitary neural

networks (eunn) and their application to rnns. In Proceedings of the 34th International Conference on
Machine Learning, Sydney, Australia, 6 August 2016.

22. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1287/opre.36.3.493
http://dx.doi.org/10.1016/S1874-8651(08)60027-7
http://dx.doi.org/10.1016/S1532-0464(03)00034-0
http://dx.doi.org/10.1016/j.orl.2006.04.001
http://dx.doi.org/10.1007/s10589-005-5958-3
http://dx.doi.org/10.1287/mnsc.1040.0271
http://dx.doi.org/10.1007/BF01587084
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Mathematics 2020, 8, 298 20 of 20

23. Konecny, J.; Liu, J.; Richtarik, P.; Takac, M. Mini-batch semi-stochastic gradient descent in the proximal
setting. IEEE J. Sel. Top. Signal Process. 2016, 10, 242–255. [CrossRef]

24. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International
Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSTSP.2015.2505682
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Motivation and Data Set Structure
	Unified Model of the Max-Cut Problem
	Benchmark Generator of the Max-Cut Problem

	Models
	Long Short-Term Memory
	Encoder–Decoder Model
	Pointer Network

	Learning Mechanism
	Supervised Learning
	Input and Output Design
	Algorithm Design

	Reinforcement Learning
	Input and Output Design
	Actor–Critic Algorithm

	Experimental Results and Analysis
	Experiments on Zhou Data Set
	Experiments on Biq Mac Library

	Conclusions
	References

