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Abstract: We prove some common fixed point and endpoint theorems for a countable infinite family of
multi-valued mappings, as well as Allahyari et al. (2015) did for self-mappings. An example and an
application to a system of integral equations are given to show the usability of the results.
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1. Introduction

The study of common fixed point for a family of contraction mappings was initiated by Ciri¢ in [1].
Recently, in 2015, Allahyari et al. [2] introduced some new type of contractions for a countable family of
contraction self-mappings and studied common fixed point for them.

On the other hand, existence of a fixed point for multi-valued mappings has been important for many
mathematicians. In 1969, Nadler [3] extended the Banach contraction principle to multi-valued mappings. After
that, many authors generalized Nadler’s result in different ways (see, for instance [4-8]).

In 2012, Samet et al. [9] introduced the notion of a-admisssible mappings and a new
type of contraction to a mapping T : X — X called a-y-contractive mapping, that is,
a(x, y)d(Tx, Ty) < p(d(x,y)) for all x,y € X. This result generalized and improved many existing fixed point
results. In the last few years, some authors have extended the notion of a-admisssibility and a-ip-contraction to
multi-valued mappings (see, [10,11]). In addition, common fixed point for a finite family or countable family of
multi-valued mappings has been studied by some researchers (see, for example [12-16]).

The aim of this paper is to extend the new type of common contractivity for a family of mappings,
introduced by Allahyari et al. (2015), to #-admisssible multi-valued mappings.

Let (X, d) be a metric space, 2% the set of all nonempty subsets of X, and C£(X) the set of all nonempty
closed subsets of X. Assume that H is the generalized Hausdorff metric on CL(X) defined by

max{sup,. 4 D(x, B), Sup,cp D(y, A)}, ifitexists,

H(A,B) = { )

0, otherwise,

for all A,B € CL(X), where D(x,B) = il’lfyeg dx,y). Let T: X — 2X is a multi-valued mapping. An
element x € Xis said to be a fixed point of Tif x € Tx, and x is called an endpoint of T whenever Tx = {x}.
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2. Main Results

Now, we are ready to state and prove the main results of this study.

Definition 1. Let X be an arbitrary space and o : X x X — [0, 0) be a function. Assume that T, : X — 2% (n =
1,2,...) is a family of multi-valued mappings. We say that { T,,} is a-admissible whenever for each x € Xand y € Tyx
with a(x,y) = 1, we have a(y,z) = 1 forall ze T, 11y.

Theorem 1. Let (X,d) be a complete metric space and 0 < aj (i,j =1,2,..)witha; ;41 # 1foralli =1,2,...
satisfy:

(i) foreachj, Wi_mai,j <1

. w a;;
(it) Y0 1 An < o0, where Ay =[], 1_12;:_11.

Let o : X x X — [0, 00) be a given function and { T, } be a sequence of multi-valued operators T, : X — CL(X) (n =
1,2,...) such that

a(x, y)H(Tix, Tjy) < a;,j[D(x, Tjy) + D(y, Tix)], @)

forallx,ye X;i,j =1,2,... with x # yand i # j. Moreover, assume that the following assertions hold:

(iii) there exist xg € Xand x1 € Tyxg with xg # x1 and «(xg,x1) = 1;
(iv) {Ty} is a-admissible;
(v) for each sequence {x,} in X with a(xy, Xy4+1) = 1 for all n and x, — x, we have a(x,, x) = 1 for all n.

Then each T, have a common fixed point in X.

Proof. Using (iii) and (2), we have

D(x1, Tox1) < a(xo, x1)H(T1xo, T2x1)
< a12[D(x0, T2x1) + D(x1, T1x0)]
= a12D(xo, T2x1)
< appld(xo,x1) + D(x1, T2x1)],

which implies

D(xq, Trx1) < h.2 d(xg, x1) < 12 pd(xo,x1),
1-— 611,2 1-— 111,2

where p > 11is a fixed number. From the above inequality, there exists x € Tpx; such that d(x1,x;) <
a1,2

pd(xp, x1). Since { T,,} is a-admissible, we have a(x1, x3) > 1. Similarly,

1—1,71[2
a3 a3 ai1,2
D(x3, T3xp) < d(x1,xp) < pd(xo, x1),
1-— a2,3 1-— Ll2,3 1-— ﬂ1,2
a3 a1,2

and so there exists x3 € T3x; such that d(x2,x3) < 1= 23 T=irs pd(xp, x1). Continuing this process, we
obtain a sequence {x,,} in X such that x, ;1 € T, 1%n, &(Xn, X,41) = 1, and

d(xp, xy41) < Appd(xg,x1), forallm=1,2,... 3)

For any n,m € N with n < m, from triangle inequality, we get

m—1 m—1

d(xn, Xm) < Y, d(xp xes1) < Y Appd(xo,x1) — 0
k=n k=n
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as n,m — . Therefore, we have shown that {x,} is a Cauchy sequence. Since (X, d) is complete, there
exists x € X such that x, — x. From (v), we get a(x,,x) > 1 for all n. Now, we shall show that x is a
common fixed point of T,,. Let m be an arbitrary positive integer. Then, for any n € N, we have

D(x, Tyx) d(x,xz) + D(xpn, Tiux)
d(x, xn) + a(xy—1,X) H(TnXp—1, Tmx)
d(x, xn) + anm[D(xp—1, Tmx) + D(x, Tyxy—1)]
A(x, xn) + anm[D(xp—1, Timx) +d(x, x4)].

INCINCIN N

Taking lim in both sides of the above inequality, as n — oo, we get
D(x, Tyx) < (@n_man,m)D(x, Timx),
which implies D(x, T;;x) = 0andsox € Tyx. O

Theorem 2. Let (X,d) be a complete metric space and 0 < a;; (i,j = 1,2,...) with a; ;41 # 1 foralli =1,2,...
satisfy:

(i) foreach (), Timi—yopttij < 1;
(i) S04 Ap < o0 where Ay = [}y poatl.

Ajji4+1

Let a : X x X — [0, o0) be a given function and { T,,} be a sequence of multi-valued operators T, : X — CL(X) (n =
1,2,...) such that

a(e, ) H(Tix, Tjy) < ajjmax{d(x,y), D(x, Tix), D(y, Tiy), D(x, Tiy), D(y, Tix)}, @)
forall x,ye X;i,j =1,2,... with x # yand i # j. Moreover, assume that the following assertions hold:

(iii) there exist xo € Xand x1 € Tyxo with xg # x1 and «(xg,x1) = 1;
(iv) {Ty} is a-admissible;
(v) for each sequence {x,} in X with a(xy, Xy41) = 1 for all n and x, — x, we have a(x,, x) = 1 for all n.

Then each T, have a common fixed point in X.
Proof. By (iii) and (4), we have

D(x1, Tox1) < a(xo,x1)H(Tixo, T2x1)
< aypmax{d(xo, x1), D(xo, T1x0), D(x1, Tax1), D(x0, Tox1), D(x1, T1x0)}
<

ayp[d(xo, x1) + D(x1, Tox1)],

which implies

a a
12 d(xg,x1) < —12_

D(xq, T <
(x1, Tax1) —ars =,

pd(xo, x1),

which p > 1 is a fixed number. From the above inequality, there exists x € Tpx; such that d(x1,x2) <
(%0, x1). Continuing in this manner and as in proof of Theorem 1, we obtain a sequence {x; } with
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«(xy, Xxp4+1) = 1 and x € X such that x, — x. Using (v), we get a(xy, x) > 1 for all n. Next, we show that x
is a common fixed point of T,,. Let m be an arbitrary positive integer. Then, for any n € N, we have

D(x, Tyux) < d(x,x,)+ D(xy, Tinx)
< d(x,xn) +alxy—1, X)H(Tuxp—1, Tmx)
< d(x/ xn) + anm max{d(xn_l, JC), D(xn_1, Tnxn_l), D(x, me),
D(xnflr me)r D(x/ Tnxnfl)}
< d(x, xn) + apm max{d(x,_1,x),d(xy—1,Xn), D(x, Tux), D(xy—1, Tmx),d(x,xn)}.
Taking lim as n — oo, we obtain D(x, Tyx) < (%nﬁwanrm)D(x, Tmx),

which implies D(x, T,;x) = 0. This means that x € T;;,x and the proof is complete. [

Theorem 3. Let (X,d) be a complete metric space and 0 < a;;,0 < b;; (i,j = 1,2,...) with a;; 11 # 1 for all
i=1,2,..satisfy:

(i) for each j, limi_,ona;; < 1 and lim;_,b;; < oo;

.. b: -
(i) 3001 Ay < o0 where Ay = [ 1L 2t

T—aji1”

Let o : X x X — [0, 00) be a given function and { T,,} be a sequence of multi-valued operators T,, : X — CL(X) (n =
1,2,...) such that

a(x,y)H(Tix, Tjy) < a; ;D(y, Tiy)e(D(x, Tix), d(x,y)) + b; jd(x,y), 5)

forall x,y e X;i,j =1,2,... withx # yand i # j, where ¢ : [0,00) x [0,00) — [0, 00) is a continuous function
such that ¢(t,t) =1 for all t € [0, 0) and for any t1,s1, t2, 52 € [0, 00),

t1 < ty, 81 =52 = @(t1,51) < @(t2,52).

Moreover, assume that the following assertions hold:
(iii) there exist xo € Xand x1 € Tyxg with xg # x1 and «(xg,x1) = 1;

(iv) {T,} is a-admissible;
(v) for each sequence {x,} in X with a(xy, x,,+1) = 1 for all n and x,, — x, we have (x,, x) = 1 for all n.

Then each T, have a common fixed point in X.
Proof. By (iii) and (5), we have

D(x1, Trx1) a(xg, x1)H(T1x, Tax1)
a12D(x1, Tox1)@(D(x0, T1x0), d(x0, x1)) + b12d(x0, x1)
a12D(x1, Tox1)@(d(xo, x1),d(x0,x1)) + b12d(x0, X1)

a12D(x1, Tax1) + by 2d(x0, x1),

INCINCIN N

which gives us

b
D(x1, Tox1) < 12 d(xg, x1) <

b1
. d 7 7
T s’ (x0,x1)

1-m
where p > 11is a fixed number. From the above inequality, there exists x € Tpxq such that d(x1,x;) <

b1
1 —111/2

pd(xg, x1). Similarly,

by 3 by bip
D(xy, Taxa) < —22—d(xy,xp) < — 22— 12
(x2, T3x2) =5 (x1,x0) < 1= 21—,

pd(xo, x1),
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and so there exists x3 € T3x; such that d(xp,x3) < 12'[323 1221’2 pd(xp, x1). Continuing this process, we

obtain a sequence {x,} in Xsuch that x;,, 11 € T, 11%, &(Xy, Xy41) = 1, and

d(xp, xy41) < Appd(xg,x1), forallm=1,2,... (6)

Again, as in the proof of Theorem 1, we conclude that {x,} is a Cauchy sequence, and so there exists x € X
such that x, — x. From the assumption (v), we get a(xy, x) > 1 for all n. To show that x is a common fixed
point of T;, let m be an arbitrary positive integer. Then, for any n € N, we have

D(x, Tux) < d(x,x) + D(xn, Tiux) < d(x, xn) + a(xy—1, X) H(TnuXp—1, TinX)
< d(xr xl’l) + An,m D(x/ me)(P(D(xnfll Tnxnfl)/ d(xnflr x)) + bn,md(xnflr x)
<

d(x, x) + anmD(x, Tux)p(d(xy—1,xn), d(Xy—1,%)) + by md(x—1, X).
Taking lim in both sides of the above inequality, as n — o, we obtain
D(x, Tyux) < (limy—oofnm)D(x, Tinx).
We conclude D(x, T;;x) = 0and thus x € T,x. O

3. Common Endpoint Theorems

The notion of endpoints of multi-valued mappings has been studied by some researchers in the last
decade (see for instance, [17-19]). In current section, we state and prove some common endpoint theorems
for a sequence of multi-valued mappings with the contractions mentioned in Section 2. We need the
following definition.

Definition 2. Let T, : X — CL(X) (n =1,2,...) be a sequence of multi-valued mappings. We say that {T,} has
(HS) property whenever for each x € X there exists y € Tyx such that H(Tyx, Ty11Y) = sup;,e Toi1y d(y,b).

Theorem 4. Let (X,d) be a complete metric space and 0 < a;; (i,j = 1,2,..) with a;; 11 # 1 forall i =
1,2, ... satisfy:

(i) for each (j), lim;_,0ai; < 1;
(i) Y7 Ay < oo where Ay = [ [ i+l

T=ajip”

Let o : X x X — [0, 00) be a given function and { T, } be a sequence of multi-valued operators T, : X — CL(X) (n =
1,2,...) satisfying (HS) property such that

a(x,y)H(Tix, Tjy) < aij[D(x, Tjy) + D(y, Tix)], )
forallx,ye X;i,j =1,2,.. with x # yand i # j. Moreover, assume that the following assertions hold:

(i) there exists xg € X such that for any x € Tyxg, we have a(xg, x) = 1;
(iv) {T,} is a-admissible;
(v) for each sequence {x,} in X with a(xy, Xy4+1) = 1 for all n and x, — x, we have a(x,, x) = 1 for all n.

Then each T, have a common endpoint in X.

Proof. Since {T,} has (HS) property, there exists x; € Tixg such that
H(T1x0, Tax1) = sup,,. Tyxy d(xq,b). From (iii), we have a(xg, x1) > 1. Similarly, there exists x, € Tx7 such
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that 7 (Tox1, T3x2) = supyer,,, d(x2,b). Since { Ty} is a-admissible, so a(x1,x2) > 1. If we continue this
process, we obtain a sequence {x, } in X such that x, € T,x,_1, a(x,_1,x,) = 1, and

H(Tnxnflr TnJrlx'rl) = sup d(xi’l/ b)/ (8)

be Tn+1xn
for all n > 1. Then we have

< SUPLeT i, d(xn, b) < a(xy_1,x0)H(Tuxp—1, Tpa1Xn)
< Apnt [D(xn—ll Tn+1xn) + D(xn/ Tnxn—l)]
ST | [d(xnfll xn+1)] < A1 [d(xnflr xn) + d(xn/ xn+l)]'

From the above inequality, we get

Ann+1

———d(xy_1,xn) < .. < Apd(xg,x7).
1- Apn+1

d(Xn, Xpy1) <
Hence {x,} is a Cauchy sequence, and so there exists x € X such that x, — x. From (v) we deduce
a(xy, x) = 1 for all n. Now we show that x is a common endpoint of T;,. Let m € N be arbitrary. Then, for
any n € N, we have

H{{x}, Tux) < d(x,xn) + H{xn}, Tharxn) + a(xn, ) H(Tyr1x0, Tnx)
< d(x,xn) +a(xy—1, Xn) H(Tuxn—1, Tug1Xn) + a(xn, X)H(Typ1Xn, Tmx)
< d(x,xy) + an,n+1[D(xnflr Tu+1Xn) + D(xn, Tuxy—1)]
+11n+1,m[D(xn, Timx) + D(x, Tyy1xn)]
< d(x, xn) + Ap 41 [d(xn—lz xn+l)] + anr1,m [D(xn/ me) + d(x/ xn+1)]'

Taking lim as n — o0, we obtain
H({X}, me) < (%fl—woan-&-l,m)D(x/ me) < (Wn—ﬂ)oan-i-l,m)%({x}/ me)/
which implies H({x}, Tix) = 0 and so T,,x = {x}. Since m was arbitrary, the proof is complete. [

Theorem 5. In the statement of Theorem 4, if we add the extra condition a(x,y) > 1 for any common endpoints
x,y of Ty, then the common endpoint of T, is unique.

Proof. Let x,y be two common endpoints of T,,. Since Zle A, < o, there exists iy € N such that

10,1 . . . 1 .
ﬁgloiogil < 1, which implies a;  ;, 11 < 5 Then, using (7), we get
dix,y) = H(Tix, Tij11y)
< “(xry)H(Tiox/ 7—i0+1y)
< i,ig+1[D(x, Tig+1y) + D(y, T;yx)]

Zaig,io +1d(x/ y)/

which implies d(x,y) =0andsox =y. O
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Example 1. Consider the space X = [0, 1] with the usual metric d(x,y) = |x — y|. Define a sequence of mappings
Ty : X— CL(X) by

{1}, T<xxy,
To(x) = [§+n¢+2,1], x=0,
{0}, 0<x<3i.

Also consider the constants a;; = % + Then @i_,ooailj = % <1, foralljeN. A, =[], 1a,,+1 =

1
|l'—]"+6‘ Aii+1

(3. Thus 374 Ay = 33521 (39)" < o0, Also let

a(x,y) = { L, xye{0}u [%,1] ,

0, otherwise.

Now we show that a(x,y)H(Tix, Tjy) < a;;[D(x, Tjy) + D(y, Tix)], forall x,y € X. If0 < x < Toro<y<i,

then a(x,y) = 0 and we have nothing to prove. Therefore, we may assume x,y € {0} U [%, 1]. We consider the
following cases:

(1) x,ye [%, 1]. In this case we have a(x,y)H(T;x, Tjy) = H({1},{1}) = 0 < a;;[D(x, Tjy) + D(y, T;x)], for
all x,y e X.
(2) xe [%,1] and y = 0. In this case we have

o) H(Tix, Top) = WU, 5 + 7501

j
SRS SN B S
- 37742 3 j+2 3
1 1 21
<(z : 3t -1
(3 |z—]|+6)(‘ (3+]+2)|+|0 )
= a,',j[D(x, T]]/) + D(]// Tix).
(3) x=y=0,i<j. Then
2 1 2 1 1 1 1
M H(Tx Ty =3+ 5 -G = rn 7 S i
1 1 2 1 2 1
<G T TG

= a;j[D(x, Tjy) + D(y, Tix)].

Also for xg = 0.and xq = 1, we have x1 € {1} = [% + 1%2,1] = Tixpand a(x,y) = 1 = 1. It is easy to check
that {T,,} is a-admissible. Also, for any common endpoints x,y, we have a(x,y) = 1. Thus, all of the conditions of

Theorem 4 and Theorem 5 are satisfied. Therefore, the mappings T, have a unique common endpoint. Here x = 1 is
the unique common endpoint of T,,.

Theorem 6. Let (X,d) be a complete metric space and 0 < a;; (i,j = 1,2,..) with a;; 11 # 1 forall i =

2, ... satisfy:

(i) for each (j), szl_mal] <1
(ii) 371 Ap < o0 where Ay = [ [} poitl,

a; 1+1
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Let a : X x X — [0, o0) be a given function and { T,,} be a sequence of multi-valued operators T, : X — CL(X) (n =
1,2,...) satisfying (HS) property such that

a(x, y)H(Tix, Tjy) < ajjmax{d(x,y), D(x, Tix), D(y, Tjy), D(x, Tjy), D(y, Tix)}, ©)

forall x,ye X;i,j =1,2,... with x # yand i # j. Moreover, assume that the following assertions hold:

(iii) there exists xo € X such that for any x € Tyxg, we have a(xg, x) = 1;
(iv) {Ty,} is a-admissible;
(v) for each sequence {x,} in X with a(xy, Xy,41) = 1 for all n and x, — x, we have a(x,, x) = 1 for all n.

Then each T, have a common endpoint in X.

Proof. As in the proof of Theorem 4, there exists a sequence {x, } in Xsuch that x, € T,x;,—1, a(x,—1,x,) =
1, and
H(Tuxpy—1, Tyy1xn) = sup  d(xu,b),

beTy11xn

for all n = 1. Then we have

d(xp, Xp41) < SUPLeT, 12, d(xn, b) < a(xy—1,%n) H(TuXn—1, Tus1Xn)
< an,n+1 max{d(xn,l, xt’l)/ D(xi’lfll Tl”lxnfl)/ D(xn, Tn+1xn)/
D(xn—ll Tn+1xn)r D(x'rl/ Tnxn—l)}

Ay n+1 [d(xn—ll xn) + d(xn/ xn+1)]'

N

From the above inequality, we get

Apn+1

d(xp, xp01) < A(xy_1,x) < ... < Apd(xg,x1).

1- Ann+1

Thus, {x,} is a Cauchy sequence and so there exists x € X such that x, — x and a(x,, x) > 1 for all n. Now,
we show that x is a common endpoint of T,. Let m € N be arbitrary. Then, for any n € N, we have

H({x}, Twx) < d(x,xn) + H({xn}, Tur1xn) +a(xn, X)H(Tyr1%n, Tnx)
< d(x,xn) + a(xy—1, X)) H(Tuxn—1, Tug1Xn) + a(xn, X)H( Tygp1Xn, Tmx)
< d(x,xn) + appr[d(xp—1,Xn) +d(xn, X 11)]
+ay4+1 1, max{d(xy, x), D(xn, Tyy1%), D(x, Tiux), D(xn, Tiux), D(x, Tyy1x4)}
< d(xr xn) + un,n+1[d(xnflr xn) + d(xnr xn+l)]

+ap41,m max{d(xu, x), D(xn, Xy41), D(x, Tiux), D(xy, Tyux), D(x, x,41)}.
Taking lim in both sides of the above inequality, as n — o, we obtain
H({x}, Tux) < (limn oo 1,m) DX, Tx) < (Tt 1m) H({x}, Tu),
which implies H({x}, Tux) = 0and so Ty,x = {x}. O

Theorem 7. With the conditions of Theorem 6, if we add the extra condition x(x,y) = 1 for any common endpoints
x,y of Ty, then the common endpoint of T, is unique.
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Proof. Let x,y be two common endpoints of T,. Using (9), we get

d(x,y)

H(Tix, Tiy) < a(x,y)H(Tix, Tjy)
a;jmax{d(x,y), D(x, Tix), D(y, Tjy), D(x, Tjy), D(y, Tix)}
a;,;d(x,y).

N

Thus, d(x,y) < Wiqooai,]-d(x, y), which means that d(x,y) = 0and hence x = y. O

Theorem 8. Let (X,d) be a complete metric space and 0 < a;;,0 < b;; (i,j = 1,2,...) with a;; 11 # 1 for all
i=1,2,..satisfy:

(i) fOT’ each (]), ﬁiawai,j <1, %iﬁoobi’]’ <1

.. b
(ii) 3,2 An < 0 where Ay = [Ty 7255

Let o : X x X — [0, 00) be a given function and { T, } be a sequence of multi-valued operators T, : X — CL(X) (n =
1,2,...) satisfying (HS) property such that

a(x,y)H(Tix, Tjy) < a; ;iD(y, Tiy)e(D(x, Tix),d(x,y)) + b; jd(x,y), (10)

forallx,ye X;i,j =1,2,.. with x # y and i # j, where ¢ is as in Theorem 3. Moreover, assume that the following
assertions hold:

(i) there exists xg € X such that for any x € Tyxg, we have a(xg, x) = 1;
(iv) {T,} is a-admissible;
(v) for each sequence {x,} in X with a(xy, Xy4+1) = 1 for all n and x, — x, we have a(x,, x) = 1 for all n.

Then each T, have a common endpoint in X.

Proof. As in the proof of Theorem 4, there exists a sequence {x;} in Xsuch that x, € T, x,_1, &(x,_1,x,) =
1, and
H(Tuxp—1, Tyx1xn) = sup  d(xy,b),

be Tn“xn

for alln > 1. Then we have

d(Xu, Xp41) SUPpe T, 1% d(xn, b)
a(xy—1, Xn) H(TuXn—1, Tuy1%n)
an,n+1D(xn/ Tn+1xn)§0(D(xn—1/ Tnxn—l)/ d(xn—l/ xn)) + bn,n+1d(xn—1/ xn)

an,n+ld(xnr xn+1) + bn,nJrld(xnfl/ xn)-

INCINCIN N

From the above inequality, we get

bn,n-i—l

————d(xy_1,xn) < ... < And(xg, x1).
1- Ann+1

d(xn, Xnt1) <
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As in proof of Theorem 1, we conclude that {x,} is a Cauchy sequence, and so there exists x € X such
that x, — x and a(x,, x) > 1 for all n. To show that x is a common endpoint of T, consider an arbitrary
natural number m. Then, for any n € N, we have

H({x}, Tix) A(x, xn) + H{xn}, Tha1xn) + a(xn, ) H(Tyr1Xn, Tnx)
d(x, xn) + a(xy—1, Xn) H(Tuxn—1, Tpp1Xn) + a(xn, X)H(Tyg1Xn, Tmx)
d(x/ xﬂ) + an,n+1D(xn/ TnJrlxn)(P(D(xnfl/ Tnxnfl)/d(xnflr xn))
+bn,n+1d(xn—1l xn)
+ay4+1,mD(xX, Tyux)@(D(xXn, Ty1Xn), d(Xn, X)) + byy1 md(Xn, X)
d(x, xn) + an,n+ld(xnr xn-i—l) + bn,n-i—ld(xn—l/ xn)
+Tan+1,m D(x, Tiux)@(d(xn, Xp41),d(xn, X)) + anrl,md(xn/ x).

NN N

N

Taking lim as n — oo, we obtain

H({x), Tux) < (oot g1 m) Dx, T)
< (limn—>00an+l,m)%({x}r me)'

which shows H({x}, Tiux) = 0. Thus Tyx = {x}. O

Theorem 9. In the statement of Theorem 8, if we add the extra condition a(x,y) = 1 for any common endpoints
x,y of Ty, then the common endpoint of T, is unique.

Proof. Let x,y be two common endpoints of T,,. Using (10), we have

d(x,y) H(Tix, Tjy)

a(x, y)H(Tix, Tjy)

a;;D(y, Tjy)9(D(x, Tix),d(x,y)) + b jd(x,y)
b jd(x, y).

NN

Therefore, d(x,y) < lim;_,b;;d(x,y). Hence d(x,y) = 0, which means that x = y. [

4. Application to Integral Equations

Take | = [0, T]. Let X := C(/,R) be the set of all real valued continuous functions with domain /.
Define the meric d on X with

d(x,y) = sup(|x(t) —y(t)]) = [lx —yl|.

tel

Consider the system of integral equation:

T
x(t) = p(t) +J G(t,s)Fu(s,x(s))ds, tel n=1,2,3,.... (11)
0
Our hypotheses on the data are the following;:
(A) p: 1> Rand F, : I x R — R are continuous, for all n € N;
(B) G:IxI— Riscontinuous and measurable ats € /forall t € /;
(C) G(t,s) =>0forallt,se IandS0 t s)ds < 1forallte
(D) there exists xy € X such that x(t So (t,5)Fi (s, x0(s))ds, for all t € [;
)

(E) for any x € X with x(t) < So (t,5)Fy(s,x(s))ds, for all + € I then we have
So (t,s)Fu(s, x(s So Fuiq(s So (s, T)Fy (T, x(7))dT)ds, for all t € I.
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Let0 <a;; (i,j =1,2,..)witha; ;11 # 1foralli = 1,2, ... satisfy:

(F) for each (j), %Z—moaz] <1;
(G) 2, A, < o0 where Ay, = [ 4t

”11+1

H) foreachtel x,ye Xwithx <vy,and i # j, we have
y y ]

IRt x(0) = F(by ()] < ay((x(1) so ()| )
5 G )

Theorem 10. Under the assumptions (A)—(H), the system of integral Equation (11) has a solution in X.

Proof. Define Y, : X —» Xas
T
(Yux)(£) = p(t) +J G(t,s)Fu(s,x(s))ds, tel
0
for all n € N. In addition, define a : X x X — [0, o0) by

0, otherwise.

a(x,y) = { 1, x(t) <y(t) forall tel,

Let x, y be two arbitrary elements of X. If x € y, then a(x, y) = 0 and so inequality (2) holds, obviously.
Now, let x < y. Then

(Yx)(B) = () (8] = | OT G(t,5) (Fi(s, x(5)) — (s, y(s))ds|
< Gt 9 (5, x(5)) — Fis, y(s))lds
J.Gtsa,]\x Jcsr (7, y(1))d1]
“lyls) - | Gl )BT, x(0)deds
<] Gt 9 (1(5) — (p)(E)] -+ (s) — Ye)()])ds
< Gt~ (Yl + Ily ~ Yol
< ay(lx =Ygyl + lly - Yix)

for every t € I. Take sup in the above inequality to find that

a(x, y)d(Yix, Yjy) = [[Yx = Yy||
< aij([lx =Yyl +[ly = Yix[]) = a;;(d(x, Yjy) + d(y, Yix))-
The properties (D) and (E) yield that properties (iii) and (iv) of Theorem 1 are satisfied. Obviously, the

property (v) of Theorem 1 holds. Thus, by that theorem, {Y,} have a common fixed point, that is, the
system of integral Equation (11) having a solution. O
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