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Abstract: In this paper, completely regular endomorphisms of unicyclic graphs are explored. Let
G be a unicyclic graph and let cEnd(G) be the set of all completely regular endomorphisms of G.
The necessary and sufficient conditions under which cEnd(G) forms a monoid are given. It is shown
that cEnd(G) forms a submonoid of End(G) if and only if G is an odd cycle or G = G(n, m) for some
odd n ≥ 3 and integer m ≥ 1.
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1. Introduction

The endomorphism monoids of graphs allow to establish a natural connection between graph
theory and algebraic theory of semigroups. They have valuable applications (cf. [1]), many of which are
related to automata theory (cf. [2,3]). In recent years, more and more scholors have paid attention to the
endomorphism monoids of graphs and a large number of interesting results concerning combinatorial
properties of graphs and algebraic properties of their endomorphism monoids have been obtained
(see [4–6] and their references). In [7], endomorphisms and weak endomorphisms of a finite undirected
path were characterized, the ranks of its endomorphism monoids and weak endomorphism monoids
were determined. In [8], we studied regular endomorphisms of trees and determined the trees whose
regular endomorphisms form a monoid. In [9], quasi-strong endomorphisms of a join of split graphs
were explored, the conditions under which quasi-strong endomorphisms of the join of split graphs
form a monoid were given. In [10], the endomorphism monoid of Pn was explored. It was shown
that End(Pn) is orthodox. In [11], Wilkeit determined endomorphism regular bipartite graphs. In [12],
Hou and Luo constructed four classes of new endomorphism regular graphs by means of the join and
the lexicographic product of two graphs with certain conditions. In particular, the join of connected
bipartite graphs with regular endomorphism monoids were determined. The endomorphism regularity
and endomorphism complete regularity of split graphs were studied separately by Li in [13,14].
Unicyclic graphs is a class of famous graphs; its endomorphism regularity was studied in [15].

An element a of a monoid S is said to be completely regular if there exists x ∈ S such that a = axa
and xa = ax. Let End(G) be the endomorphism monoid of a graph G and f ∈ End(G). Then f is
called a completely regular endomorphism of G if it is a completely regular element of End(G). The set
of all completely regular endomorphisms of G is denoted by cEnd(X). In general, the composition
of two completely regular elements of a monoid S is not completely regular. In [16], Hou and Gu
posed the question: Under what conditions does the set cEnd(G) form a monoid? However, it seems
quite hard to obtain a complete solution to this question. Therefore a natural strategy for dealing with
this question is to discover various kinds of conditions for various classes of graphs. In this paper,
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we shall give necessary and sufficient conditions under which completely regular endomorphisms of
unicyclic graphs form a monoid. The main result of this paper will establish the relations between the
combinatorial structure of unicyclic graphs and completely regular submonoids of its endomorphism
monoids. The research of this scheme will enrich the contents of graph theory and algebraic theory
of semigroups. We present a new method for characterizing completely regular endomorphisms of
unicyclic graphs, which may be applied to characterizing completely regular endomorphisms of other
classes of graphs.

2. Preliminary Concepts

The graph G = (V(G), E(G)) considered here is finite, undirected and simple. If x1 and x2 are
adjacent in G, denote the edge connecting x1 and x2 by {x1, x2}. For v ∈ V(G), set N(v) = {x ∈
V(G)|{x, v} ∈ E(G)}. Denote the cardinality of N(v) by d(v) and we call it the degree of v in G.
A connected graph G is called a unicyclic graph if the number of its edges equal to the number of its
vertices. Clearly, a unicyclic graph has a unique cycle.

Let G be a graph. A mapping f from V(G) to itself is called an endomorphism if {x1, x2} ∈ E(G)

implies { f (x1), f (x2)} ∈ E(G). An endomorphism f is called an automorphism if and only if it is
bijective. The set of all endomorphisms and automorphisms of G are written as End(G) and Aut(G),
respectively. Let f ∈ End(G). The endomorphic image of G under f is denoted by I f . Obviously, I f is a
subgraph of G with V(I f ) = f (V(G)) and { f (a), f (b)} ∈ E(I f ) if and only if there exist s ∈ f−1( f (a))
and t ∈ f−1( f (b)) such that {s, t} ∈ E(G). An endomorphism f of G is called a retraction if and only
if f is an idempotent in End(G). A subgraph H of G is called a retract if and only if there exists a
retraction f from G to H with H = I f . Denote the set of all idempotents of End(G) by Idpt(G).

We refer the reader to [2,17–19] for all the concepts not defined here. The following two lemmas
quoted from the references will be used later.

Lemma 1 ([20] Theorem 2.7). Let G be a graph and let f ∈ End(G). Then f is completely regular if and only
if f |I f ∈ Aut(I f ).

Lemma 2 ([21] Corollary 2.3). Let G be a graph and H be a retract of G. If cEnd(H) does not form a monoid,
then cEnd(G) does not form a monoid.

3. Unicyclic Graphs Whose Completely Regular Endomorphisms form a Monoid

In this section, completely regular endomorphisms of unicyclic graphs are explored. We give
necessary and sufficient conditions for a unicyclic graph G under which cEnd(G) forms a monoid.
Firstly, we consider the unicyclic graph with a unique even cycle.

Lemma 3. Let G be a unicyclic graph with a unique even cycle Cn. If there exists x ∈ V(G) such that d(x) ≥ 3,
then cEnd(G) does not form a monoid.

Proof. Let G be a unicyclic graph with a unique even cycle Cn. Clearly, G is bipartite. If there exists
x ∈ V(G) such that d(x) ≥ 3, then S3 (see Figure 1) is a retract of G. By Lemma 2, we only need to
show that the completely regular endomorphisms of S3 do not form a monoid. Let

f =

(
y0 y1 y2 y3

y0 y2 y1 y3

)

and

g =

(
y0 y1 y2 y3

y0 y1 y3 y3

)
.
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Then f ∈ Aut(S3), g ∈ Idpt(S3). So f , g ∈ cEnd(S3). Now

f g =

(
y0 y1 y2 y3

y0 y2 y3 y3

)
.

It is routine to check that f g ∈ End(S3) and y2, y3 ∈ V(I f g). However, f g(y2) = f g(y3) = y3.
By Lemma 1, f g /∈ cEnd(S3) . Hence cEnd(S3) does not form a monoid.
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Lemma 4 Let G = C2n with n ≥ 3. Then cEnd(G) does not form a monoid.
Proof Let G be an even cycle C2n with n ≥ 3. As diam(G) ≥ 3, P3 (see Figure 2) is a retract of G.

By Lemma 2, we hope to show that all completely regular endomorphisms of P3 do not form a monoid.
Let

f =
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x1 x2 x3 x4

x1 x2 x3 x2

)

and

g =
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x1 x2 x3 x4

x4 x3 x2 x1

)
.

Then f ∈ Idpt(P3), g ∈ Aut(P3). Thus f , g ∈ cEnd(P3). Now

f g =

(
x1 x2 x3 x4

x2 x3 x2 x1

)
.

It is not difficult to verify that f g ∈ End(P3) and x1, x3 ∈ V(I f g). But f g(x1) = f g(x3) = x2. By
Lemma 1, f g /∈ cEnd(P3). Hence cEnd(P3) does not form a monoid.

Lemma 5 cEnd(C4) does not form a monoid.
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Proof Let

f =
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g =
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v1 v2 v3 v4

v3 v2 v3 v4

)
.

Figure 1. Graph S3.

Lemma 4. Let G = C2n with n ≥ 3. Then cEnd(G) does not form a monoid.

Proof. Let G be an even cycle C2n with n ≥ 3. As diam(G) ≥ 3, P3 (see Figure 2) is a retract of
G. By Lemma 2, we hope to show that all completely regular endomorphisms of P3 do not form a
monoid. Let

f =

(
x1 x2 x3 x4

x1 x2 x3 x2

)

and

g =

(
x1 x2 x3 x4

x4 x3 x2 x1

)
.

Then f ∈ Idpt(P3), g ∈ Aut(P3). Thus f , g ∈ cEnd(P3). Now

f g =

(
x1 x2 x3 x4

x2 x3 x2 x1

)
.

It is not difficult to verify that f g ∈ End(P3) and x1, x3 ∈ V(I f g). However, f g(x1) = f g(x3) = x2.
By Lemma 1, f g /∈ cEnd(P3). Hence cEnd(P3) does not form a monoid.
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Lemma 5. cEnd(C4) does not form a monoid. C4 for Figure 3.
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Proof. Let

f =

(
v1 v2 v3 v4

v4 v1 v2 v3

)

and

g =

(
v1 v2 v3 v4

v3 v2 v3 v4

)
.

Then f ∈ Aut(C4), g ∈ Idpt(C4). So f , g ∈ cEnd(C4). Now

f g =

(
v1 v2 v3 v4

v2 v1 v2 v3

)
.

It is not difficult to verify that f g ∈ End(C4) and v1, v3 ∈ V(I f g). However, f g(v1) = f g(v3) = v2.
By Lemma 1, f g /∈ cEnd(C4). Hence cEnd(C4) does not form a monoid.

Lemma 6. Let G be a unicyclic graph with a unique even cycle Cn. Then cEnd(G) does not form a monoid.

Proof. This follows directly from Lemmas 3–5.

Secondly, we start to look for conditions for a unicyclic graph G with a unique odd cycle, under
which all completely regular endomorphisms of G form a monoid.

Lemma 7. Let G be a unicyclic graph with a unique odd cycle Cn. If there exist two vertices u, v ∈ Cn such
that d(u) ≥ 3 and d(v) ≥ 3, then cEnd(G) does not form a monoid.

Proof. Let G be a unicyclic graph with a unique odd cycle Cn. If there exist two vertices u1, v1 ∈ Cn

such that d(u1) ≥ 3 and d(v1) ≥ 3, then G1 (see Figure 4) is a retract of G. By Lemma 2, we only need
to show that cEnd(G1) does not form a monoid. Define a mapping f from V(G1) to itself by

f (x) =

{
vn, x = v11,
x, Otherwise.

Let

g =

(
v1 v2 · · · vi−1 vi vi+1 · · · vn v11 vi1
vi vi−1 · · · v2 v1 vn · · · vi+1 vi1 v11

)
.

Then f ∈ Idpt(G1) and g ∈ cEnd(G1). Now

f g =

(
v1 v2 · · · vi−1 vi vi+1 · · · vn v11 vi1
vi vi−1 · · · v2 v1 vn · · · vi+1 vi1 vn

)
.
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It is easy to see that f g ∈ End(G1) and vi1, vi+1 ∈ V(I f g). However, f g(vi1) = f g(vi+1) = vn.
By Lemma 1, f g /∈ cEnd(G1). Hence cEnd(G1) does not form a monoid.
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Proof Let G be a unicyclic graph with an unique odd cycle Cn. If there exist two vertices
u1, v1 ∈ Cn such that d(u1) ≥ 3 and d(v1) ≥ 3, then G1 (see Figure 4) is a retract of G. By Lemma 2, we
only need to show that cEnd(G1) does not form a monoid. Define a mapping f from V(G1) to itself by

f (x) =

{
vn, x = v11,
x, Otherwise.

Let
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It is easy to see that f g ∈ End(G1) and vi1, vi+1 ∈ V(I f g). But f g(vi1) = f g(vi+1) = vn. By
Lemma 1, f g /∈ cEnd(G1). Hence cEnd(G1) does not form a monoid.

Lemma 8 Let G be a unicyclic graph with a unique odd cycle Cn. If there exists v ∈ V(Cn) such
that d(v) ≥ 4, then cEnd(G) does not form a monoid.

Proof Let G be a unicyclic graphs with a unique odd cycle Cn. If there exists v ∈ V(G) such that
d(v) ≥ 4, then G2 (see Figure 5) is a retract of G. By Lemma 2, we only need to show that cEnd(G2)
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Lemma 8. Let G be a unicyclic graph with a unique odd cycle Cn. If there exists v ∈ V(Cn) such that d(v) ≥ 4,
then cEnd(G) does not form a monoid.

Proof. Let G be a unicyclic graphs with a unique odd cycle Cn. If there exists v ∈ V(G) such that
d(v) ≥ 4, then G2 (see Figure 5) is a retract of G. By Lemma 2, we only need to show that cEnd(G2)

does not form a monoid. Let

f =

(
v1 v2 · · · vn v11 v12

v1 v2 · · · vn v12 v12

)

and

g =

(
v1 v2 · · · vn v11 v12

v1 v2 · · · vn v11 v2

)
.

Then f , g ∈ Idpt(G2). Hence f , g ∈ cEnd(G2). Now

f g =

(
v1 v2 · · · vn v11 v12

v1 v2 · · · vn v12 v2

)
.

It is not hard to see that f g ∈ End(G2) and v2, v12 ∈ V(I f g). However, f g(v2) = f g(v12) = v2.
By Lemma 1, f g /∈ cEnd(G2). Hence cEnd(G2) does not form a monoid.
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Lemma 9. Let G be a unicyclic graph with a unique odd cycle Cn. If there exists u ∈ V(G) \V(Cn) such that
d(u) ≥ 3, then cEnd(G) does not form a monoid.

Proof. As there exists u ∈ G \ Cn such that d(u) ≥ 3, G3 (see Figure 6) is a retract of G. By Lemma 2,
we hope to show that cEnd(G3) does not form a monoid. Let

f =

(
v1 v2 · · · vn v11 v12 · · · v1i−1 v1i v1i+1 v1i+2
v1 v2 · · · vn v11 v12 · · · v1i−1 v1i v1i+2 v1i+2

)

and
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g =

(
v1 v2 · · · vn v11 v12 · · · v1i−1 v1i v1i+1 v1i+2
v1 v2 · · · vn v11 v12 · · · v1i−1 v1i v1i+1 v1i−1

)
.

Then f , g ∈ Idpt(G3). Hence f , g ∈ cEnd(G3). Now

f g =

(
v1 v2 · · · vn v11 v12 · · · v1i−1 v1i v1i+1 v1i+2
v1 v2 · · · vn v11 v12 · · · v1i−1 v1i v1i+2 v1i−1

)
.

It is not difficult to see that f g ∈ End(G3) and v1i−1, v1i+2 ∈ V(I f g). However, f g(v1i−1) =

f g(v1i+2) = v1i−1. By Lemma 1, f g /∈ cEnd(G3). Hence cEnd(G3) does not form a monoid.
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Lemma 10. Let G = G(n, m) and f ∈ End(G). Then I f = Cn or I f = G(n, i) for some positive integer i
with 1 ≤ i ≤ m.

Proof. As the endomorphism image of a connected graph is connected, I f is connected. Note that
any endomorphism image of an odd cycle contains an odd cycle and Cn is the unique odd cycle in G.
Hence f (Cn) = Cn. This means that Cn ∈ I f . Hence I f = Cn or I f = G(n, i) for some positive integer i
with 1 ≤ i ≤ m.

Lemma 11. Let G = G(n, i) for some positive integer i and f ∈ Aut(G). Then f (x) = x for any x ∈
{v1, v11, v12, · · · , v1i}.

Proof. As d(v1) = 3, d( f (v1)) = 3. Note that v1 is the only vertex in G with degree 3. Hence
f (v1) = v1. Recall that f (Cn) = Cn. This means f |Cn ∈ Aut(Cn). Note that {v1, v11} ∈ E(G). Then
{ f (v1), f (v11)} = {v1, f (v11)} ∈ E(G). Thus f (v11) ∈ N(v1). As N(v1) = {v11, v2, vn}, f (v11) ∈
{v11, v2, vn}. Since v2, vn ∈ f (Cn), f (v11) = v11. A similar argument will show that f (v1s) = v1s for
any s = 2, 3, · · · , i.

Lemma 12. Let G = G(n, m). Then f ∈ End(G) is completely regular if and only if

(1) I f = Cn, or
(2) I f = G(n, i) for some positive integer i with 1 ≤ i ≤ m. In this case, f |Cn ∈ Aut(Cn) and f (x) = x for

any x ∈ {v1, v11, v12, · · · , v1i}.
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Proof. Necessity. Let f ∈ cEnd(G). By Lemmas 10, I f = Cn or I f = G(n, i) for some positive integer i
with 1 ≤ i ≤ m. As f is completely regular, by Lemma 1, f |I f ∈ Aut(I f ). If I f = G(n, i), then f (x) = x
for any x ∈ {v1, v11, v12, · · · , v1i} by Lemma 11.

Sufficiency. As any endomorphism image of an odd cycle contains an odd cycle and Cn is the
unique odd cycle of G, f (Cn) = Cn. If I f = Cn, then f (I f ) = f (Cn) = Cn, i.e. f |I f ∈ Aut(I f ).
Hence f is completely regular. If I f = G(n, i), then f |Cn ∈ Aut(Cn) and f (x) = x for any x ∈
{v1, v11, v12, · · · , v1i}. It is easy to check that f |I f ∈ Aut(I f ). By Lemma 1, f is completely regular.

Lemma 13. Let G = G(n, m). Then cEnd(G) forms a monoid.

Proof. Let f and g be two completely regular endomorphisms of G. We hope to show that f g ∈
cEnd(G). By Lemma 10, I f = Cn or I f = G(n, i) for some positive integer i with 1 ≤ i ≤ m, and
Ig = Cn or Ig = G(n, j) for some positive integer j with 1 ≤ j ≤ m. There are two cases:

Case 1. I f = Cn or Ig = Cn. Then I f g = Cn. Thus f g|I f g ∈ Aut(I f g). By Lemma 1, f g is completely
regular.

Case 2. I f = G(n, i) (1 ≤ i ≤ m) and Ig = G(n, j (1 ≤ j ≤ m). Without loss of generality,
we suppose j ≤ i. By Lemma 12, f , g have the following form:

f =

(
v1 v2 · · · vn v11 v12 · · · v1i v1i+1 · · · v1m

v1 v
′
2 · · · v

′
n v11 v12 · · · v1i v

′
1i+1 · · · v

′
1m

)
,

where v
′
2, · · · , v

′
n ∈ f (Cn \ {v1}), {v

′
2, · · · , v

′
n} = {v2, · · · , vn} and v

′
1s (i + 1 ≤ s ≤ m) is the image of

v1s. As I f = G(n, i), v
′
1s ∈ {v1, v2, · · · , vn, v11, v12, · · · , v1i} for s = i + 1, · · · , m.

g =

(
v1 v2 · · · vn v11 v12 · · · v1j v1j+1 · · · v1m

v1 v
′′
2 · · · v

′′
n v11 v12 · · · v1j v

′′
1j+1 · · · v

′′
1m

)
,

where v
′′
2 , · · · , v

′′
n ∈ f (Cn \ {v1}), {v

′′
2 , · · · , v

′′
n} = {v2, · · · , vn} and v

′′
1t (j + 1 ≤ t ≤ m) is the image of

v1t, as Ig = G(n, j), v
′′
1t ∈ {v1, v2, · · · , vn, v11, v12, · · · , v1j} for t = j + 1, · · · , m.

Then

f g =

(
v1 v2 · · · vn v11 v12 · · · v1j v1j+1 · · · v1i v1i+1 v1m
v1 ṽ2 · · · ṽn v11 v12 · · · v1j ṽ1j+1 · · · ṽ1i ṽ1i+1 ṽ1m

)
.

where ṽ2, · · · , ṽn ∈ f (Cn \ {v1}), {ṽ2, · · · , ṽn} = {v2, · · · , vn} and ṽ1k ∈ {v1, v2, · · · , vn,
v11, v12, · · · , v1j} for k = j + 1, · · · , m.

It is trivial to see that I f g = G(n, j) and f g(x) = x for any x ∈ {v1, v11, v12, · · · , v1j}. Since
f |Cn ∈ Aut(Cn) and g|Cn ∈ Aut(Cn), f g|Cn ∈ Aut(Cn). By Lemma 12, f g ∈ cEnd(G).

Now we give the main result in this paper.

Theorem 1. Let G be a unicyclic graph. Then cEnd(G) forms a monoid if and only if

(1) G is an odd cycle, or
(2) G = G(n, m), where n ≥ 3 is an odd and m ≥ 1 is an integer.

Proof. Necessity. This follows from Lemmas 6–9.
Sufficiency. If G is an odd cycle, then End(G) = Aut(G). Hence End(G) = cEnd(G) and so

cEnd(G) forms a monoid. If G = G(n, m), then cEnd(G) forms a monoid by Lemma 13.
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