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Abstract: In this paper, we study a modified viscosity type subgradient extragradient-line method
with a parallel monotone hybrid algorithm for approximating a common solution of variational
inequality problems. Under suitable conditions in Hilbert spaces, the strong convergence theorem of
the proposed algorithm to such a common solution is proved. We then give numerical examples in
both finite and infinite dimensional spaces to justify our main theorem. Finally, we can show that
our proposed algorithm is flexible and has good quality for use with common types of blur effects in
image recovery.

Keywords: variational inequality problems; viscosity-type subgradient extragradient-line method;
monotone mapping; Hilbert space

1. Introduction

Let H be a real Hilbert space with the inner product 〈., .〉 and the induced norm ‖.‖. Let C be a
nonempty closed and convex subset of H. A mapping f : C → C is said to be a strict contraction if there
exists k ∈ [0, 1) such that

‖ f x− f y‖ ≤ k‖x− y‖, ∀x, y ∈ C. (1)

A mapping A : C → H is said to be

1. Monotone if

〈Ax− Ay, x− y〉 ≥ 0 for all x, y ∈ C; (2)

2. Pseudo-monotone if

〈Ay, x− y〉 ≥ 0⇒ 〈Ax, x− y〉 ≥ 0 for all x, y ∈ C; (3)

3. L-Lipschitz continuous if there exists a positive constant L such that

‖Ax− Ay‖ ≤ L‖x− y‖ for all x, y ∈ C. (4)
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In this paper, we study the following variational inequality problem (VIP) for the operator A to
find x∗,∈ C such that

〈Ax∗, y− x∗〉 ≥ 0, ∀y ∈ C. (5)

The set of solutions of VIP (5) is denoted by VI(A,C). The VIP was introduced and studied by
Hartman and Stampacchia in 1966 [1]. The variational inequality theory is an important tool based
on studying a wide class of problems—unilateral and equilibrium problems arising in structural
analysis, economics, optimization, operations research, and engineering sciences (see [2–7] and the
references therein). Several algorithms have been improved for solving variational inequality and
related optimization problems (see [6,8–15] and the references therein). It is well known that x is the
solution of the VIP (5) if and only if x is the fixed point of the mapping PC(I − rA), r > 0 (see [4]
for details)

x = PC(x− γAx), γ > 0 and rγ(x) := x− PC(x− γAx) = 0.

Therefore, we can find the fixed point of the mapping PC(I − rA) replaces finding the solution
of VIP (5) (see [7,9]). For solving VIP (5), the projection on closed and convex sets have been used.
The gradient method is the simplest projection method, in which only one projection on the feasible
set needs to be computed. However, strongly monotone or inverse strongly monotone operators have
been required to obtain the convergence result. In 1976, Korpelevich [16] proposed another projection
method called the extragradient method for finding a saddle point, and then it was extended to finding
a solution of VIP for Lipschitz continuous and monotone (even pseudomonotone) mappings A. The
extragradient method is designed as follows:{

yn = PC(xn − λA(xn)),

xn+1 = PC(xn − λA(yn)),
(6)

where PC is the metric projection onto C and λ is a suitable parameter. When the structure of C is
simple, the extragradient method is computable and very useful because the projection onto C can
be found easily. However, the computation of a projection onto a closed convex subset is generally
difficult, and two distance optimization problems in the extragradient method are solved to obtain the
next approximation xn+1 over each iteration. This can be precious and seriously affect the efficiency
of the used method. In 2011, the subgradient extragradient method was proposed in [17] for solving
VIPs in Hilbert spaces. A projection onto a closed convex subset is reduced into one step and a special
half-space is constructed for the projection in the second step. The method is generated as follows:{

yn = PC(xn − λA(xn)),

xn+1 = PTn(xn − λA(yn)),
(7)

where Tn is a half-space whose bounding hyperplane is supported on C at yn, that is,

Tn = {υ ∈ H : 〈(xn − λA(xn))− yn, υ− yn〉}.

The authors in [17] proved that two sequences {xn}, {yn} generated by (7) converge weakly to a
solution of the VIP.

Recently, Gibali [18] proposed a new subgradient extragradient method by using adopting
Armijo-like searches, called the self-adaptive subgradient extragradient method. Under the assumption
of pseudomonotonicity and continuity of the operator, it has been proven that the convergence result for
VIP (5) is Rn. Gibali [9] remarked that the Armijo-like searches can be viewed as a local approximation
of the Lipschitz constant of A.
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x0 ∈ Rn,

yn = PC(xn − αA(xn)), α ∈ {αn−1, αn−1β, αn−1β2, ...},
(α satisfies α〈xn − yn, A(xn)− A(yn)〉 ≤ (1− ε)‖xn − yn‖2),

xn+1 = PTn(xn − αn A(yn)), n ≥ 1,

(8)

where Tn = {w ∈ Rn | 〈xn − αn A(xn)− yn, w− yn〉 ≤ 0}, α1 ∈ (0, ∞), and ε, β ∈ (0, 1).
Very recently, solving the VIP (5) when A is a Lipschitz continuous monotone mapping such that

the Lipschitz constant is unknown in Hilbert spaces by using the following viscosity-type subgradient
extragradient-like method was proposed by Shehu and Iyiola [19].

yn = PC(xn − λn Axn), λn = ρln ,

(ln is the smallest non-negative integer l such that λn‖Axn − Ayn‖ ≤ µ‖rρln (xn)‖),
zn = PTn(xn − λn Ayn),

xn+1 = αn f (xn) + (1− αn)zn, n ≥ 1,

(9)

where Tn = {z ∈ H : 〈xn − λn Axn − yn, z − yn〉 ≤ 0} with ρ, µ ∈ (0, 1) and {αn} ⊆ (0, 1).
It was proved that the sequence {xn} generated by (9) converges strongly to x∗ ∈ VI(C,A), where
x∗ = PVI(C,A) f (x∗) is the unique solution of the variational inequality〈

(I − f )x∗, x− x∗
〉
≥ 0, ∀x ∈ VI(C, A), (10)

where f : H → H is a strict contraction mapping such that constant k ∈ [0, 1) under the following
conditions:

(C1) lim
n→∞

αn = 0 and (C2)
∞

∑
n=1

αn = ∞.

Our interest in this paper is to study the finding of common solutions of variational inequality
problems (CSVIPs). The CSVIP is stated as follows: Let C be a nonempty closed and convex subset of
H. Let Ai : H → H, i = 1, 2, ..., N be mappings. The CSVIP is to find x∗ ∈ C such that〈

Aix∗, x− x∗
〉
≥ 0, ∀x ∈ C, i = 1, 2, ..., N. (11)

If N = 1, CSVIP (11) becomes VIP (5).
The CSVIP has received a great deal of attention due to its applications in a large variety of

problems arising in structural analysis, convex feasibility problems, common fixed point problems,
common minimizer problems, common saddle-point problems, and common variational inequality
problems [20]. These problems have practical applicabilities in signal processing, network resource
allocation, image processing, and many other fields [21,22]. Recently, many mathematicians have
been widely studying this problem both theoretically and algorithmically; see [23–27] and the
references therein.

Very recently, Anh and Hieu [28,29] proposed an important method for finding a common fixed
point of a finite family of quasi ∅-nonexpansive mappings {Si}N

i=1 in Banach spaces, which they called
the parallel monotone hybrid algorithm. This algorithm is related to Hilbert spaces as follows:

x0 ∈ C,

yi
n = αnxn + (1− αn)Sixn, i = 1, ..., N,

in = argmax{‖yi
n − xn‖ : i = 1, ..., N}, ȳn := yin

n ,

Cn+1 = {υ ∈ Cn : ‖υ− ȳi
n‖ ≤ ‖υ− xn‖},

xx+1 = PCn+1 x0,

(12)
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where 0 < αn < 1, lim
n→∞

sup αn < 1. We see that a parallel algorithm is an algorithm that can execute

several directions simultaneously on different processing devices and then combine all the individual
outputs.

Inspired and encouraged by the previous results, in this paper we introduce a modified parallel
method with a viscosity-type subgradient extragradient-like method for finding a common solution of
variational inequality problems. Numerical experiments are also conducted to illustrate the efficiency
of the proposed algorithms. Moreover, the problem of multiblur effects in an image is solved by
applying our proposed algorithm.

2. Preliminaries

In order to prove our main result, we recall some basic definitions and lemmas needed for further
investigation. In a Hilbert space H, let C be a nonempty closed and convex subset of H. For every
point x ∈ H, there exists a unique nearest point of C, denoted by PCx, such that ‖x− PCx‖ ≤ ‖x− y‖
for all y ∈ C. Such a PC is called the metric projection from H onto C.

Lemma 1 ([30]). Let C be a nonempty closed and convex subset of a real Hilbert space H and let PC be the
metric projection of H onto C. Let x ∈ H and z ∈ C. Then, z = PCx if and only if

〈x− z, y− z〉 ≤ 0, ∀y ∈ C.

Lemma 2 ([30]). The following statements hold in any real Hilbert space H:

(i) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2, ∀x, y ∈ H.

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

Lemma 3 (Xu, [31]). Let {an}∞
n=0 be a sequence of non-negative real numbers satisfying the following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 1,

where

(i) {αn}∞
n=0 ⊂ [0, 1], Σ∞

n=1αn = ∞;
(ii) lim sup

n→∞
σn ≤ 0;

(iii) γn ≥ 0 (n ≥ 1), Σ∞
n=1γn < ∞.

Then, an → 0 as n→ ∞.

Lemma 4 ([8]). Let C be a nonempty closed and convex subset of a real Hilbert space H and PC : H → C is the
metric projection from H onto C. Then, the following inequality holds:

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y− PCx‖2 ∀x ∈ H, ∀y ∈ C. (13)

Lemma 5 ([19]). There exists a nonnegative integer ln satisfying (9).

Lemma 6 ([32]). For each x1, x2, ..., xm ∈ H and α1, α2, ..., αm ∈ [0, 1] with
m
∑

i=1
αi = 1, we have

‖α1x1 + .... + αmxm‖2 =
m

∑
i=1

αi‖xi‖2 − ∑
1≤i<j≤m

αiαj‖xi − xj‖2.
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3. Main Results

In this section, we propose the parallel method with the viscosity-type subgradient
extragradient-like method modified for solving common variational inequality problems. Let C be
a nonempty closed and convex subset of a real Hilbert space H. Let Ai : C → H be a monotone
mapping and Li-Lipschitz continuous on H but Li is unknown for all i = 1, 2, ..., N such that

F :=
N⋂

i=1

VI(C, Ai) 6= ∅. Let f : C → C be a strict contraction mapping with constant k ∈ (0, 1].

Suppose {xn}∞
n=1 is generated in the following Algorithm 1:

Algorithm 1. Given ρ ∈ (0, 1), µ ∈ (0, 1). Let {αn}∞
n=1 be a real sequence in (0, 1). Let x1 ∈ H be arbitrary.

Step 1 : Compute yi
n for all i = 1, 2, ..., N by

yi
n = PC(xn − λi

n Aixn), ∀n ≥ 1,

where λi
n = ρli

n and li
n is the smallest non-negative integer li such that

λi
n ‖ Aixn − Aiyi

n ‖≤ µ ‖ r
ρli (xn) ‖ . (14)

Step 2 : Compute

zi
n = PTi

n
(xn − λi

n Aiyi
n),

where Ti
n := {z ∈ H :

〈
xn − λi

n Aixn − yi
n, z− yi

n
〉
≤ 0}.

Step 3 : Compute

xn+1 = α0
n f (xn) +

N

∑
i=1

αi
nzi

n, n ≥ 1. (15)

Set n + 1→ n and go to Step 1.

Theorem 1. Assume that

(a) lim
n→∞

α0
n = 0,

∞

∑
n=1

α0
n = ∞

(b) lim inf
n→∞

αi
n > 0, ∀i = 1, 2, ..., N.

Then the sequence {xn}∞
n=1 generated by Algorithm 1 strongly converges to x∗ ∈ F, where x∗ = PF f (x∗)

is the unique solution of the variational inequality:〈
(I − f )x∗, x− x∗

〉
≥ 0, ∀x ∈ F. (16)

Proof. Let x∗ ∈ F and ui
n = xn − λi

n Aiyi
n, ∀n ≥ 1, i = 1, 2, .., N

‖ zi
n − x∗ ‖2 =

〈
PTi

n
(ui

n)− x∗, PTi
n
(ui

n)− x∗
〉

= ‖ PTi
n
(ui

n)− ui
n ‖2 +2

〈
PTi

n
(ui

n)− ui
n, ui

n − x∗
〉
+ ‖ ui

n − x∗ ‖2

= ‖ ui
n − x∗ ‖2 + ‖ ui

n − PTi
n
(ui

n) ‖2 +2
〈

PTi
n
(ui

n)− ui
n, ui

n − x∗
〉
. (17)

By the characterization of the metric projection Pi
Tn

and x∗ ∈ F ⊆ C ⊆ Ti
n, we get

2 ‖ ui
n − PTi

n
(ui

n) ‖2 +2
〈

PTi
n
(ui

n)− ui
n, ui

n − x∗
〉
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= 2
〈
ui

n − PTi
n
(ui

n), x∗ − PTi
n
(ui

n)
〉
≤ 0. (18)

This implies that

‖ ui
n − PTi

n
(ui

n) ‖2 +2
〈

PTi
n
(ui

n)− ui
n, ui

n − x∗
〉
≤ − ‖ ui

n − PTi
n
(ui

n) ‖2 . (19)

We then obtain by the definition of Algorithm 1 that

‖ zi
n − x∗ ‖2 ≤ ‖ ui

n − x∗ ‖2 − ‖ ui
n − zi

n ‖2

= ‖ (xn − λi
n Aiyi

n)− x∗ ‖2 − ‖ (xn − λi
n Aiyi

n)− zi
n ‖2

= ‖ xn − x∗ ‖2 − ‖ xn − zi
n ‖2 +2λi

n
〈
− xn + x∗, Aiyi

n
〉

+2λi
n
〈

xn − zi
n, Aiyi

n
〉

= ‖ xn − x∗ ‖2 − ‖ xn − zi
n ‖2 +2λi

n
〈

x∗ − zi
n, Aiyi

n
〉
. (20)

By the monotonicity of the operator Ai, we have

0 ≤
〈

Aiyi
n − Aix∗, yi

n − x∗
〉

=
〈

Aiyi
n, yi

n − x∗
〉
−
〈

Aix∗, yi
n − x∗

〉
≤
〈

Aiyi
n, yi

n − x∗
〉

=
〈

Aiyi
n, yi

n − zi
n
〉
+
〈

Aiyi
n, zi

n − x∗
〉
.

Thus

〈
x∗ − zi

n, Aiyi
n
〉
≤
〈

Aiyi
n, yi

n − zi
n
〉
. (21)

Using (20) in (21), we obtain

‖ zi
n − x∗ ‖2 ≤ ‖ xn − x∗ ‖2 − ‖ xn − zi

n ‖2 +2λi
n
〈

Aiyi
n, yi

n − zi
n
〉

= ‖ xn − x∗ ‖2 +2
〈
λi

n Aiyi
n, yi

n − zi
n
〉
− 2
〈

xn − yi
n, yi

n − zi
n
〉

− ‖ xn − yi
n ‖2 − ‖ yi

n − zi
n ‖2

= ‖ xn − x∗ ‖2 +2
〈
− λi

n Aiyi
n + xn − yi

n, zi
n − yi

n
〉

− ‖ xn − yi
n ‖2 − ‖ yi

n − zi
n ‖2

= ‖ xn − x∗ ‖2 +2
〈

xn − λi
n Aiyi

n − yi
n, zi

n − yi
n
〉

− ‖ xn − yi
n ‖2 − ‖ yi

n − zi
n ‖2 . (22)

Observe that〈
xn − λi

n Aiyi
n − yi

n, zi
n − yi

n
〉
=
〈

xn − λi
n Aixn − yi

n, zi
n − yi

n
〉
+
〈
λi

n Aixn − λi
n Aiyi

n, zi
n − yi

n
〉

≤
〈
λi

n Aixn − λi
n Aiyi

n, zi
n − yi

n
〉
.

Using the last inequality in (22) and Lemma 5, we have

‖ zi
n − x∗ ‖2 ≤ ‖ xn − x∗ ‖2 +2

〈
λi

n Aixn − λi
n Aiyi

n, zi
n − yi

n
〉
− ‖ xn − yi

n ‖2 − ‖ yi
n − zi

n ‖2

≤ ‖ xn − x∗ ‖2 +2λi
n ‖ Aixn − Aiyi

n ‖‖ zi
n − yi

n ‖ − ‖ xn − yi
n ‖2 − ‖ yi

n − zi
n ‖2

≤ ‖ xn − x∗ ‖2 +2µ ‖ xn − yi
n ‖‖ zi

n − yi
n ‖ − ‖ xn − yi

n ‖2 − ‖ yi
n − zi

n ‖2

≤ ‖ xn − x∗ ‖2 +µ(‖ xn − yi
n ‖2 + ‖ zi

n − yi
n ‖2)− ‖ xn − yi

n ‖2 − ‖ yi
n − zi

n ‖2

= ‖ xn − x∗ ‖2 −(1− µ) ‖ xn − yi
n ‖2 −(1− µ) ‖ yi

n − zi
n ‖2 . (23)

It follows from (15) and (23) that

‖ xn+1 − x∗ ‖=‖ α0
n f (xn) +

N

∑
i=1

αi
nzi

n − x∗ ‖
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≤ α0
n ‖ f (xn)− x∗ ‖ +

N

∑
i=1

αi
n ‖ zi

n − x∗ ‖

≤ α0
n ‖ f (xn)− f (x∗) ‖ +α0

n ‖ f (x∗)− x∗ ‖ +
N

∑
i=1

αi
n ‖ zi

n − x∗ ‖

≤ α0
nk ‖ xn − x∗ ‖ +

N

∑
i=1

αi
n ‖ xn − x∗ ‖ +α0

n ‖ f (x∗)− x∗ ‖

= (1− α0
n(1− k)) ‖ xn − x∗ ‖ +α0

n ‖ f (x∗)− x∗ ‖
= (1− α0

n(1− k)) ‖ xn − x∗ ‖ +α0
n(1− k) ‖ f (x∗)−x∗‖

1−k

≤max
{
‖ xn − x∗ ‖, ‖ f (x∗)−x∗‖

1−k
}

...
≤max

{
‖ x1 − x∗ ‖, ‖ f (x∗)−x∗‖

1−k
}

.

This implies that {xn} is bounded. Consequently, { f (xn)}, {yi
n}, and {zi

n} are also bounded.
Let z = PF f (z). From (15) and (23), we have

‖ xn+1 − z ‖2 = ‖ α0
n f (xn)−

N

∑
i=1

αi
nzi

n − z ‖2

= ‖ α0
n
(

f (xn)− z
)
+

N

∑
i=1

αi
n(z

i
n − z) ‖2

≤ α0
n ‖ f (xn)− z ‖2 +

N

∑
i=1

αi
n ‖ zi

n − z ‖2

≤ αn ‖ f (xn)− z ‖2 +
N

∑
i=1

αi
n(‖ xn − z ‖2

−(1− µ) ‖ xn − yi
n ‖2 −(1− µ) ‖ yi

n − zi
n ‖2)

=
N

∑
i=1

αi
n ‖ xn − z ‖2 +α0

n ‖ f (xn)− z ‖2

−
N

∑
i=1

αi
n(1− µ) ‖ xn − yi

n ‖2 −
N

∑
i=1

αi
n(1− µ) ‖ yi

n − zi
n ‖2

≤ ‖ xn − z ‖2 +α0
n ‖ f (xn)− z ‖2 −

N

∑
i=1

αi
n(1− µ) ‖ xn − yi

n ‖2

−
N

∑
i=1

αi
n(1− µ) ‖ yi

n − zi
n ‖2 . (24)
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Furthermore, using Lemma 2 (ii) in (15), we obtain

‖ xn+1 − z ‖2 = ‖ α0
n f (xn) +

N

∑
i=1

αi
nzi

n − z ‖2

= ‖ α0
n( f (xn)− z) +

N

∑
i=1

αi
n(z

i
n − z) ‖2

= ‖
N

∑
i=1

αi
n(z

i
n − z) + α0

n( f (xn)− z) ‖2

≤ (1− α0
n)

2 ‖ xn − z ‖2 +2α0
n
〈

f (xn)− z, xn+1 − z
〉

= (1− α0
n)

2 ‖ xn − z ‖2 +2α0
n
〈

f (xn)− f (z), xn+1 − z
〉

+2α0
n
〈

f (z)− z, xn+1 − z
〉

≤ (1− α0
n)

2 ‖ xn − z ‖2 +2α0
nk ‖ xn − z ‖‖ xn+1 − z ‖

+2α0
n
〈

f (z)− z, xn+1 − z
〉

≤ (1− α0
n)

2 ‖ xn − z ‖2 +α0
nk(‖ xn − z ‖2 + ‖ xn+1 − z ‖2)

+2α0
n
〈

f (z)− z, xn+1 − z
〉

(25)

which implies that for some M > 0,

‖ xn+1 − z ‖2 ≤ (1− α0
n)

2 + α0
nk

1− α0
nk

‖ xn − z ‖2 +
2α0

n

1− α0
nk

〈
f (z)− z, xn+1 − z

〉
=

1− 2α0
n + α0

nk
1− α0

nk
‖ xn − z ‖2 +

(α0
n)

2

1− α0
nk
‖ xn − z ‖2 +

2α0
n

1− α0
nk

〈
f (z)− z, xn+1 − z

〉
≤

(
1− 2(1− k)α0

n

(1− α0
n)k

)
‖ xn − z ‖2 +

2(1− k)α0
n

(1− α0
n)k

×
[

α0
n

2(1− k)
‖ xn − z ‖2 +

1
1− k

〈
f (z)− z, xn+1 − z

〉]
≤

(
1− 2(1− k)α0

n

1− α0
nk

)
‖ xn − z ‖2 +

2(1− k)α0
n

1− α0
nk

×
[

α0
n

2(1− k)
M +

1
1− k

〈 f (z)− z, xn+1 − z〉
]

. (26)

We will divide the next proof into two parts.
Case 1 Suppose that there exists n0 ∈ N such that {‖ xn − z ‖}∞

n=n0
is non-increasing. Then,

{‖ xn − z ‖}∞
n=1 converges and ‖ xn − z ‖2 − ‖ xn+1 − z ‖2→ 0, n→ ∞. From (24), we have

N

∑
i=1

αi
n(1− µ) ‖ xn − yi

n ‖2≤‖ xn − z ‖2 − ‖ xn+1 − z ‖2 +α0
n ‖ f (xn)− z ‖2 . (27)

It follows from our assumptions (i) and (ii) that

lim
n→∞

‖ xn − yi
n ‖= 0, ∀i = 1, 2, ..., N. (28)

Similarly, from (24), we obtain that

lim
n→∞

‖ yi
n − zi

n ‖= 0, ∀i = 1, 2, ..., N. (29)
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Set tn = α0
nxn +

N

∑
i=1

αi
nzi

n and sn = α0
nxn +

N

∑
i=1

αi
nyi

n. It follows from our assumption (i) and (29) that

lim
n→∞

‖ xn+1 − tn ‖= lim
n→∞

α0
n ‖ f (xn)− xn ‖= 0 (30)

and

lim
n→∞

‖ tn − sn ‖≤ lim
n→∞

N

∑
i=1

αi
n ‖ zi

n − yi
n ‖= 0. (31)

It follows from (28) that

lim
n→∞

‖ sn − xn ‖≤ lim
n→∞

N

∑
i=1

αi
n ‖ yi

n − xn ‖= 0. (32)

It follows from (30)–(32) that

‖ xn+1 − xn ‖≤‖ xn+1 − tn ‖ + ‖ tn − sn ‖ + ‖ sn − xn ‖→ 0.

Since {xn} is bounded, it has a subsequence {xnj} such that {xnj} converges weakly to some ω ∈ H
and lim sup

n→∞

〈
f (z)− z, xn − z

〉
= lim

j→∞

〈
f (z)− z, xnj − z

〉
. We show that ω ∈ F. Now, xn − yi

n → 0

implies that yi
nj
⇀ ω and since yi

n ∈ C, we then obtain ω ∈ C. For all x ∈ C and using the property of
the projection PC, we have (since Ai is monotone):

0 ≤
〈
yi

nj
− xnj − λi

nj
Aixnj , x− yi

nj

〉
=
〈
yi

nj
− xnj , x− yi

nj

〉
+ λi

n
〈

Aixnj , xnj − yi
nj

〉
+ λi

nj

〈
Aixnj , x− xi

nj

〉
≤
〈
yi

nj
− xnj , x− yi

nj

〉
+ λi

nj

〈
Aixnj , xnj − yi

nj

〉
+ λi

nj

〈
Aixnj , x− xi

nj

〉
.

Taking j→ ∞, we get (recall that inf
n≥1

λnj > 0 by Remark 3.2 in [19])〈
Aiω, x−ω

〉
≥ 0, ∀x ∈ C.

This implies that ω ∈ F. Since z = PF f (z), we have

lim sup
n→∞

〈
f (z)− z, xn − z

〉
= lim

j→∞

〈
f (z)− z, xnj − z

〉
=
〈

f (z)− z, w− z
〉

≤ 0.

Since lim
n→∞

‖ xn+1 − xn ‖= 0, we have

lim sup
n→∞

〈
f (z)− z, xn+1 − z

〉
≤ 0.

In (26), let an :=‖ xn − z ‖2, βn := 2(1−k)α0
n

1−α0
nk

, and σn := α0
n

2(1−k) M + 1
1−k
〈

f (z)− z, xn+1 − z
〉
. Then, we

can write (26) as

an+1 ≤ (1− βn)an + βnσn. (33)

It is easy to see that lim
n→∞

βn = 0,
∞

∑
n=1

βn = ∞, and lim sup
n→∞

σn ≤ 0.

Using Lemma 3 in (33), we obtain lim
n→∞

‖ xn − z ‖= 0. Thus, xn → z, n→ ∞.

Case 2 Assume that {‖ xn − z ‖} is not a monotone and decreasing sequence. Set Fn =‖ xn − z ‖2

and let τ : N→ N be a mapping defined for all n ≥ n0 (for some n0 large enough) by

τ(n) := max {k ∈ N : k ≤ n, Fk ≤ Fk+1}.

It is clear that τ is a non-decreasing sequence such that τ(n) → ∞ as n→ ∞ and

0 ≤ Fτ(n) ≤ Fτ(n)+1, ∀n ≥ n0.
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This implies that ‖ xτ(n) − z ‖≤‖ xτ(n)+1 − z ‖, ∀n ≥ n0. Thus, lim
n→∞

‖ xτ(n) − z ‖ exists. By (27),

we obtain
N

∑
i=1

αi
τ(n)(1− µ) ‖ xτ(n) − yi

τ(n) ‖
2≤‖ xτ(n) − z ‖2 − ‖ xτ(n)+1 − z ‖2

+α0
τ(n) ‖ f (xτ(n))− z ‖2→ 0,

as n→ ∞. Thus,

‖ xτ(n) − yi
τ(n) ‖→ 0

as n→ ∞. As in Case 1, we can prove that

lim
n→∞

‖ yi
τ(n) − zi

τ(n) ‖= lim
n→∞

‖ xτ(n)+1 − zi
τ(n) ‖= lim

n→∞
‖ xτ(n)+1 − xτ(n) ‖= 0.

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)} that converges weakly to ω. Without
loss of generality, we assume that xτ(n) ⇀ ω. Observe that since lim

n→∞
‖ xτ(n) − yi

τ(n) ‖= 0 we also

have yi
τ(n) ⇀ ω. By similar argument in Case 1, we can show that ω ∈ F and

lim sup
n→∞

〈
f (z)− z, xτ(n) − z

〉
≤ 0.

Observe that since lim
n→∞

‖ xτ(n)+1 − xτ(n) ‖= 0 and lim sup
n→∞

〈
f (z)− z, xτ(n) − z

〉
≤ 0, this implies that

lim sup
n→∞

〈
f (z)− z, xτ(n)+1 − z

〉
≤ 0.

By (26), we obtain that

‖ xτ(n)+1 − z ‖2≤
(

1−
2(1−τ)α0

τ(n)

1−α0
τ(n)k

)
‖ xτ(n) − z ‖2 +

2(1−k)α0
τ(n)

1−α0
nk

×
[

α0
τ(n)

2(1−k) M + 1
1−k
〈

f (z)− z, xτ(n)+1 − z
〉]

=(1− βτ(n)) ‖ xτ(n) − z ‖2 +βτ(n)

(
α0

τ(n)
2(1−k) M + 1

1−k
〈

f (z)− z,

xτ(n)+1 − z
〉)

where βτ(n) :=
2(1−k)α0

τ(n)

1−α0
τ(n)k

. Hence, we have (since Fτ(n) ≤ Fτ(n)+1)

βτ(n) ‖ xτ(n) − z ‖2≤‖ xτ(n) − z ‖2 − ‖ xτ(n)+1 − z ‖2

+βτ(n)

(
α0

τ(n)
2(1−k) M + 1

1−k
〈

f (z)− z, xτ(n)+1 − z
〉)

≤ βτ(n)

(
α0

τ(n)
2(1−k) M + 1

1−k
〈

f (z)− z, xτ(n)+1 − z
〉)

.

Since α0
τ(n) > 0 and k ∈ [0, 1), we have that βτ(n) > 0. So, we get

‖ xτ(n) − z ‖2≤
α0

τ(n)
2(1−τ)

M + 1
1−k
〈

f (z)− z, xτ(n)+1 − z
〉
,

and this implies that

lim sup
n→∞

‖ xτ(n) − z ‖2≤ lim sup
n→∞

α0
τ(n)

2(1− τ)
M +

1
1− k

〈
f (z)− z, xτ(n)+1 − z

〉
≤ 0.

Therefore,

lim
n→∞

‖ xτ(n) − z ‖= 0

and
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lim
n→∞

‖ xτ(n)+1 − z ‖= 0.

Hence,

lim
n→∞

Fτ(n) = lim
n→∞

Fτ(n)+1 = 0.

Furthermore, for n ≥ n0, it is easy to see that Fτ(n) ≤ Fτ(n)+1 if n 6= τ(n) (that is τ(n) < n), because
Fj ≥ Fj+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain for all n ≥ n0,

0 ≤ Fn ≤ max{Fτ(n), Fτ(n)+1} = Fτ(n)+1.

Hence, lim Fn = 0, that is , lim
n→∞

‖ xn − z ‖= 0. Hence, {xn} converges strongly to z.

This completes the proof.

We now give an example in Euclidian space R3 where ‖.‖ is `2-norm defined by ‖x‖ =√
x2

1 + x2
2 + x2

3 where x = (x1, x2, x3) to support the main theorem.

Example 1. Let A1, A2, A3 : R3 → R3 be defined by A1x = 4x, A2x = 7x + (5,−2, 1) and A3x =(
10 −5 5
−5 10 −5
5 −5 10

)
+ (4, 2, 1) for all x = (x1, x2, x3). Let f : R3 → R3 be defined by f (x) = x

2 for all x ∈ R3. Let

C = {x ∈ R3|‖x‖2 ≤ 4}. We can choose α0
n = 1

(n+1)0.3 , α1
n = 1

2n , α2
n = n

n+1 and α3
n = 1− α0

n − α1
n − α2

n.

The stopping criterion is defined by ‖xn − xn−1‖ < 10−15 (See in Figures 1–3). The different choices of x1 are
given in Table 1 as follows in Example 1.

Table 1. Comparison of the number of iterations in Example 1.

Inputting x1 = (−3,−5, 8) x1 = (−1, 7, 6) x1 = (6.13,−5.24,−1.19)

CPU Time Iter No. CPU Time Iter No. CPU Time Iter No.

A1 0.0000068 592 0.0000056 591 0.00001 589
A2 0.0003795 230 0.0002848 230 0.0002887 229
A3 0.0004619 230 0.0007852 230 0.000766 229

A1, A2 0.0002942 231 0.0002965 231 0.0002945 231
A1, A3 0.0008444 231 0.0009953 231 0.0009992 231
A2, A3 0.0011516 230 0.0009781 230 0.0007956 229

A1, A2, A3 0.0007429 231 0.0007586 231 0.0007621 231

Figure 1. The error plotting ‖xn − xn−1‖ for choice 1 in Example 1.
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Figure 2. The error plotting ‖xn − xn−1‖ for choice 2 in Example 1.

Figure 3. The error plotting ‖xn − xn−1‖ for choice 3 in Example 1.

For infinitely dimensional space, we give an example in function space L2[0, 1] such that ‖.‖ is

L2-norm defined by ‖x(t)‖ =
√∫ 1

0 |x(t)|2dt where x(t) ∈ L2[0, 1].

Example 2. Let A1, A2, A3 : L2[0, 1] → L2[0, 1] be defined by A1x(t) =
∫ t

0 4x(s)ds, A2x(t) =
∫ t

0 tx(s)ds
and A3x(t) =

∫ t
0 (t

2 − 1)x(s)ds where x(t) ∈ L2[0, 1]. Let f : L2[0, 1] → L2[0, 1] be defined by f (x(t)) =
x(t)

2 where x(t) ∈ L2[0, 1]. Let C = {x(t) ∈ L2[0, 1] :
∫ 1

0 (t
2 + 1)x(t)dt}. We can choose α0

n = 1
(n+1)0.3 , α1

n =
1

2n , α2
n = n

n+1 and α3
n = 1− α0

n − α1
n − α2

n. The stopping criterion is defined by ‖xn(t)− xn−1(t)‖ < 10−5

(See in Figures 4–6).
The different choices of x1(t) are given in Table 2 as follows:

Choice 1 Bernstein initial data: x1(t) = −120t7(t− 1)3;
Choice 2 Chebyshev initial data: x1(t) = 64t7 − 112t5 + 56t3 − 7t;
Choice 3 Legendre initial data: x1(t) = 315

128 t− 1155
32 t3 + 9009

64 t5 − 6435
32 t7 + 12155

128 t9.
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From Tables 1 and 2, we see that the advantage of the parallel viscosity type subgradient
extragradient-line method Algorithm 1 when the common solution of two or more inputting Ai
gives the number of iterations smaller than one inputting.

Table 2. Comparison of the number of iterations in Example 2.

Inputting Bernstein Initial Data Chebyshev Initial Data Legendre Initial Data

CPU Time Iter. No. CPU Time Iter. No. CPU Time Iter. No.

A1 2.20542 40 4.53568 40 2.66656 33
A2 2.93440 35 1.53655 39 1.46195 33
A3 2.699356 28 2.13809 38 1.38359 32

A1, A2 20.5162 36 33.9656 39 20.3007 33
A1, A3 11.0109 29 77.1907 38 44.6389 32
A2, A3 7.47927 28 52.5607 38 30.7733 32

A1, A2, A3 6.20955 28 82.3549 38 45.8789 32
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Figure 4. The error plotting ‖xn(t)− xn−1(t)‖ for choice 1 in Example 2.
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Figure 5. The error plotting ‖xn(t)− xn−1(t)‖ for choice 2 in Example 2.
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Figure 6. The error plotting ‖xn(t)− xn−1(t)‖ for choice 3 in Example 2.

4. Application to Image Restoration Problems

The image restoration problem can be modeled in one-dimensional vectors by the following linear
equation system:

b = Ax + υ, (34)

where x ∈ Rn×1 is an original image, b ∈ Rm×1 is the observed image, υ is additive noise, and A ∈
Rm×n is the blurring matrix. For solving problem (34), we aim to approximate the original image,
vector x, by minimizing the additive noise, which is called a least squares (LS) problem as follows:

min
x

1
2
‖b− Ax‖2, (35)

where ‖.‖ is `2-norm defined by ‖x‖ =
√

∑n
i=1 |xi|2. The solution of the problem (35) can be

approximated by many well-known iteration methods.
The Richardson iteration, which is often called the Landweber method [33–36], is generally used

as an iterative regularization method to solve (35). The basic iteration takes the form:

xn+1 = xn + τAT(b− Axn). (36)

Here the step size τ remains constant for each iteration. The convergence can be proved under the step
size τ such that 0 < τ < 2

σ2
max

where σmax is the largest singular value of A.
The goal in image restoration is to deblur an image without knowing which one is the blurring

operator. Thus, we focus on the following problem:

min
x∈Rn

1
2
‖A1x− b1‖2, min

x∈Rn

1
2
‖A2x− b2‖2, ..., min

x∈Rn

1
2
‖AN x− bN‖2 (37)

where x is the original true image, Ai is the blurred matrix, bi is the blurred image by the blurred
matrix Ai for all i = 1, 2, ..., N. For solving this problem, we designed the following flowchart:

Where X̃ is the deblurred image or the common solutions of the problem (37) and as seen in
Figure 7. We can apply the algorithm in Theorem 1 to solve the problem (37), and as a result, we know
that AT

i (Aix− bi) is Lipschitz continuous for each i = 1, 2, ..., N. Let f : Rn → Rn be a strict contraction
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mapping with constant k ∈ (0, 1]. Suppose {xn}∞
n=1 is generated in the following Algorithm 2:

Algorithm 2. Given ρ ∈ (0, 1), µ ∈ (0, 1). Let {αn}∞
n=1 be a real sequence in (0, 1). Let x1 ∈ H be arbitrary.

Step 1 : Compute for all i = 1, 2, ..., N by

yi
n = PC(xn − λi

n AT
i (Aixn − bi)), ∀n ≥ 1,

where λi
n = ρli

n and li
n is the smallest nonnegative integer li such that

λi
n ‖ Aixn − Aiyi

n ‖≤ µ ‖ r
ρli (xn) ‖ . (38)

Step 2 : Compute

zi
n = PTi

n
(xn − λi

n AT
i (Aiyi

n − bi)),

where Ti
n := {z ∈ H :

〈
xn − λi

n Aixn − yi
n, z− yi

n
〉
≤ 0}.

Step 3 : Compute

xn+1 = α0
n f (xn) +

N

∑
i=1

αi
nzi

n, n ≥ 1. (39)

Set n + 1→ n and go to Step 1.

We will present restoration of images corrupted by the following blur types:

(1) Gaussian blur of filter size 9× 9 with standard deviation σ = 4 (the original image was degraded
by the blurring matrix A1).

(2) Out-of-focus blur (disk) with radius r = 6 (the original image was degraded by the blurring
matrix A2).

(3) Motion blur specifying with motion length of 21 pixels (len = 21) and motion orientation 11◦

(θ = 11) (the original image was degraded by the blurring matrix A3).

Figure 7. The flowchart of the image restoration process.

The performance of the studied proposed Algorithm 2 with the following original grey and RGB
images was tested, as can be seen in Figures 8 and 9.
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Figure 8. The matrix size of grey image is 276× 490.

Figure 9. The matrix size of RGB image is 280× 497× 3.

The parameter αi
n on the implemented algorithm for solving the problem (VIP) was set as

αi
n =

n
n + 1

, i = 1, 2, 3.

Three different types of blurred grey and RGB images degraded by the blurring matrices A1, A2

and A3 are shown in Figures 10–15.

Gaussian Blurred Image with hsize = [9x9] and  = 4

Figure 10. Three degraded grey image by blurred matrices A1, A2, and A3, respectively.
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Out of Focus Blurred Image with radius = 6

Figure 11. Three degraded grey image by blurred matrices A1, A2, and A3, respectively.

Motion Blurred Image with len = 21 and  =11

Figure 12. Three degraded grey image by blurred matrices A1, A2, and A3, respectively.

Gaussian Blurred Image with hsize = [9x9] and  = 4

Figure 13. Three degraded RGB image by blurred matrices A1, A2, and A3, respectively.
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Out of Focus Blurred Image with radius = 6

Figure 14. Three degraded RGB image by blurred matrices A1, A2, and A3, respectively.

Motion Blurred Image with len = 21 and  = 11

Figure 15. Three degraded RGB image by blurred matrices A1, A2, and A3, respectively.

We applied the proposed algorithm to obtain the solution of the deblurring problem (VIP) with
(N = 1) by inputting A1, A2, and A3. The results of the proposed algorithm with 10,000 iterations for
the following three cases:

Case I: Inputting A1 in the proposed algorithm;
Case II: Inputting A2 in the proposed algorithm; and

Case III: Inputting A3 in the proposed algorithm

are shown in Figures 16–21 that are composed of the restored images and their peak signal-to-noise
ratios (PSNRs).

Case I

PSNR = 24.707

Figure 16. The reconstructed grey image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.
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Case II

PSNR = 26.479

Figure 17. The reconstructed grey image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.

Case III

PSNR = 29.508

Figure 18. The reconstructed grey image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.

Case I

PSNR = 23.229

Figure 19. The reconstructed RGB image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.
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Case II

PSNR = 25.292

Figure 20. The reconstructed RGB image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.

Case III

PSNR = 28.533

Figure 21. The reconstructed RGB image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.

Next found the common solutions of a deblurring problem (VIP) with (N = 2) by using the
proposed algorithm. So, we can consider the results of the proposed algorithm with 10,000 iterations
in the following three cases:

Case I: Inputting A1 and A2 in the proposed algorithm;
Case II: Inputting A1 and A3 in the proposed algorithm; and

Case III: Inputting A2 and A3 in the proposed algorithm.

It can be seen from Figures 22–27 that the quality of restored images by using the proposed
algorithm in solving the common solutions of the deblurring problem (VIP) with (N = 2) was
improved compared with the previous results in Figures 16–21 .

Finally, the common solution of the deblurring problem (VIP) with (N = 3) using the proposed
algorithm was also tested (inputting A1, A2, and A3 in the proposed algorithm).
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Case I

PSNR = 28.596

Figure 22. The reconstructed grey image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.

Case II

PSNR = 32.372

Figure 23. The reconstructed grey image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.

Case III

PSNR = 33.477

Figure 24. The reconstructed grey image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.
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Case I

PSNR = 27.035

Figure 25. The reconstructed RGB image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.

Case II

PSNR = 31.057

Figure 26. The reconstructed RGB image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.

Case III

PSNR = 32.490

Figure 27. The reconstructed RGB image with their PSNRs for three different cases using the proposed
algorithm presented in 10,000 iterations, respectively.

Figures 28 and 29 show the reconstructed grey and RGB images with 10, 000 iterations. The
quality of the recovered grey and RGB images obtained by this algorithm were the highest compared
to the previous two algorithms.
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PSNR = 34.418

Figure 28. The reconstructed grey image from the blurring operators A1, A2, and A3 using the proposed
algorithm presented in 10,000 iterations, respectively.

PSNR = 33.636

Figure 29. The reconstructed RGB image from the blurring operators A1, A2, and A3 using the proposed
algorithm presented in 10,000 iterations, respectively.

Moreover, the Cauchy error, the figure error, and the peak signal-to-noise ratio (PSNR) for
recovering the degraded grey and RGB images by using the proposed method within the first
10,000 iterations are shown in Figures 30–35.
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Figure 30. Cauchy error plots of the proposed algorithm in all cases of grey images.
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Figure 31. Figure error plots of the proposed algorithm in all cases of grey images.

10
1

10
2

10
3

10
4

Number of Iterations

15

20

25

30

35

P
S

N
R

 Q
u

a
lit

y

Gaussian

Out of Focus

Motion

Gaussian-Out of Focus

Gaussian-Motion

Motion-Out of Focus

Figure 32. PSNR quality plots of the proposed algorithm in all cases of grey images.
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Figure 33. Cauchy error plots of the proposed algorithm in all cases of RGB images.

The Cauchy error is defined as ‖xn − xn−1‖ < 10−8. The figure error is defined as ‖xn − x‖,
where x is the solution of the problem (VIP). The performance of the proposed algorithm at xn in the
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image restoration process was measured quantitatively by the means of the peak signal-to-noise ratio
(PSNR), which is defined by

PSNR(xn) = 20log10

( 2552

MSE

)
,

where MSE = ‖xn − x‖2, ‖xn − x‖ is the `2-norm of vec(xn − x) and vec(xn − x) = A reshape matrix
xn − x as vector.
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Figure 34. Figure error plots of the proposed algorithm in all cases of RGB images.
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Figure 35. PSNR quality plots of the proposed algorithm in all cases of RGB images.

The Cauchy error plot shows the validity of the proposed method, while the figure error plot
confirms the convergence of the proposed method and the PSNR quality plot shows the measured
quantitatively of the image. From Figures 30–35, it is clearly seen that the common solution of the
deblurring problem (VIP) with (N ≥ 2) obtained quality improvements in the reconstructed grey and
RGB images. Another advantage of the proposed method when the common solution of two or more
image deblurring problems was used to restore the image is that the received image is more consistent
than usual (see Figures 36–49). Figures 36–49 show the reconstructed grey and RGB images using the
proposed algorithm in obtaining the common solution of the following problem with the same PSNR.

(1) Deblurring problem (VIP) with (N = 1) by inputting A1, A2, and A3 in the proposed algorithm.
(2) Deblurring problem (VIP) with (N = 2) by inputting A1 and A2, A1 and A3, and A2 and A3 in

the proposed algorithm respectively.
(3) Deblurring problem (VIP) with (N = 3) by inputting A1, A2, and A3 in the proposed algorithm.
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Gaussian Blurred

PSNR = 24 (4921
th

 Iteration)

Figure 36. The reconstructed grey image of all cases using the proposed method (2) with PSNR = 24.

Out of Focus Blurred

PSNR = 24 (2775
th

 Iteration)

Figure 37. The reconstructed grey image of all cases using the proposed method (2) with PSNR = 24.

Motion Blurred

PSNR = 24 (801
th

 Iteration)

Figure 38. The reconstructed grey image of all cases using the proposed method (2) with PSNR = 24.

Gaussian and Out of Focus Blurred

PSNR = 24 (975th Iteration)

Figure 39. The reconstructed grey image of all cases using the proposed method (2) with PSNR = 24.
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Gaussian and Motion Blurred
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Figure 40. The reconstructed grey image of all cases using the proposed method (2) with PSNR = 24.

Out of Focus and Motion Blurred
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Figure 41. The reconstructed grey image of all cases using the proposed method (2) with PSNR = 24.
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Figure 42. The reconstructed grey image of all cases using the proposed method (2) with PSNR = 24.
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Figure 43. The reconstructed RGB image of all cases using the proposed method (2) with PSNR = 23.
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Out of Focus Blurred
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Figure 44. The reconstructed RGB image of all cases using the proposed method (2) with PSNR = 23.
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Figure 45. The reconstructed RGB image of all cases using the proposed method (2) with PSNR = 23.
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Figure 46. The reconstructed RGB image of all cases using the proposed method (2) with PSNR = 23.

Gaussian and Motion Blurred
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Figure 47. The reconstructed RGB image of all cases using the proposed method (2) with PSNR = 23.
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Out of Focus and Motion Blurred

PSNR = 23 (514
th

 Iteration)

Figure 48. The reconstructed RGB image of all cases using the proposed method (2) with PSNR = 23.

Gaussian and Out of Focus and Motion Blurred

PSNR = 23 (415
th

 Iteration)

Figure 49. The reconstructed RGB image of all cases using the proposed method (2) with PSNR = 23.

5. Conclusions

In this work, we considered the problem of finding a common solution of variational inequalities
with monotonic and Lipschitz operators in a Hilbert space. Under some suitable conditions imposed
on the parameters, we proved the strong convergence of the algorithm. Several numerical examples
in both finite and infinite dimensional spaces were performed to illustrate the performance of the
proposed algorithm (see Tables 1 and 2 and Figures 1–6). We applied our proposed algorithm to
image recovery (2) under a situation without knowing the type of matrix blurs to demonstrate the
computational performance (see Figures 10–35). We found that the advantage of our proposed
algorithm was its ability to restore two or more multiblur effects in an image, giving a restoration
performance better than one (see Figures 36–49).
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