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Abstract: The single-valued complex neutrosophic set is a useful tool for handling the data with
uncertainty and periodicity. In this paper, a single-valued complex neutrosophic EDAS (evaluation
based on distance from average slution) model has been established and applied in green supplier
selection. Firstly, the definition of single-valued complex neutrosophic set and corresponding
operational laws are briefly introduced. Next, to fuse overall single-valued complex neutrosophic
information, the SVCNEWA and SVCNEWG operators based on single-valued complex neutrosophic
set, Einstein product and sum are proposed. Furthermore, the single-valued complex neutrosophic
EDAS model has been established and all computing steps have been depicted in detail. Finally,
a numerical example of green supplier selection and a comparison analysis have been given to
illustrate the practicality and effectiveness of this new model.

Keywords: single-valued complex neutrosophic set; EDAS method; Einstein operator; multi-attribute
group decision making problem

1. Introduction

With the growth of the world economy, more and more companies are being founded. Some of the
most significant competition among modern enterprises is in their supply chains, and a key of supply
chain management is supplier selection. Suppliers play an important role in high quality products and
customer satisfaction. A preeminent supplier can improve the competitiveness of the enterprise [1].
Meanwhile, enterprises should consider significant environmental issues, such as the green effect,
and stress suffered from the government, associations and the public [2]. So, green supplier selection
(GSS) has been proposed, which is a construct that can supervise supplier performance along with
green technical standards [3], and green supply chain management (GSCM) [4] as become an emerging
field whose aim is to find a balance between the economy and environment. Numerous researches
and scholars have studied this popular topic over the past several years. Zhang et al. [5] established a
nonlinear multi-objective optimization model to deal with GSS problem and used a Pareto genetic
algorithm to solve the problem. Hosseini and Barker [6] developed some resilience-based supplier
selection criteria and a Bayesian network to present an innovative decision method for GSS which can
address the risk and uncertainty in decision making problem.

In practical GSCM, supply chain managers need to consider all suppliers with many conflicting
attributes, and consider the trade-off to select the optimal supplier(s). Therefore, GSS is commonly
regarded as a multi-attribute group decision making (MAGDM) problem. Up to now, there
are many researchers have studied the issue. Based on the best-worst method (BWM) and
Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) technique, Wu et al. [7] proposed a
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creative methodology to address GSS problem under interval type-2 fuzzy environment. Liu et al. [8]
proposed an innovative GSS method by combining quality function deployment with the partitioned
Bonferroni mean operator in interval type-2 fuzzy environment to solve a bike-share case. Qin et al. [9]
proposed an extended TODIM multi-criteria group decision making method for green supplier
selection under interval type-2 fuzzy environment.

For the MAGDM problem, there are many classical methods, such as TODIM [10], TOPSIS [11],
VIKOR [12] and other methods [13–15]. Evaluation based on the distance from average solution
(EDAS) method is an innovative decision making method, initially proposed by Ghorabaee et al. [16].
Compared with the compromise methods such as TOPSIS and VIKOR which need to calculate
the distance from positive ideal solution (PIS) and negative ideal solution (NIS), EDAS owns its
peculiar superiority of only considering distance from an average solution (AV) which can simplify the
calculation procedure. The aim of EDAS method is to find the best one form a series of alternatives
by using the positive distance from average (PDA) and the negative distance from average (NDA).
In recent years, it has been studied by many researchers and scholars. Ghorabaee et al. [17] proposed an
extended EDAS method to study the application of supplier selection. Kahraman et al. [18] proposed
a new EDAS method with intuitionistic fuzzy number and applied it in the selection of solid waste
disposal site. Karasan [19] extended EDAS method into an interval-valued neutrosophic set and
applied it to the prioritization of United Nations national sustainable development goals.

However, due to the vagueness of human thinking and the complexity and uncertainty of
objective things, it is difficult for decision makers to express an evaluated attribute with a crisp value.
So neutrosophic set (NS) as an extension of fuzzy set (FS) [20] and intuitionistic fuzzy sets (IFS) [21]
were originally proposed by Smarandache [22]. But, NS was mainly put forward from a philosophical
viewpoint, which is difficult to be applied in the field of science and engineering. So single-valued
neutrosophic set (SVNS) [23], interval neutrosophic set (INS) [24], simplified neutrosophic set (SNS) [25]
and multi-valued neutrosophic set (MVNS) [26] were proposed by researchers. With the generation
of “big data,” which has the characteristics of uncertainty and periodicity, in order to handle this
case, complex neutrosophic set (CNS) was proposed by Ali and Smarandache [27] who introduced
the concept of CNS and discussed some properties of the CNS and set theoretic operations, and then
applied them in signal processing. Later on, CNS became a new topic of neutrosophic theory.
Al-Quran et al. [28] introduced the complex neutrosophic relation includes inverse, complement and
composition with corresponding theorems and properties. Complex neutrosophic graphs of type 1
and some corresponding theoretical results were proposed by Quek et al. [29].

Information aggregation operators play a significant role in the MAGDM problem; they can
fuse multiple values into a single comprehensive value. The most common types of operators
include the arithmetic- and geometric-weighted operators [30,31], order-weighted operators [32,33],
generalized operators [34,35], Bonferroni mean operators [36], Heronian mean operators [37], Einstein
operators [38], etc. To use the advantages of Einstein operations and a generalized weighted average
operator, a generalized simplified neutrosophic number Einstein weighed aggregation (GSNNEWA)
operator was proposed in [39]. Peng et al. [40] defined the operations of multi-valued neutrosophic
numbers (MVNNs) based on Einstein operations; furthermore, the multi-valued neutrosophic power
weighted average (MVNPWA) operator and the multi-valued neutrosophic power weighted geometric
(MVNPWG) operator based on the operation laws were proposed and applied to the MAGDM problem.
Zhao and Wei [41] proposed the intuitionistic fuzzy Einstein hybrid averaging (IFEHA) operator and
the intuitionistic fuzzy Einstein hybrid geometrical (IFEHG) operator, and then applied them in
MADM.

The purpose of this paper is to establish an extended EDAS method model in single-valued
complex neutrosophic environment and apply it to the selection of a green supplier. The specific
arrangements of this article are structured as follows. In Section 2, we briefly introduce some concepts
and definitions of SVCNS. In Section 3, we propose new operational rules of SVCNS based on the
Einstein operator, and then the SVCNEWA and SVCNEWG operators are proposed. The single-valued
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complex neutrosophic EDAS model is established and the computing steps are listed in Section 4.
In Section 5, an example is given to illustrate the application of proposed method. In Section 6,
a conclusion of this paper is given.

2. Preliminaries

2.1. Single-Valued Neutrosophic Set

Definition 1. [22] Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic
set A in X is characterized by a truth-membership function TA (x), an indeterminacy-membership function
IA (x) and a falsity-membership function FA (x), where TA (x), IA (x) and FA (x) are real standard or
nonstandard subsets of ]0−, 1+[; that is, TA (x) : X → ]0−, 1+[, IA (x) : X → ]0−, 1+[ and FA (x) :
X → ]0−, 1+[.

There is no restriction on the sum of TX, Ix and Fx, so 0− ≤ sup TA (x)+ sup IA (x)+ sup FA (x) ≤ 3+.

Definition 2. [23] Let X be a space of points (objects), with a generic element in X denoted by x. A single-valued
neutrosophic set A in X is characterized by a truth-membership function TA (x), an indeterminacy-membership
function IA (x) and a falsity-membership function FA (x) with TA (x) , IA (x) , FA (x) ∈ [0, 1] for all x ∈ X.
Then, a single-valued neutrosophic set A can be denoted as

A = {〈x, TA (x) , IA (x) , FA (x)〉 : x ∈ X}

with the condition 0 ≤ TA (x) + IA (x) + FA (x) ≤ 3.

2.2. Single-Valued Complex Neutrosophic Set

Definition 3. [27] Let X be a space of points (objects), with a generic element in X denoted by x.
A single-valued complex neutrosophic set S in X is characterized by a truth-membership function TS (x),
an indeterminacy-membership function IS (x) and a falsity-membership function FS (x) that assigns a
complex-valued membership grade to TS (x), IS (x) and FS (x) for all x ∈ X. The values of TS (x), IS (x),
FS (x) and their sum may fall within the unit circle in the complex plane; the former is of the following form:

TS (x) = pS (x) · ejωS(x), IS (x) = qS (x) · ejψS(x), FS (x) = rS (x) · ejφS(x)

where
√

j = −1, pS (x), qS (x), rS (x) and ωS (x), ψS (x), φS (x) are real values and pS (x), qS (x), rS (x) ∈
[0, 1] such that 0 ≤ pS (x) + qS (x) + rs (x) ≤ 3. For convenience a single-valued complex neutrosophic set S
can be represented in set form as:

S = {〈x, TS (x) , IS (x) , FS (x)〉 : x ∈ X}

and a single-valued neutrosophic number (SVCNN) can be denoted as S = 〈TS, IS, FS〉 which is a basic unit of
single-valued complex neutrosophic set.

Definition 4. [28] Let S = {〈x, TS (x) , IS (x) , FS (x)〉 : x ∈ X} be a SVCNS in X. Then, the complement
of S is denoted as c (S) and specified by functions:

Tc(S) (x) = pc(S) · e
jωc(S)(x) = rS (x) · ej(2π−ωS(x))

Ic(S) (x) = qc(S) · e
jψc(S)(x) = (1− qS (x)) · ej(2π−ψS(x))

Fc(S) (x) = rc(S) · e
jφc(S)(x) = pS (x) · ej(2π−φS(x))
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Definition 5. Let A and B be two SVCNSs which are defined by TA (x) = pA (x) · ejωA(x), IA (x) =

qA (x) · ejψA(x), FA (x) = rA (x) · ejφA(x) and TB (x) = pB (x) · ejωB(x), IB (x) = qB (x) · ejψB(x), FB (x) =
rB (x) · ejφB(x), respectively. Then, the operational rules of SVCNSs are defined as follows:

(1) The sum of A and B, denoted as A⊕ B, is defined as

TA⊕B(x) = (pA(x) + pB(x)− pA(x)pB(x)) · e
j2π

(
ωA(x)

2π +
ωB(x)

2π − ωA(x)ωB(x)

(2π)2

)

IA⊕B(x) = (qA(x)qB(x)) · ej2π
(

ψA(x)
2π · ψB(x)

2π

)

FA⊕B(x) = (rA(x)rB(x)) · ej2π
(

φA(x)
2π · φB(x)

2π

)

(2) The product of A and B, denoted as A⊗ B, is defined as

TA⊗B(x) = (pA(x)pB(x)) · ej2π
(

ωA(x)
2π · ωB(x)

2π

)

IA⊗B(x) = (qA(x) + qB(x)− qA(x)qB(x)) · e
j2π

(
ψA(x)

2π +
ψB(x)

2π − ψA(x)ψB(x)

(2π)2

)

FA⊗B(x) = (rA(x) + rB(x)− rA(x)rB(x)) · e
j2π

(
φA(x)

2π +
φB(x)

2π −
φA(x)φB(x)

(2π)2

)

(3) The scalar multiplication of A is a single-valued complex neutrosophic set denoted as C = λA (λ > 0),
defined as:

TC(x) =
(

1− (1− pA(x))λ
)
· e

j2π

(
1−
(

1− ωA(x)
2π

)λ
)

IC(x) =
(
(qA(x))λ

)
· ej2π

(
ψA(x)

2π

)λ

FC(x) =
(
(rA(x))λ

)
· ej2π

(
φA(x)

2π

)λ

(4) The power of A is denoted as D = (A)λ (λ > 0), and defined as:

TD(x) =
(
(pA(x))λ

)
· ej2π

(
ωA(x)

2π

)λ

ID (x) =
(

1− (1− qA(x))λ
)
· e

j2π

(
1−
(

1− ψA(x)
2π

)λ
)

FD(x) =
(

1− (1− rA(x))λ
)
· e

j2π

(
1−
(

1− φA(x)
2π

)λ
)

Definition 6. Let X = {x1, x2, · · · , xn} be a universal of objects, A and B be two SVCNSs in X, and then the
normalized Hamming distance between A and B is:

D (A, B) =
1

6n

n

∑
j=1

{∣∣TA
(

xj
)
− TB

(
xj
)∣∣+ ∣∣IA

(
xj
)
− IB

(
xj
)∣∣+ ∣∣FA

(
xj
)
− FB

(
xj
)∣∣+

1
2π

(∣∣ωA
(

xj
)
−ωB

(
xj
)∣∣+ ∣∣ψA

(
xj
)
− ψB

(
xj
)∣∣+ ∣∣φA

(
xj
)
− φB

(
xj
)∣∣)} (1)

Definition 7. Let A be a SVCNN; then, the score function S (A) of A is defined as:

S (A) =
1
6

(
(2 + TA − IA − FA) +

1
2π

(4π + ωA − ψA − φA)

)
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Definition 8. Let A be a SVCNN, and then the score function H (A) of A is defined as:

H (A) =
1
2

(
(TA − FA) +

1
2π

(ωA − φA)

)
Definition 9. let A1 and A2 be two SVCNNs, and S be the score function, H be the accuracy function.
If S (A1) < S (A2), then A1 < A2; if S (A1) = S (A2), then

(1) If H (A1) < H (A2), then A1 < A2;
(2) If H (A1) = H (A2), then A1 = A2.

3. The Einstein Operator with SVCNNs

The Einstein operator plays a significant role in as an aggregation operator. It consists of the
Einstein product ⊗E and the Einstein sum ⊕E, where ⊗E is a t-norm and ⊕E is a t-conorm. They are
defined as follows: [38]

ΓE (x, y) = x⊗Ey =
xy

1 + (1− x) (1− y)
(2)

Γ∗E (x, y) = x⊕Ey =
x + y

1 + xy
(3)

In the following, we shall propose single-valued complex neutrosophic set operational rules based
on the Einstein operator.

Definition 10. Let A and B be two SVCNSs which are defined by TA (x) = pA (x) · ejωA(x), IA (x) =

qA (x) · ejψA(x), FA (x) = rA (x) · ejφA(x) and TB (x) = pB (x) · ejωB(x), IB (x) = qB (x) · ejψB(x), FB (x) =
rB (x) · ejφB(x), respectively. Then, the Einstein operational rules of SVCNSs are defined as follows:

(1)

A⊕EB =

〈
pA + pB

1 + pA pB
· e

j2π

 ωA
2π +

ωB
2π

1+
ωAωB
(2π)2


,

qAqB
1 + (1− qA) (1− qB)

· e
j2π

 ψAψB
(2π)2

1+
(

1− ψA
2π

)(
1− ψB

2π

)


,

rArB
1 + (1− rA) (1− rB)

· e
j2π

 φAφB
(2π)2

1+
(

1− φA
2π

)(
1− φB

2π

)
〉 (4)

(2)

A⊗EB =

〈
pA pB

1 + (1− pA) (1− pB)
· e

j2π

 ωAωB
(2π)2

1+(1− ωA
2π )(1− ωB

2π )


,

qA + qB
1 + qAqB

· e
j2π

 ψA
2π +

ψB
2π

1+
ψAψB
(2π)2


,

rA + rB
1 + rArB

· e
j2π

 φA
2π +

φB
2π

1+
φAφB
(2π)2

〉 (5)
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(3)

λA =

〈
(1 + pA)

λ − (1− pA)
λ

(1 + pA)
λ + (1− pA)

λ
· e

j2π

 (1+
ωA
2π )

λ
−(1− ωA

2π )
λ

(1+
ωA
2π )

λ
+(1− ωA

2π )
λ


,

2(qA)
λ

(2− qA)
λ + (qA)

λ
· e

j2π

 2
(

ψA
2π

)λ

(
2− ψA

2π

)λ
+

(
ψA
2π

)λ


,

2(rA)
λ

(2− rA)
λ + (rA)

λ
· e

j2π

 2
(

φA
2π

)λ

(
2− φA

2π

)λ
+

(
φA
2π

)λ

〉 (6)

(4)

Aλ =

〈
2(pA)

λ

(2− pA)
λ + (pA)

λ
· e

j2π

 2( ωA
2π )

λ

(2− ωA
2π )

λ
+( ωA

2π )
λ


,

(1 + qA)
λ − (1− qA)

λ

(1 + qA)
λ + (1− qA)

λ
· e

j2π


(

1+
ψA
2π

)λ
−
(

1− ψA
2π

)λ

(
1+

ψA
2π

)λ
+

(
1− ψA

2π

)λ


,

(1 + rA)
λ − (1− rA)

λ

(1 + rA)
λ + (1− rA)

λ
· e

j2π


(

1+
φA
2π

)λ
−
(

1− φA
2π

)λ

(
1+

φA
2π

)λ
+

(
1− φA

2π

)λ

〉
(7)

Definition 11. Let Ai =
〈

Ti · ejωi , Ii · ejψi , Fi · ejφi
〉
(i = 1, 2, · · · , n) be a collection of SVCNNs,

the single-valued, complex, neutrosophic, Einstein-weighted average (SVCNEWA) operator and single-valued,
complex, neutrosophic, Einstein-weighted geometric (SVCNEWG) operator can be defined as follows:

SVCNEWA (A1, A2, · · · , An) = w1 A1⊕Ew2 A2⊕E · · · ⊕Ewn An =
n
⊕E
i=1

(wi Ai) (8)

and

SVCNEWG (A1, A2, · · · , An) = w1 A1⊗Ew2 A2⊗E · · · ⊗Ewn An =
n
⊗E
i=1

(Ai)
wi (9)

where wi is the weight of Ai with the condition wi ∈ [0, 1] and
n
∑

i=1
wi = 1.

Theorem 1. Let Ai =
〈

Ti · ejωi , Ii · ejψi , Fi · ejφi
〉
(i = 1, 2, · · · , n) be a collection of SVCNNs, then the

operation results by SVCNEWA and SVCNEWG operators are also a SVCNN where:

SVCNEWA (A1, A2, · · · , An) =
n
⊕E
i=1

(wi Ai)

=


n
∏
i=1

(1 + Ti)
wi −

n
∏
i=1

(1− Ti)
wi

n
∏
i=1

(1 + Ti)
wi +

n
∏
i=1

(1− Ti)
wi
· e

j2π


n
∏

i=1
(1+

ωi
2π )

wi−
n
∏

i=1
(1− ωi

2π )
wi

n
∏

i=1
(1+

ωi
2π )

wi +
n
∏

i=1
(1− ωi

2π )
wi


,

2
n
∏
i=1

(Ii)
wi

n
∏
i=1

(2− Ii)
wi +

n
∏
i=1

(Ii)
wi
· e

j2π

 2
n
∏

i=1

(
ψi
2π

)wi

n
∏

i=1

(
2− ψi

2π

)wi
+

n
∏

i=1

(
ψi
2π

)wi


,

2
n
∏
i=1

(Fi)
wi

n
∏
i=1

(2− Fi)
wi +

n
∏
i=1

(Fi)
wi
· e

j2π

 2
n
∏

i=1

(
φi
2π

)wi

n
∏

i=1

(
2− φi

2π

)wi
+

n
∏

i=1

(
φi
2π

)wi
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and

SVCNEWG (A1, A2, · · · , An) =
n
⊗E
i=1

(Ai)
wi

=


2

n
∏
i=1

(Ti)
wi

n
∏
i=1

(2− Ti)
wi +

n
∏
i=1

(Ti)
wi
· e

j2π

 2
n
∏

i=1
(

ωi
2π )

wi

n
∏

i=1
(2− ωi

2π )
wi +

n
∏

i=1
(

ωi
2π )

wi


,

n
∏
i=1

(1 + Ii)
wi −

n
∏
i=1

(1− Ii)
wi

n
∏
i=1

(1 + Ii)
wi +

n
∏
i=1

(1− Ii)
wi
· e

j2π


n
∏

i=1

(
1+

ψi
2π

)wi−
n
∏

i=1

(
1− ψi

2π

)wi

n
∏

i=1

(
1+

ψi
2π

)wi
+

n
∏

i=1

(
1− ψi

2π

)wi


,

n
∏
i=1

(1 + Fi)
wi −

n
∏
i=1

(1− Fi)
wi

n
∏
i=1

(1 + Fi)
wi +

n
∏
i=1

(1− Fi)
wi
· e

j2π


n
∏

i=1

(
1+

φi
2π

)wi−
n
∏

i=1

(
1− φi

2π

)wi

n
∏

i=1

(
1+

φi
2π

)wi
+

n
∏

i=1

(
1− φi

2π

)wi




Proof. In this part, we can prove the above theorem by mathematical induction.

(1) When n = 2, we have

SVCNEWA (A1, A2) = w1 A1⊕Ew2 A2

=

〈
(1 + T1)

w1 − (1− T1)
w1

(1 + T1)
w1 + (1− T1)

w1
· e

j2π

(
(1+

ω1
2π )

w1−(1− ω1
2π )

w1

(1+
ω1
2π )

w1+(1− ω1
2π )

w1

)
,

2(I1)
w1

(2− I1)
w1 + (I1)

w1
· e

j2π

 2
(

ψ1
2π

)w1

(
2− ψ1

2π

)w1
+

(
ψ1
2π

)w1


,

2(F1)
w1

(2− F1)
w1 + (F1)

w1
· e

j2π

 2
(

φ1
2π

)w1

(
2− φ1

2π

)w1
+

(
φ1
2π

)w1

〉
⊕E

〈
(1 + T2)

w2 − (1− T2)
w2

(1 + T2)
w2 + (1− T2)

w2
· e

j2π

(
(1+

ω2
2π )

w2−(1− ω2
2π )

w2

(1+
ω2
2π )

w2+(1− ω2
2π )

w2

)
,

2(I2)
w2

(2− I2)
w2 + (I2)

w2
· e

j2π

 2
(

ψ2
2π

)w2

(
2− ψ2

2π

)w2
+

(
ψ2
2π

)w2


,

2(F2)
w2

(2− F2)
w2 + (F2)

w2
· e

j2π

 2
(

φ2
2π

)w2

(
2− φ2

2π

)w2
+

(
φ2
2π

)w2

〉

=


2

∏
i=1

(1 + Ti)
wi −

2
∏
i=1

(1− Ti)
wi

2
∏
i=1

(1 + Ti)
wi +

2
∏
i=1

(1− Ti)
wi

· e
j2π


2
∏

i=1
(1+

ωi
2π )

wi−
2
∏

i=1
(1− ωi

2π )
wi

2
∏

i=1
(1+

ωi
2π )

wi +
2
∏

i=1
(1− ωi

2π )
wi


,

2
2

∏
i=1

(Ii)
wi

2
∏
i=1

(2− Ii)
wi +

2
∏
i=1

(Ii)
wi

· e
j2π

 2
2
∏

i=1

(
ψi
2π

)wi

2
∏

i=1

(
2− ψi

2π

)wi
+

2
∏

i=1

(
ψi
2π

)wi


,

2
2

∏
i=1

(Fi)
wi

2
∏
i=1

(2− Fi)
wi +

2
∏
i=1

(Fi)
wi

· e
j2π

 2
2
∏

i=1

(
φi
2π

)wi

2
∏

i=1

(
2− φi

2π

)wi
+

2
∏

i=1

(
φi
2π

)wi




Therefore, when n = 2, the equation is true.
(2) Assume that when n = k, Equation (10) is true. Then when n = k + 1, we have

SVCNEWA (A1, A2, · · · , Ak, Ak+1) = SVCNEWA (A1, A2, · · · , Ak)⊕Ewk+1 Ak+1

=


n
∏
i=1

(1 + Ti)
wi −

n
∏
i=1

(1− Ti)
wi

n
∏
i=1

(1 + Ti)
wi +

n
∏
i=1

(1− Ti)
wi

· e
j2π


n
∏

i=1
(1+

ωi
2π )

wi−
n
∏

i=1
(1− ωi

2π )
wi

n
∏

i=1
(1+

ωi
2π )

wi +
n
∏

i=1
(1− ωi

2π )
wi


,

2
n
∏
i=1

(Ii)
wi

n
∏
i=1

(2− Ii)
wi +

n
∏
i=1

(Ii)
wi

· e
j2π

 2
n
∏

i=1

(
ψi
2π

)wi

n
∏

i=1

(
2− ψi

2π

)wi
+

n
∏

i=1

(
ψi
2π

)wi


,

2
n
∏
i=1

(Fi)
wi

n
∏
i=1

(2− Fi)
wi +

n
∏
i=1

(Fi)
wi

· e
j2π

 2
n
∏

i=1

(
φi
2π

)wi

n
∏

i=1

(
2− φi

2π

)wi
+

n
∏

i=1

(
φi
2π

)wi


⊕E

〈
(1 + Tk+1)

wk+1 − (1− Tk+1)
wk+1

(1 + Tk+1)
wk+1 + (1− Tk+1)

wk+1
· e

j2π


(

1+
ωk+1

2π

)wk+1−
(

1−
ωk+1

2π

)wk+1

(
1+

ωk+1
2π

)wk+1
+

(
1−

ωk+1
2π

)wk+1


,

2(Ik+1)
wk+1

(2− Ik+1)
wk+1 + (Ik+1)

wk+1
· e

j2π

 2
(

ψk+1
2π

)wk+1

(
2−

ψk+1
2π

)wk+1
+

(
ψk+1

2π

)wk+1


,
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2(Fk+1)
wk+1

(2− Fk+1)
wk+1 + (Fk+1)

wk+1
· e

j2π

 2
(

φk+1
2π

)wk+1

(
2−

φk+1
2π

)wk+1
+

(
φ2
2π

)wk+1

〉

=


k+1
∏
i=1

(1 + Ti)
wi −

k+1
∏
i=1

(1− Ti)
wi

k+1
∏
i=1

(1 + Ti)
wi +

k+1
∏
i=1

(1− Ti)
wi

· e
j2π


k+1
∏

i=1
(1+

ωi
2π )

wi−
k+1
∏

i=1
(1− ωi

2π )
wi

k+1
∏

i=1
(1+

ωi
2π )

wi +
k+1
∏

i=1
(1− ωi

2π )
wi


,

2
k+1
∏
i=1

(Ii)
wi

k+1
∏
i=1

(2− Ii)
wi +

k+1
∏
i=1

(Ii)
wi

· e
j2π

 2
k+1
∏

i=1

(
ψi
2π

)wi

k+1
∏

i=1

(
2− ψi

2π

)wi
+

k+1
∏

i=1

(
ψi
2π

)wi


,

2
k+1
∏
i=1

(Fi)
wi

k+1
∏
i=1

(2− Fi)
wi +

k+1
∏
i=1

(Fi)
wi

· e
j2π

 2
k+1
∏

i=1

(
φi
2π

)wi

k+1
∏

i=1

(
2− φi

2π

)wi
+

k+1
∏

i=1

(
φi
2π

)wi




Thus, when n = k + 1, the equation is true.

So we can calculate SVCNEWA (A1, A2, · · · , An) =
n
⊕E
i=1

(wi Ai) for any n. In the same way, we

can obtain the form of SVCNEWG operator shown in Theorem 1.

4. The EDAS Method with SVCNNs

In this section, a MAGDM approach by combining the proposed operators and EDAS method is
presented.

Suppose there is a committee of r experts {E1, E2, · · · , Er} with the weight vector of experts

v = {v1, v2, · · · , vr}which satisfies vi ∈ [0, 1] and
r
∑

i=1
vi = 1 is responsible for evaluating m alternatives

{A1, A2, · · · , Am} under n attributes {C1, C2, · · · , Cn} where the weight vectors of attribute are w =

{w1, w2, · · · , wn}, wi ∈ [0, 1] and
n
∑

i=1
wi = 1.

Step 1: Construct the evaluation matrix of expert Ed, and denote it as Ad =
[

ad
ij

]
m×n

, i =

1, 2, · · · , m, j = 1, 2, · · · , n, d = 1, 2, · · · , r where ad
ij =

〈
Td

ij · e
jωd

ij , Id
ij · e

jψd
ij , Fd

ij · e
jφd

ij

〉
is a SVCNN and

represents the single-valued complex neutrosophic information of alternative Ai versus attribute Cj by
expert Ed.

Step 2: Normalize the evaluation matrix Ad =
[

ad
ij

]
m×n

into A′d =
[

a
′d
ij

]
m×n

For benefit-type attributes Cj, a
′d
ij = ad

ij =

〈
Td

ij · e
jωd

ij , Id
ij · e

jψd
ij , Fd

ij · e
jφd

ij

〉
For cost-type attributes Cj, a

′d
ij = c

(
ad

ij

)
=

〈
Fd

ij · e
j
(

2π−ωd
ij

)
,
(

1− Id
ij

)
· ej
(

2π−ψd
ij

)
, Td

ij · e
j
(

2π−φd
ij

)〉
Step 3: According to the normalized decision making matrix A′d =

[
a
′d
ij

]
m×n

and the weight

vector v = {v1.v2, · · · , vr} of experts, we can fuse overall a
′d
ij into aij by using the SVCNEWA or

SVCNEWG operator; then the aggregated decision making matrix A =
[
aij
]

m×n with aggregated

information is obtained and denoted as A =
[
aij
]

m×n =
[〈

Tij · ejωij , Iij · ejψij , Fij · ejφij
〉]

m×n
.

Step 4: Compute the value of the average solution AV =
(

AVj
)

1×n where AVj =
1
m

m
⊕

i=1
aij.

Based on Definition 5, we can get

m
⊕

i=1
aij =

〈(
1−

m

∏
i=1

(
1− Tij

))
· e

j2π

(
1−

m
∏

i=1

(
1−

ωij
2π

))
,

(
m

∏
i=1

(
Tij
))
· e

j2π

(
m
∏

i=1

(
ψij
2π

))
,

(
m

∏
i=1

(
Fij
))
· e

j2π

(
m
∏

i=1

(
φij
2π

))〉 (10)
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So

AVj =

〈(
1−

m

∏
i=1

(
1− Tij

) 1
m

)
· e

j2π

(
1−

m
∏

i=1

(
1−

ωij
2π

) 1
m
)

,

(
m

∏
i=1

(
Tij
) 1

m

)
· e

j2π

 m
∏

i=1

(
ψij
2π

) 1
m


,

(
m

∏
i=1

(
Fij
) 1

m

)
· e

j2π

 m
∏

i=1

(
φij
2π

) 1
m
〉 (11)

Step 5: Compute the positive distance from average PDA =
(

Pij
)

m×n and the negative distance
from average NDA =

(
Nij
)

m×n, where

Pij =
max

{
0, s
(
aij
)
− s

(
AVj

)}
s
(

AVj
)

Nij =
max

{
0, s
(

AVj
)
− s

(
aij
)}

s
(

AVj
) (12)

s
(

AVj
)

and s
(
aij
)

are score functions of AVj and aij, respectively.
Step 6: Calculate the values of SPi and SNi which denote the weighted sums of PDA and NDA.

SPi =
n

∑
j=1

wjPij

SNi =
n

∑
j=1

wjNij

(13)

and wj is the weight of the j− th attribute.
Step 7: Normalize the values SPi and SNi to obtain NSPi and NSNi.

NSPi =
SPi

max
i
{SPi}

NSNi = 1− SNi
max

i
{SNi}

(14)

Step 8: Calculate the appraisal score ASi (i = 1, 2, · · · , m) for all alternatives.

ASi =
1
2
(NSPi + NSNi) (15)

Step 9: Ranking the alternatives according to the values of ASi. The alternative with the highest
ASi is the optimal one.

5. Numerical

5.1. The Numerical Example for SVCNS MAGDM Problem

In this section, we provide a numerical example to select the best green supplier by using the
proposed MAGDM approach.

Consider a small-sized trading service and transportation company who wants to seek a langfristig
green supplier to purchase a new vehicle for its follow-up operation. The company will assess three
potential suppliers A1, A2, A3. A managing committee E forms a group of three decision makers
E1, E2, E3 with different professional skills for the evaluation, and the decision makers’ weight vector
is v = {0.3, 0.2, 0.5}. During the selection process, there are five attributes to consider. They are:
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price/cost (C1), quality (C2), delivery (C3), relationship closeness (C4) and environmental management
systems (C5); and the corresponding weight vector is w = {0.2, 0.3, 0.25, 0.15, 0.1}. Meanwhile, the five
attributes are benefit-type attributes. Three decision makers determined the suitability ratings of three
potential suppliers versus the attributes by using the linguistic rating set S = {VL, L, F, G, VG} where

VL = VeryLow =
(

0.2ej(0.8π), 0.8ej(1.0π), 0.7ej(1.1π)
)

L = Low =
(

0.4ej(0.9π), 0.6ej(0.9π), 0.6ej(1.0π)
)

F = Fair =
(

0.6ej(1.0π), 0.5ej(0.8π), 0.5ej(0.9π)
)

G = Good =
(

0.8ej(1.1π), 0.4ej(0.7π), 0.4ej(0.8π)
)

VG = VeryGood =
(

0.9ej(1.2π), 0.2ej(0.6π), 0.1ej(0.7π)
)

The three suppliers are to be evaluated with SVCNNs which are listed in Tables 1–3.

Table 1. The evaluated values of decision maker E1.

C1 C2 C3 C4 C5

A1 G F L G L
A2 F VG G F G
A3 VG VG F G G

Table 2. The evaluated values of decision maker E2.

C1 C2 C3 C4 C5

A1 F F F F F
A2 F G G F G
A3 G G G VG F

Table 3. The evaluated values of decision maker E3.

C1 C2 C3 C4 C5

A1 G F L G L
A2 G G G F VG
A3 VG G F G G

To obtain the best green supplier, we utilize the proposed approach to evaluate the three suppliers.
Step 1: Aggregate the information ratings. According to the decision makers’ weight vector

v = {0.3, 0.2, 0.5}, we can obtain the aggregated decision matrix which is shown in Table 4 by using
SVCNEWA operator .

Step 2: Compute the average solution AV =
(

AVj
)

1×n. According to Equation (11), we can
obtain:

AV1 =
(

0.8033ej2π(0.5529), 0.3513ej2π(0.3467), 0.2903ej2π(0.3969)
)

AV2 =
(

0.7800ej2π(0.5447), 0.3773ej2π(0.3549), 0.3323ej2π(0.4052)
)

AV3 =
(

0.6610ej2π(0.5082), 0.4804ej2π(0.3914), 0.4804ej2π(0.4416)
)

AV4 =
(

0.7290ej2π(0.5267), 0.4318ej2π(0.3728), 0.4143ej2π(0.4231)
)

AV5 =
(

0.7367ej2π(0.5278), 0.4107ej2π(0.3715), 0.3822ej2π(0.4219)
)
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Table 4. The aggregated decision matrix.

Attribute Alternative Aggregated Values

C1 A1

(
0.7689ej2π(0.5403), 0.4187ej2π(0.3596), 0.4187ej2π(0.4097)

)
A2

(
0.7143ej2π(0.5255), 0.4480ej2π(0.3744), 0.4480ej2π(0.4245)

)
A3

(
0.8848ej2π(0.5903), 0.2311ej2π(0.3095), 0.1341ej2π(0.3596)

)
C2 A1

(
0.6ej2π(0.5), 0.5ej2π(0.4), 0.5ej2π(0.45)

)
A2

(
0.8369ej2π(0.5655), 0.3278ej2π(0.3343), 0.2709ej2π(0.3845)

)
A3

(
0.8369ej2π(0.5655), 0.3278ej2π(0.3343), 0.2709ej2π(0.3845)

)
C3 A1

(
0.4443ej2π(0.4602), 0.5791ej2π(0.4397), 0.5791ej2π(0.4897)

)
A2

(
0.8ej2π(0.55), 0.4ej2π(0.35), 0.4ej2π(0.4)

)
A3

(
0.6494ej2π(0.5103), 0.4787ej2π(0.3896), 0.4787ej2π(0.4397)

)
C4 A1

(
0.7689ej2π(0.5403), 0.4187ej2π(0.3596), 0.4187ej2π(0.4097)

)
A2

(
0.5068ej2π(0.4574), 0.5486ej2π(0.4245), 0.5486ej2π(0.4745)

)
A3

(
0.8253ej2π(0.5603), 0.3506ej2π(0.3395), 0.3095ej2π(0.3896)

)
C5 A1

(
0.4443ej2π(0.4602), 0.5791ej2π(0.4397), 0.5791ej2π(0.4897)

)
A2

(
0.8579ej2π(0.5755), 0.2857ej2π(0.3242), 0.2058ej2π(0.3744)

)
A3

(
0.7689ej2π(0.5403), 0.4187ej2π(0.3596), 0.4187ej2π(0.4097)

)

Step 3: Calculate the score function of each evaluated value and average solution which is shown
in Table 5.

Table 5. The score values of aij and AVj.

C1 C2 C3 C4 C5

A1 0.6171 0.5417 0.4695 0.6171 0.4695
A2 0.5908 0.6808 0.6333 0.4977 0.7067
A3 0.7401 0.6808 0.5622 0.6661 0.6171
AV 0.6618 0.6425 0.5626 0.6023 0.6130

Step 4: Computing the matrix of PDA and NDA.

PDA =

 0 0 0 0.0246 0
0 0.0596 0.1257 0 0.1529

0.1183 0.0596 0 0.1059 0.0067

 (16)

and

NDA =

 0.0675 0.1569 0.1655 0 0.2341
0.1073 0 0 0.1737 0

0 0 00007 0 0

 (17)

Step 5: Calculate the weighted sums of Pij and Nij, denoted as SPi and SNi, respectively.
According to the attribute’s weight w = {0.2, 0.3, 0.25, 0.15, 0.1} and Equation (13), we can obtain

SP1 = 0.0037, SP2 = 0.0646, SP3 = 0.0581

SN1 = 0.1251, SN2 = 0.0475, SN3 = 0.0002.
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Step 6: Normalize the SPi and SNi.

NSP1 = 0.0573, NSP2 = 1, NSP3 = 0.8994

NSN1 = 0, NSN2 = 0.6212, NSN3 = 0.9984.

Step 7: Calculate the appraisal score ASi.

AS1 = 0.0287, AS2 = 0.8106, AS3 = 0.9489.

Obviously, according to the values of ASi, we can rank all the alternatives as A3 > A2 > A1 and
A3 is the best choice.

5.2. A Comparison Analysis

In this part, we make a simple comparative analysis. In Section 5.1 we aggregate the information
ratings by using SVCNEWA operator, so in this part, we use another operator (SVCNEWG operator)
and an EDAS method to obtain the best alternative(s). Meanwhile, we make a comparison through the
results obtained by different aggregation operators. According to the steps in Section 4, we can obtain
the values of appraisal score and the rankings of alternatives which are shown in Table 6.

Table 6. The values of ASi and the rankings of alternatives.

AS1 AS2 AS3 Ranking

SVCNEWA 0.0287 0.8106 0.9489 A3 > A2 > A1
SVCNEWG 0.0283 0.8164 0.9386 A3 > A2 > A1

From the results in Table 6, we can find that the values of appraisal score are slightly different,
but the ranking of alternatives and the best alternative are the same, which indicate that the proposed
method is practical and effective forthe MAGDM problem.

6. Conclusions

In modern enterprises, one of the most significant competitions is for green supply chain
management, and green supplier selection is a vital factor of green supply chain management. So how
to determine the optimal supplier plays an important role. In real life, green supplier selection can
be regarded as a MAGDM problem. Therefore, in this paper, a single-valued complex neutrosophic
EDAS model has been established and applied in green supplier selection. Meanwhile, considering
that green supplier selection is a group decision making problem, two aggregation operators, namely,
a single-valued, complex, neutrosophic, Einstein-weighted average operator and a single-valued,
complex, neutrosophic, Einstein-weighted geometric operator have been proposed to fuse overall
information ratings into a comprehensive value. Thus, in order to achieve these purposes, this paper
firstly introduces the definition of the single-valued complex neutrosophic set and the corresponding
operational laws. Next, to fuse overall single-valued complex neutrosophic information, some
new aggregation operators of single-valued complex neutrosophic set based on Einstein product
and sum, namely, SVCNEWA and SVCNEWA operators, have been proposed. Furthermore, the
single-valued complex neutrosophic EDAS model has been established to solve MAGDM problem.
Finally, a numerical example for green supplier selection and a comparison have been given. Although
the aggregation operators are different in EDAS method, the rankings of alternatives and of the optimal
one are the same, which illustrates the practicality and effectiveness of this new model. However, this
model only considers the case of known or subjective decision makers’ weight vector and attributes’
weight vector; it does not discuss the unknown or objective weight vector. So in the future, some
models need to be established to obtain a more objective weight vector and more reasonable evaluation
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results. Meanwhile, it is necessary to apply this single-valued complex neutrosophic EDAS method
into different fields, such as venture capital, pattern recognition and comprehensive evaluation.
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