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Abstract: Cumulative sum control charts that are based on the estimated control limits are extensively
used in practice. Such control limits are often characterized by a Phase I estimation error. The
presence of these errors can cause a change in the location and/or width of control limits resulting in
a deprived performance of the control chart. In this study, we introduce a non-parametric Tukey’s
outlier detection model in the design structure of a two-sided cumulative sum (CUSUM) chart
with estimated parameters for process monitoring. Using Monte Carlo simulations, we studied the
estimation effect on the performance of the CUSUM chart in terms of the average run length and the
standard deviation of the run length. We found the new design structure is more stable in the presence
of outliers and requires fewer amounts of Phase I observations to stabilize the run-length performance.
Finally, a numerical example and practical application of the proposed scheme are demonstrated
using a dataset from healthcare surveillance where received signal strength of individuals’ movement
is the variable of interest. The implementation of classical CUSUM shows that a shift detection in
Phase II that received signal strength data is indeed masked/delayed if there are outliers in Phase
I data. On the contrary, the proposed chart omits the Phase I outliers and gives a timely signal in
Phase II.

Keywords: average run length; control chart; cumulative sum; outlier; health care; statistical
process control

1. Introduction

The cumulative sum (CUSUM) control chart is an effective monitoring tool widely used in
industries and medical processes for quality improvement [1]. The scheme was introduced by [2] as
the substitution of the traditional Shewhart control chart. The CUSUM chart statistic accumulates
the past and current information of the process, which provides more sensitivity to detect small and
moderate shifts as compared to the traditional Shewhart control chart. Designing a CUSUM control
chart requires setting up of the control limit, where the known in-control parameters are often assumed.
However, this assumption is not realistic, and hence the CUSUM chart is implemented in a two-phase
method. In Phase I, random observations are collected from a stable process and used to estimate
the unknown parameters. In Phase II, the estimates from the earlier observations are used for the
construction of the CUSUM chart to monitor and detect changes in a process [3].

The performance of a CUSUM chart to effectively handle changes in the process in Phase II
largely depends on the accuracy of the estimated parameters in Phase I. Furthermore, higher chances
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of estimation error may occur when there exist some extreme values or outliers in the Phase I
observations [4]. Outliers may occur by chance in the process data or could be due to some incorrect
specifications of instruments or as a result of human reporting error. The presence of outliers in a
process data can adversely affect parametric computations. Of course, dropping the outliers from the
sampled observations is the simplest remedy often used to avoid such a problem. However, this may
not be appropriate for small sample data. Thus, outlier detection is key to adequate monitoring of
process parameters. Recently, some non-parametric and robust outlier detection procedures have been
suggested to enhance the performance of control charts in the presence of outliers. For example, see
Schoonhoven, Nazir [5], Nazir, Riaz [6], Amdouni, Castagliola [7], Abid, Nazir [8], Zhang, Li [9] and
Mahmood, Nazir [10], and the references therein.

Hawkins [11], Beckman and Cook [12] and Barnett and Lewis [13] have studied several outlier
detectors. The common parametric outlier detectors are the Student-type and Grubbs-type detectors
mostly used in the regression residuals and when the data is normally distributed (cf. Grubbs [14]
and Tietjen and Moore [15]). For non-normal data, the Tukey’s outlier detection model is more robust
since its independence of the sample mean and standard deviation [16]. Teoh, Khoo [17] suggested the
local outlier factor, a non-parametric outlier detector for detecting the outliers in the multivariate setup.
Knorr, Ng [18] designed a detector based on classification methodology while a detector based on order
statistics was studied by Tse and Balasooriya [19]. Hubert, Dierckx [20] proposed a procedure based
on Hill’s estimator for detecting the influential point in Pareto-type distributions. Recently, Castagliola,
Amdouni [21] introduced a new non-parametric outlier detector for all types of univariate distributions.

In this article, we study the effect of outliers on the performance of a two-sided CUSUM control
chart for monitoring process location with the estimated parameters using the run length (RL) properties.
Furthermore, the study proposed a non-parametric outlier detector, the robust Tukey outlier detection
model in the design structure of a CUSUM control chart for efficient monitoring of the process location
parameters in the presence of the extremes. These measures are evaluated in three cases. The first case
is when the in-control mean is known, and the standard deviation is estimated. Second is when the
in-control standard deviation is known, and the mean is estimated, and the third case is when both the
mean and the standard deviation are unknown. A synthesis table about the research on a two-sided
CUSUM chart is given in Table 1.

Table 1. A synthesis table for the past and current research on a two-sided cumulative sum
(CUSUM) chart.

Shewhart Chart CUSUM Robust CUSUM Current Study

Year 1931 1954 2013 2020
Author(s) Shewhart W.A. Page E.S. Nazir et al. Abbas et al.

Parameter of
Interest Process Mean Process Mean Process Mean Process Mean

Plotting Statistic Sample Mean Cumulative sum of
sample mean

Cumulative sum of
robust estimators
like sample median
etc.

Cumulative sum of
sample mean

Advantages

• Simplicity.
• Quick

detection of
large shifts

• Has a
sensitivity
parameter
that can be
adjusted
according to
shift size.

• Indirectly,
assigns small
weights to the
outliers in
Phase-II using
robust estimators.

• Detects and
deletes the
outliers from
Phase-I samples.

• Phase-II
performance
is not much
affected by
the presence
of outliers
in Phase-I
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Table 1. Cont.

Shewhart Chart CUSUM Robust CUSUM Current Study

Disadvantages

• Has no
sensitivity
parameter
that can be
adjusted
according to
shift size.

• Takes too long
for detecting
small shifts.

• Performance
of the chart is
highly
affected by
the presence
of outliers in
Phase-I samples

• Does not take
care of the
outliers
present in
Phase-I samples.

The rest of the article is organized as follows. In the next section, we gave overview information
on the two-sided CUSUM chart with estimated parameters followed by the performance measure
metrics in terms of the RL properties. Section 3 presents the practitioner-to-practitioner variation on
the performance of the CUSUM chart. The section also discusses the effect of error estimation on
CUSUM control limits. In Section 4, we gave the design structure of the CUSUM chart in the presence
of outliers and analyzed the effect of extremes on its in-control performance. The introduction of the
Tukey outlier detection model in the CUSUM chart is presented in Section 5. An application example
to illustrate the practical use of the scheme is given in Section 6. Finally, we provide some concluding
remark in Section 7.

2. Overview of CUSUM Charts with Estimated Parameters

Let Xi1, Xi2, Xi3, . . . , Xin. for i = 1, 2, 3, . . . be independent random observations of size n from a
normal process, with a known in-control mean µ0 and standard deviation σ0. The upper and lower
sided CUSUM chart statistics for monitoring the upward and downward changes in the process
location parameters are respectively, given by

CUSUM+
i = max

[
0, CUSUM+

i−1 +
√

n
(
Xi − µ0

)
/σ0 − k

]
,

CUSUM−i = min
[
0, CUSUM−i−1 +

√
n
(
Xi − µ0

)
/σ0 + k

] (1)

where max [a, b] and min [a, b] are the maximum and minimum of a and b, respectively. The statistic,
Xi = (1/n)

∑n
j=1 Xi j is the mean of ith sample, and k is the reference value. The initial values, CUSUM+

0
and CUSUM−0 , are usually set equal to zero. The chart gives an out-of-control signal when either
CUSUM+

i or CUSUM−i exceeds the predetermined control limit, h. The h is usually chosen to satisfy
the desired in-control RL property.

However, if the process parameters are unknown, then µ0 and σ0 are replaced by their
corresponding Phase I estimates. Let Xi j, i = 1, 2, 3, . . . , m and j = 1, 2, 3, . . . , n denote m random
samples each of size n of Phase I observations from a stable process. Then the unbiased estimator for
µ0, is the overall sample mean given by

µ̂0 =
1
m

m∑
i=1


∑n

j=1 Xi j

n

 = 1
m

m∑
i=1

Xi (2)

and for the unbiased estimator of σ0 when subgroup size n > 1, we used the pooled standard deviation,

Sp =

√√
1
m

m∑
i=1

S2
i (3)
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recommended by some researchers like Chen [22], Mahmoud, Henderson [23] and Nazir, Abbas [24].
Here, S2

i = 1/(n− 1)
∑n

j=1

(
Xi j −Xi

)
is the variance the of ith Phase I sample. The unbiased estimator is

defined by

σ̂0 =
Sp

c4[m(n− 1) + 1]
(4)

where the constant, c4(w) =
√

2/(w− 1) Γ(w/2)/Γ[(w− 1)/2] is the bias correction constant that
depends on the m and n. Thus, the corresponding two-sided CUSUM chart statistics based on the
estimated parameters are defined as

CUSUM+
i = max

[
0, CUSUM+

i−1 +
√

n
(
Xi − µ̂0

)
/σ̂0 − k

]
,

CUSUM−i = min
[
0, CUSUM−i−1 +

√
n
(
Xi − µ̂0

)
/σ̂0 + k

]
.

(5)

The statistical performance of a CUSUM chart is often evaluated in terms of its RL distribution [25].
For a two-sided CUSUM chart with initial value of CUSUM0 = z, where z ∈ (−h, h), the probability
mass function [26] is given by

pr(rl|z) = P(RL = rl | CUSUM0 = z)

For a single case, rl = 1, we have

pr(1|z) = P(RL = 1 | CUSUM0 = z)
= P(CUSUM1< −h | CUSUM0 = z) + P(CUSUM1 > h | CUSUM0 = z)
= P

(
z +
√

n
(
X1 − µ̂0

)
/σ̂0 + k < −h

)
+ P

(
z +
√

n
(
X1 − µ̂0

)
/σ̂0 − k > h

)
= P(z + Y1 + k < −h) + P(z + Y1 − k > h)
= P(Y1 < −h− z− k) + P(Y1 > h− z + k)

= 1−Φ
(

v
λ (−h− z− k) + δ

λ −
u

λ
√

m

)
+ Φ

(
v
λ (h− z + k) + δ

λ −
u

λ
√

m

)
(6)

where v = σ̂0/σ0, λ = σ/σ0, δ =
√

n(µ− µ0)/σ0, u =
√

mn(µ̂0 − µ0)/σ0 and Φ(.) denotes the standard
normal distribution function. For the case when rl > 1, we have

pr(rl|z) = P(RL = rl | CUSUM0 = z)
= P(RL− 1 = rl− 1, CUSUM1 = 0 | CUSUM0 = z)

+ P(RL− 1 = rl− 1, −h < CUSUM1< 0 | CUSUM0 = z)
+ P(RL− 1 = rl− 1, 0 < CUSUM1< h | CUSUM0 = z)

= P(RL− 1 = rl− 1 | CUSUM0 = z, CUSUM1 = 0) P(CUSUM1 = 0 | CUSUM0 = z )
+ P(RL− 1 = rl− 1 | CUSUM0 = z,−h < CUSUM1 < 0) P(−h < CUSUM1〈0| CUSUM0 = z)
+ P(RL− 1 = rl− 1 | CUSUM0 = z, 0 < CUSUM1 < h) P(0 < CUSUM1< h | CUSUM0 = z)

= pr(rl− 1 | 0)
[
Φ
(

v
λ (0− z− k) + δ

λ −
u

λ
√

m

)
−Φ

(
v
λ (h− z + k) + δ

λ −
u

λ
√

m

)]
+

0∫
−h

pr(rl− 1
∣∣∣ CUSUM1 = y) v

λ φ
(

v
λ (y− z− k) + δ

λ −
u

λ
√

m

)
dy

+
h∫

0
pr(rl− 1

∣∣∣ CUSUM1 = y) v
λ φ

(
v
λ (y− z + k) + δ

λ −
u

λ
√

m

)
dy

(7)

where φ(.) is the standard normal density function. The most common used RL property to evaluate
the performance of a control chart is the average run length (ARL), which represents the average
number of samples plotted on a control chart before a process issues a signal. The ARL measures how
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quickly a control chart responds to changes in a process. If Equation (7) is denoted by g(u, v), for
simplicity, then the ARL can be defined by the integral equation [26,27].

ARL = E(RL) =
∫
∞

−∞

∫
∞

0

1
g(u, v)

1
√

2π
exp

(
−

u2

2

)
f (v)dudv (8)

where f (v) is the scaled chi (χ) distribution with m (n− 1) degrees of freedom from cχ/
√

m (n− 1),
and c is a scaled factor. There is also the standard deviation of run length (SDRL) that sometimes is
used as a supplementary measure. The SDRL is the standard deviation of samples until the chart gives
an out-of-control signal, that is,

SDRL =

√
E(RL2) − [E(RL)]2 (9)

where E
(
RL2

)
=

∫
∞

−∞

∫
∞

0
2−g(u,v)
g2(u,v)

1
√

2π
exp

(
−

u2

2

)
f (v) dudv. For an in-control process, denote the ARL by

ARL0, which in practice, should be sufficiently large to avoid unnecessary false signals. Furthermore,
denote the out-of-control ARL by ARL1, which should be small enough to enable early detection of
changes in a process. The above RL properties of a two-sided CUSUM chart may be obtained by
evaluating f (v), but unfortunately, it cannot be computed exactly. Hence, the need for approximation
using either Gaussian quadrature, Markov chain approximation or Monte Carlo simulation. With
the technological advancements in computing software, we followed the simulation approach as
recommended by several authors of the quality control chart.

3. Variability in the CUSUM Chart Performance

For the location control chart, the process is assumed to be initially stable with an in-control mean
µ0 and standard deviation σ0. After a certain point in time, it changes from the target value µ0 to an
out-of-control value µ1 = µ0 + δσ0 thus, requiring immediate and quick detection of such changes.
Without loss of generality, we assumed that the in-control process is normally distributed. To study the
so-called practitioner-to-practitioner variation on the performance of the CUSUM chart, 100,000 seeded
iterations, each sample size n = 5, were generated from the standard normal distribution N(0, 1). We
then set up the charts with k = 0.25, 0.50, 0.75 and 1.00, using the combinations of the control limit
h = 6.8516, 4.1713, 2.9332 and 1.0894 that corresponds to the in-control ARL0 of 200. We used the
simulation approach based on an algorithm developed in R, to compute the distributional properties
of the CUSUM chart in terms of the ARL and SDRL for different shift values δ when the control chart
parameters µ0 and σ0 are known and the results obtained are presented in Table 2. These results are in
agreement with the theoretical values of a classical two-sided CUSUM chart [2].

Table 2. Run length (RL) properties for the two-sided CUSUM control chart when the in-control mean
and standard deviation are known (n = 5, ARL0 = 200).

k h RL Properties δ

0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 5.00

0.25 6.8516
ARL 200.000 63.588 24.229 14.076 9.862 6.195 4.558 3.060 2.328 2.013

SDRL 187.82 51.58 14.73 6.66 3.90 1.92 1.20 0.66 0.48 0.22

0.50 4.1713
ARL 199.997 83.100 28.438 13.921 8.724 4.918 3.456 2.259 1.772 1.372

SDRL 195.13 77.61 23.27 9.35 4.84 2.04 1.19 0.59 0.47 0.26

0.75 2.9332
ARL 200.008 102.897 37.458 16.792 9.446 4.641 3.063 1.898 1.381 1.094

SDRL 197.68 99.68 34.29 13.74 6.68 2.43 1.29 0.64 0.5 0.29

1.00 2.2137
ARL 200.006 119.968 48.841 21.705 11.406 4.864 2.956 1.695 1.219 1.037

SDRL 198.41 117.92 46.83 19.58 9.35 3.10 1.50 0.68 0.42 0.19

The unknown in-control process parameters, on the other hand, are estimated from m =

10, 50, 100, 500 and 1000 in-control Phase I samples each of subgroup size n = 5. Substituting the
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unknown parameters with their corresponding estimates, the Phase II two-sided CUSUM control
charts were developed. For each fixed value of k = 0.25, 0.50, 0.75 and 1.00, the control limit h was
determined through simulations to obtain the desired in-control ARL0 of 200. Here, all the observations
are from N(µ̂0, σ̂2

0). The ARL and SDRL values are computed using 100,000 simulation iterations. For a
clear consequence on the effect of each estimated process parameter on the performance of a CUSUM
chart, we considered the cases when either the sample mean or sample standard deviation or both
were estimated. Results obtained are given in Tables 3–5.

Table 3. RL properties for the two-sided CUSUM control chart when the in-control standard deviation
is known, and mean is estimated (n = 5, ARL0 = 200).

m k h RL Properties
δ

0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 5.00

10

0.25 7.609
ARL 199.383 104.343 33.241 16.709 11.229 6.884 5.019 3.343 2.551 2.093

SDRL 215.236 139.682 37.559 10.384 5.039 2.223 1.331 0.700 0.538 0.299

0.50 4.447
ARL 200.059 117.118 39.461 16.697 9.759 5.280 3.668 2.370 1.865 1.479

SDRL 211.211 147.580 51.001 15.205 6.407 2.326 1.287 0.622 0.441 0.501

0.75 3.070
ARL 199.955 129.525 49.912 20.360 10.664 4.935 3.205 1.971 1.438 1.122

SDRL 206.777 152.891 63.945 21.998 9.066 2.794 1.395 0.654 0.513 0.327

1.00 2.290
ARL 199.845 139.734 61.592 26.110 12.972 5.174 3.073 1.742 1.247 1.045

SDRL 204.832 158.023 75.770 29.932 12.769 3.601 1.628 0.699 0.442 0.207

50

0.25 7.071
ARL 199.989 72.686 25.880 14.694 10.214 6.387 4.689 3.141 2.389 2.033

SDRL 191.101 70.530 17.200 7.228 4.108 1.985 1.228 0.669 0.505 0.230

0.50 4.246
ARL 200.328 91.515 30.404 14.476 8.958 5.010 3.510 2.289 1.799 1.401

SDRL 196.721 94.950 27.139 10.218 5.097 2.101 1.208 0.595 0.462 0.491

0.75 2.968
ARL 200.300 109.736 39.790 17.480 9.687 4.709 3.097 1.916 1.396 1.100

SDRL 198.429 113.866 39.054 15.037 7.057 2.504 1.309 0.643 0.502 0.300

1.00 2.233
ARL 200.129 125.358 51.433 22.548 11.722 4.928 2.983 1.706 1.226 1.039

SDRL 199.137 128.594 52.200 21.314 9.944 3.184 1.526 0.683 0.427 0.193

100

0.25 6.970
ARL 199.946 68.273 25.057 14.395 10.048 6.297 4.627 3.104 2.360 2.024

SDRL 188.664 60.973 15.890 6.949 4.005 1.950 1.212 0.665 0.496 0.223

0.50 4.212
ARL 200.430 87.512 29.501 14.200 8.846 4.968 3.487 2.275 1.786 1.388

SDRL 196.061 86.556 25.151 9.773 4.973 2.072 1.200 0.593 0.467 0.488

0.75 2.952
ARL 200.415 106.371 38.649 17.134 9.561 4.677 3.082 1.907 1.389 1.097

SDRL 197.742 107.160 36.670 14.361 6.835 2.470 1.300 0.641 0.500 0.297

1.00 2.224
ARL 200.613 122.849 50.144 22.134 11.580 4.902 2.970 1.701 1.223 1.038

SDRL 199.037 123.517 49.436 20.463 9.676 3.147 1.517 0.681 0.425 0.192

500

0.25 6.878
ARL 200.257 64.528 24.400 14.146 9.902 6.219 4.575 3.069 2.334 2.015

SDRL 187.975 53.602 14.933 6.715 3.917 1.927 1.201 0.662 0.486 0.220

0.50 4.180
ARL 200.348 83.934 28.700 13.981 8.748 4.925 3.464 2.262 1.775 1.374

SDRL 195.114 79.434 23.596 9.440 4.861 2.047 1.190 0.589 0.470 0.485

0.75 2.938
ARL 200.330 103.981 37.728 16.880 9.480 4.650 3.067 1.900 1.383 1.095

SDRL 197.702 101.518 34.763 13.883 6.700 2.445 1.293 0.640 0.498 0.294

1.00 2.215
ARL 199.622 120.377 49.084 21.814 11.427 4.867 2.957 1.695 1.221 1.037

SDRL 197.769 119.228 47.308 19.817 9.394 3.105 1.503 0.678 0.423 0.189

1000

0.25 6.870
ARL 200.435 64.137 24.327 14.114 9.893 6.214 4.567 3.065 2.332 2.014

SDRL 187.977 52.723 14.812 6.680 3.920 1.921 1.197 0.661 0.485 0.220

0.50 4.174
ARL 199.921 83.373 28.488 13.939 8.729 4.923 3.460 2.260 1.773 1.372

SDRL 195.128 78.425 23.332 9.391 4.837 2.049 1.189 0.589 0.471 0.484

0.75 2.936
ARL 200.261 103.481 37.557 16.832 9.456 4.644 3.066 1.900 1.382 1.095

SDRL 197.588 100.857 34.560 13.811 6.670 2.434 1.292 0.641 0.498 0.293

1.00 2.215
ARL 200.364 120.208 48.942 21.746 11.422 4.870 2.959 1.695 1.220 1.038

SDRL 198.748 118.622 46.945 19.748 9.394 3.107 1.505 0.679 0.423 0.190
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Table 4. RL properties for the two-sided CUSUM control chart when the in-control mean is known,
and the standard deviation is estimated (n = 5, ARL0 = 200).

m k h RL Properties
δ

0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 5.00

10

0.25 6.363
ARL 200.405 60.102 22.762 13.209 9.262 5.821 4.284 2.881 2.228 1.928

SDRL 307.837 58.830 15.242 6.830 4.001 1.990 1.258 0.712 0.473 0.347

0.50 3.769
ARL 200.186 79.654 26.646 12.915 8.080 4.554 3.205 2.103 1.611 1.256

SDRL 373.977 116.713 27.155 9.947 5.004 2.089 1.210 0.626 0.521 0.437

0.75 2.610
ARL 200.504 101.344 35.910 15.787 8.789 4.289 2.826 1.741 1.279 1.063

SDRL 404.643 185.346 50.475 16.502 7.323 2.518 1.321 0.662 0.458 0.244

1.00 1.947
ARL 199.994 119.320 47.933 20.909 10.796 4.528 2.734 1.568 1.162 1.026

SDRL 419.821 241.979 82.668 27.810 11.547 3.348 1.557 0.671 0.377 0.159

50

0.25 6.750
ARL 200.033 62.844 23.946 13.890 9.733 6.116 4.504 3.021 2.307 2.000

SDRL 208.518 53.158 14.855 6.701 3.919 1.933 1.212 0.675 0.478 0.245

0.50 4.087
ARL 200.596 82.357 28.048 13.731 8.599 4.841 3.402 2.228 1.737 1.344

SDRL 229.818 84.129 23.969 9.497 4.876 2.054 1.191 0.596 0.486 0.476

0.75 2.863
ARL 200.545 102.188 37.047 16.574 9.301 4.560 3.012 1.863 1.358 1.086

SDRL 240.560 113.083 36.671 14.217 6.771 2.453 1.297 0.646 0.491 0.281

1.00 2.155
ARL 200.400 119.428 48.460 21.504 11.254 4.786 2.907 1.666 1.206 1.034

SDRL 246.062 139.068 51.874 20.928 9.711 3.141 1.514 0.678 0.413 0.182

100

0.25 6.794
ARL 199.294 63.155 24.052 13.966 9.786 6.154 4.526 3.037 2.316 2.006

SDRL 197.077 52.484 14.746 6.675 3.906 1.927 1.206 0.668 0.480 0.232

0.50 4.131
ARL 200.578 82.766 28.225 13.823 8.652 4.884 3.431 2.244 1.755 1.359

SDRL 212.753 80.763 23.573 9.417 4.841 2.051 1.189 0.593 0.479 0.480

0.75 2.898
ARL 200.473 102.694 37.300 16.685 9.375 4.607 3.037 1.880 1.370 1.090

SDRL 218.562 106.845 35.484 13.983 6.724 2.450 1.294 0.643 0.494 0.287

1.00 2.183
ARL 199.677 119.568 48.559 21.547 11.325 4.824 2.929 1.680 1.212 1.035

SDRL 220.710 127.965 49.291 20.189 9.534 3.126 1.506 0.678 0.417 0.185

500

0.25 6.848
ARL 200.572 63.552 24.226 14.080 9.862 6.193 4.557 3.059 2.328 2.013

SDRL 190.749 51.951 14.746 6.675 3.904 1.923 1.200 0.663 0.483 0.222

0.50 4.165
ARL 200.223 83.177 28.415 13.913 8.707 4.914 3.453 2.257 1.769 1.369

SDRL 198.681 78.455 23.301 9.377 4.831 2.049 1.189 0.590 0.473 0.483

0.75 2.928
ARL 200.675 103.041 37.404 16.783 9.438 4.635 3.060 1.894 1.380 1.093

SDRL 201.922 101.276 34.557 13.773 6.672 2.436 1.293 0.641 0.497 0.291

1.00 2.209
ARL 200.376 120.019 48.878 21.737 11.392 4.860 2.951 1.693 1.219 1.036

SDRL 203.135 120.335 47.389 19.798 9.403 3.108 1.500 0.678 0.421 0.187

1000

0.25 6.851
ARL 200.377 63.648 24.239 14.082 9.862 6.196 4.558 3.059 2.328 2.013

SDRL 189.279 52.107 14.755 6.672 3.897 1.920 1.200 0.662 0.484 0.221

0.50 4.171
ARL 201.035 83.254 28.515 13.940 8.726 4.918 3.455 2.258 1.772 1.372

SDRL 197.398 78.294 23.316 9.384 4.844 2.045 1.186 0.589 0.471 0.484

0.75 2.933
ARL 200.892 103.327 37.531 16.820 9.435 4.644 3.063 1.898 1.381 1.094

SDRL 200.377 100.860 34.491 13.805 6.655 2.440 1.291 0.640 0.497 0.292

1.00 2.210
ARL 199.787 120.041 48.756 21.688 11.387 4.859 2.956 1.694 1.218 1.037

SDRL 199.806 119.231 47.036 19.668 9.374 3.104 1.506 0.678 0.421 0.189

Table 5. RL properties for the two-sided CUSUM control chart when the in-control mean and standard
deviation are estimated (n = 5, ARL0 = 200).

m k h RL Properties
δ

0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 5.00

10

0.25 7.059
ARL 199.839 102.365 31.358 15.661 10.522 6.458 4.716 3.143 2.408 2.036

SDRL 343.854 200.559 42.962 10.656 5.112 2.294 1.399 0.762 0.538 0.334

0.50 4.010
ARL 200.741 115.384 37.440 15.548 9.038 4.874 3.392 2.204 1.700 1.333

SDRL 403.561 253.069 72.922 17.311 6.674 2.360 1.308 0.649 0.515 0.473

0.75 2.719
ARL 199.462 128.278 48.250 19.298 9.906 4.551 2.945 1.801 1.319 1.080

SDRL 428.983 293.013 104.853 28.936 10.291 2.891 1.420 0.681 0.480 0.272

1.00 2.010
ARL 200.078 139.638 60.751 25.381 12.370 4.810 2.837 1.607 1.181 1.031

SDRL 444.178 321.987 137.963 46.283 17.357 3.932 1.684 0.694 0.396 0.174
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Table 5. Cont.

m k h RL Properties
δ

0.00 0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 5.00

50

0.25 6.917
ARL 199.699 67.771 24.906 14.312 9.989 6.255 4.601 3.085 2.348 2.019

SDRL 198.389 61.666 15.955 6.957 4.018 1.962 1.222 0.671 0.493 0.233

0.50 4.169
ARL 200.336 87.245 29.240 14.097 8.774 4.924 3.462 2.259 1.769 1.373

SDRL 212.799 90.310 25.530 9.843 4.987 2.078 1.203 0.595 0.475 0.484

0.75 2.913
ARL 199.648 105.684 38.333 16.994 9.493 4.631 3.053 1.889 1.376 1.093

SDRL 217.876 113.732 37.851 14.602 6.933 2.478 1.304 0.646 0.496 0.291

1.00 2.193
ARL 199.956 122.288 49.919 22.003 11.479 4.851 2.946 1.685 1.215 1.037

SDRL 221.744 133.825 52.081 21.110 9.823 3.163 1.520 0.680 0.420 0.188

100

0.25 6.917
ARL 199.699 67.771 24.906 14.312 9.989 6.255 4.601 3.085 2.348 2.019

SDRL 198.389 61.666 15.955 6.957 4.018 1.962 1.222 0.671 0.493 0.233

0.50 4.169
ARL 200.336 87.245 29.240 14.097 8.774 4.924 3.462 2.259 1.769 1.373

SDRL 212.799 90.310 25.530 9.843 4.987 2.078 1.203 0.595 0.475 0.484

0.75 2.913
ARL 199.648 105.684 38.333 16.994 9.493 4.631 3.053 1.889 1.376 1.093

SDRL 217.876 113.732 37.851 14.602 6.933 2.478 1.304 0.646 0.496 0.291

1.00 2.193
ARL 199.956 122.288 49.919 22.003 11.479 4.851 2.946 1.685 1.215 1.037

SDRL 221.744 133.825 52.081 21.110 9.823 3.163 1.520 0.680 0.420 0.188

500

0.25 6.868
ARL 199.857 64.355 24.398 14.122 9.885 6.210 4.566 3.067 2.332 2.014

SDRL 189.936 53.531 15.008 6.715 3.920 1.926 1.201 0.663 0.485 0.222

0.50 4.171
ARL 200.044 83.865 28.607 13.953 8.734 4.921 3.457 2.260 1.770 1.372

SDRL 198.638 80.168 23.684 9.432 4.865 2.049 1.190 0.589 0.472 0.484

0.75 2.930
ARL 200.139 103.405 37.595 16.856 9.462 4.637 3.063 1.896 1.380 1.094

SDRL 201.232 102.432 34.956 13.942 6.707 2.443 1.294 0.641 0.497 0.292

1.00 2.209
ARL 199.771 120.239 48.995 21.793 11.431 4.859 2.953 1.694 1.218 1.037

SDRL 202.617 120.900 47.734 19.947 9.460 3.105 1.505 0.679 0.421 0.189

1000

0.25 6.860
ARL 199.887 63.963 24.302 14.097 9.870 6.205 4.563 3.063 2.330 2.014

SDRL 188.749 52.600 14.842 6.692 3.908 1.924 1.201 0.661 0.484 0.221

0.50 4.172
ARL 200.175 83.432 28.542 13.943 8.728 4.917 3.458 2.260 1.772 1.372

SDRL 196.712 78.731 23.482 9.400 4.849 2.046 1.190 0.589 0.472 0.484

0.75 2.933
ARL 200.433 103.187 37.606 16.838 9.465 4.642 3.063 1.898 1.382 1.094

SDRL 199.533 101.221 34.688 13.848 6.697 2.439 1.292 0.640 0.498 0.292

1.00 2.213
ARL 200.351 120.455 49.060 21.776 11.414 4.866 2.958 1.695 1.219 1.037

SDRL 201.344 120.017 47.496 19.808 9.407 3.109 1.505 0.679 0.422 0.189

3.1. Effect of Estimation on the Two-Sided CUSUM Chart Performance

Results in Tables 2 and 3 shows that a small number of Phase I samples, produced out-of-control
ARL and SDRL values (cf. Table 3) that were higher than the known standard values in Table 2,
for a fixed ARL0 = 200. This is an indication that the use of small Phase I samples to estimate the
process mean had direct consequences on the performance of a two-sided CUSUM chart. It follows
from Table 4 that the out-of-control ARL was relatively smaller than the desired. Hence, the effect of
estimating the standard deviation from Phase I samples had less impact on the ARL performance of the
CUSUM chart. However, the very large values of the accompanying SDRLs when was small required
the availability of a large amount of Phase I samples. This was also the case when both the parameters
were estimated (cf. Table 5). In all the three cases, Tables 3–5, the ARL and SDRL values were closer
to the desired values in Table 2 as the number of Phase I observations, m increased. Furthermore,
parameter estimation had a more adverse impact on the performance of a two-sided CUSUM chart
based on smaller reference value k and designed for quick detection of very small changes in the
process mean.

3.2. Effect of Estimation on Two-Sided CUSUM Control Limits

To study the effect of estimation error on the two-sided CUSUM control limits, we used a sample size
of n = 5 and set the in-control ARL0 to 200. For each value of k = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75
and 2.00, the corresponding value of the control limits h were computed based on 100,000 iterations.
Table 6 presents the two-sided CUSUM control limits using values of m ranging from 10 to 1000. Once
again, the use of a small number of Phase I observations m to estimate the unknown in-control chart
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parameters give the control limit that is higher or lower than the desired value when the mean or
the standard deviation is estimated, respectively. Similar to the ARL performance and the displayed
percentage error curves in Figure 1, quite a larger number of Phase I samples was required to achieve
the desired control limit. The problem, however, is the availability of such an amount of Phase I data
in practical applications. Hence, the need to design a more robust scheme that can minimize the
practitioner-to-practitioner variation, particularly when extreme values or outliers was involved.

Table 6. Control limits for the two-sided CUSUM chart when the in-control mean and standard
deviation are either known or estimated (n = 5, ARL0 = 200).

µ σ m
k

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

known known - 6.852 4.171 2.933 2.214 1.741 1.387 1.089 0.819

estimated known

10 7.609 4.447 3.070 2.290 1.789 1.423 1.120 0.845
20 7.306 4.331 3.010 2.257 1.768 1.407 1.106 0.832
30 7.199 4.290 2.986 2.244 1.760 1.400 1.100 0.829
50 7.071 4.246 2.968 2.233 1.753 1.395 1.096 0.826

100 6.970 4.212 2.952 2.224 1.747 1.390 1.092 0.822
500 6.878 4.180 2.938 2.215 1.742 1.388 1.090 0.820
1000 6.870 4.174 2.936 2.215 1.741 1.387 1.090 0.819

known estimated

10 6.363 3.769 2.610 1.947 1.518 1.195 0.916 0.650
20 6.598 3.957 2.758 2.070 1.620 1.281 0.994 0.729
30 6.689 4.030 2.816 2.117 1.660 1.315 1.025 0.758
50 6.750 4.087 2.863 2.155 1.690 1.344 1.050 0.781

100 6.794 4.131 2.898 2.183 1.716 1.365 1.070 0.799
500 6.848 4.165 2.928 2.209 1.736 1.382 1.086 0.814
1000 6.851 4.171 2.933 2.210 1.739 1.386 1.088 0.818

estimated estimated

10 7.059 4.010 2.719 2.010 1.557 1.223 0.938 0.672
20 7.051 4.110 2.827 2.107 1.645 1.299 1.009 0.743
30 7.019 4.140 2.866 2.144 1.675 1.328 1.035 0.768
50 6.973 4.159 2.896 2.171 1.701 1.352 1.057 0.788

100 6.917 4.169 2.913 2.193 1.721 1.370 1.074 0.804
500 6.868 4.171 2.930 2.209 1.737 1.384 1.086 0.815
1000 6.860 4.172 2.933 2.213 1.740 1.386 1.088 0.818

Mathematics 2020, 8, x FOR PEER REVIEW 11 of 31 

 

3.1. Effect of Estimation on the Two-Sided CUSUM Chart Performance 

Results in Tables 2 and 3 shows that a small number of Phase I samples, 𝑚 produced out-of-
control ARL and SDRL values (cf. Table 3) that were higher than the known standard values in Table 
2, for a fixed ARL = 200. This is an indication that the use of small Phase I samples to estimate the 
process mean had direct consequences on the performance of a two-sided CUSUM chart. It follows 
from Table 4 that the out-of-control ARL was relatively smaller than the desired. Hence, the effect of 
estimating the standard deviation from Phase I samples had less impact on the ARL performance of 
the CUSUM chart. However, the very large values of the accompanying SDRLs when 𝑚 was small 
required the availability of a large amount of Phase I samples. This was also the case when both the 
parameters were estimated (cf. Table 5). In all the three cases, Tables 3–5, the ARL and SDRL values 
were closer to the desired values in Table 2 as the number of Phase I observations, 𝑚 increased. 
Furthermore, parameter estimation had a more adverse impact on the performance of a two-sided 
CUSUM chart based on smaller reference value 𝑘 and designed for quick detection of very small 
changes in the process mean. 

3.2. Effect of Estimation on Two-Sided CUSUM Control limits 

To study the effect of estimation error on the two-sided CUSUM control limits, we used a sample 
size of 𝑛 = 5  and set the in-control ARL  to 200.  For each value of 𝑘 =0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00, the corresponding value of the control limits ℎ were 
computed based on 100,000 iterations. Table 6 presents the two-sided CUSUM control limits using 
values of 𝑚 ranging from 10 to 1000. Once again, the use of a small number of Phase I observations 𝑚 to estimate the unknown in-control chart parameters give the control limit that is higher or lower 
than the desired value when the mean or the standard deviation is estimated, respectively. Similar to 
the ARL performance and the displayed percentage error curves in Figure 1, quite a larger number 
of Phase I samples was required to achieve the desired control limit. The problem, however, is the 
availability of such an amount of Phase I data in practical applications. Hence, the need to design a 
more robust scheme that can minimize the practitioner-to-practitioner variation, particularly when 
extreme values or outliers was involved. 

-0.16

-0.12

-0.08

-0.04

0.00

10 20 30 50 100 500 1000

Pe
rc

en
ta

ge
 e

rr
or

m

estimated mean

k=0.25 k=0.5
k=0.75 k=1
k=1.25 k=1.5
k=1.75 k=2 0.00

0.10

0.20

0.30

10 20 30 50 100 500 1000

Pe
rc

en
ta

ge
 e

rr
or

m

estimated standard deviation 

k=0.25 k=0.5
k=0.75 k=1
k=1.25 k=1.5

Mathematics 2020, 8, x FOR PEER REVIEW 12 of 31 

 

 
Figure 1. Control limits for the two-sided CUSUM chart when the in-control mean and standard 
deviation are either known or estimated (𝑛 = 5, ARL = 200). 

Table 6. Control limits for the two-sided CUSUM chart when the in-control mean and standard 
deviation are either known or estimated (𝑛 = 5, ARL = 200). 

µ σ m 
k 

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
known known - 6.852 4.171 2.933 2.214 1.741 1.387 1.089 0.819 

estimated known 

10 7.609 4.447 3.070 2.290 1.789 1.423 1.120 0.845 
20 7.306 4.331 3.010 2.257 1.768 1.407 1.106 0.832 
30 7.199 4.290 2.986 2.244 1.760 1.400 1.100 0.829 
50 7.071 4.246 2.968 2.233 1.753 1.395 1.096 0.826 

100 6.970 4.212 2.952 2.224 1.747 1.390 1.092 0.822 
500 6.878 4.180 2.938 2.215 1.742 1.388 1.090 0.820 
1000 6.870 4.174 2.936 2.215 1.741 1.387 1.090 0.819 

known estimated 

10 6.363 3.769 2.610 1.947 1.518 1.195 0.916 0.650 
20 6.598 3.957 2.758 2.070 1.620 1.281 0.994 0.729 
30 6.689 4.030 2.816 2.117 1.660 1.315 1.025 0.758 
50 6.750 4.087 2.863 2.155 1.690 1.344 1.050 0.781 

100 6.794 4.131 2.898 2.183 1.716 1.365 1.070 0.799 
500 6.848 4.165 2.928 2.209 1.736 1.382 1.086 0.814 
1000 6.851 4.171 2.933 2.210 1.739 1.386 1.088 0.818 

estimated estimated 

10 7.059 4.010 2.719 2.010 1.557 1.223 0.938 0.672 
20 7.051 4.110 2.827 2.107 1.645 1.299 1.009 0.743 
30 7.019 4.140 2.866 2.144 1.675 1.328 1.035 0.768 
50 6.973 4.159 2.896 2.171 1.701 1.352 1.057 0.788 

100 6.917 4.169 2.913 2.193 1.721 1.370 1.074 0.804 
500 6.868 4.171 2.930 2.209 1.737 1.384 1.086 0.815 
1000 6.860 4.172 2.933 2.213 1.740 1.386 1.088 0.818 

4. The Outliers and CUSUM Chart with Estimated Parameters 

The effect of estimation errors on the performance of a CUSUM chart may further be strained if 
there exist some extreme values in the Phase I samples. Both the in-control and the out-of-control 
ARL and SDRL values will be different from those of the theoretical CUSUM charts. In this section, 
we evaluated the effects of the outliers on the performance of a two-sided CUSUM control chart with 
estimated parameters. Using a simulation approach, outliers were generated from the mixture 
distribution, where (1 − 𝛼) 100%  regular observations were from 𝑁(�̂�, 𝜎 )  and the remaining 

-0.05

0.00

0.05

0.10

0.15

0.20

10 20 30 50 100 500 1000

Pe
rc

en
ta

ge
 e

rr
or

m

estimated mean and standard deviation 

k=0.25 k=0.5
k=0.75 k=1
k=1.25 k=1.5

Figure 1. Control limits for the two-sided CUSUM chart when the in-control mean and standard
deviation are either known or estimated (n = 5, ARL0 = 200).
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4. The Outliers and CUSUM Chart with Estimated Parameters

The effect of estimation errors on the performance of a CUSUM chart may further be strained
if there exist some extreme values in the Phase I samples. Both the in-control and the out-of-control
ARL and SDRL values will be different from those of the theoretical CUSUM charts. In this section,
we evaluated the effects of the outliers on the performance of a two-sided CUSUM control chart
with estimated parameters. Using a simulation approach, outliers were generated from the mixture
distribution, where (1− α) 100% regular observations were from N(µ̂, σ̂2) and the remaining α100%
observations came from a multiple of χ2

(n) with n degrees of freedom, [28]. That is, each observation
was generated from a mixture distribution

f (x) = (1− α) N
(
µ, σ2

)
+ α

[
N
(
µ, σ2

)
+ wχ2

(1)

]
(10)

where α is the probability of having a multiple of χ2
(1)

added and w ≥ 1 is the outlier model multiplier.
A value of α = 0 indicates no presence of an outlier in the sampled data. Without loss of generality, we
set µ = 0 and σ2 = 1. The values of w is set equal to 1, 2 or 3 corresponding to the small, medium and
large outlier, respectively.

The mean and the variance of mixture distribution in Equation (10) are derived in Equations (11)
and (12) respectively.

E(X) =
2∑

p=1
ωpµp

= (1− α)E
[
N
(
µ, σ2

)]
+ αE

[
N
(
µ, σ2

)
+ wχ2

(1)

]
= (1− α)µ+ α(µ+ w)

= µ+ αw

(11)

Var(X) =
2∑

p=1
ωp

(
µ2

p + σ2
p −

{
E(X)

}2
)

= (1− α)
[(

E
(
N
(
µ, σ2

)))2
+ V

(
N
(
µ, σ2

))
−

{
E(X)

}2
]

+ α

[(
E
(
N
(
µ, σ2

)
+ wχ2

(1)

))2
+ V

(
N
(
µ, σ2

)
+ wχ2

(1)

)
−

{
E(X)

}2
]

= (1− α)[µ2 + σ2
−

{
µ+ αw

}2] + α[
{
µ+ w

}2 + σ2 + 2w2
−

{
µ+ αw

}2]

= (1− α)
[
µ2 + σ2

− µ2
− α2w2

− 2αwµ
]
+ α

[
µ2 + w2 + 2wµ+ σ2 + 2w2

− µ2
− α2w2

− 2αwµ
]

= (1− α)
[
σ2
− α2w2

− 2αwµ
]
+ α

[
w2 + 2wµ+ σ2 + 2w2

− α2w2
− 2αwµ

]
= σ2(1− α+ α) − 2αwµ(1− α+ α) − α2w2(1− α+ α) + αw2 + 2αwµ+ 2αw2

= σ2
− 2αwµ− α2w2 + αw2 + 2αwµ+ 2αw2

= σ2 + 3αw2
− α2w2

= σ2 + α(3− α)w2

(12)

We set up a CUSUM chart using the same design parameters, n, k, h and m as in Section 3.
he in-control ARL and SDRL values for the two-sided CUSUM chart based on this model with
α = 0.00, 0.01, 0.02, 0.03 and 0.04 are presented in Tables 7–9. To save space, we restricted the study to
in-control cases having seen the behavioral pattern for the out-of-control cases in Tables 3–5.
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Table 7. In-control average run length (ARL) and standard deviation run length (SDRL) values for the two-sided CUSUM control chart in the presence of outlier when
the in-control standard deviation is known, and mean is estimated (n = 5, ARL0 = 200).

m k h RL Properties
w = 1 w = 2 w = 3

α α α

0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04

10

0.25 7.609
ARL 199 198 196 194 192 199 195 190 182 178 199 192 183 173 163

SDRL 215 214 213 212 212 215 213 211 206 205 215 213 208 204 198

0.50 4.447
ARL 200 199 198 196 195 200 195 191 187 180 200 194 185 177 167

SDRL 211 210 211 210 209 211 209 206 206 200 211 210 204 201 196

0.75 3.070
ARL 200 199 199 198 196 200 198 194 189 184 200 193 187 179 171

SDRL 207 207 207 206 207 207 206 204 203 198 207 203 202 198 193

1.00 2.290
ARL 200 199 198 197 196 200 197 195 189 186 200 195 189 182 176

SDRL 205 203 204 202 202 205 202 202 198 196 205 201 199 195 191

50

0.25 7.071
ARL 200 198 197 194 192 200 197 190 181 169 200 192 179 164 147

SDRL 191 189 190 187 186 191 189 184 177 169 191 187 177 166 154

0.50 4.246
ARL 200 199 198 196 194 200 197 192 186 178 200 194 186 172 158

SDRL 197 195 195 194 192 197 195 191 186 179 197 193 185 176 165

0.75 2.968
ARL 200 199 199 198 195 200 198 195 189 184 200 196 188 179 167

SDRL 198 197 198 197 195 198 198 195 190 185 198 195 189 182 172

1.00 2.233
ARL 200 200 199 199 197 200 198 195 192 188 200 197 191 183 174

SDRL 199 199 198 198 196 199 197 195 191 190 199 196 192 186 177

100

0.25 6.97
ARL 200 199 197 195 191 200 196 189 180 168 200 193 178 161 141

SDRL 189 188 186 185 180 189 187 179 172 163 189 183 172 159 142

0.50 4.212
ARL 200 200 200 196 195 200 198 193 187 177 200 196 185 173 156

SDRL 196 196 196 192 192 196 193 189 185 176 196 192 183 173 158

0.75 2.952
ARL 200 201 199 197 196 200 200 194 191 185 200 196 189 178 168

SDRL 198 199 197 195 195 198 196 192 189 184 198 195 189 178 168

1.00 2.224
ARL 201 199 201 199 197 201 199 196 194 188 201 199 192 185 173

SDRL 199 198 200 197 197 199 197 195 193 188 199 198 192 185 174
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Table 7. Cont.

m k h RL Properties
w = 1 w = 2 w = 3

α α α

0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04

500

0.25 6.878
ARL 200 199 197 195 189 200 196 189 177 164 200 194 179 156 134

SDRL 188 187 187 183 178 188 184 177 166 154 188 181 168 146 126

0.50 4.18
ARL 200 201 199 197 193 200 199 192 186 175 200 196 185 171 153

SDRL 195 195 194 192 189 195 193 188 181 172 195 191 181 167 151

0.75 2.938
ARL 200 201 199 197 195 200 200 195 190 183 200 198 191 180 166

SDRL 198 198 196 195 193 198 197 193 187 180 198 195 190 179 164

1.00 2.215
ARL 200 200 199 199 196 200 198 197 192 188 200 198 193 185 174

SDRL 198 199 197 197 193 198 196 196 190 185 198 196 191 182 173

1000

0.25 6.870
ARL 200 201 198 193 190 200 198 190 178 163 200 194 178 156 134

SDRL 188 189 186 181 179 188 186 178 166 153 188 182 167 144 124

0.50 4.174
ARL 200 200 198 197 194 200 198 193 186 176 200 196 185 171 153

SDRL 195 195 193 191 189 195 193 188 181 171 195 190 180 167 149

0.75 2.936
ARL 200 199 199 197 196 200 200 197 191 183 200 198 191 179 166

SDRL 198 195 197 194 194 198 198 194 189 180 198 195 189 175 165

1.00 2.215
ARL 200 199 200 198 198 200 200 198 192 188 200 198 192 185 173

SDRL 199 199 199 196 197 199 198 195 190 186 199 196 191 183 172
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Table 8. In-control ARL and SDRL values for the two-sided CUSUM control chart in the presence of an outlier when the in-control mean is known, and the standard
deviation is estimated (n = 5, ARL0 = 200).

m k h RL Properties
w = 1 w = 2 w = 3

α α α

0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04

10

0.25 6.363
ARL 200 232 271 308 369 200 1252 2827 5180 7632 200 5766 13,029 22,028 33,346

SDRL 308 720 1271 1442 2202 308 25,588 41,781 59,472 72,550 308 66,775 101,057 131,849 163,026

0.50 3.769
ARL 200 253 320 402 498 200 2374 5025 8677 13,606 200 8574 19,938 32,755 49,639

SDRL 374 1216 1839 2660 3384 374 39,571 59,416 79,131 100,612 374 82,482 127,093 162,747 200,013

0.75 2.610
ARL 201 266 374 471 569 201 2614 6115 10,306 15,478 201 10,440 23,698 39,039 56,370

SDRL 405 1397 2665 3349 3891 405 41,686 66,631 86,598 107,915 405 92,015 139,038 178,484 213,382

1.00 1.947
ARL 200 289 386 484 599 200 3152 6751 10,527 16,605 200 10,322 24,092 40,720 59,187

SDRL 420 1851 2745 3539 4090 420 46,733 69,185 87,750 111,809 420 91,131 140,118 181,993 218,900

50

0.25 6.750
ARL 200 213 229 245 262 200 249 313 399 522 200 320 598 1020 2048

SDRL 209 225 249 271 298 209 304 455 892 1381 209 958 6844 9008 19,563

0.50 4.087
ARL 201 220 240 263 287 201 274 377 550 767 201 413 1043 2332 5481

SDRL 230 259 294 328 379 230 453 1093 4144 4185 230 2854 11,610 24,597 45,072

0.75 2.863
ARL 201 221 245 272 299 201 288 425 614 970 201 499 1284 3489 7734

SDRL 241 274 314 379 417 241 655 1509 2443 7384 241 5406 14,261 32,417 56,026

1.00 2.155
ARL 200 223 248 275 309 200 295 453 713 1113 200 517 1622 3965 9219

SDRL 246 285 340 383 450 246 628 3646 5086 8738 246 5297 19,603 35,460 63,990

100

0.25 6.794
ARL 199 212 226 242 257 199 240 294 360 440 199 284 416 621 984

SDRL 197 210 229 246 266 197 250 329 427 573 197 334 636 1439 2903

0.50 4.131
ARL 201 218 237 258 281 201 258 335 437 582 201 333 555 1005 1883

SDRL 213 235 258 284 315 213 301 428 616 953 213 1159 1079 5010 9240

0.75 2.898
ARL 200 221 243 265 292 200 267 358 494 671 200 351 649 1290 2600

SDRL 219 244 276 302 338 219 330 495 799 1297 219 586 2578 7319 14,579

1.00 2.183
ARL 200 221 242 270 295 200 269 376 517 718 200 360 700 1417 3124

SDRL 221 249 277 321 349 221 340 555 948 1354 221 595 2335 6141 18,020
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Table 8. Cont.

m k h RL Properties
w = 1 w = 2 w = 3

α α α

0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04

500

0.25 6.848
ARL 201 213 227 242 257 201 238 284 340 411 201 272 375 523 735

SDRL 191 203 218 232 248 191 228 278 337 412 191 267 381 550 807

0.50 4.165
ARL 200 218 237 255 276 200 251 317 399 510 200 298 454 702 1098

SDRL 199 216 236 256 280 199 253 326 416 543 199 306 492 796 1317

0.75 2.928
ARL 201 218 240 261 286 201 257 333 435 565 201 315 499 814 1350

SDRL 202 221 243 265 292 202 264 347 463 613 202 330 554 963 1698

1.00 2.209
ARL 200 219 241 264 291 200 261 343 455 597 200 321 527 882 1509

SDRL 203 222 247 272 298 203 269 361 488 652 203 341 595 1052 1921

1000

0.25 6.851
ARL 200 214 227 240 256 200 237 284 339 405 200 269 368 514 717

SDRL 189 203 216 228 244 189 227 273 330 401 189 260 362 517 740

0.50 4.171
ARL 201 219 235 254 277 201 251 313 396 501 201 295 445 681 1058

SDRL 197 216 233 251 277 197 249 314 402 512 197 298 457 726 1138

0.75 2.933
ARL 201 220 240 262 285 201 258 332 432 558 201 311 490 784 1280

SDRL 200 220 240 263 288 200 259 338 442 578 200 318 516 840 1420

1.00 2.210
ARL 200 219 242 265 289 200 261 340 446 586 200 317 511 844 1408

SDRL 200 221 244 267 290 200 264 349 460 612 200 329 542 911 1580
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Table 9. In-control ARL and SDRL values for the two-sided CUSUM control chart in the presence of an outlier when the in-control mean and standard deviation are
estimated (n = 5, ARL0 = 200).

m k h RL Properties
w = 1 w = 2 w = 3

α α α

0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04

10

0.25 7.059
ARL 200 220 238 257 264 200 289 420 506 522 200 415 667 834 1018

SDRL 344 579 802 1325 880 344 2389 8400 8836 7702 344 6970 12,597 13,937 15,538

0.50 4.010
ARL 201 244 315 333 390 201 691 1221 2017 2556 201 2465 4835 7722 10,719

SDRL 404 1375 5270 4092 5614 404 15,507 21,367 30,537 34,157 404 38,100 54,564 70,640 84,741

0.75 2.719
ARL 199 291 340 409 497 199 1402 2839 4258 6234 199 4856 10,452 18,230 25,507

SDRL 429 5091 5290 5868 8207 429 27,821 40,327 50,689 62,254 429 58,258 87,142 116,950 139,084

1.00 2.010
ARL 200 280 396 468 642 200 1919 3740 6103 8942 200 7038 15,601 24,673 35,470

SDRL 444 2471 7494 7088 11,812 444 33,960 48,185 62,320 77,490 444 72,692 109,882 138,233 165,823

50

0.25 6.917
ARL 201 212 227 233 242 201 238 268 297 319 201 265 323 366 391

SDRL 212 228 250 259 270 212 276 331 381 429 212 355 474 560 616

0.50 4.169
ARL 201 218 236 253 271 201 260 326 405 482 201 333 495 715 977

SDRL 231 259 290 312 345 231 371 528 684 894 231 678 1371 2239 3977

0.75 2.913
ARL 200 222 242 265 289 200 276 372 497 642 200 393 719 1281 2057

SDRL 240 282 313 352 392 240 454 738 1374 1769 240 1885 4811 9559 14,183

1.00 2.193
ARL 199 221 247 273 297 199 282 402 554 770 199 435 925 1826 3613

SDRL 244 281 333 382 419 244 488 928 1704 3350 244 1775 7761 14,799 28,661

100

0.25 6.917
ARL 200 211 223 232 241 200 234 266 291 310 200 262 313 350 368

SDRL 198 210 225 237 248 198 242 285 318 345 198 287 356 409 440

0.50 4.169
ARL 200 217 234 252 268 200 252 311 375 441 200 302 434 591 767

SDRL 213 231 256 277 299 213 285 378 470 570 213 388 606 906 1233

0.75 2.913
ARL 200 219 238 261 280 200 260 337 430 546 200 330 526 816 1212

SDRL 218 243 266 298 325 218 311 434 584 811 218 472 895 1682 2721

1.00 2.193
ARL 200 222 242 268 290 200 269 358 474 619 200 347 596 1016 1662

SDRL 222 252 278 311 339 222 336 489 703 994 222 586 1330 2710 4963
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Table 9. Cont

m k h RL Properties
w = 1 w = 2 w = 3

α α α

0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04 0.00 0.01 0.02 0.03 0.04

500

0.25 6.868
ARL 200 210 222 232 240 200 233 263 286 302 200 260 311 340 352

SDRL 190 201 212 222 231 190 224 255 280 295 190 253 306 341 352

0.50 4.171
ARL 200 215 232 248 264 200 247 302 359 414 200 288 402 528 662

SDRL 199 216 231 247 265 199 248 307 369 429 199 297 420 561 712

0.75 2.93
ARL 200 218 237 258 277 200 256 323 403 496 200 307 459 670 947

SDRL 201 220 240 264 281 201 262 336 424 530 201 320 499 747 1071

1.00 2.209
ARL 200 219 240 262 285 200 260 335 430 545 200 317 495 762 1164

SDRL 203 224 244 269 296 203 269 350 456 590 203 335 545 865 1382

1000

0.25 6.860
ARL 200 212 223 232 239 200 234 264 287 302 200 258 310 339 346

SDRL 189 200 211 222 228 189 224 254 275 293 189 248 302 329 336

0.50 4.172
ARL 200 215 232 248 263 200 247 300 357 416 200 289 399 523 653

SDRL 197 213 230 245 261 197 244 301 359 418 197 289 406 534 675

0.75 2.933
ARL 200 218 238 257 277 200 256 322 398 491 200 304 453 659 927

SDRL 200 219 239 258 278 200 257 326 409 507 200 309 466 690 986

1.00 2.213
ARL 200 218 240 262 285 200 259 333 425 542 200 313 489 752 1124

SDRL 201 218 240 265 289 201 264 338 436 562 201 320 511 801 1219
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From Tables 7–9, it was observed that estimating µ, σ or both in the presence of outliers, α > 0 to set
up a CUSUM chart had a significant effect on the ARL and SDRL performance of the chart. Particularly,
when the number of Phase I samples, m was small. The in-control ARLs were approximately equal to
the limiting value of 200 when α = 0. As expected, the RL values were directly proportional to k and α.
That is, the in-control ARL and SDRL deteriorated with the increasing number of the false alarm rate
as k, α or both the design parameters increased. In fact, the deterioration level became more alarming
with the increase in an outlier metric multiplier, w > 1. Furthermore, as the number of Phase I samples
increased, the ARL approached its theoretical value and much faster than its corresponding SDRL
(cf. Table 7). However, this was not the case for Tables 8 and 9, when m ≥ 500. In general, increasing
the number of Phase I data will reduce the occurrence of false alarm and bring the RL to be closer to
the theoretical value. Unfortunately, this may not be visible in practice. Thus, we suggest a design
structure based on the robust Tukey outlier detection model.

5. Performance of the Tukey CUSUM Control Chart

In this section, we studied the performance of the proposed Tukey model based CUSUM control
chart with estimated parameters. Let X1, X2, . . . , Xn denote Phase I samples and X̌ be the median
samples. Then an observation Xk from X1, X2, . . . , Xn is declared as an outlier if

∣∣∣Xk − X̌
∣∣∣ > p× IQR,

where IQR = Q3 − Q1 is the interquartile range. Q1 and Q3 are the first and third quartile of
X1, X2, . . . , Xn, corresponding to the 25th and 75th percentile, respectively. The constant, p is the
confidence factor commonly chosen between 1.5 and 3.0. The confidence factor of Tukey’s detector is
selected so that it is not too small leading to unnecessary screening of observations that are not outliers,
and at the same time it should not be too large implying the inability of the detector to detect any
outliers. For the said reason, p is chosen to be 2.2 for the current study (for more details on the Tukey’s
outlier detector see, Tukey [28]).

Once an outlier is detected from the Phase I sample using Tukey’s model, it is screened and
the remaining data points are used to estimate mean and variance of the process. After screening
the suspected outliers, distribution of the remaining data points in Phase I is revised from a mixture
distribution to a truncated mixture distribution. Here, the truncation limits are set to be LDL =

X̌ − 2.2× IQR and UDL = X̌ + 2.2× IQR where LDL and UDL are lower and upper detection limits,
respectively. Finally, the truncated mean and variance for the Phase I data points are defined,
respectively, as follows:

E(X | LDL < X < UDL) =

∫ UDL
LDL xg(x)dx

FX(UDL) − Fx(LDL)
(13)

Var(X | LDL < X < UDL) =

∫ UDL
LDL x2g(x)dx

FX(UDL) − Fx(LDL)
− [E(X | LDL < X < UDL)]2 (14)

where g(x) =
{

f (x) ∀ LDL < x < UDL
0 otherwise

and FX(.). is the cumulative distribution function of X. The

truncated mean and variance in Equations (13) and (14) are evaluated for different values of α and w,
and are given in Table 10.
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Table 10. Non-truncated and truncated mean and variance of mixture distribution of N(0, 1) and χ2
(1)

.

α

w

1 2 3

X X | LDL<X<UDL X X | LDL<X<UDL X X | LDL<X<UDL

0
E(.) 0 −0.00007 0 0.0001 0 0.00006
V(.) 1 0.97097 1 0.97101 1 0.971

0.01
E(.) 0.01 0.0051 0.02 0.00564 0.03 0.00539
V(.) 1.0299 0.97727 1.1196 0.97881 1.2691 0.97878

0.02
E(.) 0.02 0.01064 0.04 0.01127 0.06 0.01083
V(.) 1.0596 0.98373 1.2384 0.9866 1.5364 0.98683

0.03
E(.) 0.03 0.01624 0.06 0.01713 0.09 0.01664
V(.) 1.0891 0.99016 1.3564 0.99458 1.8019 0.99498

0.04
E(.) 0.04 0.02158 0.08 0.02323 0.12 0.0223
V(.) 1.1184 0.99666 1.4736 1.00311 2.0656 1.00392

0.05
E(.) 0.05 0.027 0.1 0.02928 0.15 0.0284
V(.) 1.1475 1.00323 1.59 1.01156 2.3275 1.01339

0.06
E(.) 0.06 0.03274 0.12 0.03568 0.18 0.03429
V(.) 1.1764 1.00988 1.7056 1.02088 2.5876 1.02238

0.07
E(.) 0.07 0.03847 0.14 0.04203 0.21 0.04068
V(.) 1.2051 1.01709 1.8204 1.02994 2.8459 1.03251

0.08
E(.) 0.08 0.04424 0.16 0.04859 0.24 0.04752
V(.) 1.2336 1.02381 1.9344 1.03942 3.1024 1.04268

0.09
E(.) 0.09 0.05017 0.18 0.05536 0.27 0.0539
V(.) 1.2619 1.03107 2.0476 1.04928 3.3571 1.05381

0.1
E(.) 0.1 0.05596 0.2 0.06209 0.3 0.06083
V(.) 1.29 1.03811 2.16 1.05968 3.61 1.06487

Table 10 clearly indicates that mixing α(100)% outliers in the distribution disturbs the mean
and variance, especially for the larger values of w. On contrary, when the distribution is truncated
(i.e., Tukey’s outlier detector is applied) this disturbance in the mean and variance is negligible. In
view of this discussion, the estimates of the process mean, and variance obtained from the truncated
distribution (i.e., after screening the data using Tukey’s model) will have the minimal effect of outliers
introduced in the Phase I samples.

Using the same design structure and parameters as in Sections 3 and 4, we computed the in-control
ARL and SDRL values for the two-sided CUSUM control chart based on the Tukey outlier detection
model with the estimated parameters. Three cases were considered, when the mean, the standard
deviation or both were estimated. To access the performance of the proposed charts, we present in
Figures 2–4, a graphical display of the in-control ARL values with m = 10, 100, 500 and 1000 when the
magnitude of outlier multiplier w is small (w = 1), medium (w = 2) and large (w = 3). We presented
only the case when both the mean and the standard deviation were estimated, as the other two cases
had similar conclusions. Furthermore, we also showed the in-control ARL values in the presence of
outliers without screening in Figures 2–4 for a quick comparison. With the two charts side-by-side, we
outlined our findings under the following headings.
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Figure 2. In-control ARL values for the two-sided CUSUM control chart in the presence of an outlier,
with and without screening, when the parameters are estimated (w = 1, n = 5, ARL0 = 200).
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Figure 3. In-control ARL values for the two-sided CUSUM control chart in the presence of an outlier,
with and without screening, when the parameters are estimated (w = 2, n = 5, ARL0 = 200).
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Figure 4. In-control ARL values for the two-sided CUSUM control chart in the presence of an outlier,
with and without screening, when the parameters are estimated (w = 3, n = 5, ARL0 = 200).

5.1. Performance Comparison with Respect to m

We saw earlier that the number of Phase I data, m, did have a significant effect on the performance
of a CUSUM chart. From Figures 2–4, we saw that there was a vast difference in the reported ARL0

between non-screened data and when the robust Tukey outlier detection model was applied to construct
a CUSUM chart, particularly when m was small. For example, in Figure 3, if m = 10, k = 1.0 and
α > 0.04, the ARL0 for non-screened data were in five figures while the corresponding Tukey screened
data were relatively closed to the target value. Even an increase in the number of Phase I observations
with no screening did not appear to have a significant impact on the chart’s performance as the outlier
multiplier increased. The Tukey screened counterpart, however, was getting closer to the limiting
value ARL0 = 200, as m increased.

In other words, the use of the Tukey outlier detector in the construction of a CUSUM chart would
maintain the performance of the chart, even with the handful amount of Phase I data.

5.2. Performance Comparison with Respect to α

If α = 0, the in-control ARL values of CUSUM charts were approximately equal to the theoretical
value of 200 and indicates the absence of outliers in the Phase I sampled data. However, as the
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magnitude of α increased, the non-screened data blew out of proportion, particularly when m was small
and k > 0.5. For example, if m = 10, k = 1.0 and α = 0.05, in Figure 2, the ARL0 for the non-screened
observations was 770 as against to 280 when the Tukey outlier detection model was applied. Even with
the large values of k and α, the Tukey screened data appeared to be getting closer to the nominal value
as m increased. The same conclusion could not be made for non-screened data, as the in-control ARL
values remained high when α was relatively large (cf. Figures 2–4). This means that the Tukey’s model
would not only keep the ARL0 on target but also maintain the performance of the CUSUM control
chart. In general, we observed that the effect of α was minimal when k was small.

5.3. Performance Comparison with Respect to w

The larger the magnitude of outlier multiplier w, the worst the in-control ARL value of a two-sided
CUSUM chart. If the outliers in a Phase I data were not screened, the ARL0 was so huge as w increased,
that the capability of the CUSUM chart in process monitoring was seriously affected. Unlike the Tukey
based chart that tried to maintain the ARL0 at the target value. For example, if m = 10, k = 0.25 and
α = 0.05, the in-control ARL values for the non-screened data were 302, 634 and 1025 when w = 1, 2
and 3, respectively. Compared to the screened Phase I data by the Tukey’s model with ARL values
of 217, 222 and 225. Thus, the Tukey CUSUM chart could relatively withstand the impact of outlier
multiplier w as compared to the chart based on non-screened data.

6. Illustrative Example

For illustrating the application of Tukey’s outlier detectors with the CUSUM control chart, we
used a dataset from [3]. The variable of interest was the flow width measurement (in microns) for
the hard-brake process. The data consisted of twenty-five in-control Phase I samples and twenty
out-of-control Phase II samples where the average width had increased due to an assignable cause(s).
The process mean and standard deviation were estimated (cf. Equations (2)–(4)) from Phase I samples
and were found to be 1.5056 and 0.14, respectively. These estimates were used to set up a CUSUM
control chart for Phase II samples.

It is clearly observed from the scatter plot given in Figure 5a that the observations were relocated in
Phase II. Further, it might also be confirmed from the CUSUM chart plotted in Figure 5b, which indicates
several out-of-control signals in Phase-II. These findings led to the evidence that the hard-brake process
had a positive shift at subgroup number fifteen and onwards.
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Figure 5. Scatter plots and the CUSUM control chart outputs for the dataset on the width of the
hard-brake process.

Now using the data perturbation technique (cf. Kargupta, Datta [29] and Liu, Kargupta [30]), we
introduced random outliers in different subgroups. Further, the process mean and standard deviation
were estimated and found out to be 1.554 and 0.21544, respectively. Based on these estimates, we
constructed the limits, which were further used to monitor the location of Phase II samples. In Figure 5c,
the scatter plot depicts a slight upward change in Phase II, and control chart presented in Figure 5d
shows that the out-of-control situation in Phase II was delayed (to subgroup number twenty) due to
a small number of outliers present in Phase I. This happened because the limits widened due to the
variation in Phase I estimates of process mean and standard deviation.

Finally, by using the above-mentioned contaminated Phase I data, we estimated the limit of the
Tukey’s outlier detector, which was found to be p× IQR = 0.44726. Now for any value, the absolute
deviation from the median (i.e., |X − 1.5171|) greater than 0.44726 implies that the corresponding
value is an outlier and needs to be screened from the data. Hence, by using the outlier detector, six
observations were screened from the Phase I data. Further, the process mean and standard deviation
were estimated and found out to be 1.5123 and 0.152, respectively. These new estimates were similar
to the estimates of the original data and the scatter plot of the data is given in Figure 5e, which also
showed upward trend in Phase II. In Figure 5f, the control chart is presented, which revealed that
the there was no change in the limits, but the chart had detected an increase in the process mean at
subgroup number sixteen.
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7. Practical Application

In recent years, activity recognition (AR) became an emerging research topic due to the
advancement of electronic devices. AR is commonly used in pattern recognition, ubiquitous computing,
human behavior modeling and human–machine interaction. In health care studies, different electronic
devices are commonly used to recognize everyday life activities. In eldercare centers, these facilities
provide assistance and care to the elders and help to ensure their safety and successful aging. Commonly,
wearable devices and cameras are used to monitor everyday life activities, but these approaches suffer
from several disadvantages such as intrusiveness, time-consuming processing and low resolution.
Therefore, to overcome these challenges in real-time activity recognition, Hong, Kang [31] used an
alternative method named as multisensor data fusion (assembly reliability evaluation method—AReM).
For a more detailed introduction on the AReM see [32]. In the AReM system, information is gathered
from an inertial sensor embedded in a smartphone and wireless sensor system, which is plugged
between the user and environment. Further, in a wireless sensor network, the movement of an
individual is measured in the received signal strength (RSS) between the user and environment. For
the AR dataset [31], designed a competition. In which three IRIS motes are used and placed on the
chest, the right and left ankle of an actor (cf. Figure 6).
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From this wireless sensor network, data was recorded on the actor’s activities such as; bending,
cycling, standing, sitting, laying and walking. Further, for the first task of heterogeneous AReM, they
considered activities such as cycling and standing. For the application purpose, we were concerned
to detect a change in the pattern of RSS generated through the heterogeneous AReM setup. The AR
time series dataset contained 480 observations in total, and each observation was obtained after 250
milliseconds. The average of RSS against the three IRIS motes (i.e., rss12, rss13, and rss23) was available
in 15 different sequences of each activity. In our application, we considered the first sequence of the
rss13 IRIS mote (chest-left ankle). The average of RSS of cycling was considered as in-control Phase I
samples and average RSS of standing was considered as the out-of-control Phase II sample points. To
access the normality of Phase I data set, we plotted a probability plot at the 95% confidence interval
(cf. Figure 7) and also applied the Anderson–Darling test (AD = 0.517 and p− value = 0.189), which
provided the evidence that the Phase I data set was normal.
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Figure 7. Probability plot of the received signal strength (RSS) values of the rss13 mote belonging to
the cycling activity.

The RSS values of the chest-left ankle mote belonging to the cycling activity were clubbed into
Phase I subgroups, and only the first 50 subgroups were used for the plotting purpose. Moreover, the
first 25 subgroups based on the RSS values of chest-left ankle mote belonging to the standing activity
were used as Phase II samples. The dataset of 75 subgroups is reported in Table 11. The process mean
and standard deviation were estimated from the Phase I samples and found to be 16.9734 and 3.4764,
respectively. These estimates were then used to construct the CUSUM chart for the Phase II samples.
Figure 8a,b presents the scatter plot for the original data and the control chart output, respectively.

Table 11. Phase-I subgroups of RSS values chest-left ankle mote. Phase-II subgroups of RSS values
chest-left ankle mote.

Phase-I Subgroups of RSS Values Chest-Left Ankle Mote

No RSS Xi Si

1 17.50 21.50 17.75 20.50 14.25 18.300 2.847
2 11.80 21.50 23.33 18.50 18.00 18.626 4.399
3 18.00 17.50 15.33 16.25 18.75 17.166 1.372
4 12.50 17.50 16.00 19.25 13.00 15.650 2.892
5 22.00 20.25 16.25 15.33 17.75 18.316 2.776
6 16.50 24.00 22.75 20.75 20.75 20.950 2.847
7 24.50 13.25 18.25 23.00 19.00 19.600 4.418
8 13.00 15.33 17.33 12.33 22.50 16.098 4.089
9 20.50 14.50 16.75 17.25 13.33 16.466 2.769
10 17.50 17.25 13.75 17.67 14.67 16.168 1.823
11 14.00 13.00 19.00 16.00 11.25 14.650 2.977
12 18.00 17.00 17.50 24.00 16.00 18.500 3.162
13 14.75 12.50 17.75 10.67 20.25 15.184 3.874
14 18.00 11.75 12.00 19.75 12.75 14.850 3.744
15 18.00 16.67 17.67 12.80 19.25 16.878 2.459
16 19.75 24.00 15.67 21.33 19.67 20.084 3.027
17 26.75 17.75 22.75 16.00 11.75 19.000 5.858
18 11.25 19.67 23.75 15.75 17.00 17.484 4.641
19 19.25 16.50 15.25 19.25 16.25 17.300 1.841
20 6.00 13.50 15.00 10.25 18.00 12.550 4.604
21 11.33 13.00 16.50 19.50 19.25 15.916 3.669
22 10.00 13.00 19.50 19.00 18.50 16.000 4.257
23 12.25 19.00 14.50 15.00 18.00 15.750 2.739
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Table 11. Cont.

Phase-I Subgroups of RSS Values Chest-Left Ankle Mote

No RSS Xi Si

24 19.75 16.00 12.50 16.75 17.50 16.500 2.640
25 15.75 17.75 19.00 19.00 10.33 16.366 3.626
26 19.00 24.00 25.75 17.33 19.75 21.166 3.552
27 19.25 22.50 16.75 11.50 18.75 17.750 4.058
28 10.67 16.50 17.33 16.33 13.25 14.816 2.788
29 19.00 20.75 13.50 18.25 16.50 17.600 2.753
30 5.50 17.50 16.00 9.75 11.50 12.050 4.843
31 20.67 8.50 14.25 14.00 18.75 15.234 4.737
32 18.75 16.25 14.00 21.00 22.33 18.466 3.402
33 13.50 17.50 18.33 17.00 15.75 16.416 1.879
34 20.50 16.75 17.00 21.00 19.50 18.950 1.972
35 18.33 15.75 15.00 20.75 15.67 17.100 2.404
36 16.00 20.25 24.50 15.00 16.67 18.484 3.902
37 18.75 19.75 12.33 15.25 21.67 17.550 3.735
38 22.25 13.75 20.75 21.00 16.75 18.900 3.543
39 18.75 16.67 13.75 12.00 18.50 15.934 2.971
40 12.25 14.75 11.00 17.25 8.33 12.716 3.431
41 21.25 20.25 14.00 17.50 17.33 18.066 2.842
42 21.75 15.75 15.00 19.25 16.33 17.616 2.817
43 19.75 16.67 17.00 16.50 15.00 16.984 1.726
44 18.67 21.33 18.25 16.67 17.75 18.534 1.732
45 15.00 16.33 19.00 17.00 17.50 16.966 1.474
46 14.00 19.00 17.75 26.75 15.00 18.500 5.034
47 17.25 20.50 18.50 19.00 20.00 19.050 1.280
48 18.00 10.50 11.67 16.67 18.00 14.968 3.610
49 8.75 20.75 21.00 8.00 21.00 15.900 6.875
50 16.00 12.00 18.25 12.00 14.75 14.600 2.684

Phase-II Subgroups of RSS Values Chest-Left Ankle Mote.

No RSS Xi CUSUM+
i CUSUM−i H −H

1 11.50 13.50 12.00 11.50 12.00 12.100 0.000 −4.096 6.41 −6.41
2 11.00 12.00 16.00 11.67 17.60 13.654 0.000 −6.638 6.41 −6.41
3 12.75 15.50 6.50 10.33 18.00 12.616 0.000 −10.218 6.41 −6.41
4 9.50 2.00 11.60 12.00 12.00 9.420 0.000 −16.994 6.41 −6.41
5 12.00 6.00 12.50 12.50 13.33 11.266 0.000 −21.924 6.41 −6.41
6 12.00 13.25 11.25 12.00 13.25 12.350 0.000 −25.770 6.41 −6.41
7 16.33 11.75 18.00 9.75 15.00 14.166 0.000 −27.800 6.41 −6.41
8 4.50 16.75 13.67 8.25 15.00 11.634 0.000 −32.362 6.41 −6.41
9 12.25 4.00 11.75 6.50 12.00 9.300 0.000 −39.258 6.41 −6.41
10 8.50 11.00 9.50 12.25 11.75 10.600 0.000 −44.854 6.41 −6.41
11 12.00 12.25 11.00 12.00 13.25 12.100 0.000 −48.950 6.41 −6.41
12 18.25 12.00 17.00 11.00 12.25 14.100 0.000 −51.046 6.41 −6.41
13 15.50 14.00 14.00 9.00 8.75 12.250 0.000 −54.992 6.41 −6.41
14 15.00 14.00 13.00 11.25 10.00 12.650 0.000 −58.538 6.41 −6.41
15 4.33 12.50 14.00 12.00 8.00 10.166 0.000 −64.568 6.41 −6.41
16 12.75 12.00 10.75 12.00 12.00 11.900 0.000 −68.864 6.41 −6.41
17 18.75 9.75 13.00 12.00 16.50 14.000 0.000 −71.060 6.41 −6.41
18 16.50 12.50 12.25 14.75 10.50 13.300 0.000 −73.956 6.41 −6.41
19 13.75 13.67 12.00 5.00 3.50 9.584 0.000 −80.568 6.41 −6.41
20 11.00 12.00 13.00 10.75 8.00 10.950 0.000 −85.814 6.41 −6.41
21 13.25 12.00 11.00 12.00 11.00 11.850 0.000 −90.160 6.41 −6.41
22 18.00 11.00 11.67 16.00 16.25 14.584 0.000 −91.772 6.41 −6.41
23 13.75 11.00 4.67 17.50 11.50 11.684 0.000 −96.284 6.41 −6.41
24 6.67 11.67 12.75 11.33 7.67 10.018 0.000 −102.462 6.41 −6.41
25 11.50 12.33 6.67 10.00 2.67 8.634 0.000 −110.024 6.41 −6.41
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Figure 8. Scatter plots and CUSUM control chart outputs for the dataset on the received signal
strength process.

It was evident from Figure 8a that there was a downward relocation in Phase II samples, a point
equally supported by the corresponding CUSUM chart, which gave an out-of-control signal right
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from the start of the plots in Figure 8b. Now to access the effect of the outliers, we followed the same
procedure as described in Section 6, by first contaminating the Phase I data and used the estimates
obtained, µ̂0 = 18.9924 and σ̂0 = 7.4018 to setup a CUSUM control chart for the Phase II data (cf.
Figure 8c,d). Secondly, we used the Tukey outlier detector to screen the Phase I samples, computed
the control chart parameters and used the estimates, µ̂0 = 17.0593 and σ̂0 = 3.5543 to construct the
CUSUM chart for the Phase II samples (cf. Figure 8e,f).

The introduction of outliers in the Phase I samples, Figure 8c gave rise to wider control limits,
which in turn delayed the out-of-control signal in the Phase II control chart setup (cf. Figure 8d).
However, the application of the outlier detector on the contaminated Phase I data resulted in the
screening out of about ten data points (cf. Figure 8e). Subsequently, the corresponding CUSUM chart
in Figure 8f shows a similar behavioral pattern as those of the original data in Figure 8b.

8. Conclusions

In this article, we evaluated the in-control performance of a two-sided CUSUM control chart when
the parameters were estimated in the presence of outliers based on the robust Tukey detection model.
Using a Monte Carlo simulation approach, the ARL and SDRL were computed for a different number
of Phase I data.

The results show that a large number of Phase I data was required to minimize the
practitioner-to-practitioner variability. In the presence of outliers, a larger amount of Phase I data was
needed, which might not be realistic in practical applications. The results further revealed that the
use of the Tukey outlier detector in the construction of a two-sided CUSUM control chart required
fewer Phase I observations to stabilize the chart’s performance. Therefore, it was plausible to use the
Tukey’s model in the design structure of a CUSUM chart when the parameters were estimated for
efficient process monitoring, particularly when the observations were prone to outliers. The advantage
of this proposal is its simplicity to design and it is easy to use. A point demonstrated by the illustrative
and application examples of the new Tukey CUSUM control chart. The scope of this study might
be extended to other control charts design strategies like the Shewhart and exponentially weighted
moving average.
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