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Abstract: The paper provides reliability analysis of a cold double redundant renewable system
assuming that both life-time and repair time distributions are arbitrary. The proposed approach is
based on the theory of decomposable semi-regenerative processes. We derive the Laplace–Stieltjes
transform of two main reliability measures like the distribution of the time between failures and the
time to the first failure. The transforms are used to calculate corresponding mean times. It is further
derived in closed form the time-dependent and time stationary state probabilities in terms of the
Laplace transforms. Numerical results illustrate the effect of the type of distributions as well as their
parameters on the derived reliability and probabilistic measures.

Keywords: redundant system; reliability; arbitrary distributions; time-dependent characteristics;
decomposable semi-regenerative process

1. Introduction

The use of parallel or redundant units is an often recommended way of increasing the system
reliability. In the last few decades, many authors have studied the redundant systems under different
sets of assumptions about the system’s attributes and level of generality, the distribution of life,
and repair times when one or more units are standby. In this paper, we formulate the model
where both of distributions are assumed to be arbitrary. Such models are interesting both from
theoretical and practical points of view. Theoretically, these studies are related to the creation and
development of new mathematical methods such as regenerative methods, especially methods of the
Decomposable Semi-Regenerative Processes (DSRP), and Markovization methods via introduction
of the supplementary variables. In practical terms, the tasks under consideration form a basis for
analyzing the reliability of different complex systems with generally distributed times.

Smith’s idea about regenerative stochastic processes [1] found many generalizations and
applications. This approach still helps to solve many applied problems since it reduces the complexity
of the task. Instead of a whole time period, the process can be analyzed within a separate regenerative
period of time. However, if the process describing the system behavior is complicated enough in order
to be exhaustively analyzed on the regenerative period, even in this case, different generalizations
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of the regenerative idea are possible. One possible generalization is to combine Smith’s idea with
a semi-Markov approach [2], which seems quite appropriate for real models. The result of such
combination is a semi-regenerative process. In Rykov and Yastrbrnrtsky [3], it appears under the
name “Regenerative processes with several types of regeneration points”. Klimov [4] considered it as a
“semi-Markov process with additional trajectories”. In accordance with Jakod [5] and Nummeline [6],
in this paper, we will call such process a semi-regenerative process (SRP).

The next possible generalization is to construct within the basic regeneration cycle other
regeneration points called embedded regeneration points. Sometimes, in a particular model, one
can find some embedded regeneration points and to represent the process distribution in a separate
regeneration cycle in terms of its distribution in embedded regeneration cycles of the second level.
Initially, such processes appeared in [7,8] under the name “Regenerative processes with embedded
regeneration cycles” or “Decomposable Semi-Regenerative Processes” (DSRP). Regenerative processes
with embedded regeneration cycles are widely used applications in operations research. In [7],
regenerative processes have been applied to study priority queueing systems. In [9,10], the one-server
queueing system with infinite queue, recurrent input flow, and general service time distribution
(GI|GI|1, ∞—system in Kendall’s notation [11]) has been studied in terms of these processes (see
also [12]). In paper [13], the authors investigated a model of a polling system by means of the DSRP.
Another approach related to the study of complex systems (proposed in Belyaev [14]) contains the
introduction of so-called supplementary variables. According to this method, the original model can
be described by a continuous-time Markov chain (Markovization method). The implementation of
this method to study reliability models is proposed by Rykov [15], Mazumdar [16], and Mine and
Asakura [17].

The redundancy of some technical system means the duplication of critical components resulting
in increasing reliability of the system. The double redundant systems are well known and were
studied and applied under different assumptions like repair maintenance, preventive maintenance
policy, exponential distributions for life and repair times, and so on; see, e.g., Gaver [18], Gnedenko
et al. [19], Mine and Asakura [20], and Srinivasan [21]. In this paper, we study a homogeneous cold
double redundant system with arbitrary life- and repair time distributions. In such a system, the
cold standby redundancy means that the redundant component does not fail in a standby mode. The
closed form solutions for the main reliability characteristics have been derived in terms of an integral
transformation like a Laplace transform. The proposed analysis is based on the DSRP, the stochastic
equations for the corresponding random variables (RVs), and the theory of regenerative processes [1].

The rest of the paper is organized as follows. In Section 2, the problem set, some assumptions, and
notations are introduced. In Section 3, the Laplace–Stieltjes transforms (LSTs) of the regeneration period
(the system life cycle), and the Laplace transforms (LTs) of the times to the first failure and between
system failures are calculated. In Sections 4 and 5, the time-dependent system state probabilities
(TDSSPs) and stationary system state probabilities (SSSPs) are calculated. Finally, using some numerical
examples, we demonstrate the effect of type of distributions and their parameter on the reliability and
probabilistic measures of the system in Section 6. The paper ends with a conclusion.

2. The Problem Set: Assumptions and Notations

Consider a homogeneous cold double redundant renewable system with generally distributed
life- and repair times, which, according to modified Kendall’s notations [11], will be denoted as
<GI2/GI/1>. The system consists of two identical units which can be in two possible states: operational
and failed. The system fails when both of units are in a failed state. For the renewable system, different
strategies of its renovation are possible. In this paper, we consider a strategy when a new system
cycle begins at the point in time when one unit starts working while the other unit failed and is being
repaired.

Denote by Ai (i = 1, 2, . . . ), life times of the system units, by Bi (i = 1, 2, . . . ), its repair times, and
suppose that all these random variables (RVs) are mutually independent and identically distributed.
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Thus, denote by A(t) = P[Ai ≤ t] and B(t) = P[Bi ≤ t] the corresponding cumulative distribution
functions (CDFs). Denote also by A and B the RVs with the same CDFs as Ai and Bi, respectively.
Suppose that the instantaneous failures and repairs are impossible and their mean times are finite:

A(0) = B(0) = 0, a =
∫ ∞

0
(1− A(x))dx < ∞, b =

∫ ∞

0
(1− B(x))dx < ∞.

Denote by E the set of system states. We assume that E = {i = 0, 1, 2}, where i stands for the number
of failed units, and we introduce a random process J = {J(t), t ≥ 0}, where

J(t) = number of failed units at time t.

A simple state transition diagram is illustrated in Figure 1.

Figure 1. State transition diagram.

Denote by F the time between system failures, i.e., the period of time the system begins to operate
again up to the next system failure. We remind that the system is again in an operational state when
operation of one unit and repair of another one begin simultaneously. Denote by F1 the time to first
system failure (the time from the epoch when both units are in operational state up to the system
failure) (see Figure 2). The functions F(t) = P[F ≤ t] and F1(t) = P[F1 ≤ t] are corresponding CDFs.

We are interesting in calculation of the reliability function

R(t) = P[F1 > t] = 1− F1(t),

distribution of time to the first failure F1(t), time-dependent system state probabilities (TDSSPs)

πj(t) = P[J(t) = j], j = 0, 1, 2,

and stationary system state probabilities (SSSPs)

πj = lim
t→∞

πj(t) ≡ lim
t→∞

P[J(t) = j], j = 0, 1, 2,

as well as the availability coefficient

Kav. = π0 + π1 = 1− π2.

The following notations will be used next.

• The Laplace–Stiltjes transforms (LSTs) of their CDFs are denoted as:

ã(s) = E
[
e−sA

]
=

∞∫
0

e−sxdA(x), b̃(s) = E
[
e−sB

]
=

∞∫
0

e−sxdB(x),

f̃ (s) = E
[
e−sF

]
=

∞∫
0

e−sxdF(x), f̃1(s) = E
[
e−sF(1)

]
=

∞∫
0

e−sxdF1(x).
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• In the case when the repair completion comes before the failure of other unit and when an
operative unit fails before the repair completion of other unit, the distributions are equal,
respectively,

aB(t) =
∫ t

0
B(x)dA(x) = P[B ≤ A ≤ t], bA(t) =

∫ t

0
A(x)dB(x) = P[A ≤ B ≤ t].

Applying the Laplace transform (LT) for aB(t) and bA(t), we get

ãB(s) =
∫ ∞

0
e−stdaB(t) =

∫ ∞

0
e−sxB(x)dA(x), (1)

b̃A(s) =
∫ ∞

0
e−stdbA(t) =

∫ ∞

0
e−sx A(x)dB(x).

• Their derivatives with sign minus in point zero are denoted by:

aB = − d
ds

ãB(s)
∣∣
s=0 =

∫ ∞

0
xB(x)dA(x),

bA = − d
ds

b̃A(s)
∣∣
s=0 =

∫ ∞

0
xA(x)dB(x). (2)

• The probabilities P[B ≤ A] and P[B ≥ A] are associated with transformations through the
following ratios:

ãB(0) =
∞∫

0

B(x)dA(x) = P[B ≤ A] ≡ p,

b̃A(0) =
∞∫

0

A(x)dB(x) = P[B > A] ≡ q = 1− p.

• Note the property of transformations (1)

ã1−B(s) = ã(s)− ãB(s), b̃1−A(s) = b̃(s)− b̃A(s). (3)

Figure 2. Trajectory of the process J.

3. Reliability Function

Process J is a regenerative one. A trajectory of this process is illustrated in Figure 2.
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Here, F stands for the time between system failures, i.e., the period of time the system begins to
operate again (state 1) up to the next system failure (state 2). The variable G specifies the length of a
regenerative cycle according to a defined renovation policy. The following lemma holds for the LSTs of
the time F between failures and the time to the first failure F1.

Lemma 1. The LST f̃ (s) = E
[
e−sF] of the time F between failures and the LST f̃1(s) = E

[
e−sF1

]
of the time

to the first failure F1 are of the form:

f̃ (s) =
ã(s)− ãB(s)

1− ãB(s)
, f̃1(s) = ã(s)

ã(s)− ãB(s)
1− ãB(s)

. (4)

Proof. The life time of the system F is a time between two successive failures. After a failure in state 0,
the system goes to state 1 where there can be two events: either the recovery of a unit in state 1 in time
B and subsequent transition again to state 0 or a failure of a second unit in time A will happen. After a
failure in state 1, the system comes back to state 1 in time B. Hence, as it can be seen from Figure 2, the
system lifetime F satisfies the following stochastic equation:

F =

{
A + F if B < A,

A if B > A.
(5)

The time to the first system failure F1 satisfies

F1 = A + F. (6)

Applying LT to the Equation (5) and taking into account notations (1), one can obtain

f̃ (s) = E
[
e−sF

]
=

∞∫
0

e−stdF(t) =

=

∞∫
0

e−sx [B(x) f̃ (s) + (1− B(x))
]

dA(x) =

= f̃ (s)ãB(s) + ã1−B(s). (7)

Due to the last equation, one can find that the LST of the system lifetime f̃ (s) is given by the first
relation in of (4). The second equation of lemma directly follows from stochastic Equation (6).

Remark 1. Let ϕ̃i(s), i = 0, 1, 2, be the LST of the distribution of time to the first failure of the system, starting
from state i at t = 0. In previous statement f̃1(s) = ϕ̃0(s). The following equations hold:

ϕ̃0(s) = q̃0,1(s)ϕ̃1(s),

ϕ̃1(s) = q̃1,1(s)ϕ̃1(s) + q̃1,2(s).

Here, q̃i,j(s) stands for the LST of the transition time distribution qi,j(t) from state i to state j. Obviously, we
have q̃0,1(s) = ã(s), q̃1,1(s) = ãB(s) and q̃1,2(s) = ã1−B(s). Expressing ϕ̃0(s), we get the relation

ϕ̃0(s) =
q̃0,1(s)q̃1,2(s)

1− q̃1,1(s)
,

which coincide with the relation (4) for the first time to failure.

The main result of this section is the following theorem:
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Theorem 1. The LT R̃1(s) of the system reliability function R1(t) = 1− F1(t) is

R̃1(s) =
(1− ã(s))(1 + ã(s)− ãB(s))

s(1− ãB(s))
. (8)

Proof. Taking into account that the LT of any CDF connected with its LST through a relation

F̃1(s) =
∞∫

0

e−stF1(t)dt =
1
s

∞∫
0

e−stdF1(t) =
1
s

f̃1(s),

the LT R̃1(s) of the reliability function R1(t) = 1− F1(t) can be derived using (4) in form

R̃1(s) =
1
s
− F̃1(s) =

1
s
(1− f̃1(s)) =

1− ãB(s)− ã2(s) + ã(s)ãB(s)
s(1− ãB(s))

=
(1− ã(s))(1 + ã(s)− ãB(s))

s(1− ãB(s))
,

which ends the proof.

Corollary 1. The LT R̃(s) of the survival probability R(t) = 1− F(t) is of the form

R̃(s) =
R̃(s)

1 + ã(s)− ãB(s)
=

1− ã(s)
s(1− ãB(s))

, (9)

which follows directly from (4) and (8).

Corollary 2. The mean system life time between failures E[F] and mean time to the first failure E[F1] are of
the form:

E[F] = a
q

, E[F1] = a +
a
q

. (10)

Proof. The first relation follows from the equality

E[F] = R̃(0) = lim
s→0

1− ã(s)
s(1− ãB(s))

=
a

1− ãB(0)
=

a
q

,

and the second one follows directly from the relation (6).

4. Time Dependent System State Probabilities

4.1. Definition

For calculation of the time dependent system state probabilities (TDSSP), we use a renewal theory.
In our case, the process J is a regenerative process with a delay (see Figure 2) and its regeneration
times are

S0 = 0, S1 = A1, S2 = S1 + G1, . . . , Sk+1 = Sk + Gk, . . . .

Here, regeneration cycles Gi (i = 1, 2, . . . ) are the time intervals between two successive returns of the
process J into state 1 after a system failure, when one of the system units begins to operate and another
one is being repaired. Thus, if the system functioning begins when both units are in operational state,
the first regeneration period differs from the others and has the duration A1. The state probabilities of
the process J in any time t

πj(t) = P{J(t) = j}, j = 0, 1, 2
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can be represented in terms of its distribution over separate regeneration period

π
(1)
j (t) = P[J(t) = j, t < G], j = 0, 1, 2, (11)

and the renewal function H(t) can be defined as follows:

πi(t) = π
(1,1)
i (t) +

t∫
0

dH(u)π(1)
j (t− u). (12)

The distribution of the process J on this period is of the form

π
(1,1)
j (t) = P[J(t) = j, t < A1] = δj0(1− A(t)). (13)

In terms of the CDF G(t) = P[Gi ≤ t] of RVs Gi, a renewal function H(t) is determined as follows:

H(t) = ∑
k≥1

P
[(

∑
1≤i≤k

Gi

)
≤ t

]
= ∑

k≥1
G∗k(t). (14)

On the basis of the foregoing, the next lemma can be proved. Consider, first of all, the regeneration
cycle distribution.

Lemma 2. The LST of the regeneration cycle is of the form:

g̃(s) = E[e−sG] =
b̃A(s)

1− ãB(s)
. (15)

Proof. The regeneration cycle is a time between two successive visits of state 1 where two events
can occur: either the recovery of a unit in state 1 in time B and subsequent transition to state 0 or a
failure of a second unit in time A happens. Figure 2 shows that RV G satisfies the following stochastic
equation due to independence of RVs A and B:

G =

{
A + G if A > B,

B if A ≤ B.
(16)

Applying LST to this stochastic equation, we obtain

g̃(s) = E
[
e−sG

]
=

∞∫
0

e−stdG(t)

=

∞∫
0

dA(x)
[

B(x)e−sx g̃(s) +
∫

y>x
e−sydB(y)

]
=

= g̃(s)
∞∫

0

e−sxB(x)dA(x) +
∫ ∞

0
e−sy A(y)dB(y) =

= g̃(s)ãB(s) + b̃A(s), (17)

which implies the expression (15) for the LST of the regeneration period.

As a corollary, we obtain the mean length of the regeneration period.
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Corollary 3. The mean length of the regeneration period can be defined as:

E[G] =
aB + bA

q
. (18)

Proof. The proof is obtained by differentiation

E[G] = − d
ds

g̃(s)
∣∣
s=0 = −

b̃′A(0)(1− ãB(0)) + ã′B b̃A(0)
(1− ãB(0))2 .

This expression leads to expression (18) due to properties of ãB(0) and b̃A(0).

Lemma 3. The LST of the system renewal function is given by:

h̃(s) =
b̃A(s)

1− (ãB(s) + b̃A(s))
. (19)

Proof. From the renewal theory, it is well known (and follows from (14)) that the LST of the renewal
function H(t) is defined as h̃(s) = g̃(s)(1− g̃(s))−1. Thus, substitution to this expression of (15) for
g̃(s) leads to (19).

Theorem 2. The LTs π̃j(s) of the TDSSPs πj(t) (j = 0, 1, 2) are of the form:

π̃j(s) = δj0
1− ã(s)

s
+

b̃a(s)
1− (ãB(s) + b̃A(s))

π̃
(1)
j (s), j = 0, 1, 2, (20)

where π̃
(1)
j (s) (j = 0, 1, 2) are the LTs of the TDSSPs π

(1)
j (t) (j = 0, 1, 2) in a separate regeneration period.

These probabilities will be calculated in the next subsection.

Proof. The form of Equations (12) and (14) prompts to calculate the process state probabilities in terms
of their LTs and the renewal function LST

π̃j(s) =
∫ ∞

0
e−stπj(t)dt, h̃(s) =

∫ ∞

0
e−stdH(t).

Applying LT to Equation (12) and taking into account Equation (13), one can obtain

π̃j(s) = δj0
1− ã(s)

s
+ h̃(s)π̃(1)

j (s). (21)

Substitution into this equality of the expression for h̃(s) (19) leads to (20) and completes the proof.

4.2. The State Probabilities in a Separate Regeneration Period

Now, we calculate the TDSSPs in a separate regeneration period. The probability π
(1)
2 (t) can be

calculated very easily in the main level regeneration period.

Lemma 4. The LT of the second TDSSP π
(1)
2 (t) in the main regeneration period is given by

π̃
(1)
2 (s) =

ã(s)− (ãB(s) + b̃A(s))
s(1− ãB(s))

. (22)

Proof. Due to representation of the regeneration period by Formula (16), the event {J(t) = 2, t < G}
occurs if and only if either the event {A1 ≤ t ≤ B1} occurs or the events {t > u = A1 > B1} and
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{J(t− u) = 2, t− u < G} occur. Thus, as it is shown in Figure 2, for the probability π
(1)
2 (t), it holds

that

π
(1)
2 (t) = P[J(t) = 2, t < G] = P[A ≤ t < B] +

t∫
0

dA(u)B(u)π(1)
2 (t− u).

From this equation for the LST, it follows

π̃
(1)
2 (s) =

∞∫
0

e−st A(t)(1− B(t))dt + ãB(s)π
(1)
2 (s)

and

π̃
(1)
2 (s) =

1
1− ãB(s)

∞∫
0

e−st A(t)(1− B(t))dt.

Calculating LTs of the integral in these expressions using partial integration, we obtain

π̃
(1)
2 (s) =

1
1− ãB(s)

∞∫
0

e−st A(t)(1− B(t))dt =

= − 1
s(1− ãB(s))

e−st A(t)(1− B(t))dt
∣∣∞
0 +

+
1

s(1− ãB(s))

∞∫
0

e−st[dA(t)(1− B(t))− A(t)dB(t)] =

=
ã(s)− (ãB(s) + b̃A(s))

s(1− ãB(s))

that completes the proof.

Since the calculation of the probabilities π
(1)
j (j = 0, 1) is not a trivial task, we intend to apply the

theory of DSRP [3,8,12]. According to this theory, the further analysis can be described as follows. As it
was shown in the Equation (12), the process distribution can be represented in terms of its distribution
in embedded regeneration cycles and embedded renewal function. This approach is useful if the
behavior of the process is too complex in order to derive a state distribution directly, but the embedded
regeneration epochs are available. At known regeneration epochs S(1)

k , the distribution in the basic

regeneration period (regeneration period of the first level) π
(1)
i (t) similar to the Equation (12) can

be represented in terms of distributions in embedded regeneration cycles (regeneration cycles of the
second level) π

(2)
j (t) and embedded renewal function H(1)(t) in the following way:

π
(1)
j (t) = π

(2)
j (t) +

∞∫
0

dH(1)(u)π(2)
j (t− u), j = 0, 1, (23)

where
π
(2)
j (t) = P{J(t) = j, t < G(2)}, j = 0, 1

is the process state distribution in a separate regeneration period of the second level. In this case
as embedded regeneration epochs, we choose the random number ν = min{n : An < Bn} of time
epochs

S(1)
1 = A11{A1>B1}, S(1)

2 = S(1)
1 + A21{A1>B1, A2>B2}, . . .

up to time, when the event {An ≤ Bn} occurs for the first time. It means that the time interval G(1)

between embedded regeneration epochs has a distribution G(1)(t) = A(t) and these epochs in the time
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interval F are determined by Equation (5). According to the theory of DSRP, the embedded renewal
function H(1)(t) satisfies the equation

H(1)(t) = A(t) +
t∫

0

dH(1)(u)A(t− u)− F(t), (24)

where F(t) is a CDF of the time between system failures determined by its LST (4).
Similar to the basic case, the solution of Equations (23) and (24) can be represented in terms of

their LTs and LSTs:

π̃
(2)
j (s) =

∞∫
0

e−stπ
(2)
j (t)dt, h̃(1)(s) =

∞∫
0

e−stdH(1)(t).

The next lemma specifies connections between process distributions in the first and in the second level
regeneration cycles in terms of their LTs.

Lemma 5. The TDSSPs in the first and in the second level regeneration cycles in terms of the LTs satisfy the
relation

π̃
(1)
j (s) = π̃

(2)
j (s)

ãB(s)
1− ãB(s)

j = 0, 1. (25)

Proof. Applying LT to Equation (23), we get

π̃
(1)
j (s) = (1 + h̃(1)(s))π̃(2)

j (s), (26)

where, due to (24), the LST h̃(1)(s) of the embedded renewal function H(1)(t) is of the form

h̃(1)(s) = ã(s) + h̃(1)(s)ã(s)− f̃ (s),

which leads in turn to

h̃(1)(s) =
ã(s)− f̃ (s)

1− ã(s)
.

Substitution of this relation to the Equation (26) and taking into account expressions for f̃ (s) from (4)
implies the result (22) that completes the proof.

We have to calculate now only π̃
(2)
j (s) (j = 0, 1).

Lemma 6. In notations (4), the LTs of the second level system state probabilities are:

π̃
(2)
0 (s) =

1
s
(ã(s)− (ãB(s) + b̃A(s)));

π̃
(2)
1 (s) =

1
s
[1− (ã(s) + b̃(s)) + (ãB(s) + b̃A(s))]. (27)

Proof. First, consider appropriate expressions for π̃
(2)
j (t) (j = 0, 1). From Figure 2, it follows that

• The event {J(t) = 0, t < G(1)} occurs if and only if {B ≤ t < A};
• The event {J(t) = 1, t < G(1)} occurs if and only if {t < B ≤ A} or {t < A ≤ B};
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Hence, the appropriate probabilities are

π
(2)
0 (t) = P[B < t < A] = B(t)(1− A(t)),

π
(2)
1 (t) = P[t < B < A] + P[t < A < B] =

=

∞∫
t

(1− A(u))dB(u) +
∞∫

t

(1− B(u))dA(u). (28)

Calculating LTs of these expressions by partial integration in terms of notations (1) gives

π̃
(2)
0 (s) =

∞∫
0

e−stB(t)(1− A(t))dt =

=
1
s

∞∫
0

e−st[dB(t)(1− A(t))− B(t)dA(t)] =

=
1
s
(b̃(s)− (ãB(s) + b̃A(s)));

π̃
(2)
1 (s) =

∞∫
0

e−st
∞∫

t

[(1− A(u))dB(u) + (1− B(u))dA(u)] =

=

∞∫
0

u∫
0

e−stdt [(1− A(u))dB(u) + (1− B(u))dA(u)] =

=
1
s

∞∫
0

(1− e−su) [(1− A(u))dB(u) + (1− B(u))dA(u)] =

=
1
s
[1− (ã(s) + b̃(s)) + (ãB(s) + b̃A(s))]

that ends the proof.

By combining all obtained results for LTs of the TDSSPs, one can get the following statement.

Theorem 3. The LTs of the TDSSPs are of the form:

π̃0(s) =
1− ã(s)

s
+

b̃A(s)
s(1− ãB(s))

× b̃(s)− (ãB(s) + b̃A(s))
1− (ãB(s) + b̃A(s))

;

π̃1(s) =
b̃A(s)

s(1− ãB(s))
× 1− (ã(s) + b̃(s)) + (ãB(s) + b̃A(s))

1− (ãB(s) + b̃A(s))
;

π2(s) =
b̃A(s)

s(1− ãB(s))
× ã(s)− (ãB(s) + b̃A(s))

1− (ãB(s) + b̃A(s))
. (29)

Proof. For j = 0, 1, the proof is presented as a series of equalities:

π̃j(s) = δj0
1− ã(s)

s
+ h̃(s)π(1)

j (s) =

= δj0
1− ã(s)

s
+

g̃(s)
1− g̃(s)

(1 + h̃(1)j (s))π(2)
j (s) =

= δj0
1− ã(s)

s
+

b̃A(s)
1− (ãB(s) + b̃A(s))

ã(s)− f̃ (s)
1− ã(s)

π
(2)
j (s) =

= δj0
1− ã(s)

s
+

b̃A(s)
1− (ãB(s) + b̃A(s))

1
1− ãB(s)

π
(2)
j (s).
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Substitution of expressions (27) for π̃
(2)
j (s) leads to the first two formulas from (29). For the last one,

it holds that

π̃2(s) = h̃(s)π̃(1)
2 (s) =

g̃(s)
1− g̃(s)

π̃
(1)
2 (s) =

b̃A(s)
1− (ãB(s) + b̃A(s))

π̃
(1)
2 (s).

Substitution into this formula of expression (22) for π̃
(1)
2 (s) leads to the last formula from (29).

5. Stationary State Probabilities

To calculate the stationary state probabilities (SSSPs), we use a Tauber theorem. Due to (29),
we get

πj = lim
t→∞

πj(t) = lim
s→0

sπ̃j(s). (30)

By means of this formula, we can prove the next statement.

Theorem 4. The system state stationary probabilities are:

π0 = 1− b
aB + bA

,

π1 =
a + b

aB + bA
− 1,

π2 = 1− a
aB + bA

. (31)

Proof. According to the limit relation (30), we obtain

π0 = lim
s→0

[
1− ã(s) +

b̃A(s)
1− ãB(s)

× b̃(s)− (ãB(s) + b̃A(s))
1− (ãB(s) + b̃A(s))

]
=

= lim
s→0

b̃(s)− (ãB(s) + b̃A(s))
1− (ãB(s) + b̃A(s))

;

π1 = lim
s→0

[
b̃A(s)

1− ãB(s)
× 1− (ã(s) + b̃(s)) + (ãB(s) + b̃A(s))

1− (ãB(s) + b̃A(s))

]
;

= lim
s→0

1− (ã(s) + b̃(s)) + (ãB(s) + b̃A(s))
1− (ãB(s) + b̃A(s))

;

π2 = lim
s→0

b̃A(s)
1− ãB(s)

× ã(s)− (ãB(s) + b̃A(s))
1− (ãB(s) + b̃A(s))

=

= lim
s→0

ã(s)− (ãB(s) + b̃A(s))
1− (ãB(s) + b̃A(s))

.

Using L’Hopital’s rule, we get the next

π0 =
b̃′(0)− (ã′B(0) + b̃′A(0))
−(ã′B(0) + b̃′A(0))

= 1− b
aB + bA

;

π1 =
−(ã(0) + b̃′(0)) + (ã′B(0) + b̃′A(0))

−(ã′B(0) + b̃′A(0))
=

a + b
aB + bA

− 1;

π2 =
ã′(0)− (ã′B(0) + b̃′A(0))
−(ã′B(0) + b̃′A(0))

= 1− a
aB + bA

that completes the proof.



Mathematics 2020, 8, 278 13 of 18

Example 1. As an example, consider a Markov model < M2|M|1 >, when

A(t) = 1− e−αt, B(t) = 1− e−βt.

For the SSSPs, we get in terms of parameter ρ = α
β :

aB + bA =

[
1
α
+

1
β
− 1

α + β

]
=

α2 + αβ + β2

αβ(α + β)

Now, for πj (j = 0, 1, 2), it holds that

π0 = 1− b
ab + bA

= 1− α(α + β)

α2 + αβ + β2 =
1

1 + ρ + ρ2 ;

π1 =
a + b

aB + bA
− 1 =

αβ

α2 + αβ + β2 =
ρ

1 + ρ + ρ2 ;

π2 = 1− a
aB + bA

=
α2

α2 + αβ + β2 =
ρ2

1 + ρ + ρ2 .

This result coincides with those calculated by direct approach using Birth and Death process for the Markov case.

6. Numerical Analysis

In this section, we study the sensitivity of reliability function, TDSSPs and SSSPs to types of
distribution functions and their parameters. The life- and repair-times will follow exponential, PH-type,
Pareto and log-normal distributions. For valid comparison of the results, we choose the parameters of
these distributions in such a way that the mean and the variance of the life and repair times always
coincide with an exponential version, i.e., E[A] = a = 1

α and E[B] = b = 1
β . Now, we give a short

description of the considered life-time distributions A(t) with appropriately selected parameters. The
repair-time distributions B(t) are defined by analogy.
The PH-type distribution PH with representation (η, M),

A(t) = 1− ηeMt1, E[A] = a = −ηM−11 =
1
α

, V[A] = 2ηM−21− a2 =
1
α2 ,

where η = (0.7, 0.1, 0.2) and

M =

−0.80 0.19 0.50
3.35 −3.50 0.10
0.80 0.60 −1.50

 for a = 10, M =

−2.80 1.14 1.00
13.39 −15.00 1.50
2.80 1.60 −4.50

 for a = 2,

M =

−8.00 1.94 5.00
33.48 −35.00 1.00
8.00 6.00 −15.00

 for a = 1, M =

16.00 1.03 10.00
25.43 −35.00 2.00
16.00 10.00 −30.00

 for a = 0.2,

M =

−35.00 18.81 5.00
94.70 −110.00 10.00
10.00 60.00 −80.00

 for b = 0.1.

The Pareto distribution PAR with parameters (k, tmin),

A(t) = 1−
( tmin

t

)k
, t ≥ tmin, k = 1 +

√
2, tmin =

√
2

α(1 +
√

2)
.
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The log-normal distribution LN with parameters (µ, σ),

A(t) = Φ
( ln(x)− µ

σ

)
, µ = ln

1
α
− ln(2)

2
, σ =

√
ln(2).

Now, we fix the parameters of the repair-time distributions to guarantee that E[B] = b = 0.1 and
V[B] = 0.01. In Figure 3, we demonstrate the reliability R1(t) and survival R(t) functions obtained by
numerical inversion with Euler algorithm of the corresponding LTs (8) and (9) in case A ∼ PH(η1, M1)

and B ∼ PH(η2, M2). Obviously, for a ≥ 1, we observe that the functions exhibit a heavier tail. Note
that these graphics are indistinguishable from those obtained for exponential distributions.
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Figure 3. Functions R1(t) (a) and R(t) (b) for A ∼ PH(η1, M1) and B ∼ PH(η1, M1) versus a.

In case it is not feasible to evaluate Laplace–Stieltjes transforms in explicit form (4), different
approaches can be used instead to recover the distribution function via moments. We have tried
the maximum entropy solution and simple fitting by a mixture of exponential distributions. Both
of these methods work and give reasonable approximations. For details about maximum entropy
solution, the reader is referred to Falin et al. [22]. To illustrate this methodology, we limit ourselves
to analyzing the length of the system life time between failures F, when the first, e.g., four moments

E[Fk] = (−1)k dk

dsk f̃ (s)
∣∣∣
s=0

, 1 ≤ k ≤ m = 4, are available,

E[F] = a
q

,

E[F2] =
2a · aB + qa(2)

q2 ,

E[F3] =
3a(qa(2)B + 2a2

B) + q(3a(2)aB + qa(3))
q3 ,

E[F4] =
4a(6a2

B + 6qaBa(2)B + q2a(3)B ) + q(12a(2)a2
B + 4qa(3)aB + q(6a(2)a(2)B + qa(4)))

q4 ,

where a(k) = E[Ak], a(k)B =
∫ ∞

0 xkB(x)dA(x). From the maximum entropy formalism, it is known that
the maximum entropy solution is of the form

f̂ (t) := f̂ (t; m) = e−c0−∑m
k=1 cktk

, t > 0 (32)

with c0 = ln
∫ 1

0 e−∑m
k=1 cktk

dt. The Lagrangian coefficients ck, 1 ≤ k ≤ m, can be calculated as a solution
of the following minimization problem:

g(c1, . . . , cm) = ln
∫ ∞

0
e−∑m

k=1 ck(tk−E[Fk ])dt.
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To solve this problem and obtain optimal c∗k , we use Nelder and Mead’s algorithm. This direct search
method doesn’t use derivatives and hence can be used also in case of an almost singular Hessian of
g(c1, . . . , cm).

In Figure 4, we plot the maximum entropy solution R̂(t) for the function R(t) in the case when
RV A und B either simultaneously A ∼ LN (µ1, σ1) and B ∼ LN (µ2, σ2) or A ∼ PH(η1, M1) and
B ∼ PH(η2, M2). We see that, in the log-normal case, the functions exhibit heavier tails by increasing
of the mean value as. Figures 3a and 4b can be used to compare the maximum entropy solution with a
true function in the case of a PH-type distribution. We may notice no sufficient difference in graphics
of functions.
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Figure 4. Functions R̂(t) for LN (a) and PH (b) distributions versus a.

Figures 5 and 6 provide the TDSSPs for the PH-type distributed life- and repair-times for different
values of a. It should be noticed that the state probability function π0(t) exhibits a concave structure
with a corresponding minimum which is shifted to the left as a decreases. The function π0(t) in
Figure 5a is shown only up to its minimum but further it increases as well and converges to a stationary
value. In addition, we can see how fast the function πi(t) converges to a stationary value πi as a
decreases. We strongly believe that the proposed above methodology of distribution recovery via
moments will also be helpful for evaluation of the TDSSPs, when there are no closed forms of LSTs for
life- and repair-time distributions.
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Figure 5. TDSSPs πi(t), i = 0, 1, 2 for a = 10 (a) and for a = 2 (b).
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Figure 6. TDSSPs πi(t), i = 0, 1, 2 for a = 1 (a) and for a = 0.2 (b).

The results of SSSP and mean lifetime calculation for different types of distribution pairs A(t) and
B(t) are summarized in Tables 1–5. In all cases, the parameters were selected for mean and variance
value constraints, i.e., a = E[A] = 1

α , b = E[B] = 1
β ,V[A] = 1

α2 and V[A] = 1
β2 . In experiments

demonstrated in Table 1, the life- and repair time distributions have the same distributions but with
different parameters fitting to a = 1 and b = 0.1. High mean values for the time to failure and the time
between failures are a consequence of the Pareto distribution property that is defined for t ≥ tmin.

Table 1. πi, i = 0, 1, 2, E[F] and E[F1] versus A(t) and B(t).

A(t), B(t) π0 π1 π2 E[F] E[F1]

E 0.9009 0.0900 0.0090 11.0000 12.0000
PH 0.9009 0.0901 0.0090 11.0051 12.0051
PAR 0.9001 0.0989 0.0010 519.0910 520.0910
LN 0.9003 0.0966 0.0031 39.5976 40.5976

The exponential and PH-type distributions generate almost indistinguishable results. We also
notice that the distributions with heavier tails decrease the probability of two operational units.

Tables 2–5 present calculations for the systems with different pairs of life- and repair times
distributions. The results for exponential and PH-type life type distributions in Tables 2 and 3 are very
similar. In addition, there are no sufficient differences in obtained results between different repair time
distributions.

Table 2. πi, i = 0, 1, 2, E[F] and E[F1], A ∼ E(α) versus B(t).

B(t) π0 π1 π2 E[F] E[F1]

PH 0.9009 0.0901 0.0090 11.0000 12.0000
PAR 0.9007 0.0919 0.0073 10.7972 11.7972
LN 0.9009 0.0903 0.0088 10.9739 11.9739

Table 3. πi, i = 0, 1, 2, E[F] and E[F1], A ∼ PH(η1, M1) versus B(t).

B(t) π0 π1 π2 E[F] E[F1]

E 0.9009 0.0901 0.0090 11.0050 12.0050
PAR 0.9007 0.0919 0.0073 11.0050 12.0050
LN 0.9009 0.0903 0.0088 11.0050 12.0050

As it is shown in Tables 4 and 5, the heavy-tailed Pareto and log-normal life-time distributions
are a cause for reduction of the system failure probability and increase the mean time to failure and
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the mean time between failures. Hence, we notice that reliability and probabilistic characteristics
of the system are more sensitive to changing the form of distribution functions when they exhibit
heavier tails.

Table 4. πi, i = 0, 1, 2, E[F] and E[F1], A ∼ PAR(k, tmin) versus B(t).

B(t) π0 π1 π2 E[F] E[F1]

E 0.9000 0.0993 0.0001 1297.1700 1298.1700
PH 0.9000 0.0999 0.0001 1299.5000 1300.5000
LN 0.9001 0.0994 0.0005 452.3640 453.3640

Table 5. Case 5: πi, i = 0, 1, 2, E[F] and E[F1], A ∼ LN (µ, σ) versus B(t).

B(t) π0 π1 π2 E[F] E[F1]

E 0.9003 0.0969 0.0028 35.4011 36.4011
PH 0.9003 0.0969 0.0028 35.3988 36.3988
PAR 0.9002 0.0973 0.0024 59.4631 60.4631

7. Conclusions

We provide probabilistic and reliability analysis of a cold double redundant renewable system
with generally distributed life and repair times. We derive in closed-form the reliability function,
the time-dependent as well as stationary system state distributions using LSTs and LTs. Numerical
results illustrate sensitivity and effect of distribution functions and their parameters on reliability and
probabilistic measures of the system. The presented system can be made preventive maintainable.
We believe that the corresponding maintenance policy can be effective and leads to an increase in the
system reliability.
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