

  mathematics-08-00236




mathematics-08-00236







Mathematics 2020, 8(2), 236; doi:10.3390/math8020236




Article



Modified Inertial Hybrid and Shrinking Projection Algorithms for Solving Fixed Point Problems



Bing Tan 1[image: Orcid], Shanshan Xu 2[image: Orcid] and Songxiao Li 1,*[image: Orcid]





1



Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China






2



School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China









*



Correspondence: jyulsx@163.com







Received: 22 January 2020 / Accepted: 10 February 2020 / Published: 12 February 2020



Abstract

:

In this paper, we introduce two modified inertial hybrid and shrinking projection algorithms for solving fixed point problems by combining the modified inertial Mann algorithm with the projection algorithm. We establish strong convergence theorems under certain suitable conditions. Finally, our algorithms are applied to convex feasibility problem, variational inequality problem, and location theory. The algorithms and results presented in this paper can summarize and unify corresponding results previously known in this field.
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1. Introduction


Throughout this paper, let C denote a nonempty closed convex subset of real Hilbert spaces H with standard inner products   〈 · , · 〉   and induced norms   ∥ · ∥  . For all   x , y ∈ C  , there is   ∥ T x − T y ∥ ≤ ∥ x − y ∥  , and the mapping   T : C → C   is said to be nonexpansive. We use   Fix ( T ) : = { x ∈ C : T x = x }   to represent the set of fixed points of a mapping   T : C → C  . The main purpose of this paper is to consider the following fixed point problem: Find    x ∗  ∈ C  , such that   T   x ∗   =  x ∗   , where   T : C → C   is nonexpansive with   Fix ( T ) ≠ ∅  .



There are various specific applications for approximating fixed point problems with nonexpansive mappings, such as monotone variational inequalities, convex optimization problems, convex feasibility problems, and image restoration problems; see, e.g., [1,2,3,4,5,6]. It is well known that the Picard iteration method may not converge, and an effective way to overcome this difficulty is to use Mann iterative method, which generates sequences    x n    recursively:


   x  n + 1   =  α n   x n  +  1 −  α n   T  x n   ,  n ≥ 0  ,  



(1)




the iterative sequence    x n    defined by (1) weakly converges to a fixed point of T when the condition    ∑  n = 1  ∞   α n   1 −  α n   = + ∞   is satisfied, where     α n   ⊂  ( 0 , 1 )   .



Many practical applications, for instance, quantum physics and image reconstruction, are in infinite dimensional spaces. To investigate these problems, norm convergence is usually preferable to weak convergence. Therefore, modifying the Mann iteration method to obtain strong convergence is an important research topic. For recent works, see [7,8,9,10,11,12] and the references therein. On the other hand, the Ishikawa iterative method can strongly converge to the fixed point of nonlinear mappings. For more discussion, see [13,14,15,16]. In 2003, Nakajo and Takahashi [17] established strong convergence of the Mann iteration with the aid of projections. Indeed, they considered the following algorithm:


        y n  =  α n   x n  +  1 −  α n   T  x n    ,         C n  =  z ∈ C :   y n  − z  ≤   x n  − z     ,         Q n  =  z ∈ C :   x n  − z ,  x n  −  x 0   ≤ 0    ,         x  n + 1   =  P   C n  ∩  Q n     x 0   ,  n ∈ N   ,      



(2)




where     α n   ⊂  [ 0 , 1 )   , T is a nonexpansive mapping on C and   P   C n  ∩  Q n     is the metric projection from C onto    C n  ∩  Q n   . This method is now referred to as the hybrid projection method. Inspired by Nakajo and Takahashi [17], Takahashi, Takeuchi, and Kubota [18] also proposed a projection-based method and obtained strong convergence results, which is now called the shrinking projection method. In recent years, many authors gained new algorithms based on projection method; see [10,18,19,20,21,22,23].



Generally, the Mann algorithm has a slow convergence rate. In recent years, there has been tremendous interest in developing the fast convergence of algorithms, especially for the inertial type extrapolation method, which was first proposed by Polyak in [24]. Recently, some researchers have constructed different fast iterative algorithms by means of inertial extrapolation techniques, for example, inertial Mann algorithm [25], inertial forward–backward splitting algorithm [26,27], inertial extragradient algorithm [28,29], inertial projection algorithm [30,31], and fast iterative shrinkage–thresholding algorithm (FISTA) [32]. The results of these algorithms and other related ones not only theoretically analyze the convergence properties of inertial type extrapolation algorithms, but also numerically demonstrate their computational performance on some data analysis and image processing problems.



In 2008, Mainge [25] proposed the following inertial Mann algorithm based on the idea of the Mann algorithm and inertial extrapolation:


        w n  =  x n  +  δ n    x n  −  x  n − 1      ,         x  n + 1   =  1 −  η n    w n  +  η n  T  w n    ,  n ≥ 1  .      



(3)




It should be pointed out that the iteration sequence   {  x n  }   defined by (3) only obtains weak convergence results under the following assumptions:




	(C1)

	
   δ n  ∈  [ 0 , 1 )    and   0 <  inf  n ≥ 1    η n  ≤  sup  n ≥ 1    η n  < 1  ;




	(C2)

	
   ∑  n = 1  ∞   δ n     x n  −  x  n − 1    2  < + ∞  .









It should be noted that the condition (C2) is very strong, which prohibits execution of related algorithms. Recently, Bot and Csetnek [33] got rid of the condition (C2); for more details, see Theorem 5 in [33].



In 2014, Sakurai and Iiduka [34] introduced an algorithm to accelerate the Halpern fixed point algorithm in Hilbert spaces by means of conjugate gradient methods that can accelerate the convergence rate of the steepest descent method. Very recently, inspired by the work of Sakurai and Iiduka [34], Dong et al. [35] proposed a modified inertial Mann algorithm by combining the inertial method, the Picard algorithm and the conjugate gradient method. Their numerical results showed that the proposed algorithm has some advantages over other algorithms. Indeed, they obtained the following result:



Theorem 1.

Let   T : C → C   be a nonexpansive mapping with   Fix ( T ) ≠ ∅  . Set   μ ∈ ( 0 , 1 ] , η > 0   and    x 0  ,  x 1  ∈ H   arbitrarily and set    d 0  : =  T  x 0  −  x 0   / η  . Define a sequence    x n    by the following algorithm:


         w n  =  x n  +  δ n    x n  −  x  n − 1      ,         d  n + 1   =  1 η   T  w n  −  w n   +  ψ n   d n    ,         y n  =  w n  + η  d  n + 1     ,         x  n + 1   = μ  ν n   w n  +  1 − μ  ν n    y n    , n ≥ 1  .       



(4)




The iterative sequence    x n    defined by (4) converges weakly to a point in   Fix ( T )   under the following conditions:




	(D1) 

	
    δ n   ⊂  [ 0 , δ ]    is nondecreasing with    δ 1  = 0   and   0 ≤ δ < 1  ,    ∑  n = 1  ∞   ψ n  < ∞  ;




	(D2) 

	
Exists   ν , σ , φ > 0   such that   φ >    δ 2   ( 1 + δ )  + δ σ   1 −  δ 2      and   0 < 1 − μ ν ≤ 1 − μ  ν n  ≤   φ − δ [ δ ( 1 + δ ) + δ φ + σ ]   φ [ 1 + δ ( 1 + δ ) + δ φ + σ ]    ;




	(D3) 

	
   w n    defined in (4) assume that   T  w n  −  w n    is bounded and   T  w n  − y   is bounded for any   y ∈  Fix ( T )  .











Inspired and motivated by the above works, in this paper, based on the modified inertial Mann algorithm (4) and the projection algorithm (2), we propose two new modified inertial hybrid and shrinking projection algorithms, respectively. We obtain strong convergence results under some mild conditions. Finally, our algorithms are applied to a convex feasibility problem, a variational inequality problem, and location theory.



The structure of the paper is the following. Section 2 gives the mathematical preliminaries. Section 3 present modified inertial hybrid and shrinking projection algorithms for nonexpansive mappings in Hilbert spaces and analyzes their convergence. Section 4 gives some numerical experiments to compare the convergence behavior of our proposed algorithms with previously known algorithms. Section 5 concludes the paper with a brief summary.




2. Preliminaries


We use the notation    x n  → x   and    x n  ⇀ x   to denote the strong and weak convergence of a sequence    x n    to a point   x ∈ H  , respectively. Let    ω w    x n   : =  x : ∃  x  n j   ⇀ x    denote the weak w-limit set of    x n   . For any   x , y ∈ H   and   t ∈ R  , we have     ∥ t x +  ( 1 − t )  y ∥  2  =   t ∥ x ∥  2  +    ( 1 − t )  ∥ y ∥  2  − t  ( 1 − t )    ∥ x − y ∥  2   .



For any   x ∈ H  , there is a unique nearest point    P C  x   in C, such that    P C   ( x )   : =   argmin  y ∈ C    ∥ x − y ∥   .   P C   is called the metric projection of H onto C.    P C  x   has the following characteristics:


   P C  x ∈ C   and    〈  P C  x − x ,  P C  x − y 〉  ≤ 0  ,  ∀ y ∈ C  .  



(5)




From this characterization, the following inequality can be obtained


    x −  P C  x  2  +   y −  P C  x  2  ≤   ∥ x − y ∥  2   ,  ∀ x ∈ H , ∀ y ∈ C  .  



(6)







We give some special cases with simple analytical solutions:




	(1)

	
The Euclidean projection of   x 0   onto an Euclidean ball   B [ c , r ] = { x : ∥ x − c ∥ ≤ r }   is given by


   P  B [ c , r ]    ( x )  = c +  r  max { ∥ x − c ∥ , r }    ( x − c )   .  












	(2)

	
The Euclidean projection of   x 0   onto a box   Box [ ℓ , u ] = { x : ℓ ≤ x ≤ u }   is given by


   P  Box [ ℓ , u ]     ( x )  i  = min  max   x i  ,  ℓ i   ,  u i    .  












	(3)

	
The Euclidean projection of   x 0   onto a halfspace    H  a , b  −  =  { x :  〈 a , x 〉  ≤ b }    is given by


   P  H  a , b  −    ( x )  = x −    [  〈 a , x 〉  − b ]  +    ∥ a ∥  2   a  .  

















Next we give some results that will be used in our main proof.



Lemma 1.

[36] Let C be a nonempty closed convex subset of real Hilbert spaces H and let   T : C → H   be a nonexpansive mapping with   Fix ( T ) ≠ ∅  . Assume that    x n    be a sequence in C and   x ∈ H   such that    x n  ⇀ x   and   T  x n  −  x n  → 0   as   n → ∞  , then   x ∈ Fix ( T )  .





Lemma 2.

[37] Let C be a nonempty closed convex subset of real Hilbert spaces H. For any   x , y , z ∈ H   and   a ∈ R  .     v ∈ C : ∥ y − v ∥  2  ≤   ∥ x − v ∥  2  +  〈 z , v 〉  + a   is convex and closed.





Lemma 3.

[38] Let C be a nonempty closed convex subset of real Hilbert spaces H. Let     x n   ⊂ H  ,   u ∈ H   and   m =  P C  u  . If    ω w    x n   ⊂ C   and satisfies the condition     x n  − u  ≤  ∥ u − m ∥  ,  ∀ n ∈ N  . Then    x n  → m  .






3. Modified Inertial Hybrid and Shrinking Projection Algorithms


In this section, we introduce two modified inertial hybrid and shrinking projection algorithms for nonexpansive mappings in Hilbert spaces using the ideas of the inertial method, the Picard algorithm, the conjugate gradient method, and the projection method. We prove the strong convergence of the algorithms under suitable conditions.



Theorem 2.

Let C be a bounded closed convex subset of real Hilbert spaces H and let   T : C → C   be a nonexpansive mapping with   Fix ( T ) ≠ ∅  . Assume that the following conditions are satisfied:


   η > 0 ,  δ n  ⊂   δ 1  ,  δ 2   ,  δ 1  ∈  ( − ∞ , 0 ]  ,  δ 2  ∈  [ 0 , ∞ )  ,  ψ n  ⊂  [ 0 , ∞ )  ,  lim  n → ∞    ψ n  = 0 ,  ν n  ⊂  ( 0 , ν ]  , 0 < ν < 1  .   











Set    x  − 1   ,  x 0  ∈ H   arbitrarily and set    d 0  : =  ( T  x 0  −  x 0  )  / η  . Define a sequence    x n    by the following:


        w n  =  x n  +  δ n   (  x n  −  x  n − 1   )   ,         d  n + 1   =  1 η   T  w n  −  w n   +  ψ n   d n    ,         y n  =  w n  + η  d  n + 1     ,         z n  =  ν n   w n  +  1 −  ν n    y n    ,         C n  =  z ∈ H :    z n  − z  2  ≤    w n  − z  2  −  ν n   1 −  ν n     ∥  w n  −  y n  ∥  2  +  ξ n     ,        Q n  =  z ∈ H :   x n  − z ,  x n  −  x 0   ≤ 0  ,         x  n + 1   =  P   C n  ∩  Q n     x 0    ,  n ≥ 0  ,       



(7)




where the sequence   {  ξ n  }   is defined by    ξ n  : = η  ψ n   M 2   η  ψ n   M 2  + 2  M 1    ,    M 1  : = d i a m  C =  sup  x , y ∈ C    x − y    and    M 2  : = max   max  1 ≤ k ≤  n 0      d k   ,  2 η   M 1    , where   n 0   satisfies    ψ n  ≤  1 2    for all   n ≥  n 0   . Then the iterative sequence    x n    defined by (7) converges to    P  Fix ( T )    x 0    in norm.





Proof. 

We divided our proof in three steps.



Step 1. To begin with, we need to show that   Fix  ( T )  ⊂  C n  ∩  Q n   . It is easy to check that   C n   is convex by Lemma 2. Next we prove   Fix  ( T )  ⊂  C n    for all   n ≥ 0  . Assume that     d n   ≤  M 1    for some   n ≥  n 0   . The triangle inequality ensures that


  ∥  d  n + 1   ∥ =  ∥  1 η   T  w n  −  w n   +  ψ n   d n  ∥  ≤  1 η  ∥ T  w n  −  w n  ∥ +  ψ n  ∥  d n  ∥ ≤  M 2  ,  








which implies that     d n   ≤  M 2    for all   n ≥ 0  , that is,    d n    is bounded. Due to    w n  ∈ C  , we get that     w n  − p  ≤  M 1    for all   u ∈ Fix ( T )  . From the definition of    y n    and nonexpansivity of T we obtain


    ∥  y n  − u ∥     =   ∥   w n  + η   1 η   T  w n  −  w n   +  ψ n   d n    − u  ∥ = ∥ T  w n  + η  ψ n   d n  − u ∥        ≤   ∥  w n  − u ∥ + η  ψ n   M 2  .     











Therefore,


       z n  − u  2     =    ν n   (  w n  − u )  +  1 −  ν n    (  y n  − u )   2         =  ν n     w n  − u  2  +  1 −  ν n      y n  − u  2  −  ν n   1 −  ν n     ∥  w n  −  y n  ∥  2         ≤    w n  − u  2  + 2 η  ψ n   M 2    w n  − u  +   η  ψ n   M 2   2  −  ν n   1 −  ν n     ∥  w n  −  y n  ∥  2         ≤    w n  − u  2  −  ν n   1 −  ν n     ∥  w n  −  y n  ∥  2  +  ξ n   ,     








where    ξ n  = η  ψ n   M 2   η  ψ n   M 2  + 2  M 1    . Thus, we have   u ∈  C n    for all   n ≥ 0   and hence   Fix  ( T )  ⊂  C n    for all   n ≥ 0  . On the other hand, it is easy to see that   Fix  ( T )  ⊂ C =  Q 0    when   n = 0  . Suppose that   Fix  ( T )  ⊂  Q  n − 1    , by combining the fact that    x n  =  P   C  n − 1   ∩  Q  n − 1      x 0    and (5) we obtain     x n  − z ,  x n  −  x 0   ≤ 0   for any   z ∈  C  n − 1   ∩  Q  n − 1    . According to the induction assumption we have   Fix  ( T )  ⊂  C  n − 1   ∩  Q  n − 1    , and it follows from the definition of   Q n   that   Fix  ( T )  ⊂  Q n   . Therefore, we get   Fix  ( T )  ⊂  C n  ∩  Q n    for all   n ≥ 0  .



Step 2. We prove that     x  n + 1   −  x n   → 0   as   n → ∞  . Combining the definition of   Q n   and   Fix  ( T )  ⊂  Q n   , we obtain


    x n  −  x 0   ≤  u −  x 0    ,   for  all  u ∈ Fix  ( T )   .  








We note that    x n    is bounded and


    x n  −  x 0   ≤   x ∗  −  x 0    ,   where   x ∗  =  P  Fix ( T )    x 0   .  



(8)




The fact    x  n + 1   ∈  Q n   , we have    ∥   x n  −  x 0   ∥ ≤ ∥   x  n + 1   −  x 0   ∥   , which means that    lim  n → ∞    ∥  x n  −  x 0  ∥    exists. Using (6), one sees that


     x n  −  x  n + 1    2  ≤    x  n + 1   −  x 0   2  −    x n  −  x 0   2   ,  








which implies that     x  n + 1   −  x n   → 0   as   n → ∞  . Next, by the definition of   w n  , we have


    w n  −  x n   =  |  δ n  |    x n  −  x  n − 1    ≤  δ 2    x n  −  x  n − 1    → 0   ( n → ∞ )   ,  








which further yields that


   ∥   w n  −  x  n + 1    ∥ ≤ ∥   w n  −  x n   ∥ + ∥   x n  −  x  n + 1    ∥ → 0   ( n → ∞ )   .   











Step 3. It remains to show that    x n  →  x ∗   , where    x ∗  =  P  Fix ( T )    x 0   . From    x  n + 1   ∈  C n    we get


     z n  −  x  n + 1    2  ≤    w n  −  x  n + 1    2  −  ν n   1 −  ν n     ∥  w n  −  y n  ∥  2  +  ξ n   .  











Therefore,


    z n  −  x  n + 1    ≤   w n  −  x  n + 1    +   ξ n    .  











On the other hand, since    z n  =  ν n   w n  +  1 −  ν n   T  w n  +  1 −  ν n   η  ψ n   d n    and    ν n  ≤ ν  , we obtain


     T  w n  −  w n      =  1  1 −  ν n      z n  −  w n  −  1 −  ν n   η  ψ n   d n          ≤  1  1 − ν     z n  −  w n   + η  ψ n    d n          ≤  1  1 − ν      z n  −  x  n + 1    +   w n  −  x  n + 1     + η  ψ n   M 2         ≤  1  1 − ν    2   w n  −  x  n + 1    +   ξ n    + η  ψ n   M 2  → 0   ( n → ∞ )   .     








Consequently,


     T  x n  −  x n      ≤  T  x n  − T  w n   +  T  w n  −  w n   +   w n  −  x n          ≤ 2   w n  −  x n   +  T  w n  −  w n   → 0   ( n → ∞ )   .     



(9)







In view of (9) and Lemma 1, it follows that every weak limit point of    x n    is a fixed point of T. i.e.,    ω w    x n   ⊂ Fix  ( T )   . By means of Lemma 3 and the inequality (8), we get that    x n    converges to    P  Fix ( T )    x 0    in norm. The proof is complete. □





Theorem 3.

Let C be a bounded closed convex subset of real Hilbert spaces H and let   T : C → C   be a nonexpansive mapping with   Fix ( T ) ≠ ∅  . Assume that the following conditions are satisfied:


   η > 0 ,  δ n  ⊂   δ 1  ,  δ 2   ,  δ 1  ∈  ( − ∞ , 0 ]  ,  δ 2  ∈  [ 0 , ∞ )  ,  ψ n  ⊂  [ 0 , ∞ )  ,  lim  n → ∞    ψ n  = 0 ,  ν n  ⊂  ( 0 , ν ]  , 0 < ν < 1  .   








Set    x  − 1   ,  x 0  ∈ H   arbitrarily and set    d 0  : =  ( T  x 0  −  x 0  )  / η  . Define a sequence    x n    by the following:


        w n  =  x n  +  δ n   (  x n  −  x  n − 1   )   ,         d  n + 1   =  1 η   T  w n  −  w n   +  ψ n   d n    ,         y n  =  w n  + η  d  n + 1     ,         z n  =  ν n   w n  +  1 −  ν n    y n    ,         C  n + 1   =  z ∈  C n  :    z n  − z  2  ≤    w n  − z  2  −  ν n   1 −  ν n     ∥  w n  −  y n  ∥  2  +  ξ n     ,         x  n + 1   =  P  C  n + 1     x 0    ,  n ≥ 0  .       



(10)




where the sequence   {  ξ n  }   is defined by    ξ n  : = η  ψ n   M 2   η  ψ n   M 2  + 2  M 1    ,    M 1  : = d i a m  C =  sup  x , y ∈ C    x − y    and    M 2  : = max   max  1 ≤ k ≤  n 0      d k   ,  2 η   M 1    , where   n 0   satisfies    ψ n  ≤  1 2    for all   n ≥  n 0   . Then the iterative sequence    x n    defined by (10) converges to    P  Fix ( T )    x 0    in the norm.





Proof. 

We divided our proof in three steps.



Step 1. Our first goal is to show that   Fix  ( T )  ⊂  C  n + 1     for all   n ≥ 0  . According to Step 1 in Theorem 2, for all   u ∈ Fix ( T )  , we obtain


     z n  − u  2  ≤    w n  − u  2  −  ν n   1 −  ν n     ∥  w n  −  y n  ∥  2  +  ξ n   .  








Therefore,   u ∈  C  n + 1     for each   n ≥ 0   and hence   Fix  ( T )  ⊂  C  n + 1   ⊂  C n   .



Step 2. As mentioned above, the next thing to do in the proof is show that     x  n + 1   −  x n   → 0   as   n → ∞  . Using the fact that    x n  =  P  C n    x 0    and   Fix  ( T )  ⊂  C n   , we have


    x n  −  x 0   ≤  u −  x 0   ,   for  all  u ∈ Fix  ( T )   .  








It follows that    x n    is bounded, in addition, we note that


    x n  −  x 0   ≤   x ∗  −  x 0   ,   where   x ∗  =  P  Fix ( T )    x 0   .  



(11)




On the other hand, since    x  n + 1   ∈  C n   , we obtain    ∥   x n  −  x 0   ∥ ≤ ∥   x  n + 1   −  x 0   ∥   , which implies that    lim  n → ∞    ∥  x n  −  x 0  ∥    exists. In view of (6), we have


     x n  −  x  n + 1    2  ≤    x  n + 1   −  x 0   2  −    x n  −  x 0   2   ,  








which further implies that    lim  n → ∞     x  n + 1   −  x n   = 0  . Also, we have    lim  n → ∞     w n  −  x n   = 0   and    lim  n → ∞    ∥  w n  −  x  n + 1   ∥  = 0  .



Step 3. Finally, we have to show that    x n  →  x ∗   , where    x ∗  =  P  Fix ( T )    x 0   . The remainder of the argument is analogous to that in Theorem 2 and is left to the reader. □





Remark 1.

We remark here that the modified inertial hybrid projection algorithm (7) (in short, MIHPA) and the modified inertial shrinking projection algorithm (10) (in short, MISPA) contain some previously known results. When    δ n  = 0   and    ψ n  = 0  , the MIHPA becomes the hybrid projection algorithm (in short, HPA) proposed by Nakajo and Takahashi [17] and the MISPA becomes the shrinking projection algorithm (in short, SPA) proposed by Takahashi, Takeuchi, and Kubota [18]. When    δ n  = 0   and    ψ n  ≠ 0  , the MIHPA becomes the modified hybrid projection algorithm (in short, MHPA) proposed by Dong et al. [35], the MISPA becomes the modified shrinking projection algorithm (in short, MSPA).






4. Numerical Experiments


In this section, we provide three numerical applications to demonstrate the computational performance of our proposed algorithms and compare them with some existing ones. All the programs are performed in MATLAB2018a on a personal computer Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.800 GHz, RAM 8.00 GB.



Example 1.

As an example, we consider the convex feasibility problem, for any nonempty closed convex set    C i  ⊂   R  N    (  i = 0 , 1 , … , m  ), we find    x ∗  ∈ C : =  ⋂  i = 0  m   C i   , where one supposes that   C ≠ ∅  . A mapping   T :   R  N  →   R  N    is defined by   T : =  P 0    1 m   ∑  i = 1  m   P i    , where    P i  =  P  C i     stands for the metric projection onto   C i  . It follows from   P i   being nonexpansive that the mapping T is also nonexpansive. Furthermore, we note that   Fix  ( T )  = Fix   P 0    ⋂  i = 1  m  Fix   P i   =  C 0   ⋂  i = 1  m   C i  = C  . In this experiment, we set   C i   as a closed ball with center    c i  ∈   R  N    and radius    r i  > 0  . Thus   P i   can be computed with


    P i   ( x )  : =        c i  +   r i    c i  − x    x −  c i    ,       if    c i  − x  >  r i    ;       x ,       if    c i  − x  ≤  r i    .        








Choose    r i  = 1   ( i = 0 , 1 , … , m )   ,    c 0  =  [ 0 , 0 , … , 0 ]   ,    c 1  =  [ 1 , 0 , … , 0 ]   , and    c 2  =  [ − 1 , 0 , … , 0 ]   .   c i   is randomly selected from     ( − 1 /  N  , 1 /  N  )  N    ( i = 3 , … , m )   . We have   Fix ( T ) = { 0 }   from the special choice of    c 1  ,  c 2    and    r 1  ,  r 2   . In Algorithms (7) and (10), setting   m = 30  ,   N = 30  ,   η = 1  ,    ψ n  =  1  100   ( n + 1 )  2     ,    ν n  = 0 . 1  . When the iteration error    E n  =    x n  − T  x n   2  <  10  − 2     is satisfied, the iteration stops. We test our algorithms under different inertial parameters and initial values. Results are shown in Table 1, where “Iter." represents the number of iterations.





Example 2.

Our another example is to consider the following variational inequality problem (in short, VI). For any nonempty closed convex set   C ⊂   R  N   ,


   find   x ∗  ∈ C  such  that   f   x ∗    , x −  x ∗   ≥ 0 ,  ∀ x ∈ C  ,   



(12)




where   f :   R  N  →   R  N    is a mapping. Take   VI ( C , f )   denote the solution of VI (12).   T :   R  N  →   R  N    is defined by   T : =  P C   ( I − γ f )   , where   0 < γ < 2 / L  , and L is the Lipschitz constant of the mapping f. In [39], Xu showed that T is an averaged mapping, i.e., T can be seen as the average of an identity mapping I and a nonexpansive mapping. It follows that   Fix ( T ) = VI ( C , f )  , we can solve VI (12) by finding the fixed point of T. Taking   f :   R  2  →   R  2    as follows:


   f ( x , y ) = ( 2 x + 2 y + sin ( x ) , − 2 x + 2 y + sin ( y ) ) ,  ∀ x , y ∈ R  .   








The feasible set C is given by   C =  x ∈   R  2   | − 10 e ≤ x ≤ 10 e    , where   e =   ( 1 , 1 )  T   . It is not hard to check that f is Lipschitz continuous with constant   L =  26    and 1-strongly monotone [40]. Therefore, VI (12) has a unique solution    x ∗  =   ( 0 , 0 )  T   .



We use the Algorithm (7) (MIHPA), the Algorithm (10) (MISPA), the modified hybrid projection algorithm (MHPA), the modified shrinking projection algorithm (MSPA), the hybrid projection algorithm (HPA), and the shrinking projection algorithm (SPA) to solve Example 2. Setting   γ = 0 . 9 /  26   ,   η = 1  ,    ψ n  =  1  100   ( n + 1 )  2     ,    ν n  = 0   (we consider that T is an average mapping). The initial values are randomly generated by the MATLAB function rand(2,1). We use    E n  =    x n  −  x ∗   2    to denote the iteration error of algorithms, and the maximum iteration 300 as the stopping criterion. Results are reported in Table 2, where “Iter." denotes the number of iterations.





Example 3.

The Fermat–Weber problem is a famous model in location theory. It is can be formulated mathematically as the problem of finding   x ∈  R n    that solves


    min x   f  ( x )  : =  ∑  i = 1  m   ω i    x −  a i   2    ,   



(13)




where    ω i  > 0   are given weights and    a i  ∈  R n    are anchor points. It is easy to check that the objective function f in (13) is convex and coercive. Therefore, the problem has a nonempty solution set. It should be noted that f is not differentiable at the anchor points. The most famous method to solve the problem (13) is the Weiszfeld algorithm; see [41] for more discussion. Weiszfeld proposed the following fixed point algorithm:    x  n + 1   = T   x n   , n ∈ N  . The mapping   T :   R  n   ∖ A ⟼    R  n    is defined by   T  ( x )  : =  1   ∑  i = 1  m    ω i   x −  a i       ∑  i = 1  m     ω i   a i    x −  a i     , where   A =   a 1  ,  a 2  , … ,  a m    . We consider a small example with   n = 2 , m = 4   anchor points,


    a 1  =     0     0     ,  a 2  =     10     0     ,  a 3  =     0     10     ,  a 4  =     10     10     ,   








and    ω i  = 1   for all i. It follows from the special selection of anchor points    a i    ( i = 1 , 2 , 3 , 4 )    that the optimal value of (13) is    x ∗  =   ( 5 , 5 )  T   .



We use the same algorithms as in Example 2, and our parameter settings are as follows, setting   η = 1  ,    ψ n  =  1  100   ( n + 1 )  2     ,    ν n  = 0 . 1  . We use    E n  =    x n  −  x ∗   2  <  10  − 4     or maximum iteration 300 as the stopping criterion. The initial values are randomly generated by the MATLAB function 10rand(2,1). Figure 1 and Figure 2 show the convergence behavior of iterative sequence   {  x n  }   and iteration error   E n  , respectively.





Remark 2.

From Examples 1–3, we know that our proposed algorithms are effective and easy to implement. Moreover, initial values do not affect the computational performance of our algorithms. However, it should be mentioned that the MIHPA algorithm, the MISPA algorithm, the MHPA algorithm, and the MSPA algorithm will slow down the speed and accuracy of the HPA algorithm and the SPA algorithm. The acceleration may be eliminated by the projection onto the set   C n   and   Q n   and   C  n + 1   .






5. Conclusions


In this paper, we proposed two modified inertial hybrid and shrinking projection algorithms based on the inertial method, the Picard algorithm, the conjugate gradient method, and the projection method. We could then work with the strong convergence theorems under suitable conditions. However, numerical experiments showed that our algorithms cannot accelerate some previously known algorithms.







Author Contributions


Supervision, S.L.; Writing—original draft, B.T. and S.X. All authors have read and agreed to the published version of the manuscript.




Funding


This research received no external funding.




Acknowledgments


We greatly appreciate the reviewers for their helpful comments and suggestions.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Qin, X.; Yao, J.C. A viscosity iterative method for a split feasibility problem. J. Nonlinear Convex Anal. 2019, 20, 1497–1506. [Google Scholar]

	



Cho, S.Y. Generalized mixed equilibrium and fixed point problems in a Banach space. J. Nonlinear Sci. Appl. 2016, 9, 1083–1092. [Google Scholar] [CrossRef]

	



Nguyen, L.V.; Ansari, Q.H.; Qin, X. Linear conditioning, weak sharpness and finite convergence for equilibrium problems. J. Glob. Optim. 2020. [Google Scholar] [CrossRef]

	



Dehaish, B.A.B. A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces. J. Inequal. Appl. 2015, 2015, 1–14. [Google Scholar] [CrossRef]

	



Dehaish, B.A.B. Weak and strong convergence of algorithms for the sum of two accretive operators with applications. J. Nonlinear Convex Anal. 2015, 16, 1321–1336. [Google Scholar]

	



Qin, X.; An, N.T. Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets. Comput. Optim. Appl. 2019, 74, 821–850. [Google Scholar] [CrossRef]

	



Takahahsi, W.; Yao, J.C. The split common fixed point problem for two finite families of nonlinear mappings in Hilbert spaces. J. Nonlinear Convex Anal. 2019, 20, 173–195. [Google Scholar]

	



An, N.T.; Qin, X. Solving k-center problems involving sets based on optimization techniques. J. Glob. Optim. 2020, 76, 189–209. [Google Scholar] [CrossRef]

	



Cho, S.Y.; Kang, S.M. Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math. Sci. 2012, 32, 1607–1618. [Google Scholar] [CrossRef]

	



Takahashi, W. The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space. Fixed Point Theory 2018, 19, 407–419. [Google Scholar] [CrossRef]

	



Qin, X.; Cho, S.Y.; Wang, L. A regularization method for treating zero points of the sum of two monotone operators. Fixed Point Theory Appl. 2014, 2014, 75. [Google Scholar] [CrossRef]

	



Chang, S.S.; Wen, C.F.; Yao, J.C. Zero point problem of accretive operators in Banach spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 105–118. [Google Scholar] [CrossRef]

	



Tan, K.K.; Xu, H.K. Approximating fixed points of non-expansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 1993, 178, 301. [Google Scholar] [CrossRef]

	



Sharma, S.; Deshpande, B. Approximation of fixed points and convergence of generalized Ishikawa iteration. Indian J. Pure Appl. Math. 2002, 33, 185–191. [Google Scholar]

	



Singh, A.; Dimri, R.C. On the convergence of Ishikawa iterates to a common fixed point for a pair of nonexpansive mappings in Banach spaces. Math. Morav. 2010, 14, 113–119. [Google Scholar] [CrossRef]

	



De la Sen, M.; Abbas, M. On best proximity results for a generalized modified Ishikawa’s iterative scheme driven by perturbed 2-cyclic like-contractive self-maps in uniformly convex Banach spaces. J. Math. 2019, 2019, 1356918. [Google Scholar] [CrossRef]

	



Nakajo, K.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 2003, 279, 372–379. [Google Scholar] [CrossRef]

	



Takahashi, W.; Takeuchi, Y.; Kubota, R. Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2008, 341, 276–286. [Google Scholar] [CrossRef]

	



Cho, S.Y. Strong convergence analysis of a hybrid algorithm for nonlinear operators in a Banach space. J. Appl. Anal. Comput. 2018, 8, 19–31. [Google Scholar]

	



Qin, X.; Cho, S.Y.; Wang, L. Iterative algorithms with errors for zero points of m-accretive operators. Fixed Point Theory Appl. 2013, 2013, 148. [Google Scholar] [CrossRef]

	



Chang, S.S.; Wen, C.F.; Yao, J.C. Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces. Optimization 2018, 67, 1183–1196. [Google Scholar] [CrossRef]

	



Qin, X.; Cho, S.Y. Convergence analysis of a monotone projection algorithm in reflexive Banach spaces. Acta Math. Sci. 2017, 37, 488–502. [Google Scholar] [CrossRef]

	



He, S.; Dong, Q.-L. The combination projection method for solving convex feasibility problems. Mathematics 2018, 6, 249. [Google Scholar] [CrossRef]

	



Polyak, B.T. Some methods of speeding up the convergence of iteration methods. Comput. Math. Math. Phys. 1964, 4, 1–17. [Google Scholar] [CrossRef]

	



Maingé, P.E. Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 2008, 219, 223–236. [Google Scholar] [CrossRef]

	



Lorenz, D.; Pock, T. An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 2015, 51, 311–325. [Google Scholar] [CrossRef]

	



Qin, X.; Wang, L.; Yao, J.C. Inertial splitting method for maximal monotone mappings. J. Nonlinear Convex Anal. 2020, in press. [Google Scholar]

	



Thong, D.V.; Hieu, D.V. Inertial extragradient algorithms for strongly pseudomonotone variational inequalities. J. Comput. Appl. Math. 2018, 341, 80–98. [Google Scholar] [CrossRef]

	



Luo, Y.L.; Tan, B. A self-adaptive inertial extragradient algorithm for solving pseudo-monotone variational inequality in Hilbert spaces. J. Nonlinear Convex Anal. 2020, in press. [Google Scholar]

	



Liu, L.; Qin, X. On the strong convergence of a projection-based algorithm in Hilbert spaces. J. Appl. Anal. Comput. 2020, 10, 104–117. [Google Scholar]

	



Tan, B.; Xu, S.S.; Li, S. Inertial shrinking projection algorithms for solving hierarchical variational inequality problems. J. Nonlinear Convex Anal. 2020, in press. [Google Scholar]

	



Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]

	



Boţ, R.I.; Csetnek, E.R.; Hendrich, C. Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 2015, 256, 472–487. [Google Scholar] [CrossRef]

	



Sakurai, K.; Iiduka, H. Acceleration of the Halpern algorithm to search for a fixed point of a nonexpansive mapping. Fixed Point Theory Appl. 2014, 2014, 202. [Google Scholar] [CrossRef]

	



Dong, Q.-L.; Yuan, H.B.; Cho, Y.J.; Rassias, T.M. Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 2018, 12, 87–102. [Google Scholar] [CrossRef]

	



Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: New York, NY, USA, 2011; Volume 48. [Google Scholar]

	



Kim, T.H.; Xu, H.K. Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups. Nonlinear Anal. 2006, 64, 1140–1152. [Google Scholar] [CrossRef]

	



Martinez-Yanes, C.; Xu, H.K. Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal. 2006, 64, 2400–2411. [Google Scholar] [CrossRef]

	



Xu, H.K. Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 2011, 150, 360–378. [Google Scholar] [CrossRef]

	



Dong, Q.-L.; Cho, Y.J.; Zhong, L.L.; Rassias, T.M. Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 2018, 70, 687–704. [Google Scholar] [CrossRef]

	



Beck, A.; Sabach, S. Weiszfeld’s method: Old and new results. J. Optim. Theory Appl. 2015, 164, 1–40. [Google Scholar] [CrossRef]








[image: Mathematics 08 00236 g001 550] 





Figure 1. Convergence process at different initial values for Example 3. 
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Figure 2. Convergence behavior of iteration error   {  E n  }   for Example 3. 
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Table 1. Computational results for Example 1.
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	Algorithm
	Initial Value
	    δ n    
	0
	0.1
	0.2
	0.3
	0.4
	0.5
	0.6
	0.7
	0.8
	0.9





	MIHPA
	rand(N,1)
	Iter.
	223
	248
	218
	239
	283
	245
	258
	249
	248
	247



	MISPA
	
	
	127
	137
	148
	159
	169
	163
	167
	187
	186
	190



	MIHPA
	ones(N,1)
	Iter.
	327
	315
	407
	354
	342
	356
	377
	391
	348
	349



	MISPA
	
	
	174
	189
	181
	199
	217
	208
	279
	250
	243
	256



	MIHPA
	10rand(N,1)
	Iter.
	1057
	1377
	1522
	1494
	1307
	1119
	1261
	1098
	1005
	1070



	MISPA
	
	
	549
	570
	704
	698
	845
	852
	987
	856
	1003
	975



	MIHPA
	−10rand(N,1)
	Iter.
	445
	410
	574
	504
	657
	716
	729
	730
	659
	682



	MISPA
	
	
	316
	313
	350
	416
	423
	386
	427
	392
	516
	556
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Table 2. Computational results for Example 2.
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Iter.

	
HPA

	
SPA

	
MHPA

	
MSPA

	
MIHPA

	
MISPA




	
   x n   

	
   E n   

	
   x n   

	
   E n   

	
   x n   

	
   E n   

	
   x n   

	
   E n   

	
   x n   

	
   E n   

	
   x n   

	
   E n   






	
1

	
(0.2944,0.8061)

	
0.8582

	
(0.2944,0.8061)

	
0.8582

	
(0.4607,0.8706)

	
0.9850

	
(0.4607,0.8706)

	
0.9850

	
(0.4607,0.8706)

	
0.9850

	
(0.4607,0.8706)

	
0.9850




	
50

	
(0.0049,0.0164)

	
0.0171

	
(0.0000,0.0001)

	
0.0001

	
(0.0142,0.0357)

	
0.0384

	
(0.0142,0.0264)

	
0.0300

	
(0.0094,0.0357)

	
0.0369

	
(0.0142,0.0278)

	
0.0312




	
100

	
(0.0006,0.0017)

	
0.0018

	
(0.0000,0.0000)

	
0.0000

	
(0.0116,0.0110)

	
0.0159

	
(0.0072,0.0133)

	
0.0151

	
(0.0096,0.0144)

	
0.0173

	
(0.0067,0.0137)

	
0.0153




	
200

	
(−0.0003,0.0013)

	
0.0014

	
(0.0000,0.0000)

	
0.0000

	
(0.0059,0.0053)

	
0.0080

	
(0.0034,0.0068)

	
0.0076

	
(0.0061,0.0047)

	
0.0077

	
(0.0036,0.0060)

	
0.0070




	
300

	
(0.0007,0.0003)

	
0.0008

	
(0.0000,0.0000)

	
0.0000

	
(0.0043,0.0030)

	
0.0053

	
(0.0021,0.0045)

	
0.0049

	
(0.0045,0.0038)

	
0.0058

	
(0.0018,0.0053)

	
0.0056












© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file4.png
10° . ; . ;
’_ —©— HPA —3— MHPA —sje— MIHPA
—B—SPA MSPA —§@— MISPA
10"k i
102 3
. ‘4
€3] k
10°F 0
(e
104k J
10_5 1 1 1 1 1
0 50 100 150 200 250 300
Number of iterations
(@) Casel
10" .

—6— HPA —w— MHPA —=j— MIHPA
—E—SPA MSPA —¢@— MISPA

0 50 100 150 200
Number of iterations

(c) Case III

250

300

—©— HPA —x7— MHPA —h—
—&— SPA MSPA —§—

MIHPA
MISPA

Number of iterations

(b) CaseII

50 100 150 200

250

300

—6— HPA —y— MHPA ——
—E—SPA MSPA —§—

MIHPA
MISPA

Number of iterations

(d) CaselV

50 100 150 200

250

300





nav.xhtml


  mathematics-08-00236


  
    		
      mathematics-08-00236
    


  




  





media/file0.png





media/file2.png
6.6

521

438

PA—*F—MH“'ﬂk—

—e—H MIHPA
—g—SPA MSPA —&— MISPA

—6— HPA —7— MHPA —— MIHPA
—&— SPA MSPA —@— MISPA

44

551

351

4.5

4.6 4.7 4.8

—©6— HPA —s5— MHPA —— MIHPA
—g—SPA MSPA —&— MISPA
1 1

2 3

(c) Case III

4

—6— HPA —7— MHPA —— MIHPA
—&—SPA MSPA —§— MISPA
] 3 8 1 1 1 1

6 4.5 5 55 6 6.5 7 7.5

(d) Case IV





media/file3.jpg
s a-re -

(c) Case It

(d) Case IV





media/file1.jpg
e e

e

(a) Casel (b) Case 1t
al ] RO
(c) Case IIl (d) Case IV





