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1. Introduction

Let M be a compact minimal hypersurface of the unit sphere Sn+1 with shape operator A. In his
pioneering work, Simons [1] has shown that on a compact minimal hypersurface M of the unit
sphere Sn+1 either A = 0 (totally geodesic), or ‖A‖2 = n, or ‖A‖2 (p) > n for some point p ∈ M,
where ‖A‖ is the length of the shape operator. This work was further extended in [2] and for compact
constant mean curvature hypersurfaces in [3]. If for every point p in M, the square of the length
of the second fundamental form of M is n, then it is known that M must be a subset of a Clifford
minimal hypersurface

Sl

(√
l
n

)
× Sm

(√
m
n

)
,

where l, m are positive integers, l +m = n (cf. Theorem 3 in [4]). Note that this result was independently
proven by Lawson [2] and Chern, do Carmo, and Kobayashi [5]. One of the interesting questions in
differential geometry of minimal hypersurfaces of the unit sphere Sn+1 is to characterize minimal
Clifford hypersurfaces. Minimal hypersurfaces have also been studied in (cf. [6–8]). In [2], bounds on
Ricci curvature are used to find a characterization of the minimal Clifford hypersurfaces in the unit
sphere S4. Similarly in [3,9–11], the authors have characterized minimal Clifford hypersurfaces in the
odd-dimensional unit spheres S3 and S5 using constant contact angle. Wang [12] studied compact
minimal hypersurfaces in the unit sphere Sn+1 with two distinct principal curvatures, one of them
being simple and obtained the following integral inequality,∫

M
‖A‖2 ≤ nVol(M),
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where Vol(M) is the volume of M. Moreover, he proved that equality in the above inequality holds if
and only if M is the Clifford hypersurface,

S1

(√
1
n

)
× Sm

(√
n− 1

n

)
.

In this paper, we are interested in studying compact minimal hypersurfaces of the unit sphere
S2n+1 using the Sasakian structure (ϕ, ξ, η, g) (cf. [13]) and finding characterizations of minimal
Clifford hypersurface of S2n+1. On a compact minimal hypersurface M of the unit sphere S2n+1, we
denote by N the unit normal vector field and define a smooth function f = g(ξ, N), which we call
the Reeb function of the minimal hypersurface M. Also, on the hypersurface M, we have a smooth
vector field v = ϕ(N), which we call the contact vector field of the hypersurface (v being orthogonal to ξ

belongs to contact distribution). Instead of demanding two distinct principal curvatures one being
simple, we ask the contact vector field v of the minimal hypersurface in S2n+1 to be conformal vector
field and obtain an inequality similar to Wang’s inequality and show that the equality holds if and
only if M is isometric to a Clifford hypersurface. Indeed we prove

Theorem 1. Let M be a compact minimal hypersurface of the unit sphere S2n+1 with Reeb function f and
contact vector field v a conformal vector field on M. Then,∫

M
(1− f 2) ‖A‖2 ≤ 2n

∫
M

(
1− f 2

)
and the equality holds if and only if M is isometric to the Clifford hypersurface Sl

(√
l

2n

)
× Sm

(√
m
2n

)
,

where l + m = 2n.

Also in [12], Wang studied embedded compact minimal non-totally geodesic hypersurfaces in
Sn+1 those are symmetric with respect to n + 2 pair-wise orthogonal hyperplanes of Rn+2. If M is such
a hypersurface, then it is proved that ∫

M
‖A‖2 ≥ nVol(M),

and the equality holds precisely if M is a Clifford hypersurface. Note that compact embedded
hypersurface has huge advantage over the compact immersed hypersurface, as it divides the ambient
unit sphere Sn into two connected components.

In our next result, we consider compact immersed minimal hypersurface M of the unit sphere
S2n+1 such that the Reeb function f is a constant along the integral curves of the contact vector field
v and show that above inequality of Wang holds, and we get another characterization of minimal
Clifford hypersurface in the unit sphere S2n+1. Precisely, we prove the following.

Theorem 2. Let M be a compact minimal hypersurface of the unit sphere S2n+1 with Reeb function f a
constant along the integral curves of the contact vector field v. Then,∫

M
‖A‖2 ≥ 2nVol(M)

and the equality holds if and only if M is isometric to the Clifford hypersurface Sl
(√

l
2n

)
× Sm

(√
m
2n

)
,

where l + m = 2n.
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2. Preliminaries

Recall that conformal vector fields play an important role in the geometry of a Riemannian
manifolds. A conformal vector field v on a Riemannian manifold (M, g) has local flow consisting of
conformal transformations, which is equivalent to

£vg = 2ρg. (1)

The smooth function ρ appearing in Equation (1) defined on M is called the potential function
of the conformal vector field v. We denote by (ϕ, ξ, η, g) the Sasakian structure on the unit sphere
S2n+1 as a totally umbilical real hypersurface of the complex space form (Cn+1, J, 〈, 〉), where J is the
complex structure and 〈, 〉 is the Euclidean Hermitian metric. The Sasakian structure (ϕ, ξ, η, g) on
S2n+1 consists of a (1, 1) skew symmetric tensor field ϕ, a smooth unit vector field ξ, a smooth 1-form
η dual to ξ, and the induced metric g on S2n+1 as real hypersurface of Cn+1 and they satisfy (cf. [13])

ϕ2 = −I + η ⊗ ξ, η ◦ ϕ = 0, η(ξ) = 1, g(ϕX, ϕY) = g(X, Y)− η(X)η(Y), (2)

and (
∇ϕ
)
(X, Y) = g(X, Y)ξ − η(Y)X, ∇Xξ = −ϕX, (3)

where X, Y are smooth vector fields,∇ is Riemannian connection on S2n+1 and the covariant derivative(
∇ϕ
)
(X, Y) = ∇X ϕY− ϕ

(
∇XY

)
.

We dente by N and A the unit normal and the shape operator of the hypersurface M of the unit
sphere S2n+1. We denote the induced metric on the hypersurface M by the same letter g and denote
by ∇ the Riemannian connection on the hypersurface M with respect to the induced metric g. Then,
the fundamental equations of hypersurface are given by (cf. [14])

∇XY = ∇XY + g(AX, Y), ∇X N = −AX, X, Y ∈ X(M), (4)

R(X, Y)Z = g(Y, Z)X− g(X, Z)Y + g(AY, Z)AX− g(AX, Z)AY, (5)

(∇A) (X, Y) = (∇A) (Y, X), X, Y ∈ X(M), (6)

where X(M) is the Lie algebra of smooth vector fields and R(X, Y)Z is the curvature tensor field of the
hypersurface M. The Ricci tensor of the minimal hypersurface M of the unit sphere S2n+1 is given by

Ric(X, Y) = (2n− 1)g(X, Y)− g(AX, AY), X, Y ∈ X(M) (7)

and
2n

∑
i=1

(∇A) (ei, ei) = 0 (8)

holds for a local orthonormal frame {e1, . . . , e2n} on the minimal hypersurface M.
Using the Sasakian structure (ϕ, ξ, η, g) on the unit sphere S2n+1, we analyze the induced structure

on a hypersurface M of S2n+1. First, we have a smooth function f on the hypersurface M defined by
f = g(ξ, N), which we call the Reeb function of the hypersurface M, where N is the unit normal vector
field. As the operator ϕ is skew symmetric, we get a vector field v = ϕN defined on M, which we
call the contact vector field of the hypersurface M. Note that the vector field v is orthogonal to ξ, and
therefore lies in the contact distribution of the Sasakian manifold S2n+1. We denote by u = ξT the
tangential component of ξ to the hypersurface M and, consequently, we have ξ = u + f N. Let α and β

be smooth 1-forms on M dual to the vector fields u and v, respectively, that is, α(X) = g(X, u) and
β(X) = g(X, v), X ∈ X(M). For X ∈ X(M), we set JX = (ϕX)T the tangential component of ϕX to
the hypersurface, which gives a skew symmetric (1, 1) tensor field J on the hypersurface M. It follows
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that ϕX = JX− β(X)N. Thus, we get a structure (J, u, v, α, β, f , g) on the hypersurface M and using
properties in Equations (2) and (3) of the Sasakian structure (ϕ, ξ, η, g) on the unit sphere S2n+1 and
Equation (4), it is straightforward to see that the structure (J, u, v, α, β, f , g) on the hypersurface M has
the properties described in the following Lemma.

Lemma 1. Let M be a hypersurface of the unit sphere S2n+1. Then, M admits the structure
(J, u, v, α, β, f , g) satisfying

(i) J2 = −I + α⊗ u + β⊗ v,
(ii) Ju = − f v, Jv = f u,

(iii) g(JX, JY) = g(X, Y)− α(X)α(Y)− β(X)β(Y),
(iv) ∇Xu = −JX + f AX, ∇Xv = − f X− JAX,
(v) (∇J) (X, Y) = g(X, Y)u− α(Y)X + g(AX, Y)v− β(Y)AX,

(vi) ∇ f = −Au + v,
(vii) ‖u‖2 = ‖v‖2 = (1− f 2), g(u, v) = 0,

where ∇ f is the gradient of the Reeb function f .

Let ∆ f be the Laplacian of the Reeb function f of the minimal hypersurface M of the unit
sphere S2n+1 defined by ∆ f = div∇ f . Then using Lemma 1 and 1

2 ∆ f 2 = f ∆ f + ‖∇ f ‖2 and
Equations (6) and (8), we get the following:

Lemma 2. Let M be a minimal hypersurface of the unit sphere S2n+1. Then, the Reeb function f satisfies

(i) ∆ f = −
(

2n + ‖A‖2
)

f ,

(ii) 1
2 ∆ f 2 = −

(
2n + ‖A‖2

)
f 2 + ‖∇ f ‖2.

On the hypersurface M of the unit sphere S2n+1, we define a (1, 1) tensor field Ψ = JA− AJ,
then it follows that g(ΨX, Y) = g(X, ΨY), X, Y ∈ X(M), that is, Ψ is symmetric and that trΨ = 0.
Next, we prove the following:

Lemma 3. Let M be a compact minimal hypersurface of the unit sphere S2n+1. Then,

∫
M

(
1− f 2

)
‖A‖2 =

∫
M

(
2n− 2n(2n + 1) f 2 +

1
2
‖Ψ‖2

)
.

Proof. Using Equation (7), we have Ric(v, v) = (2n− 1) ‖v‖2 − ‖Av‖2. Now, using Lemma 1, we get

(£vg) (X, Y) = −2 f g(X, Y)− g(ΨX, Y),

which on using the fact that trΨ = 0, gives

|£vg|2 = 8n f 2 + ‖Ψ‖2 .

Also, using (iii) of Lemma 1, we have

‖JA‖2 = ‖A‖2 − ‖Au‖2 − ‖Av‖2 ,

which together with second equation in (iv) of Lemma 1 and the fact that trJA = 0, implies

‖∇v‖2 = 2n f 2 + ‖A‖2 − ‖Au‖2 − ‖Av‖2 .
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Note that second equation in (iv) of Lemma 1 also gives

divv = −2n f .

Now, inserting above values in the following Yano’s integral formula (cf. [15])

∫
M

(
Ric(v, v) +

1
2
|£vg|2 − ‖∇v‖2 − (divv)2

)
= 0,

we get ∫
M

(
(2n− 1) ‖v‖2 + 2n f 2 +

1
2
‖Ψ‖2 − ‖A‖2 + ‖Au‖2 − 4n2 f 2

)
= 0. (9)

Also, (vi) of Lemma 1, gives Au = v−∇ f , that is, ‖Au‖2 = ‖v‖2 + ‖∇ f ‖2 − 2v( f ), which on
using div( f v) = v( f ) + f divv = v( f )− 2n f 2, gives

‖Au‖2 = ‖v‖2 + ‖∇ f ‖2 − 2div( f v)− 4n f 2.

Inserting above value of ‖Au‖2 in Equation (9), yields

∫
M

(
2n ‖v‖2 − 2n f 2 +

1
2
‖Ψ‖2 − ‖A‖2 + ‖∇ f ‖2 − 4n2 f 2

)
= 0. (10)

Integrating (ii) of Lemma 2, we get∫
M
‖∇ f ‖2 =

∫
M

(
2n + ‖A‖2

)
f 2,

which together with ‖v‖2 = 1− f 2 and Equation (10) proves the integral formula.

Lemma 4. Let M be a minimal hypersurface of the unit sphere S2n+1. Then, the contact vector field v is a
conformal vector field if and only if JA = AJ.

Proof. Suppose that AJ = JA. Then, using Lemma 1 and symmetry of shape operator A and skew
symmetry of the operator J, we have

(£vg) (X, Y) = g(∇Xv, Y) + g(∇Yv, X) = −2 f g(X, Y), X ∈ X(M),

which proves that v is a conformal vector field with potential function − f . Conversely, suppose v is
conformal vector field with potential function ρ. Then, using Equation (1), we have

(£vg) (X, Y) = g(∇Xv, Y) + g(∇Yv, X) = 2ρg(X, Y),

which on using Lemma 1, gives

g(−JAX− f X, Y) + g(−JAY− f Y, X) = 2ρg(X, Y),

that is,
g(AJX− JAX, Y) = 2(ρ + f )g(X, Y).

Choosing a local orthonormal frame {e1, . . . , e2n} on the minimal hypersurface M and taking
X = Y = ei in above equation and summing, we get ρ = − f . This gives g(AJX − JAX, Y) = 0,
X, Y ∈ X(M), that is, AJ = JA.
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Lemma 5. Let M be a minimal hypersurface of the unit sphere S2n+1. If the contact vector field v is a conformal
vector field on M, then

Au =
‖A‖2

2n
v.

Proof. Suppose v is a conformal vector field. Then, by Lemma 4, we have JA = AJ . Note that for the
Hessian operator A f of the Reeb function f using Lemma 1, we have

A f (X) = ∇X∇ f = ∇X(v− Au) = −JAX− f X−∇X Au, X ∈ X(M),

which on using (vi) of Lemma 1, gives

A f (X) = − f (X + A2X)− (∇A)(X, u).

Taking covariant derivative in above equation gives(
∇A f

)
(X, Y) = −X( f )((Y + A2Y)− f

(
∇A2

)
(X, Y)−

(
∇2 A

)
(X, Y, u)

+ (∇A) (Y, JX)− f (∇A) (Y, AX),

where we used (iv) of Lemma 1. Now, on taking a local orthonormal frame {e1, . . . , e2n} on the minimal
hypersurface M and taking X = Y = ei in above equation and summing, we get

2n

∑
i=1

(
∇A f

)
(ei, ei) = −∇ f − A2∇ f − f

2n

∑
i=1

(
∇A2

)
(ei, ei)−

2n

∑
i=1

(
∇2 A

)
(ei, ei, u)

+
2n

∑
i=1

(∇A) (ei, Jei)− f
2n

∑
i=1

(∇A) (ei, Aei).

Note that for the minimal hypersurface, we have

2n

∑
i=1

(∇A) (ei, Aei) =
2n

∑
i=1

(
∇ei A

2ei − A ((∇A)) (ei, ei) + A (∇ei ei)
)

=
2n

∑
i=1

(
∇A2

)
(ei, ei).

Thus, the previous equation takes the form

∑2n
i=1

(
∇A f

)
(ei, ei) = −∇ f − A2∇ f − 2 f ∑2n

i=1
(
∇A2) (ei, ei) −∑2n

i=1
(
∇2 A

)
(ei, ei, u) + ∑2n

i=1 (∇A) (ei, Jei) . (11)

Now, using the definition of Hessian operator, we have

R(X, Y)∇ f =
(
∇A f

)
(X, Y)−

(
∇A f

)
(Y, X),

which gives

Ric(Y,∇ f ) = g

(
Y,

2n

∑
i=1

(
∇A f

)
(ei, ei)

)
−Y (∆ f )

and we conclude

Q(∇ f ) = −∇(∆ f ) +
2n

∑
i=1

(
∇A f

)
(ei, ei), (12)
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where Q is the Ricci operator defined by Ric(X, Y) = g(QX, Y), X, Y ∈ X(M). Using (i) of Lemma 2,
we have

∇ (∆ f ) = −2n∇ f − ‖A‖2∇ f − f∇‖A‖2

and, consequently, using Q(X) = (2n− 1)X− A2X (outcome of Equation (7)), the Equation (12) takes
the form

2n

∑
i=1

(
∇A f

)
(ei, ei) = (2n− 1)∇ f − A2 (∇ f )− 2n∇ f − ‖A‖2∇ f − f∇‖A‖2 ,

that is,
2n

∑
i=1

(
∇A f

)
(ei, ei) = −∇ f − A2 (∇ f )− ‖A‖2∇ f − f∇‖A‖2 . (13)

Also, note that

X
(
‖A‖2

)
= X

(
2n

∑
i=1

g (Aei, Aei)

)
= 2

2n

∑
i=1

g ((∇A) (X, ei), Aei)

= 2
2n

∑
i=1

g (X, (∇A) (ei, Aei)) ,

where we have used Equation (6) and symmetry of the shape operator A. Therefore, the gradient of
the function ‖A‖2 is

∇‖A‖2 = 2
2n

∑
i=1

(∇A) (ei, Aei),

and, consequently, Equation (13), takes the form

2n

∑
i=1

(
∇A f

)
(ei, ei) = −∇ f − A2 (∇ f )− ‖A‖2∇ f − 2 f

2n

∑
i=1

(∇A) (ei, Aei). (14)

Using Equations (11) and (14), we conclude

− ‖A‖2∇ f = −
2n

∑
i=1

(
∇2 A

)
(ei, ei, u) +

2n

∑
i=1

(∇A) (ei, Jei). (15)

Now, using Equations (6) and (8) and the Ricci identity, we have

2n

∑
i=1

(
∇2 A

)
(ei, ei, u) =

2n

∑
i=1

(
∇2 A

)
(ei, u, ei) =

2n

∑
i=1

(R(ei, u)Aei − AR(ei, u)ei) ,

which on using Equation (5) and trA = 0 gives

2n

∑
i=1

(
∇2 A

)
(ei, ei, u) = −‖A‖2 Au + 2nAu. (16)

Also, using JA = AJ, we have

2n

∑
i=1

(∇A) (ei, Jei) =
2n

∑
i=1

(∇ei JAei − A ((∇J) (ei, ei) + J (∇eo ei))

=
2n

∑
i=1

((∇J) (ei, Aei)− A ((∇J) (ei, ei)) ,
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which on using (v) of Lemma 1, yields

2n

∑
i=1

(∇A) (ei, Jei) = ‖A‖2 v− 2nAu. (17)

Finally, using (vi) of Lemma 1 and Equations (16) and (17) in Equation (15), we get

−‖A‖2 (−Au + v) = ‖A‖2 Au− 2nAu + ‖A‖2 v− 2nAu

and this proves the Lemma.

3. Proof of Theorem 1

As the contact vector field v is a conformal vector field by Lemma 4, we have JA = AJ, that is,
Ψ = 0. Then Lemma 3 implies∫

M

(
1− f 2

)
‖A‖2 =

∫
M

(
2n− 2n(2n + 1) f 2

)
,

that is, ∫
M

(
1− f 2

)
‖A‖2 =

∫
M

(
2n(1− f 2)− 4n f 2

)
. (18)

Therefore, we get the inequality∫
M

(
1− f 2

)
‖A‖2 ≤

∫
M

2n(1− f 2).

Moreover, if the equality holds, then by Equation (18), we get f = 0, which in view of (vi), (vii) of
Lemma 1, we conclude that Au = v and that the contact vector field v is a unit vector field. As v is a
conformal vector field, combining Au = v with Lemma 5, we get ‖A‖2 v = 2nv, that is, ‖A‖2 = 2n.
Therefore, M is a Clifford hypersurface (cf. [5]).

The converse is trivial.

4. Proof of Theorem 2

As the Reeb function f is a constant along the integral curves of the contact vector field v,
we have v( f ) = 0. Note that div( f v) = v( f ) + f divv = −2n f 2, which on integration gives f = 0,
and consequently, the contact vector field v is a unit vector field. Then Lemma 3, implies

∫
M
‖A‖2 =

∫
M

(
2n +

1
2
‖Ψ‖2

)
, (19)

which proves the inequality ∫
M
‖A‖2 ≥ 2nVol(M).

If the equality holds, then by Equation (4.1), we get that Ψ = 0, that is, JA = AJ. Thus, by Lemma 4,
the contact vector field v is a conformal vector field. Using Lemma 5, we get ‖A‖2 = 2n. Therefore,
M is a Clifford hypersurface (cf. [5]).

The converse is trivial.
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