

Article Cumulative Sum Chart Modeled under the Presence of Outliers

Nasir Abbas ¹, Mu'azu Ramat Abujiya ²,*, Muhammad Riaz ¹ and Tahir Mahmood ³

- ¹ Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; nasirabbas@kfupm.edu.sa (N.A.); riazm@kfupm.edu.sa (M.R.)
- ² Preparatory Year Mathematics Program, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- ³ Department of Systems Engineering and Engineering Management, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; tmahmood5-c@my.cityu.edu.hk
- * Correspondence: abujiya@kfupm.edu.sa

Received: 26 December 2019; Accepted: 11 February 2020; Published: 18 February 2020

Abstract: Cumulative sum control charts that are based on the estimated control limits are extensively used in practice. Such control limits are often characterized by a Phase I estimation error. The presence of these errors can cause a change in the location and/or width of control limits resulting in a deprived performance of the control chart. In this study, we introduce a non-parametric Tukey's outlier detection model in the design structure of a two-sided cumulative sum (CUSUM) chart with estimated parameters for process monitoring. Using Monte Carlo simulations, we studied the estimation effect on the performance of the CUSUM chart in terms of the average run length and the standard deviation of the run length. We found the new design structure is more stable in the presence of outliers and requires fewer amounts of Phase I observations to stabilize the run-length performance. Finally, a numerical example and practical application of the proposed scheme are demonstrated using a dataset from healthcare surveillance where received signal strength of individuals' movement is the variable of interest. The implementation of classical CUSUM shows that a shift detection in Phase II that received signal strength data is indeed masked/delayed if there are outliers in Phase I data. On the contrary, the proposed chart omits the Phase I outliers and gives a timely signal in Phase II.

Keywords: average run length; control chart; cumulative sum; outlier; health care; statistical process control

1. Introduction

The cumulative sum (CUSUM) control chart is an effective monitoring tool widely used in industries and medical processes for quality improvement [1]. The scheme was introduced by [2] as the substitution of the traditional Shewhart control chart. The CUSUM chart statistic accumulates the past and current information of the process, which provides more sensitivity to detect small and moderate shifts as compared to the traditional Shewhart control chart. Designing a CUSUM control chart requires setting up of the control limit, where the known in-control parameters are often assumed. However, this assumption is not realistic, and hence the CUSUM chart is implemented in a two-phase method. In Phase I, random observations are collected from a stable process and used to estimate the unknown parameters. In Phase II, the estimates from the earlier observations are used for the construction of the CUSUM chart to monitor and detect changes in a process [3].

The performance of a CUSUM chart to effectively handle changes in the process in Phase II largely depends on the accuracy of the estimated parameters in Phase I. Furthermore, higher chances

of estimation error may occur when there exist some extreme values or outliers in the Phase I observations [4]. Outliers may occur by chance in the process data or could be due to some incorrect specifications of instruments or as a result of human reporting error. The presence of outliers in a process data can adversely affect parametric computations. Of course, dropping the outliers from the sampled observations is the simplest remedy often used to avoid such a problem. However, this may not be appropriate for small sample data. Thus, outlier detection is key to adequate monitoring of process parameters. Recently, some non-parametric and robust outlier detection procedures have been suggested to enhance the performance of control charts in the presence of outliers. For example, see Schoonhoven, Nazir [5], Nazir, Riaz [6], Amdouni, Castagliola [7], Abid, Nazir [8], Zhang, Li [9] and Mahmood, Nazir [10], and the references therein.

Hawkins [11], Beckman and Cook [12] and Barnett and Lewis [13] have studied several outlier detectors. The common parametric outlier detectors are the Student-type and Grubbs-type detectors mostly used in the regression residuals and when the data is normally distributed (cf. Grubbs [14] and Tietjen and Moore [15]). For non-normal data, the Tukey's outlier detection model is more robust since its independence of the sample mean and standard deviation [16]. Teoh, Khoo [17] suggested the local outlier factor, a non-parametric outlier detector for detecting the outliers in the multivariate setup. Knorr, Ng [18] designed a detector based on classification methodology while a detector based on order statistics was studied by Tse and Balasooriya [19]. Hubert, Dierckx [20] proposed a procedure based on Hill's estimator for detecting the influential point in Pareto-type distributions. Recently, Castagliola, Amdouni [21] introduced a new non-parametric outlier detector for all types of univariate distributions.

In this article, we study the effect of outliers on the performance of a two-sided CUSUM control chart for monitoring process location with the estimated parameters using the run length (RL) properties. Furthermore, the study proposed a non-parametric outlier detector, the robust Tukey outlier detection model in the design structure of a CUSUM control chart for efficient monitoring of the process location parameters in the presence of the extremes. These measures are evaluated in three cases. The first case is when the in-control mean is known, and the standard deviation is estimated. Second is when the in-control standard deviation is known, and the mean is estimated, and the third case is when both the mean and the standard deviation are unknown. A synthesis table about the research on a two-sided CUSUM chart is given in Table 1.

	Shewhart Chart	CUSUM	Robust CUSUM	Current Study
Year Author(s) Parameter of	1931 Shewhart W.A. Process Mean	1954 Page E.S. Process Mean	2013 Nazir et al. Process Mean	2020 Abbas et al. Process Mean
Interest Plotting Statistic	Sample Mean	Cumulative sum of sample mean	Cumulative sum of robust estimators like sample median etc.	Cumulative sum of sample mean
Advantages	 Simplicity. Quick detection of large shifts 	• Has a sensitivity parameter that can be adjusted according to shift size.	• Indirectly, assigns small weights to the outliers in Phase-II using robust estimator	 Detects and deletes the outliers from Phase-I samples. Phase-II performance is not much affected by the presence of outliers in Phase-I

Table 1. A synthesis table for the past and current research on a two-sided cumulative sum (CUSUM) chart.

	Shewhart Chart	CUSUM	Robust CUSUM	Current Study
Disadvantages	 Has no sensitivity parameter that can be adjusted according to shift size. Takes too long for detecting small shifts. 	Performance of the chart is highly affected by the presence of outliers in Phase-I samples	• Does not take care of the outliers present in Phase-I samples.	

Table 1. Cont.

The rest of the article is organized as follows. In the next section, we gave overview information on the two-sided CUSUM chart with estimated parameters followed by the performance measure metrics in terms of the RL properties. Section 3 presents the practitioner-to-practitioner variation on the performance of the CUSUM chart. The section also discusses the effect of error estimation on CUSUM control limits. In Section 4, we gave the design structure of the CUSUM chart in the presence of outliers and analyzed the effect of extremes on its in-control performance. The introduction of the Tukey outlier detection model in the CUSUM chart is presented in Section 5. An application example to illustrate the practical use of the scheme is given in Section 6. Finally, we provide some concluding remark in Section 7.

2. Overview of CUSUM Charts with Estimated Parameters

Let $X_{i1}, X_{i2}, X_{i3}, ..., X_{in}$. for i = 1, 2, 3, ... be independent random observations of size *n* from a normal process, with a known in-control mean μ_0 and standard deviation σ_0 . The upper and lower sided CUSUM chart statistics for monitoring the upward and downward changes in the process location parameters are respectively, given by

$$CUSUM_{i}^{+} = \max\left[0, CUSUM_{i-1}^{+} + \sqrt{n}\left(\overline{X}_{i} - \mu_{0}\right)/\sigma_{0} - k\right],$$

$$CUSUM_{i}^{-} = \min\left[0, CUSUM_{i-1}^{-} + \sqrt{n}\left(\overline{X}_{i} - \mu_{0}\right)/\sigma_{0} + k\right]$$
(1)

where max [a, b] and min [a, b] are the maximum and minimum of a and b, respectively. The statistic, $\overline{X}_i = (1/n) \sum_{j=1}^n X_{ij}$ is the mean of i^{th} sample, and k is the reference value. The initial values, $CUSUM_0^+$ and $CUSUM_0^-$, are usually set equal to zero. The chart gives an out-of-control signal when either $CUSUM_i^+$ or $CUSUM_i^-$ exceeds the predetermined control limit, h. The h is usually chosen to satisfy the desired in-control RL property.

However, if the process parameters are unknown, then μ_0 and σ_0 are replaced by their corresponding Phase I estimates. Let X_{ij} , i = 1, 2, 3, ..., m and j = 1, 2, 3, ..., n denote m random samples each of size n of Phase I observations from a stable process. Then the unbiased estimator for μ_0 , is the overall sample mean given by

$$\hat{\mu}_0 = \frac{1}{m} \sum_{i=1}^m \left(\frac{\sum_{j=1}^n X_{ij}}{n} \right) = \frac{1}{m} \sum_{i=1}^m \overline{X}_i$$
(2)

and for the unbiased estimator of σ_0 when subgroup size n > 1, we used the pooled standard deviation,

$$S_p = \sqrt{\frac{1}{m} \sum_{i=1}^m S_i^2} \tag{3}$$

recommended by some researchers like Chen [22], Mahmoud, Henderson [23] and Nazir, Abbas [24]. Here, $S_i^2 = 1/(n-1)\sum_{j=1}^n (X_{ij} - \overline{X}_i)$ is the variance the of i^{th} Phase I sample. The unbiased estimator is defined by

$$\hat{\sigma}_0 = \frac{S_p}{c_4[m(n-1)+1]}$$
(4)

where the constant, $c_4(w) = \sqrt{2/(w-1)} \Gamma(w/2)/\Gamma[(w-1)/2]$ is the bias correction constant that depends on the *m* and *n*. Thus, the corresponding two-sided CUSUM chart statistics based on the estimated parameters are defined as

$$CUSUM_{i}^{+} = \max\left[0, CUSUM_{i-1}^{+} + \sqrt{n}\left(\overline{X}_{i} - \hat{\mu}_{0}\right)/\hat{\sigma}_{0} - k\right],$$

$$CUSUM_{i}^{-} = \min\left[0, CUSUM_{i-1}^{-} + \sqrt{n}\left(\overline{X}_{i} - \hat{\mu}_{0}\right)/\hat{\sigma}_{0} + k\right].$$
(5)

The statistical performance of a CUSUM chart is often evaluated in terms of its RL distribution [25]. For a two-sided CUSUM chart with initial value of $CUSUM_0 = z$, where $z \in (-h, h)$, the probability mass function [26] is given by

$$pr(rl|z) = P(RL = rl | CUSUM_0 = z)$$

For a single case, rl = 1, we have

$$pr(1|z) = P(RL = 1 \mid CUSUM_0 = z)$$

$$= P(CUSUM_1 < -h \mid CUSUM_0 = z) + P(CUSUM_1 > h \mid CUSUM_0 = z)$$

$$= P\left(z + \sqrt{n}\left(\overline{X}_1 - \hat{\mu}_0\right) / \hat{\sigma}_0 + k < -h\right) + P\left(z + \sqrt{n}\left(\overline{X}_1 - \hat{\mu}_0\right) / \hat{\sigma}_0 - k > h\right)$$

$$= P(z + Y_1 + k < -h) + P(z + Y_1 - k > h)$$

$$= P(Y_1 < -h - z - k) + P(Y_1 > h - z + k)$$

$$= 1 - \Phi\left(\frac{v}{\lambda}(-h - z - k) + \frac{\delta}{\lambda} - \frac{u}{\lambda\sqrt{m}}\right) + \Phi\left(\frac{v}{\lambda}(h - z + k) + \frac{\delta}{\lambda} - \frac{u}{\lambda\sqrt{m}}\right)$$
(6)

where $v = \hat{\sigma}_0 / \sigma_0$, $\lambda = \sigma / \sigma_0$, $\delta = \sqrt{n}(\mu - \mu_0) / \sigma_0$, $u = \sqrt{mn}(\hat{\mu}_0 - \mu_0) / \sigma_0$ and $\Phi(.)$ denotes the standard normal distribution function. For the case when rl > 1, we have

$$pr(r|lz) = P(RL = rl | CUSUM_{0} = z)$$

$$= P(RL - 1 = rl - 1, CUSUM_{1} = 0 | CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1, -h < CUSUM_{1} < 0 | CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1, 0 < CUSUM_{1} < h | CUSUM_{0} = z)$$

$$= P(RL - 1 = rl - 1 | CUSUM_{0} = z, CUSUM_{1} = 0) P(CUSUM_{1} = 0 | CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1 | CUSUM_{0} = z, -h < CUSUM_{1} < 0) P(-h < CUSUM_{1}(0) CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1 | CUSUM_{0} = z, 0 < CUSUM_{1} < h) P(0 < CUSUM_{1} < h | CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1 | CUSUM_{0} = z, 0 < CUSUM_{1} < h) P(0 < CUSUM_{1} < h | CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1 | CUSUM_{0} = z, 0 < CUSUM_{1} < h) P(0 < CUSUM_{1} < h | CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1 | CUSUM_{0} = z, 0 < CUSUM_{1} < h) P(0 < CUSUM_{1} < h | CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1 | CUSUM_{0} = z, 0 < CUSUM_{1} < h) P(0 < CUSUM_{1} < h | CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1 | CUSUM_{0} = z, 0 < CUSUM_{1} < h) P(0 < CUSUM_{1} < h | CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1 | CUSUM_{0} = z, 0 < CUSUM_{1} < h) P(0 < CUSUM_{1} < h | CUSUM_{0} = z)$$

$$+ P(RL - 1 = rl - 1 | CUSUM_{1} = y) \frac{v}{\lambda} \phi \left(\frac{v}{\lambda} (y - z - k) + \frac{\delta}{\lambda} - \frac{u}{\lambda \sqrt{m}} \right) dy$$

$$+ \int_{0}^{h} pr(rl - 1 | CUSUM_{1} = y) \frac{v}{\lambda} \phi \left(\frac{v}{\lambda} (y - z + k) + \frac{\delta}{\lambda} - \frac{u}{\lambda \sqrt{m}} \right) dy$$

where $\phi(.)$ is the standard normal density function. The most common used *RL* property to evaluate the performance of a control chart is the average run length (*ARL*), which represents the average number of samples plotted on a control chart before a process issues a signal. The *ARL* measures how

quickly a control chart responds to changes in a process. If Equation (7) is denoted by g(u, v), for simplicity, then the ARL can be defined by the integral equation [26,27].

$$ARL = E(RL) = \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{1}{g(u,v)} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) f(v) du dv$$
(8)

where f(v) is the scaled chi (χ) distribution with m(n-1) degrees of freedom from $c\chi/\sqrt{m(n-1)}$, and c is a scaled factor. There is also the standard deviation of run length (SDRL) that sometimes is used as a supplementary measure. The SDRL is the standard deviation of samples until the chart gives an out-of-control signal, that is,

$$SDRL = \sqrt{E(RL^2) - [E(RL)]^2}$$
(9)

where $E(RL^2) = \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{2-g(u,v)}{g^2(u,v)} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) f(v) \, du dv$. For an in-control process, denote the *ARL* by ARL₀, which in practice, should be sufficiently large to avoid unnecessary false signals. Furthermore, denote the out-of-control ARL by ARL₁, which should be small enough to enable early detection of changes in a process. The above RL properties of a two-sided CUSUM chart may be obtained by evaluating f(v), but unfortunately, it cannot be computed exactly. Hence, the need for approximation using either Gaussian quadrature, Markov chain approximation or Monte Carlo simulation. With the technological advancements in computing software, we followed the simulation approach as recommended by several authors of the quality control chart.

3. Variability in the CUSUM Chart Performance

For the location control chart, the process is assumed to be initially stable with an in-control mean μ_0 and standard deviation σ_0 . After a certain point in time, it changes from the target value μ_0 to an out-of-control value $\mu_1 = \mu_0 + \delta \sigma_0$ thus, requiring immediate and quick detection of such changes. Without loss of generality, we assumed that the in-control process is normally distributed. To study the so-called practitioner-to-practitioner variation on the performance of the CUSUM chart, 100,000 seeded iterations, each sample size n = 5, were generated from the standard normal distribution N(0, 1). We then set up the charts with k = 0.25, 0.50, 0.75 and 1.00, using the combinations of the control limit h = 6.8516, 4.1713, 2.9332 and 1.0894 that corresponds to the in-control ARL₀ of 200. We used the simulation approach based on an algorithm developed in R, to compute the distributional properties of the CUSUM chart in terms of the ARL and SDRL for different shift values δ when the control chart parameters μ_0 and σ_0 are known and the results obtained are presented in Table 2. These results are in agreement with the theoretical values of a classical two-sided CUSUM chart [2].

Table 2. Run length (RL) properties for the two-sided CUSUM control chart when the in-control mean and standard deviation are known (n = 5, ARL₀ = 200).

k	h	RL Properties					δ					
		Ĩ	0.00	0.25	0.50	0.75	1.00	1.50	2.00	3.00	4.00	5.00
0.25	6.8516	ARL SDRL	200.000 187.82	63.588 51.58	24.229 14.73	14.076 6.66	9.862 3.90	6.195 1.92	4.558 1.20	3.060 0.66	2.328 0.48	2.013 0.22
0.50	4.1713	ARL SDRL	199.997 195.13	83.100 77.61	28.438 23.27	13.921 9.35	8.724 4.84	4.918 2.04	3.456 1.19	2.259 0.59	1.772 0.47	1.372 0.26
0.75	2.9332	ARL SDRL	200.008 197.68	102.897 99.68	37.458 34.29	16.792 13.74	9.446 6.68	4.641 2.43	3.063 1.29	1.898 0.64	1.381 0.5	1.094 0.29
1.00	2.2137	ARL SDRL	200.006 198.41	119.968 117.92	48.841 46.83	21.705 19.58	11.406 9.35	4.864 3.10	2.956 1.50	1.695 0.68	1.219 0.42	1.037 0.19

The unknown in-control process parameters, on the other hand, are estimated from m = 10, 50, 100, 500 and 1000 in-control Phase I samples each of subgroup size n = 5. Substituting the

unknown parameters with their corresponding estimates, the Phase II two-sided CUSUM control charts were developed. For each fixed value of k = 0.25, 0.50, 0.75 and 1.00, the control limit h was determined through simulations to obtain the desired in-control ARL₀ of 200. Here, all the observations are from $N(\hat{\mu}_0, \hat{\sigma}_0^2)$. The ARL and SDRL values are computed using 100,000 simulation iterations. For a clear consequence on the effect of each estimated process parameter on the performance of a CUSUM chart, we considered the cases when either the sample mean or sample standard deviation or both were estimated. Results obtained are given in Tables 3–5.

Table 3. RL properties for the two-sided CUSUM control chart when the in-control standard deviation is known, and mean is estimated (n = 5, ARL₀ = 200).

								δ					
m	k	h	KL Properties	0.00	0.25	0.50	0.75	1.00	1.50	2.00	3.00	4.00	5.00
	0.25	7.609	ARL SDRL	199.383 215.236	104.343 139.682	33.241 37.559	16.709 10.384	11.229 5.039	6.884 2.223	5.019 1.331	3.343 0.700	2.551 0.538	2.093 0.299
10	0.50	4.447	ARL SDRL	200.059 211.211	117.118 147.580	39.461 51.001	16.697 15.205	9.759 6.407	5.280 2.326	3.668 1.287	2.370 0.622	1.865 0.441	1.479 0.501
	0.75	3.070	ARL SDRL	199.955 206.777	129.525 152.891	49.912 63.945	20.360 21.998	10.664 9.066	4.935 2.794	3.205 1.395	1.971 0.654	1.438 0.513	1.122 0.327
	1.00	2.290	ARL SDRL	199.845 204.832	139.734 158.023	61.592 75.770	26.110 29.932	12.972 12.769	5.174 3.601	3.073 1.628	1.742 0.699	1.247 0.442	1.045 0.207
	0.25	7.071	ARL SDRL	199.989 191.101	72.686 70.530	25.880 17.200	14.694 7.228	10.214 4.108	6.387 1.985	4.689 1.228	3.141 0.669	2.389 0.505	2.033 0.230
50	0.50	4.246	ARL SDRL	200.328 196.721	91.515 94.950	30.404 27.139	14.476 10.218	8.958 5.097	5.010 2.101	3.510 1.208	2.289 0.595	1.799 0.462	1.401 0.491
	0.75	2.968	ARL SDRL	200.300 198.429	109.736 113.866	39.790 39.054	17.480 15.037	9.687 7.057	4.709 2.504	3.097 1.309	1.916 0.643	1.396 0.502	1.100 0.300
	1.00	2.233	ARL SDRL	200.129 199.137	125.358 128.594	51.433 52.200	22.548 21.314	11.722 9.944	4.928 3.184	2.983 1.526	1.706 0.683	1.226 0.427	1.039 0.193
	0.25	6.970	ARL SDRL	199.946 188.664	68.273 60.973	25.057 15.890	14.395 6.949	10.048 4.005	6.297 1.950	4.627 1.212	3.104 0.665	2.360 0.496	2.024 0.223
0. 100 0. 0.	0.50	4.212	ARL SDRL	200.430 196.061	87.512 86.556	29.501 25.151	14.200 9.773	8.846 4.973	4.968 2.072	3.487 1.200	2.275 0.593	1.786 0.467	1.388 0.488
	0.75	2.952	ARL SDRL	200.415 197.742	106.371 107.160	38.649 36.670	17.134 14.361	9.561 6.835	4.677 2.470	3.082 1.300	1.907 0.641	1.389 0.500	1.097 0.297
	1.00	2.224	ARL SDRL	200.613 199.037	122.849 123.517	50.144 49.436	22.134 20.463	11.580 9.676	4.902 3.147	2.970 1.517	1.701 0.681	1.223 0.425	1.038 0.192
	0.25	6.878	ARL SDRL	200.257 187.975	64.528 53.602	24.400 14.933	14.146 6.715	9.902 3.917	6.219 1.927	4.575 1.201	3.069 0.662	2.334 0.486	2.015 0.220
500	0.50	4.180	ARL SDRL	200.348 195.114	83.934 79.434	28.700 23.596	13.981 9.440	8.748 4.861	4.925 2.047	3.464 1.190	2.262 0.589	1.775 0.470	1.374 0.485
	0.75	2.938	ARL SDRL	200.330 197.702	103.981 101.518	37.728 34.763	16.880 13.883	9.480 6.700	4.650 2.445	3.067 1.293	1.900 0.640	1.383 0.498	1.095 0.294
	1.00	2.215	ARL SDRL	199.622 197.769	120.377 119.228	49.084 47.308	21.814 19.817	11.427 9.394	4.867 3.105	2.957 1.503	1.695 0.678	1.221 0.423	1.037 0.189
	0.25	6.870	ARL SDRL	200.435 187.977	64.137 52.723	24.327 14.812	14.114 6.680	9.893 3.920	6.214 1.921	4.567 1.197	3.065 0.661	2.332 0.485	2.014 0.220
1000	0.50	4.174	ARL SDRL	199.921 195.128	83.373 78.425	28.488 23.332	13.939 9.391	8.729 4.837	4.923 2.049	3.460 1.189	2.260 0.589	1.773 0.471	1.372 0.484
	0.75	2.936	ARL SDRL	200.261 197.588	103.481 100.857	37.557 34.560	16.832 13.811	9.456 6.670	4.644 2.434	3.066 1.292	1.900 0.641	1.382 0.498	1.095 0.293
1000 <u>0</u> . 0. 1.	1.00	2.215	ARL SDRL	200.364 198.748	120.208 118.622	48.942 46.945	21.746 19.748	11.422 9.394	4.870 3.107	2.959 1.505	1.695 0.679	1.220 0.423	1.038 0.190

	1.	L	DI Proportion					δ					
ш	К	n	KL Hoperties	0.00	0.25	0.50	0.75	1.00	1.50	2.00	3.00	4.00	5.00
	0.25	6.363	ARL SDRL	200.405 307.837	60.102 58.830	22.762 15.242	13.209 6.830	9.262 4.001	5.821 1.990	4.284 1.258	2.881 0.712	2.228 0.473	1.928 0.347
10	0.50	3.769	ARL SDRL	200.186 373.977	79.654 116.713	26.646 27.155	12.915 9.947	8.080 5.004	4.554 2.089	3.205 1.210	2.103 0.626	1.611 0.521	1.256 0.437
	0.75	2.610	ARL SDRL	200.504 404.643	101.344 185.346	35.910 50.475	15.787 16.502	8.789 7.323	4.289 2.518	2.826 1.321	1.741 0.662	1.279 0.458	1.063 0.244
	1.00	1.947	ARL SDRL	199.994 419.821	119.320 241.979	47.933 82.668	20.909 27.810	10.796 11.547	4.528 3.348	2.734 1.557	1.568 0.671	1.162 0.377	1.026 0.159
	0.25	6.750	ARL SDRL	200.033 208.518	62.844 53.158	23.946 14.855	13.890 6.701	9.733 3.919	6.116 1.933	4.504 1.212	3.021 0.675	2.307 0.478	2.000 0.245
50	0.50	4.087	ARL SDRL	200.596 229.818	82.357 84.129	28.048 23.969	13.731 9.497	8.599 4.876	4.841 2.054	3.402 1.191	2.228 0.596	1.737 0.486	1.344 0.476
	0.75	2.863	ARL SDRL	200.545 240.560	102.188 113.083	37.047 36.671	16.574 14.217	9.301 6.771	4.560 2.453	3.012 1.297	1.863 0.646	1.358 0.491	1.086 0.281
	1.00	2.155	ARL SDRL	200.400 246.062	119.428 139.068	48.460 51.874	21.504 20.928	11.254 9.711	4.786 3.141	2.907 1.514	1.666 0.678	1.206 0.413	1.034 0.182
	0.25	6.794	ARL SDRL	199.294 197.077	63.155 52.484	24.052 14.746	13.966 6.675	9.786 3.906	6.154 1.927	4.526 1.206	3.037 0.668	2.316 0.480	2.006 0.232
0.25 100 0.50 0.75	0.50	4.131	ARL SDRL	200.578 212.753	82.766 80.763	28.225 23.573	13.823 9.417	8.652 4.841	4.884 2.051	3.431 1.189	2.244 0.593	1.755 0.479	1.359 0.480
	2.898	ARL SDRL	200.473 218.562	102.694 106.845	37.300 35.484	16.685 13.983	9.375 6.724	4.607 2.450	3.037 1.294	1.880 0.643	1.370 0.494	1.090 0.287	
	1.00	2.183	ARL SDRL	199.677 220.710	119.568 127.965	48.559 49.291	21.547 20.189	11.325 9.534	4.824 3.126	2.929 1.506	1.680 0.678	1.212 0.417	1.035 0.185
	0.25	6.848	ARL SDRL	200.572 190.749	63.552 51.951	24.226 14.746	14.080 6.675	9.862 3.904	6.193 1.923	4.557 1.200	3.059 0.663	2.328 0.483	2.013 0.222
500	0.50	4.165	ARL SDRL	200.223 198.681	83.177 78.455	28.415 23.301	13.913 9.377	8.707 4.831	4.914 2.049	3.453 1.189	2.257 0.590	1.769 0.473	1.369 0.483
	0.75	2.928	ARL SDRL	200.675 201.922	103.041 101.276	37.404 34.557	16.783 13.773	9.438 6.672	4.635 2.436	3.060 1.293	1.894 0.641	1.380 0.497	1.093 0.291
	1.00	2.209	ARL SDRL	200.376 203.135	120.019 120.335	48.878 47.389	21.737 19.798	11.392 9.403	4.860 3.108	2.951 1.500	1.693 0.678	1.219 0.421	1.036 0.187
	0.25	6.851	ARL SDRL	200.377 189.279	63.648 52.107	24.239 14.755	14.082 6.672	9.862 3.897	6.196 1.920	4.558 1.200	3.059 0.662	2.328 0.484	2.013 0.221
1000	0.50	4.171	ARL SDRL	201.035 197.398	83.254 78.294	28.515 23.316	13.940 9.384	8.726 4.844	4.918 2.045	3.455 1.186	2.258 0.589	1.772 0.471	1.372 0.484
	0.75	2.933	ARL SDRL	200.892 200.377	103.327 100.860	37.531 34.491	16.820 13.805	9.435 6.655	4.644 2.440	3.063 1.291	1.898 0.640	1.381 0.497	1.094 0.292
	1.00	2.210	ARL SDRL	199.787 199.806	120.041 119.231	48.756 47.036	21.688 19.668	11.387 9.374	4.859 3.104	2.956 1.506	1.694 0.678	1.218 0.421	1.037 0.189

Table 4. RL properties for the two-sided CUSUM control chart when the in-control mean is known, and the standard deviation is estimated (n = 5, ARL₀ = 200).

Table 5. RL properties for the two-sided CUSUM control chart when the in-control mean and standard deviation are estimated (n = 5, ARL₀ = 200).

	1		PI Proportion					δ					
m	к	n	KL Hoperties	0.00	0.25	0.50	0.75	1.00	1.50	2.00	3.00	4.00	5.00
	0.25	7.059	ARL SDRL	199.839 343.854	102.365 200.559	31.358 42.962	15.661 10.656	10.522 5.112	6.458 2.294	4.716 1.399	3.143 0.762	2.408 0.538	2.036 0.334
10	0.50	4.010	ARL SDRL	200.741 403.561	115.384 253.069	37.440 72.922	15.548 17.311	9.038 6.674	4.874 2.360	3.392 1.308	2.204 0.649	1.700 0.515	1.333 0.473
	0.75	2.719	ARL SDRL	199.462 428.983	128.278 293.013	48.250 104.853	19.298 28.936	9.906 10.291	4.551 2.891	2.945 1.420	1.801 0.681	1.319 0.480	1.080 0.272
1.00 2.01	2.010	ARL SDRL	200.078 444.178	139.638 321.987	60.751 137.963	25.381 46.283	12.370 17.357	4.810 3.932	2.837 1.684	1.607 0.694	1.181 0.396	1.031 0.174	

			DID (δ					
m	k	h	RL Properties	0.00	0.25	0.50	0.75	1.00	1.50	2.00	3.00	4.00	5.00
	0.25	6.917	ARL SDRL	199.699 198.389	67.771 61.666	24.906 15.955	14.312 6.957	9.989 4.018	6.255 1.962	4.601 1.222	3.085 0.671	2.348 0.493	2.019 0.233
50	0.50	4.169	ARL SDRL	200.336 212.799	87.245 90.310	29.240 25.530	14.097 9.843	8.774 4.987	4.924 2.078	3.462 1.203	2.259 0.595	1.769 0.475	1.373 0.484
	0.75	2.913	ARL SDRL	199.648 217.876	105.684 113.732	38.333 37.851	16.994 14.602	9.493 6.933	4.631 2.478	3.053 1.304	1.889 0.646	1.376 0.496	1.093 0.291
	1.00	2.193	ARL SDRL	199.956 221.744	122.288 133.825	49.919 52.081	22.003 21.110	11.479 9.823	4.851 3.163	2.946 1.520	1.685 0.680	1.215 0.420	1.037 0.188
	0.25	6.917	ARL SDRL	199.699 198.389	67.771 61.666	24.906 15.955	14.312 6.957	9.989 4.018	6.255 1.962	4.601 1.222	3.085 0.671	2.348 0.493	2.019 0.233
100	0.50	4.169	ARL SDRL	200.336 212.799	87.245 90.310	29.240 25.530	14.097 9.843	8.774 4.987	4.924 2.078	3.462 1.203	2.259 0.595	1.769 0.475	1.373 0.484
	0.75	2.913	ARL SDRL	199.648 217.876	105.684 113.732	38.333 37.851	16.994 14.602	9.493 6.933	4.631 2.478	3.053 1.304	1.889 0.646	1.376 0.496	1.093 0.291
	1.00	2.193	ARL SDRL	199.956 221.744	122.288 133.825	49.919 52.081	22.003 21.110	11.479 9.823	4.851 3.163	2.946 1.520	1.685 0.680	1.215 0.420	1.037 0.188
	0.25	6.868	ARL SDRL	199.857 189.936	64.355 53.531	24.398 15.008	14.122 6.715	9.885 3.920	6.210 1.926	4.566 1.201	3.067 0.663	2.332 0.485	2.014 0.222
500	0.50	4.171	ARL SDRL	200.044 198.638	83.865 80.168	28.607 23.684	13.953 9.432	8.734 4.865	4.921 2.049	3.457 1.190	2.260 0.589	1.770 0.472	1.372 0.484
	0.75	2.930	ARL SDRL	200.139 201.232	103.405 102.432	37.595 34.956	16.856 13.942	9.462 6.707	4.637 2.443	3.063 1.294	1.896 0.641	1.380 0.497	1.094 0.292
·	1.00	2.209	ARL SDRL	199.771 202.617	120.239 120.900	48.995 47.734	21.793 19.947	11.431 9.460	4.859 3.105	2.953 1.505	1.694 0.679	1.218 0.421	1.037 0.189
	0.25	6.860	ARL SDRL	199.887 188.749	63.963 52.600	24.302 14.842	14.097 6.692	9.870 3.908	6.205 1.924	4.563 1.201	3.063 0.661	2.330 0.484	2.014 0.221
1000	0.25 6	4.172	ARL SDRL	200.175 196.712	83.432 78.731	28.542 23.482	13.943 9.400	8.728 4.849	4.917 2.046	3.458 1.190	2.260 0.589	1.772 0.472	1.372 0.484
	0.75	2.933	ARL SDRL	200.433 199.533	103.187 101.221	37.606 34.688	16.838 13.848	9.465 6.697	4.642 2.439	3.063 1.292	1.898 0.640	1.382 0.498	1.094 0.292
	1.00	2.213	ARL SDRL	200.351 201.344	120.455 120.017	49.060 47.496	21.776 19.808	11.414 9.407	4.866 3.109	2.958 1.505	1.695 0.679	1.219 0.422	1.037 0.189

Table 5. Cont.

3.1. Effect of Estimation on the Two-Sided CUSUM Chart Performance

Results in Tables 2 and 3 shows that a small number of Phase I samples, produced out-of-control ARL and SDRL values (cf. Table 3) that were higher than the known standard values in Table 2, for a fixed $ARL_0 = 200$. This is an indication that the use of small Phase I samples to estimate the process mean had direct consequences on the performance of a two-sided CUSUM chart. It follows from Table 4 that the out-of-control ARL was relatively smaller than the desired. Hence, the effect of estimating the standard deviation from Phase I samples had less impact on the ARL performance of the CUSUM chart. However, the very large values of the accompanying SDRLs when was small required the availability of a large amount of Phase I samples. This was also the case when both the parameters were estimated (cf. Table 5). In all the three cases, Tables 3–5, the ARL and SDRL values were closer to the desired values in Table 2 as the number of Phase I observations, *m* increased. Furthermore, parameter estimation had a more adverse impact on the performance of a two-sided CUSUM chart based on smaller reference value *k* and designed for quick detection of very small changes in the process mean.

3.2. Effect of Estimation on Two-Sided CUSUM Control Limits

To study the effect of estimation error on the two-sided CUSUM control limits, we used a sample size of n = 5 and set the in-control ARL₀ to 200. For each value of k = 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00, the corresponding value of the control limits h were computed based on 100,000 iterations. Table 6 presents the two-sided CUSUM control limits using values of m ranging from 10 to 1000. Once again, the use of a small number of Phase I observations m to estimate the unknown in-control chart

parameters give the control limit that is higher or lower than the desired value when the mean or the standard deviation is estimated, respectively. Similar to the ARL performance and the displayed percentage error curves in Figure 1, quite a larger number of Phase I samples was required to achieve the desired control limit. The problem, however, is the availability of such an amount of Phase I data in practical applications. Hence, the need to design a more robust scheme that can minimize the practitioner-to-practitioner variation, particularly when extreme values or outliers was involved.

Table 6. Control limits for the two-sided CUSUM chart when the in-control mean and standard deviation are either known or estimated (n = 5, ARL₀ = 200).

	_					i	k			
μ	0°	m	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00
known	known	-	6.852	4.171	2.933	2.214	1.741	1.387	1.089	0.819
		10	7.609	4.447	3.070	2.290	1.789	1.423	1.120	0.845
		20	7.306	4.331	3.010	2.257	1.768	1.407	1.106	0.832
		30	7.199	4.290	2.986	2.244	1.760	1.400	1.100	0.829
estimated	known	50	7.071	4.246	2.968	2.233	1.753	1.395	1.096	0.826
		100	6.970	4.212	2.952	2.224	1.747	1.390	1.092	0.822
		500	6.878	4.180	2.938	2.215	1.742	1.388	1.090	0.820
		1000	6.870	4.174	2.936	2.215	1.741	1.387	1.090	0.819
		10	6.363	3.769	2.610	1.947	1.518	1.195	0.916	0.650
		20	6.598	3.957	2.758	2.070	1.620	1.281	0.994	0.729
		30	6.689	4.030	2.816	2.117	1.660	1.315	1.025	0.758
known	estimated	50	6.750	4.087	2.863	2.155	1.690	1.344	1.050	0.781
		100	6.794	4.131	2.898	2.183	1.716	1.365	1.070	0.799
		500	6.848	4.165	2.928	2.209	1.736	1.382	1.086	0.814
		1000	6.851	4.171	2.933	2.210	1.739	1.386	1.088	0.818
		10	7.059	4.010	2.719	2.010	1.557	1.223	0.938	0.672
		20	7.051	4.110	2.827	2.107	1.645	1.299	1.009	0.743
		30	7.019	4.140	2.866	2.144	1.675	1.328	1.035	0.768
estimated	estimated	50	6.973	4.159	2.896	2.171	1.701	1.352	1.057	0.788
		100	6.917	4.169	2.913	2.193	1.721	1.370	1.074	0.804
		500	6.868	4.171	2.930	2.209	1.737	1.384	1.086	0.815
		1000	6.860	4.172	2.933	2.213	1.740	1.386	1.088	0.818

Figure 1. Control limits for the two-sided CUSUM chart when the in-control mean and standard deviation are either known or estimated (n = 5, ARL₀ = 200).

4. The Outliers and CUSUM Chart with Estimated Parameters

The effect of estimation errors on the performance of a CUSUM chart may further be strained if there exist some extreme values in the Phase I samples. Both the in-control and the out-of-control ARL and SDRL values will be different from those of the theoretical CUSUM charts. In this section, we evaluated the effects of the outliers on the performance of a two-sided CUSUM control chart with estimated parameters. Using a simulation approach, outliers were generated from the mixture distribution, where $(1 - \alpha)$ 100% regular observations were from $N(\hat{\mu}, \hat{\sigma}^2)$ and the remaining α 100% observations came from a multiple of $\chi^2_{(n)}$ with *n* degrees of freedom, [28]. That is, each observation was generated from a mixture distribution

$$f(x) = (1 - \alpha) N(\mu, \sigma^2) + \alpha \left[N(\mu, \sigma^2) + w \chi^2_{(1)} \right]$$
(10)

where α is the probability of having a multiple of $\chi^2_{(1)}$ added and $w \ge 1$ is the outlier model multiplier. A value of $\alpha = 0$ indicates no presence of an outlier in the sampled data. Without loss of generality, we set $\mu = 0$ and $\sigma^2 = 1$. The values of w is set equal to 1, 2 or 3 corresponding to the small, medium and large outlier, respectively.

The mean and the variance of mixture distribution in Equation (10) are derived in Equations (11) and (12) respectively.

$$E(X) = \sum_{p=1}^{2} \omega_{p} \mu_{p}$$

$$= (1-\alpha)E[N(\mu, \sigma^{2})] + \alpha E[N(\mu, \sigma^{2}) + w\chi_{(1)}^{2}] \qquad (11)$$

$$= (1-\alpha)\mu + \alpha(\mu + w)$$

$$= \mu + \alpha w$$

$$Var(X) = \sum_{p=1}^{2} \omega_{p} (\mu_{p}^{2} + \sigma_{p}^{2} - \{E(X)\}^{2})$$

$$= (1-\alpha)[(E(N(\mu, \sigma^{2})))^{2} + V(N(\mu, \sigma^{2})) - \{E(X)\}^{2}]$$

$$+ \alpha [(E(N(\mu, \sigma^{2}) + w\chi_{(1)}^{2}))^{2} + V(N(\mu, \sigma^{2}) + w\chi_{(1)}^{2}) - \{E(X)\}^{2}]$$

$$= (1-\alpha)[\mu^{2} + \sigma^{2} - \{\mu + \alpha w\}^{2}] + \alpha [\{\mu + w\}^{2} + \sigma^{2} + 2w^{2} - \{\mu + \alpha w\}^{2}]$$

$$= (1-\alpha)[\sigma^{2} - \alpha^{2}w^{2} - 2\alpha w\mu] + \alpha [\mu^{2} + w^{2} + 2w\mu + \sigma^{2} + 2w^{2} - \alpha^{2}w^{2} - 2\alpha w\mu]$$

$$= \sigma^{2}(1-\alpha + \alpha) - 2\alpha w\mu(1-\alpha + \alpha) - \alpha^{2}w^{2}(1-\alpha + \alpha) + \alpha w^{2} + 2\alpha w\mu + 2\alpha w^{2}$$

$$= \sigma^{2} + \alpha(3-\alpha)w^{2}$$

$$(12)$$

We set up a CUSUM chart using the same design parameters, *n*, *k*, *h* and *m* as in Section 3. he in-control ARL and SDRL values for the two-sided CUSUM chart based on this model with $\alpha = 0.00, 0.01, 0.02, 0.03$ and 0.04 are presented in Tables 7–9. To save space, we restricted the study to in-control cases having seen the behavioral pattern for the out-of-control cases in Tables 3–5.

						<i>w</i> = 1					<i>w</i> = 2					<i>w</i> = 3		
m	k	h	RL Properties			α					α					α		
				0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04
	0.25	7 600	ARL	199	198	196	194	192	199	195	190	182	178	199	192	183	173	163
	0.23	7.009	SDRL	215	214	213	212	212	215	213	211	206	205	215	213	208	204	198
	0.50	4 447	ARL	200	199	198	196	195	200	195	191	187	180	200	194	185	177	167
10	0.50	1.11/	SDRL	211	210	211	210	209	211	209	206	206	200	211	210	204	201	196
	0.75	3 070	ARL	200	199	199	198	196	200	198	194	189	184	200	193	187	179	171
	0.75	5.070	SDRL	207	207	207	206	207	207	206	204	203	198	207	203	202	198	193
	1.00	2 290	ARL	200	199	198	197	196	200	197	195	189	186	200	195	189	182	176
	1.00	2.270	SDRL	205	203	204	202	202	205	202	202	198	196	205	201	199	195	191
	0.25	7 071	ARL	200	198	197	194	192	200	197	190	181	169	200	192	179	164	147
0.25 7	7.071	SDRL	191	189	190	187	186	191	189	184	177	169	191	187	177	166	154	
	4 246	ARL	200	199	198	196	194	200	197	192	186	178	200	194	186	172	158	
50		1.210	SDRL	197	195	195	194	192	197	195	191	186	179	197	193	185	176	165
	0.75	2 968	ARL	200	199	199	198	195	200	198	195	189	184	200	196	188	179	167
		2.900	SDRL	198	197	198	197	195	198	198	195	190	185	198	195	189	182	172
	1.00	2,233	ARL	200	200	199	199	197	200	198	195	192	188	200	197	191	183	174
	1.00	2.200	SDRL	199	199	198	198	196	199	197	195	191	190	199	196	192	186	177
	0.25	6.97	ARL	200	199	197	195	191	200	196	189	180	168	200	193	178	161	141
		0.77	SDRL	189	188	186	185	180	189	187	179	172	163	189	183	172	159	142
	0.50	4.212	ARL	200	200	200	196	195	200	198	193	187	177	200	196	185	173	156
$100 \qquad 0.50 \qquad 4.$		SDRL	196	196	196	192	192	196	193	189	185	176	196	192	183	173	158	
	2.952	ARL	200	201	199	197	196	200	200	194	191	185	200	196	189	178	168	
			SDRL	198	199	197	195	195	198	196	192	189	184	198	195	189	178	168
	1.00	2.224	ARL	201	199	201	199	197	201	199	196	194	188	201	199	192	185	173
	1.00		SDRL	199	198	200	197	197	199	197	195	193	188	199	198	192	185	174

Table 7. In-control average run length (ARL) and standard deviation run length (SDRL) values for the two-sided CUSUM control chart in the presence of outlier when the in-control standard deviation is known, and mean is estimated (n = 5, ARL₀ = 200).

						w = 1					w = 2					w = 3		
m	k	h	RL Properties			α					α					α		
				0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04
	0.25	6.070	ARL	200	199	197	195	189	200	196	189	177	164	200	194	179	156	134
	0.25	6.878	SDRL	188	187	187	183	178	188	184	177	166	154	188	181	168	146	126
	0.50	4.10	ARL	200	201	199	197	193	200	199	192	186	175	200	196	185	171	153
500	0.50	4.18	SDRL	195	195	194	192	189	195	193	188	181	172	195	191	181	167	151
	0.75	2 0 2 9	ARL	200	201	199	197	195	200	200	195	190	183	200	198	191	180	166
	0.75	2.938	SDRL	198	198	196	195	193	198	197	193	187	180	198	195	190	179	164
1.00	0.015	ARL	200	200	199	199	196	200	198	197	192	188	200	198	193	185	174	
	1.00	2.215	SDRL	198	199	197	197	193	198	196	196	190	185	198	196	191	182	173
	0.25	(970	ARL	200	201	198	193	190	200	198	190	178	163	200	194	178	156	134
	0.25	6.870	SDRL	188	189	186	181	179	188	186	178	166	153	188	182	167	144	124
	0.50	4 1 7 4	ARL	200	200	198	197	194	200	198	193	186	176	200	196	185	171	153
1000	0.50	4.174	SDRL	195	195	193	191	189	195	193	188	181	171	195	190	180	167	149
	0.75	2.026	ARL	200	199	199	197	196	200	200	197	191	183	200	198	191	179	166
	0.75	2.930	SDRL	198	195	197	194	194	198	198	194	189	180	198	195	189	175	165
	1.00	0.015	ARL	200	199	200	198	198	200	200	198	192	188	200	198	192	185	173
	1.00	2.215	SDRL	199	199	199	196	197	199	198	195	190	186	199	196	191	183	172

Table 7. Cont.

				_		w = 1					w = 2					w = 3		
m	k	h	RL Properties			α					α					α		
				0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04
	0.25	6.363	ARL SDRL	200 308	232 720	271 1271	308 1442	369 2202	200 308	1252 25,588	2827 41,781	5180 59,472	7632 72,550	200 308	5766 66,775	13,029 101,057	22,028 131,849	33,346 163,026
10	0.50	3.769	ARL SDRL	200 374	253 1216	320 1839	402 2660	498 3384	200 374	2374 39,571	5025 59,416	8677 79,131	13,606 100,612	200 374	8574 82,482	19,938 127,093	32,755 162,747	49,639 200,013
	0.75	2.610	ARL SDRL	201 405	266 1397	374 2665	471 3349	569 3891	201 405	2614 41,686	6115 66,631	10,306 86,598	15,478 107,915	201 405	10,440 92,015	23,698 139,038	39,039 178,484	56,370 213,382
	1.00	1.947	ARL SDRL	200 420	289 1851	386 2745	484 3539	599 4090	200 420	3152 46,733	6751 69,185	10,527 87,750	16,605 111,809	200 420	10,322 91,131	24,092 140,118	40,720 181,993	59,187 218,900
	0.25	6.750	ARL SDRL	200 209	213 225	229 249	245 271	262 298	200 209	249 304	313 455	399 892	522 1381	200 209	320 958	598 6844	1020 9008	2048 19,563
50	0.50	4.087	ARL SDRL	201 230	220 259	240 294	263 328	287 379	201 230	274 453	377 1093	550 4144	767 4185	201 230	413 2854	1043 11,610	2332 24,597	5481 45,072
	0.75	2.863	ARL SDRL	201 241	221 274	245 314	272 379	299 417	201 241	288 655	425 1509	614 2443	970 7384	201 241	499 5406	1284 14,261	3489 32,417	7734 56,026
	1.00	2.155	ARL SDRL	200 246	223 285	248 340	275 383	309 450	200 246	295 628	453 3646	713 5086	1113 8738	200 246	517 5297	1622 19,603	3965 35,460	9219 63,990
	0.25	6.794	ARL SDRL	199 197	212 210	226 229	242 246	257 266	199 197	240 250	294 329	360 427	440 573	199 197	284 334	416 636	621 1439	984 2903
100	0.50	4.131	ARL SDRL	201 213	218 235	237 258	258 284	281 315	201 213	258 301	335 428	437 616	582 953	201 213	333 1159	555 1079	1005 5010	1883 9240
	0.75	2.898	ARL SDRL	200 219	221 244	243 276	265 302	292 338	200 219	267 330	358 495	494 799	671 1297	200 219	351 586	649 2578	1290 7319	2600 14,579
	1.00	2.183	ARL SDRL	200 221	221 249	242 277	270 321	295 349	200 221	269 340	376 555	517 948	718 1354	200 221	360 595	700 2335	1417 6141	3124 18,020

						w = 1					w = 2					w = 3		
m	k	h	RL Properties			α					α					α		
				0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04
	0.25	6.040	ARL	201	213	227	242	257	201	238	284	340	411	201	272	375	523	735
	0.25	6.848	SDRL	191	203	218	232	248	191	228	278	337	412	191	267	381	550	807
	0.50	4.16E	ARL	200	218	237	255	276	200	251	317	399	510	200	298	454	702	1098
500	0.50	4.165	SDRL	199	216	236	256	280	199	253	326	416	543	199	306	492	796	1317
	0.75	2 0.26	ARL	201	218	240	261	286	201	257	333	435	565	201	315	499	814	1350
	0.75	2.920	SDRL	202	221	243	265	292	202	264	347	463	613	202	330	554	963	1698
	1 00	2 200	ARL	200	219	241	264	291	200	261	343	455	597	200	321	527	882	1509
	1.00	2.209	SDRL	203	222	247	272	298	203	269	361	488	652	203	341	595	1052	1921
	0.25	(9E1	ARL	200	214	227	240	256	200	237	284	339	405	200	269	368	514	717
	0.25	6.651	SDRL	189	203	216	228	244	189	227	273	330	401	189	260	362	517	740
	0.50	4 1 7 1	ARL	201	219	235	254	277	201	251	313	396	501	201	295	445	681	1058
1000	0.50	4.171	SDRL	197	216	233	251	277	197	249	314	402	512	197	298	457	726	1138
	0.75	2 022	ARL	201	220	240	262	285	201	258	332	432	558	201	311	490	784	1280
	0.75	2.935	SDRL	200	220	240	263	288	200	259	338	442	578	200	318	516	840	1420
	1.00	2 210	ARL	200	219	242	265	289	200	261	340	446	586	200	317	511	844	1408
	1.00	2.210	SDRL	200	221	244	267	290	200	264	349	460	612	200	329	542	911	1580

Table 8. Cont.

						<i>w</i> = 1					<i>w</i> = 2					<i>w</i> = 3		
m	k	h	RL Properties			α					α					α		
				0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04
	0.25 7.0	7 059	ARL	200	220	238	257	264	200	289	420	506	522	200	415	667	834	1018
		7.007	SDRL	344	579	802	1325	880	344	2389	8400	8836	7702	344	6970	12,597	13,937	15,538
	0.50 4.0	4.010	ARL	201	244	315	333	390	201	691	1221	2017	2556	201	2465	4835	7722	10,719
10	0.50	4.010	SDRL	404	1375	5270	4092	5614	404	15,507	21,367	30,537	34,157	404	38,100	54,564	70,640	84,741
	0.75	2 719	ARL	199	291	340	409	497	199	1402	2839	4258	6234	199	4856	10,452	18,230	25,507
	0.75 2.719	2.719	SDRL	429	5091	5290	5868	8207	429	27,821	40,327	50,689	62,254	429	58,258	87,142	116,950	139,084
	1.00 2.010	2 010	ARL	200	280	396	468	642	200	1919	3740	6103	8942	200	7038	15,601	24,673	35,470
	1.00	1.00 2.010	SDRL	444	2471	7494	7088	11,812	444	33,960	48,185	62,320	77,490	444	72,692	109,882	138,233	165,823
	0.25 6.017	6 017	ARL	201	212	227	233	242	201	238	268	297	319	201	265	323	366	391
	0.25	0.917	SDRL	212	228	250	259	270	212	276	331	381	429	212	355	474	560	616
	0.50	4 160	ARL	201	218	236	253	271	201	260	326	405	482	201	333	495	715	977
50	0.50	4.109	SDRL	231	259	290	312	345	231	371	528	684	894	231	678	1371	2239	3977
	0.75 2.9	2 012	ARL	200	222	242	265	289	200	276	372	497	642	200	393	719	1281	2057
		2.915	SDRL	240	282	313	352	392	240	454	738	1374	1769	240	1885	4811	9559	14,183
	1.00	2 102	ARL	199	221	247	273	297	199	282	402	554	770	199	435	925	1826	3613
	1.00	2.193	SDRL	244	281	333	382	419	244	488	928	1704	3350	244	1775	7761	14,799	28,661
	0.25	6.017	ARL	200	211	223	232	241	200	234	266	291	310	200	262	313	350	368
	0.25	0.917	SDRL	198	210	225	237	248	198	242	285	318	345	198	287	356	409	440
	0.50	4.160	ARL	200	217	234	252	268	200	252	311	375	441	200	302	434	591	767
100	0.50	4.109	SDRL	213	231	256	277	299	213	285	378	470	570	213	388	606	906	1233
	0.75	2 012	ARL	200	219	238	261	280	200	260	337	430	546	200	330	526	816	1212
	0.75	2.913	SDRL	218	243	266	298	325	218	311	434	584	811	218	472	895	1682	2721
	1.00	2 102	ARL	200	222	242	268	290	200	269	358	474	619	200	347	596	1016	1662
	1.00 2.1	2.193	SDRL	222	252	278	311	339	222	336	489	703	994	222	586	1330	2710	4963

						w = 1					w = 2					w = 3							
m	k	h	RL Properties			α					α					α							
				0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04	0.00	0.01	0.02	0.03	0.04					
			ARL	200	210	222	232	240	200	233	263	286	302	200	260	311	340	352					
	0.25	6.868	SDRL	190	201	212	222	231	190	224	255	280	295	190	253	306	0.03 0.04 340 352 341 352 528 662 561 712 670 947 747 1071 762 1164 865 1382 339 346 329 336 523 653 534 675 659 927 690 986 752 1124 801 1219						
	0.50 4.151	ARL	200	215	232	248	264	200	247	302	359	414	200	288	402	528	662						
500	0.50	4.171	SDRL	199	216	231	247	265	199	248	307	369	429	199	297	420	561	0.04 352 352 662 712 947 1071 1164 1382 346 336 653 675 927 986 1124 1219					
	0.75 0.02	2.02	ARL	200	218	237	258	277	200	256	323	403	496	200	307	459	670	947					
	0.75	2.93	SDRL	201	220	240	264	281	201	262	336	424	530	201	320	459 499 495	747	1071					
	1.00	2 200	ARL	200	219	240	262	285	200	260	335	430	545	200	317	495	762	1164					
	1.00 2.209	2.209	SDRL	203	224	244	269	296	203	269	350	456	590	203	335	545	865	1382					
	0.25 6.860	(0(0	ARL	200	212	223	232	239	200	234	264	287	302	200	258	310	339	346					
		6.860	SDRL	189	200	211	222	228	189	224	254	275	293	189	248	302	329	336					
	0.50	4 1 7 2	ARL	200	215	232	248	263	200	247	300	357	416	200	289	399	523	653					
1000	0.50	0 4.172	4.172	4.172	4.172	4.1/2	4.172	SDRL	197	213	230	245	261	197	244	301	359	418	197	289	406	534	675
	0.75	2 0 2 2	ARL	200	218	238	257	277	200	256	322	398	491	200	304	453	659	927					
	0.75	2.933	SDRL	200	219	239	258	278	200	257	326	409	507	200	309	466	690	986					
	1.00	0.010	ARL	200	218	240	262	285	200	259	333	425	542	200	313	489	752	1124					
	1.00 2.209 0.25 6.860 0.50 4.172 0.75 2.933 1.00 2.213	2.213	SDRL	201	218	240	265	289	201	264	338	436	562	201	320	511	801	1219					

Table 9. Cont

From Tables 7–9, it was observed that estimating μ , σ or both in the presence of outliers, $\alpha > 0$ to set up a CUSUM chart had a significant effect on the ARL and SDRL performance of the chart. Particularly, when the number of Phase I samples, m was small. The in-control ARLs were approximately equal to the limiting value of 200 when $\alpha = 0$. As expected, the RL values were directly proportional to k and α . That is, the in-control ARL and SDRL deteriorated with the increasing number of the false alarm rate as k, α or both the design parameters increased. In fact, the deterioration level became more alarming with the increase in an outlier metric multiplier, w > 1. Furthermore, as the number of Phase I samples increased, the ARL approached its theoretical value and much faster than its corresponding SDRL (cf. Table 7). However, this was not the case for Tables 8 and 9, when $m \ge 500$. In general, increasing the number of Phase I data will reduce the occurrence of false alarm and bring the RL to be closer to the theoretical value. Unfortunately, this may not be visible in practice. Thus, we suggest a design structure based on the robust Tukey outlier detection model.

5. Performance of the Tukey CUSUM Control Chart

In this section, we studied the performance of the proposed Tukey model based CUSUM control chart with estimated parameters. Let $X_1, X_2, ..., X_n$ denote Phase I samples and \check{X} be the median samples. Then an observation X_k from $X_1, X_2, ..., X_n$ is declared as an outlier if $|X_k - \check{X}| > p \times IQR$, where $IQR = Q_3 - Q_1$ is the interquartile range. Q_1 and Q_3 are the first and third quartile of $X_1, X_2, ..., X_n$, corresponding to the 25th and 75th percentile, respectively. The constant, p is the confidence factor commonly chosen between 1.5 and 3.0. The confidence factor of Tukey's detector is selected so that it is not too small leading to unnecessary screening of observations that are not outliers, and at the same time it should not be too large implying the inability of the detector to detect any outliers. For the said reason, p is chosen to be 2.2 for the current study (for more details on the Tukey's outlier detector see, Tukey [28]).

Once an outlier is detected from the Phase I sample using Tukey's model, it is screened and the remaining data points are used to estimate mean and variance of the process. After screening the suspected outliers, distribution of the remaining data points in Phase I is revised from a mixture distribution to a truncated mixture distribution. Here, the truncation limits are set to be $LDL = \check{X} - 2.2 \times IQR$ and $UDL = \check{X} + 2.2 \times IQR$ where LDL and UDL are lower and upper detection limits, respectively. Finally, the truncated mean and variance for the Phase I data points are defined, respectively, as follows:

$$E(X \mid LDL < X < UDL) = \frac{\int_{LDL}^{UDL} xg(x)dx}{F_X(UDL) - F_x(LDL)}$$
(13)

$$Var(X \mid LDL < X < UDL) = \frac{\int_{LDL}^{UDL} x^2 g(x) dx}{F_X(UDL) - F_x(LDL)} - [E(X \mid LDL < X < UDL)]^2$$
(14)

where $g(x) = \begin{cases} f(x) & \forall LDL < x < UDL \\ 0 & \text{otherwise} \end{cases}$ and $F_X(.)$. is the cumulative distribution function of X. The truncated mean and variance in Equations (13) and (14) are evaluated for different values of α and w, and are given in Table 10.

					w		
a			1		2		3
		X	X LDL <x<udl< th=""><th>X</th><th>X LDL<x<udl< th=""><th>X</th><th>X LDL<x<udl< th=""></x<udl<></th></x<udl<></th></x<udl<>	X	X LDL <x<udl< th=""><th>X</th><th>X LDL<x<udl< th=""></x<udl<></th></x<udl<>	X	X LDL <x<udl< th=""></x<udl<>
0	E(.)	0	-0.00007	0	0.0001	0	0.00006
0	V(.)	1	0.97097	1	0.97101	1	0.971
0.01	E(.)	0.01	0.0051	0.02	0.00564	0.03	0.00539
0.01	V(.)	1.0299	0.97727	1.1196	0.97881	1.2691	0.97878
0.02	E(.)	0.02	0.01064	0.04	0.01127	0.06	0.01083
0.02	V(.)	1.0596	0.98373	1.2384	0.9866	1.5364	0.98683
0.02	E(.)	0.03	0.01624	0.06	0.01713	0.09	0.01664
0.03	V(.)	1.0891	0.99016	1.3564	0.99458	1.8019	0.99498
0.04	E(.)	0.04	0.02158	0.08	0.02323	0.12	0.0223
0.04	V(.)	1.1184	0.99666	1.4736	1.00311	2.0656	1.00392
0.05	E(.)	0.05	0.027	0.1	0.02928	0.15	0.0284
0.03	V(.)	1.1475	1.00323	1.59	1.01156	2.3275	1.01339
0.06	E(.)	0.06	0.03274	0.12	0.03568	0.18	0.03429
0.00	V(.)	1.1764	1.00988	1.7056	1.02088	2.5876	1.02238
0.07	E(.)	0.07	0.03847	0.14	0.04203	0.21	0.04068
0.07	V(.)	1.2051	1.01709	1.8204	1.02994	2.8459	1.03251
0.08	E(.)	0.08	0.04424	0.16	0.04859	0.24	0.04752
0.08	V(.)	1.2336	1.02381	1.9344	1.03942	3.1024	1.04268
0.00	E(.)	0.09	0.05017	0.18	0.05536	0.27	0.0539
0.09	V(.)	1.2619	1.03107	2.0476	1.04928	3.3571	1.05381
0.1	E(.)	0.1	0.05596	0.2	0.06209	0.3	0.06083
0.1	V(.)	1.29	1.03811	2.16	1.05968	3.61	1.06487

Table 10. Non-truncated and truncated mean and variance of mixture distribution of N(0,1) and $\chi^2_{(1)}$.

Table 10 clearly indicates that mixing $\alpha(100)\%$ outliers in the distribution disturbs the mean and variance, especially for the larger values of w. On contrary, when the distribution is truncated (i.e., Tukey's outlier detector is applied) this disturbance in the mean and variance is negligible. In view of this discussion, the estimates of the process mean, and variance obtained from the truncated distribution (i.e., after screening the data using Tukey's model) will have the minimal effect of outliers introduced in the Phase I samples.

Using the same design structure and parameters as in Sections 3 and 4, we computed the in-control ARL and SDRL values for the two-sided CUSUM control chart based on the Tukey outlier detection model with the estimated parameters. Three cases were considered, when the mean, the standard deviation or both were estimated. To access the performance of the proposed charts, we present in Figures 2–4, a graphical display of the in-control ARL values with m = 10, 100, 500 and 1000 when the magnitude of outlier multiplier w is small (w = 1), medium (w = 2) and large (w = 3). We presented only the case when both the mean and the standard deviation were estimated, as the other two cases had similar conclusions. Furthermore, we also showed the in-control ARL values in the presence of outliers without screening in Figures 2–4 for a quick comparison. With the two charts side-by-side, we outlined our findings under the following headings.

Figure 2. In-control ARL values for the two-sided CUSUM control chart in the presence of an outlier, with and without screening, when the parameters are estimated (w = 1, n = 5, ARL₀ = 200).

Figure 3. In-control ARL values for the two-sided CUSUM control chart in the presence of an outlier, with and without screening, when the parameters are estimated (w = 2, n = 5, $ARL_0 = 200$).

Figure 4. In-control ARL values for the two-sided CUSUM control chart in the presence of an outlier, with and without screening, when the parameters are estimated (w = 3, n = 5, ARL₀ = 200).

5.1. Performance Comparison with Respect to m

We saw earlier that the number of Phase I data, *m*, did have a significant effect on the performance of a CUSUM chart. From Figures 2–4, we saw that there was a vast difference in the reported ARL₀ between non-screened data and when the robust Tukey outlier detection model was applied to construct a CUSUM chart, particularly when *m* was small. For example, in Figure 3, if m = 10, k = 1.0 and $\alpha > 0.04$, the ARL₀ for non-screened data were in five figures while the corresponding Tukey screened data were relatively closed to the target value. Even an increase in the number of Phase I observations with no screening did not appear to have a significant impact on the chart's performance as the outlier multiplier increased. The Tukey screened counterpart, however, was getting closer to the limiting value ARL₀ = 200, as *m* increased.

In other words, the use of the Tukey outlier detector in the construction of a CUSUM chart would maintain the performance of the chart, even with the handful amount of Phase I data.

5.2. Performance Comparison with Respect to α

If $\alpha = 0$, the in-control ARL values of CUSUM charts were approximately equal to the theoretical value of 200 and indicates the absence of outliers in the Phase I sampled data. However, as the

magnitude of α increased, the non-screened data blew out of proportion, particularly when *m* was small and k > 0.5. For example, if m = 10, k = 1.0 and $\alpha = 0.05$, in Figure 2, the ARL₀ for the non-screened observations was 770 as against to 280 when the Tukey outlier detection model was applied. Even with the large values of *k* and α , the Tukey screened data appeared to be getting closer to the nominal value as *m* increased. The same conclusion could not be made for non-screened data, as the in-control ARL values remained high when α was relatively large (cf. Figures 2–4). This means that the Tukey's model would not only keep the ARL₀ on target but also maintain the performance of the CUSUM control chart. In general, we observed that the effect of α was minimal when *k* was small.

5.3. Performance Comparison with Respect to w

The larger the magnitude of outlier multiplier w, the worst the in-control ARL value of a two-sided CUSUM chart. If the outliers in a Phase I data were not screened, the ARL₀ was so huge as w increased, that the capability of the CUSUM chart in process monitoring was seriously affected. Unlike the Tukey based chart that tried to maintain the ARL₀ at the target value. For example, if m = 10, k = 0.25 and $\alpha = 0.05$, the in-control ARL values for the non-screened data were 302, 634 and 1025 when w = 1, 2 and 3, respectively. Compared to the screened Phase I data by the Tukey's model with ARL values of 217, 222 and 225. Thus, the Tukey CUSUM chart could relatively withstand the impact of outlier multiplier w as compared to the chart based on non-screened data.

6. Illustrative Example

For illustrating the application of Tukey's outlier detectors with the CUSUM control chart, we used a dataset from [3]. The variable of interest was the flow width measurement (in microns) for the hard-brake process. The data consisted of twenty-five in-control Phase I samples and twenty out-of-control Phase II samples where the average width had increased due to an assignable cause(s). The process mean and standard deviation were estimated (cf. Equations (2)–(4)) from Phase I samples and were found to be 1.5056 and 0.14, respectively. These estimates were used to set up a CUSUM control chart for Phase II samples.

It is clearly observed from the scatter plot given in Figure 5a that the observations were relocated in Phase II. Further, it might also be confirmed from the CUSUM chart plotted in Figure 5b, which indicates several out-of-control signals in Phase-II. These findings led to the evidence that the hard-brake process had a positive shift at subgroup number fifteen and onwards.

Figure 5. Cont.

Figure 5. Scatter plots and the CUSUM control chart outputs for the dataset on the width of the hard-brake process.

Now using the data perturbation technique (cf. Kargupta, Datta [29] and Liu, Kargupta [30]), we introduced random outliers in different subgroups. Further, the process mean and standard deviation were estimated and found out to be 1.554 and 0.21544, respectively. Based on these estimates, we constructed the limits, which were further used to monitor the location of Phase II samples. In Figure 5c, the scatter plot depicts a slight upward change in Phase II, and control chart presented in Figure 5d shows that the out-of-control situation in Phase II was delayed (to subgroup number twenty) due to a small number of outliers present in Phase I. This happened because the limits widened due to the variation in Phase I estimates of process mean and standard deviation.

Finally, by using the above-mentioned contaminated Phase I data, we estimated the limit of the Tukey's outlier detector, which was found to be $p \times IQR = 0.44726$. Now for any value, the absolute deviation from the median (i.e., |X - 1.5171|) greater than 0.44726 implies that the corresponding value is an outlier and needs to be screened from the data. Hence, by using the outlier detector, six observations were screened from the Phase I data. Further, the process mean and standard deviation were estimated and found out to be 1.5123 and 0.152, respectively. These new estimates were similar to the estimates of the original data and the scatter plot of the data is given in Figure 5e, which also showed upward trend in Phase II. In Figure 5f, the control chart is presented, which revealed that the there was no change in the limits, but the chart had detected an increase in the process mean at subgroup number sixteen.

In recent years, activity recognition (AR) became an emerging research topic due to the advancement of electronic devices. AR is commonly used in pattern recognition, ubiquitous computing, human behavior modeling and human–machine interaction. In health care studies, different electronic devices are commonly used to recognize everyday life activities. In eldercare centers, these facilities provide assistance and care to the elders and help to ensure their safety and successful aging. Commonly, wearable devices and cameras are used to monitor everyday life activities, but these approaches suffer from several disadvantages such as intrusiveness, time-consuming processing and low resolution. Therefore, to overcome these challenges in real-time activity recognition, Hong, Kang [31] used an alternative method named as multisensor data fusion (assembly reliability evaluation method—AReM). For a more detailed introduction on the AReM see [32]. In the AReM system, information is gathered from an inertial sensor embedded in a smartphone and wireless sensor system, which is plugged between the user and environment. Further, in a wireless sensor network, the movement of an individual is measured in the received signal strength (RSS) between the user and environment. For the AR dataset [31], designed a competition. In which three IRIS motes are used and placed on the chest, the right and left ankle of an actor (cf. Figure 6).

Figure 6. Placement of IRIS nodes on the actor's body (cf. (Palumbo, Gallicchio [33]).

From this wireless sensor network, data was recorded on the actor's activities such as; bending, cycling, standing, sitting, laying and walking. Further, for the first task of heterogeneous AReM, they considered activities such as cycling and standing. For the application purpose, we were concerned to detect a change in the pattern of RSS generated through the heterogeneous AReM setup. The AR time series dataset contained 480 observations in total, and each observation was obtained after 250 milliseconds. The average of RSS against the three IRIS motes (i.e., rss12, rss13, and rss23) was available in 15 different sequences of each activity. In our application, we considered the first sequence of the rss13 IRIS mote (chest-left ankle). The average of RSS of cycling was considered as in-control Phase I samples and average RSS of standing was considered as the out-of-control Phase II sample points. To access the normality of Phase I data set, we plotted a probability plot at the 95% confidence interval (cf. Figure 7) and also applied the Anderson–Darling test (AD = 0.517 and *p* – value = 0.189), which provided the evidence that the Phase I data set was normal.

Figure 7. Probability plot of the received signal strength (RSS) values of the rss13 mote belonging to the cycling activity.

The RSS values of the chest-left ankle mote belonging to the cycling activity were clubbed into Phase I subgroups, and only the first 50 subgroups were used for the plotting purpose. Moreover, the first 25 subgroups based on the RSS values of chest-left ankle mote belonging to the standing activity were used as Phase II samples. The dataset of 75 subgroups is reported in Table 11. The process mean and standard deviation were estimated from the Phase I samples and found to be 16.9734 and 3.4764, respectively. These estimates were then used to construct the CUSUM chart for the Phase II samples. Figure 8a,b presents the scatter plot for the original data and the control chart output, respectively.

		Phase-	I Subgroups of R	SS Values Chest	-Left Ankle Mo	te	
No			RSS			\overline{X}_i	$\mathbf{S}_{\mathbf{i}}$
1	17.50	21.50	17.75	20.50	14.25	18.300	2.847
2	11.80	21.50	23.33	18.50	18.00	18.626	4.399
3	18.00	17.50	15.33	16.25	18.75	17.166	1.372
4	12.50	17.50	16.00	19.25	13.00	15.650	2.892
5	22.00	20.25	16.25	15.33	17.75	18.316	2.776
6	16.50	24.00	22.75	20.75	20.75	20.950	2.847
7	24.50	13.25	18.25	23.00	19.00	19.600	4.418
8	13.00	15.33	17.33	12.33	22.50	16.098	4.089
9	20.50	14.50	16.75	17.25	13.33	16.466	2.769
10	17.50	17.25	13.75	17.67	14.67	16.168	1.823
11	14.00	13.00	19.00	16.00	11.25	14.650	2.977
12	18.00	17.00	17.50	24.00	16.00	18.500	3.162
13	14.75	12.50	17.75	10.67	20.25	15.184	3.874
14	18.00	11.75	12.00	19.75	12.75	14.850	3.744
15	18.00	16.67	17.67	12.80	19.25	16.878	2.459
16	19.75	24.00	15.67	21.33	19.67	20.084	3.027
17	26.75	17.75	22.75	16.00	11.75	19.000	5.858
18	11.25	19.67	23.75	15.75	17.00	17.484	4.641
19	19.25	16.50	15.25	19.25	16.25	17.300	1.841
20	6.00	13.50	15.00	10.25	18.00	12.550	4.604
21	11.33	13.00	16.50	19.50	19.25	15.916	3.669
22	10.00	13.00	19.50	19.00	18.50	16.000	4.257
23	12.25	19.00	14.50	15.00	18.00	15.750	2.739

Table 11. Phase-I subgroups of RSS values chest-left ankle mote. Phase-II subgroups of RSS values chest-left ankle mote.

			Pl	nase-I Subgro	ups of RSS	Values Ch	est-Left A	nkle Mot	e		
No					RSS				\overline{X}_i		Si
24	19.75		16.00	12.	50	16.75		17.50	16.500		2.640
25	15.75		17.75	19.	00	19.00		10.33	16.366		3.626
26	19.00		24.00	25.	75	17.33		19.75	21.166		3.552
27	19.25		22.50	16.	75	11.50		18.75	17.750		4.058
28	10.67		16.50	17.3	33	16.33		13.25	14.816		2.788
29	19.00		20.75	13.	50	18.25		16.50	17.600		2.753
30	5.50		17.50	16.	00	9.75		11.50	12.050		4.843
31	20.67		8.50	14.	25	14.00		18.75	15.234		4.737
32	18.75		16.25	14.0	00	21.00	-	22.33	18.466		3.402
33	13.50		17.50	18.	33	17.00		15.75	16.416		1.879
34	20.50		16.75	17.0	00	21.00		19.50	18.950		1.972
35	18.33		15.75	15.	-0	20.75		15.67	17.100		2.404
30 27	10.00		20.25	24.	20 22	15.00		10.07	17 550		3.90Z
29	10.75		19.75	12	55 75	15.25 21.00		21.07 16 75	18 000		3.733
20	18 75		16.75	20.	75 75	12.00		18 50	15.024		2.0 4 3
40	12.25		10.07	13.	7.5 NO	17.00		8 33	12.734		2.971
40	21.25		20.25	11.	00	17.23		0.55 17 33	12.710		2 842
42	21.25		15 75	14.	00	19.25		16.33	17 616		2.042
43	19 75		16.67	17.	00	16.50		15.00	16 984		1 726
44	18.67		21.33	18.	25	16.67		17.75	18.534		1.732
45	15.00		16.33	19.	00	17.00		17.50	16.966		1.474
46	14.00		19.00	17.	75	26.75		15.00	18.500		5.034
47	17.25		20.50	18.	50	19.00		20.00	19.050		1.280
48	18.00		10.50	11.	67	16.67		18.00	14.968		3.610
49	8.75		20.75	21.	8.00		21.00	15.900		6.875	
50	16.00		12.00	18.	25	12.00		14.75	14.600		2.684
			Ph	ase-II Subgro	ups of RSS	6 Values Ch	est-Left A	nkle Mot	e.		
No				RSS		\overline{X}_i	$CUSUM_i^+$	CUSU	$J\mathbf{M}_{\mathbf{i}}^{-}$	Н	-H
1	11.50	13.50	12.00	11.50	12.00	12.100	0.000	-4.0)96	6.41	-6.41
2	11.00	12.00	16.00	11.67	17.60	13.654	0.000	-6.6	538	6.41	-6.41
3	12.75	15.50	6.50	10.33	18.00	12.616	0.000	-10.	218	6.41	-6.41
4	9.50	2.00	11.60	12.00	12.00	9.420	0.000	-16.	994	6.41	-6.41
5	12.00	6.00	12.50	12.50	13.33	11.266	0.000	-21.	924	6.41	-6.41
6	12.00	13.25	11.25	12.00	13.25	12.350	0.000	-25.	770	6.41	-6.41
7	16.33	11.75	18.00	9.75	15.00	14.166	0.000	-27.	800	6.41	-6.41
8	4.50	16.75	13.67	8.25	15.00	11.634	0.000	-32.	362	6.41	-6.41
9	12.25	4.00	11.75	6.50	12.00	9.300	0.000	-39.	258	6.41	-6.41
10	8.50	11.00	9.50	12.25	11.75	10.600	0.000	-44.	854	6.41	-6.41
11	12.00	12.25	17.00	12.00	13.25	12.100	0.000	-48.	950	6.41	-6.41
12	18.25	12.00	17.00	11.00	12.25	14.100	0.000	-51.	046	6.41	-6.41
13	15.50	14.00	14.00	9.00	0.75 10.00	12.230	0.000	-34.	992 528	0.41 6.41	-0.41
14	13.00	12 50	14.00	11.25	8.00	12.000	0.000	-58.	568	6.41	-6.41
15	12 75	12.00	10.75	12.00	12.00	11 900	0.000	-04.	300 864	6.41	-6.41
17	12.75	9.75	13.00	12.00	16.50	14 000	0.000	-00. -71	060	6.41	-6.41
18	16.50	12.50	12.25	14.75	10.50	13.300	0.000	-73	956	6.41	-6 41
19	13.75	13.67	12.00	5.00	3.50	9,584	0.000	-80	568	6.41	-6.41
20	11.00	12.00	13.00	10.75	8.00	10.950	0.000	-85	814	6.41	-6.41
21	13.25	12.00	11.00	12.00	11.00	11.850	0.000	-90	160	6.41	-6.41
22	18.00	11.00	11.67	16.00	16.25	14.584	0.000	-91.	772	6.41	-6.41
23	13.75	11.00	4.67	17.50	11.50	11.684	0.000	-96.	284	6.41	-6.41
24	6.67	11.67	12.75	11.33	7.67	10.018	0.000	-102	.462	6.41	-6.41
25	11.50	12.33	6.67	10.00	2.67	8.634	0.000	-110	.024	6.41	-6.41

Table 11. Cont.

(f) Chart output of screened contaminated data

Figure 8. Scatter plots and CUSUM control chart outputs for the dataset on the received signal strength process.

data

It was evident from Figure 8a that there was a downward relocation in Phase II samples, a point equally supported by the corresponding CUSUM chart, which gave an out-of-control signal right

from the start of the plots in Figure 8b. Now to access the effect of the outliers, we followed the same procedure as described in Section 6, by first contaminating the Phase I data and used the estimates obtained, $\hat{\mu}_0 = 18.9924$ and $\hat{\sigma}_0 = 7.4018$ to setup a CUSUM control chart for the Phase II data (cf. Figure 8c,d). Secondly, we used the Tukey outlier detector to screen the Phase I samples, computed the control chart parameters and used the estimates, $\hat{\mu}_0 = 17.0593$ and $\hat{\sigma}_0 = 3.5543$ to construct the CUSUM chart for the Phase II samples (cf. Figure 8e,f).

The introduction of outliers in the Phase I samples, Figure 8c gave rise to wider control limits, which in turn delayed the out-of-control signal in the Phase II control chart setup (cf. Figure 8d). However, the application of the outlier detector on the contaminated Phase I data resulted in the screening out of about ten data points (cf. Figure 8e). Subsequently, the corresponding CUSUM chart in Figure 8f shows a similar behavioral pattern as those of the original data in Figure 8b.

8. Conclusions

In this article, we evaluated the in-control performance of a two-sided CUSUM control chart when the parameters were estimated in the presence of outliers based on the robust Tukey detection model. Using a Monte Carlo simulation approach, the ARL and SDRL were computed for a different number of Phase I data.

The results show that a large number of Phase I data was required to minimize the practitioner-to-practitioner variability. In the presence of outliers, a larger amount of Phase I data was needed, which might not be realistic in practical applications. The results further revealed that the use of the Tukey outlier detector in the construction of a two-sided CUSUM control chart required fewer Phase I observations to stabilize the chart's performance. Therefore, it was plausible to use the Tukey's model in the design structure of a CUSUM chart when the parameters were estimated for efficient process monitoring, particularly when the observations were prone to outliers. The advantage of this proposal is its simplicity to design and it is easy to use. A point demonstrated by the illustrative and application examples of the new Tukey CUSUM control chart. The scope of this study might be extended to other control charts design strategies like the Shewhart and exponentially weighted moving average.

Author Contributions: Study planning, mathematical derivations, calculation of results and draft writing was done by authors N.A. and M.R.A. under the supervision of author M.R. Application of proposed model on real-life dataset was done and written by author T.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals, under grant number IN171010.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CUSUM	Cumulative Sum
ARL	Average Run Length
SDRL	Standard Deviation of Run Length
RSS	Received Signal Strength
RL	Run Length
AR	Activity Recognition
AReM	Assembly Reliability Evaluation Method

References

- 1. Abujiya, M.a.R.; Riaz, M.; Lee, M.H. Enhanced cumulative sum charts for monitoring process dispersion. *PLoS ONE* **2015**, *10*, e0124520. [CrossRef] [PubMed]
- 2. Page, E.S. Continuous inspection schemes. *Biometrika* 1954, 41, 100–114. [CrossRef]

- 3. Montgomery, D.C. Introduction to Statistical Quality Control, 6th ed.; John Wiley & Sons: New York, NY, USA, 2009.
- 4. Saleh, N.A.; Zwetsloot, I.M.; Mahmoud, M.A.; Woodall, W.H. CUSUM charts with controlled conditional performance under estimated parameters. *Qual. Eng.* **2016**, *28*, 402–415. [CrossRef]
- 5. Schoonhoven, M.; Nazir, H.Z.; Riaz, M.; Does, R.J. Robust location estimators for the X-bar control chart. *J. Qual. Technol.* **2011**, *48*, 363–379. [CrossRef]
- 6. Nazir, H.Z.; Riaz, M.; Does, R.J.M.M.; Abbas, N. Robust CUSUM control charting. *Qual. Eng.* **2013**, *25*, 211–224. [CrossRef]
- Amdouni, A.; Castagliola, P.; Taleb, H.; Celano, G. A variable sampling interval Shewhart control chart for monitoring the coefficient of variation in short production runs. *Int. J. Prod. Res.* 2017, *55*, 5521–5536. [CrossRef]
- 8. Abid, M.; Nazir, H.Z.; Riaz, M.; Lin, Z. Investigating the Impact of Ranked Set Sampling in Nonparametric CUSUM Control Charts. *Qual. Reliab. Eng. Int.* **2017**, *33*, 203–214. [CrossRef]
- 9. Zhang, J.; Li, Z.; Chen, B.; Wang, Z. A new exponentially weighted moving average control chart for monitoring the coefficient of variation. *Comput. Ind. Eng.* **2014**, *78*, 205–212. [CrossRef]
- 10. Mahmood, T.; Nazir, H.Z.; Abbas, N.; Riaz, M.; Ali, A. Performance evaluation of joint monitoring control charts. *Sci. Iran.* **2017**, *24*, 2152–2163. [CrossRef]
- 11. Hawkins, D.M. Identification of Outliers; Chapman and Hall: London, UK, 1980; Volume 11.
- 12. Beckman, R.J.; Cook, R.D. Outlier ... s. Technometrics 1983, 25, 119–149. [CrossRef]
- 13. Barnett, V.; Lewis, T. Outliers in Statistical Data, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1994.
- 14. Grubbs, F.E. Procedures for Detecting Outlying Observations in Samples. *Technometrics* **1969**, *11*, 1–21. [CrossRef]
- 15. Tietjen, G.L.; Moore, R.H. Some Grubbs-Type Statistics for the Detection of Several Outliers. *Technometrics* **1972**, *14*, 583–597. [CrossRef]
- 16. Lim, A.J.; Khoo, M.B.; Teoh, W.L.; Haq, A. Run sum chart for monitoring multivariate coefficient of variation. *Comput. Ind. Eng.* **2017**, *109*, 84–95. [CrossRef]
- 17. Teoh, W.L.; Khoo, M.B.; Castagliola, P.; Yeong, W.C.; Teh, S.Y. Run-sum control charts for monitoring the coefficient of variation. *Eur. J. Oper. Res.* 2017, 257, 144–158. [CrossRef]
- 18. Knorr, E.M.; Ng, R.T.; Tucakov, V. Distance-based outliers: Algorithms and applications. *VLDB J.* **2000**, *8*, 237–253. [CrossRef]
- 19. Tse, Y.K.; Balasooriya, U. Tests for Multiple Outliers in an Exponential Sample. *Indian J. Stat. Ser. B* (1960–2002) **1991**, *53*, 56–63.
- 20. Hubert, M.; Dierckx, G.; Vanpaemel, D. Detecting influential data points for the Hill estimator in Pareto-type distributions. *Comput. Stat. Data Anal.* 2013, *65*, 13–28. [CrossRef]
- 21. Castagliola, P.; Amdouni, A.; Taleb, H.; Celano, G. One-sided Shewhart-type charts for monitoring the coefficient of variation in short production runs. *Qual. Technol. Quant. Manag.* **2015**, *12*, 53–67. [CrossRef]
- 22. Chen, G. The Mean and Standard Deviation of the Run Length Distribution of X Charts when Control Limits are Estimated. *Stat. Sin.* **1997**, *7*, 789–798.
- 23. Mahmoud, M.A.; Henderson, G.R.; Epprecht, E.K.; Woodall, W.H. Estimating the Standard Deviation in Quality-Control Applications. *J. Qual. Technol.* **2010**, *42*, 348–357. [CrossRef]
- 24. Nazir, H.Z.; Abbas, N.; Riaz, M.; Does, R.J.M.M. A comparative study of memory-type control charts under normal and contaminated normal environments. *Qual. Reliab. Eng. Int.* **2016**, *32*, 1347–1356. [CrossRef]
- 25. Mahmood, T.; Xie, M. Models and monitoring of zero-inflated processes: The past and current trends. *Qual. Reliab. Eng. Int.* **2019**, *35*, 2540–2557. [CrossRef]
- 26. Jones, L.A.; Champ, C.W.; Rigdon, S.E. The Run Length Distribution of the CUSUM with Estimated Parameters. *J. Qual. Technol.* **2004**, *36*, 95–108. [CrossRef]
- 27. Dunbar, M.X. Analysis and Design of One-And Two-Sided CUSUM Charts with Known and Estimated Parameters. Master's Thesis, Georgia Southern University, Statesboro, GA, USA, 2007.
- 28. Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Boston, MA, USA, 1977.
- 29. Kargupta, H.; Datta, S.; Wang, Q.; Sivakumar, K. Random-data Perturbation Techniques and Privacy-Preserving Data Mining. *Knowl. Inf. Syst.* **2005**, *7*, 387–414. [CrossRef]
- 30. Liu, K.; Kargupta, H.; Ryan, J. Random Projection-based Multiplicative Data Perturbation for Privacy Preserving Distributed Data Mining. *IEEE Trans. Knowl. Data Eng.* **2006**, *18*, 92–106.

- 31. Hong, E.P.; Kang, H.W.; Kang, C.W. DEWMA control chart for the coefficient of variation. In Proceedings of the Advanced Materials Research, Qinhuangdao, China, 28–31 October 2011; pp. 1682–1688.
- Du Nguyen, H.; Nguyen, Q.T.; Tran, K.P.; Ho, D.P. On the performance of VSI Shewhart control chart for monitoring the coefficient of variation in the presence of measurement errors. *Int. J. Adv. Manuf. Technol.* 2019, 104, 211–243. [CrossRef]
- 33. Palumbo, F.; Gallicchio, C.; Pucci, R.; Micheli, A. Human Activity Recognition Using Multisensor Data Fusion Based on Reservoir Computing. *J. Ambient Intell. Smart Environ.* **2016**, *8*, 87–107. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).