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Abstract: We consider a stochastic frontier model in which a deviation of output from the production
frontier consists of two components, a one-sided technical inefficiency and a two-sided random
noise. In such a situation, we develop a semiparametric regression-based test and compare the
technical efficiencies of the different decision-making unit groups, assuming that the production
frontier function is the same for all the groups. Our test performs better than the previously proposed
ones for the same purpose in numerical studies, and also has the theoretical advantage of working
under more general assumptions. To illustrate our method, we apply the proposed test to Program for
International Student Assessment (PISA) 2015 data and investigate whether an efficiency difference
exists between male and female student groups at a specific age in terms of learning time and
achievement in mathematics.

Keywords: data envelopment analysis; stochastic frontier model; semiparametric regression; group
efficiency comparison

1. Introduction

Efficiency comparison between groups is currently used in various fields such as banking,
insurance, sports, and R&D investment evaluation. Numerous empirical studies frequently analyze
group efficiency using so-called Data Envelopment Analysis (DEA). DEA is a body of techniques for
measuring relative efficiency by comparing it with the possible frontiers of decision-making units
(DMUs) with multiple inputs and outputs. Here, the term DMU is used to collectively refer to all
the units in which the production activity takes place. In the DEA framework, the DMU efficiency
scores of each group can be obtained after specifying some assumptions appropriate to the situation,
and then the comparison of the efficiency distributions of the groups is made on the basis of their
obtained scores. For example, Golany and Storberg [1] and Lee et al. [2] applied non-parametric tests,
such as the Mann–Whitney (MW) and Kruskal–Wallis tests, to the efficiency scores. Cummins et al. [3]
introduced a dummy variable to indicate the groups, and then regressed the efficiency scores on the
dummy variable. Simar and Zelenyuk [4] adapted the test developed in Li [5] to the DEA context and
applied it to the obtained scores, to test the equality of efficiency distributions. O’Donnell et al. [6]
used the concept of a meta-frontier to compare the technical efficiencies of firms that may be classified
into different groups.

However, this stream of research under the DEA framework has a limitation in that it does
not consider the noise factor in the production process. DEA typically assumes that the inefficiency
of the DMU is the only cause of its production not reaching its maximum output, but obviously
there are many uncontrolled factors which need to be considered as the cause. From this recognition,
Aigner and Chu [7] and Meeusen and van den Broeck [8] first proposed the stochastic frontier model
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(SFM), which allows for both unobserved variation in output: the technical inefficiency of the
production unit and the noise which represents the effect of innumerable uncontrollable factors.
For illustrative comparison between DEA and SFM frameworks, see Figure 1.

Figure 1. Comparison between Data Environment Analysis (DEA) (left panel) and SFM (right panel)
frameworks (yi: output, xi: input, φ(xi): the maximum output which can be obtained from the input xi,
εi: deviation from the production frontier function φ(xi), ui: technical inefficiency, vi: noise). Note that
the technical inefficiency ui is a nonnegative random variable with unknown distribution.

Nowadays, the stochastic frontier model is used in a large literature of studies of production.
Hence, we feel the need to develop a method and compare the efficiency difference between groups
under SFM framework. One pioneering work in this direction is Banker et al. [9]. They developed
five DEA-based hypothesis tests to compare the efficiency of groups under SFM. Although the paper
referred above is an important development toward group efficiency comparison under SFM, their tests
need to improve further.

First, their rather strong assumptions might limit the applicability of the proposed methods.
For their parametric tests, they assumed the equality of both noise variance and inefficiency variance
across groups. Second, their theoretical justification of the proposed methods needs to be checked.
As regards their ordinary least squares (OLS) test of the mean difference in inefficiency, they provided
its asymptotic normality as theoretical basis, but to our knowledge, such asymptotic normality is
difficult to obtain because of the slow convergence rate of the DEA estimator when the number of
input variables is greater than or equal to 2. The same comment is given in Section 3.2 of Simar and
Wilson [10] on a similar type of asymptotic normality result as proof of Proposition 1 in Banker and
Natarajan [11]. Finally, because they used the DEA methods for SFM, the tests they developed were
based not directly on inefficiency itself, but on the inefficiency contaminated by positive measurement
error due to noise. This indirect approach can lower the performance of their tests.

This observation has motivated us to develop a theoretically sound tool for comparison of group
inefficiencies in the presence of noise. We develop such a methodology using a semi-parametric
regression technique instead of DEA methods. The newly developed test performs better than the tests
of Banker et al. [9] in numerical studies. It also has the theoretical advantage of working under more
general assumptions compared to Banker et al. [9].

The rest of this paper is organized as follows. Section 2 describes our proposed test for group
inefficiency comparison. We then perform some simulation studies and compare our test with the tests
proposed by Banker et al. [9] in Section 3. We illustrate our method by applying the proposed test to
Program for International Student Assessment (PISA) 2015 data and investigate whether an efficiency
difference exists between male and female student groups at a specific age in terms of learning
time and achievement in mathematics in Section 4. Section 5 provides some discussion and future
research topics.
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2. Group Efficiency Comparison under SFM

Assume that we have observations on n DMUs, where each observation consists of a vector of p
inputs Xi = (X1,i, . . . , Xp,i)

> and the corresponding output Yi. We consider the case where n DMUs
can be divided into two distinct groups with nl observations (n = n1 + n2). We assume the following
stochastic frontier model for two groups of DMUs:

(The first group) Yi = φ(Xi) + ε1,i, i ∈ {1, . . . , n1};
(The second group) Yi = φ(Xi) + ε2,i, i ∈ {n1 + 1, . . . , n1 + n2}, (1)

where ε l,i = Vl,i −Ul,i, Vl,i is a random noise term of the lth group with E(Vl,i|Xi) = 0, and Ul,i is
an inefficiency term of the lth group with Ul,i ≥ 0 for l = 1, 2. We assume that the same production
technology is applied to both DMU groups. Hence, the production frontier function φ(·) is the same
throughout the groups, as in Banker et al. [9]. Under this model, we need to estimate the difference
E(U1)− E(U2) and test the hypothesis

H0 : E(U1)− E(U2) = 0 vs. H1 : E(U1)− E(U2) > 0 (< 0) (2)

to know which DMU group is more efficient. A novelty of our approach in developing the test is to
implement the test without imposing any parametric assumption on the frontier function φ(·), and with
minimal assumptions on inefficiency and random noise. Banker et al. [9] also implemented the test
without any parametric assumption on φ(·), but with additional restrictive parametric assumptions on
noise and inefficiency. In the following sections, we first review the work of Banker et al. [9] and then
explain the development of our semiparametric regression-based test.

2.1. The Previous Work

To apply the DEA methods to SFM, Banker et al. [9] assumed that the random noise
variables V1,i, V2,i are bounded above by Vmax, that is, V1,i, V2,i ≤ Vmax. Under this assumption,
they transformed model (1) as

Yi = (φ(Xi) + Vmax)− (Vmax −Vl,i + Ul,i) ≡ φ̃(Xi)− Ũl,i, l = 1, 2. (3)

Since Ũl,i = (Vmax −V1,i) + Ul,i ≥ 0, they considered the translated production function
φ̃(·) = φ(·) + Vmax as a new production function, and Ũl,i as the inefficiency of the DEA framework.
The new inefficiency Ũl

i can be estimated as ˆ̃φ(Xi)−Yi after φ̃(·) is estimated using the conventional
DEA methods. After estimating Ũl,i using DEA methods, they used it for group efficiency comparison.
This approach is advantageous in that we use the strength of the existing well-developed DEA
techniques. However, the approach has one disadvantage in that the tests developed are based
not on inefficiency (Ul,i) itself, but on the inefficiency contaminated by the positive measurement
error (Vmax −Vl,i) due to random noise. Additionally, the distributional property of the inefficiency
estimated using DEA methods is generally hard to derive or quite complicated, making it very difficult
to develop a statistical test theory based on estimated inefficiency (estimate of Ũl,i). Hence, we are
motivated to develop a test for (2) directly based on inefficiency Ul,i. We will explain this in the
following section.

2.2. The Proposed Test

This section introduces our approach to testing the hypothesis in (2). Unlike Banker et al. [9],
we do not require that neither the noise variance nor inefficiency should be equal across groups.
Moreover, we allow for distributional difference in the composite error ε and input vector Xi from
the production environmental factors of each group. Specifically, the variance of Vl and mean of
inefficiency Ul can differ by the group as well as conditional distribution of Xi, given group l.
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First, model (1) can be written as two nonparametric mean regression models as follows:

Yi = [φ(Xi)− E(U1)] + [V1,i − (U1,i − E(U1))]

≡ φ∗(Xi) + ε∗1,i , i ∈ {1, . . . , n1}; (4)

Yi = [E(U1)− E(U2)] + [φ(Xi)− E(U1)] + [V2,i − (U2,i − E(U2))]

≡ β0 + φ∗(Xi) + ε∗2,i , i ∈ {n1 + 1, . . . , n1 + n2}, (5)

where E(ε∗1,i) = E(ε∗2,i) = 0, and β0 = E(U1) − E(U2). If a dummy variable is defined for groups
letting Ti = 0 for i ∈ {1, . . . , n1} and Ti = 1 for i ∈ {n1 + 1, . . . , n1 + n2}, the two models (4) and (5)
can be integrated into a single partial linear semiparametric regression model as follows:

Yi = β0Ti + φ∗(Xi) + ε∗i , i ∈ {1, . . . , n}, (6)

where ε∗i = (1− I(Ti = 1))ε∗1,i + I(Ti = 1)ε∗2,i and E(ε∗i |Ti, Xi) = 0. Using this model (6), we can test
hypothesis (2) by testing hypothesis

H0 : β0 = 0 vs. H1 : β0 > 0(< 0). (7)

Note that Var(ε∗i |Ti, Xi) = (1 − I(Ti = 1))Var(ε∗1,i) + I(Ti = 1)Var(ε∗2,i). Thus, model (6) is
a heteroscedastic partial linear model. Liang [12] and Ma et al. [13] studied model (6) when Xi
is univariate. By extending the theory from there to the case where Xi is multivariate, we can test
hypothesis (7). In Appendix A, we prove the asymptotic normality of the kernel-based profile estimator
of β0 based on a local linear model smoother when Xi is multivariate, and provide the necessary
assumptions for it. As with the estimator in Liang [12], the kernel-based profile estimator of β0 when
Xi is multivariate is given as

β̂0 = (T>(I− S)>(I− S)T)−1T>(I− S)>(I− S)Y ≡ H Y, (8)

where T = (T1, . . . , Tn)>, Y = (Y1, . . . , Yn)>, and S the smoother matrix for estimating the vector
(E(·|X1), . . . , E(·|Xn))>. If we choose local linear regression as the smoothing method, the smoothing
matrix S = [sX1 · · · sXn ]

> will be a collection of row vectors, each of which is the smoother vector

s>x = e>1 (X
>
x WxXx)

−1X>x Wx, (9)

where e>1 = (1, 0, . . . , 0) is a (p + 1)× 1 vector; Wx = diag {Kh(X1 − x), · · · , Kh(Xn − x)} for some
kernel function K and bandwidth vector h = (h1, . . . , hp)>; and

Xx =

 1 (X1 − x)>
...

...
1 (Xn − x)>

 . (10)

Here, Kh(Xi − x) = ∏
p
j=1 h−1

j K((Xj,i − xj)/hj). From the theorem in Appendix A, under some

regularity conditions,
√

n(β̂0 − β0) is asymptotically normal with mean zero and variance
σ2 = E(T̃2)−2E(ε∗T̃)2, where T̃ = T − E(T|X). Using a consistent estimator of σ2, we can test
(7) with significance level α by rejecting H0 if Z = β̂0/(σ̂/

√
n) ≥ zα (or ≤ −zα), where zα is the

(1− α)-quantile of the standard normal distribution.
As regards the estimation of σ2, we can first directly estimate variance σ2 using the estimates ε̂∗i

and Ê(T|Xi), where ε̂∗i = Yi − β̂0 Ti − φ∗
∧

(Xi) and φ∗
∧

(·) is the local linear estimator of φ∗(·) based on
Yi − β̂0 Ti, i = 1, . . . n. We can also estimate it using the sandwich covariance estimate based on (8),

Var
∧

(β̂0|T, X1, . . . , Xn) = H Var
∧

(Y|T, X1, . . . , Xn)H>. (11)
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Matrix Var
∧

(Y|T, X1, . . . , Xn) is diagonal, with the ith diagonal element equal to

E
∧
(ε∗2
∧

|Ti, Xi) = (1− I(Ti = 1))Var
∧

(ε∗1) + I(Ti = 1)Var
∧

(ε∗2), (12)

where

Var
∧

(ε∗1) = n−1
1 ∑

i: Ti=0
(ε̂∗i )

2 −
(

n−1
1 ∑

i: Ti=0
ε̂∗i

)2

, (13)

Var
∧

(ε∗2) = n−1
2 ∑

i: Ti=1
(ε̂∗i )

2 −
(

n−1
2 ∑

i: Ti=1
ε̂∗i

)2

. (14)

Since the frontier function is generally (coordinatewise) non-decreasing with respect to the
input variables, one might consider it necessary to impose such a monotonicity on φ∗(·). However,
from Theorem 2.1 in Huang [14], such imposition will not decrease the asymptotic variance of β̂0;
that is, it shows no theoretical improvement in performance. We therefore choose to develop the test
without the monotonicity assumption for simplicity.

Note that our test directly estimates the mean difference in inefficiency E(U1)− E(U2) using the
semiparametric regression technique. Thus, the proposed test can work under assumptions that are
more general than those in Banker et al. [9]. Additionally, we do not have to assume that noise has
a finite upper support bound (Vmax). However, the tests in Banker et al. [9] need such assumptions
because they estimate Ũl,i = (Vmax −Vl,i) + Ul,i and use it as a surrogate estimate of Ul,i. However,
Vmax −Vl,i may hamper the tests and degrade their performance.

3. Numerical Studies

In this section, we compare the performance of our test with those of Banker et al. [9]. We consider
single and multiple input cases and use sandwich formulas to estimate the variance in estimators.

3.1. Single Input Case

We first consider a single input case using the following model:

Yi = φ(Xi) + V1,i −U1,i, i ∈ {1, . . . , n1}
Yi = φ(Xi) + V2,i −U2,i, i ∈ {n1 + 1, . . . , n1 + n2},

where φ(x) = 30x − 9x2, X ∼ U(0, 1), Ul,i ∼ N+(0, σ2
l,u), and Vl,i follow the truncated normal

distribution with mean 0 and variance σ2
l,v, which lies within (−6σl,v, 6σl,v), l = 1, 2. Here, N+ stands

for a normal distribution limited to the domain [0, ∞). As for Vl,i, we try two cases to reflect both the
equal and unequal error variances between groups. We set σ1,v = σ2,v = 1 for the equal error variance
case and σ1,v =

√
2, σ2,v = 1 for the unequal variance case. To evaluate the type I error rate and power,

we again consider two cases based on whether a mean difference (β0) exists or does not exist between
group inefficiencies: σ1,u = σ2,u = 1 (β0 = 0) and σ1,u =

√
2, σ2,u = 1 (β0 = 0.3305). Here, the type

I error rate implies the rate of supporting group difference in mean inefficiency when there is no
difference and the power means the rate of supporting group difference in mean inefficiency when
there are really inefficiency differences between groups.

We consider three sample sizes, n = 100, 200, and 400; the proportion of each group is
approximately 50% and number of replications is 1000. For a comparison, we report the type I
error and power of the following five tests with significance level α = 0.05: our proposed test (PT),
the OLS test, the T-test, the Mann-Whitney (MW) test, the Kolmogorov-Smirnov (KS) test, and the
F-test. The last five tests are from Banker et al. [9]. We used a plug-in principle (see Ruppert et al. [15])
to find the bandwidth for our PT.
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The test results are depicted in Table 1. Four of these tests, that is, except the KS test and the F-test,
seem to respect the significance level in both the equal and unequal variance cases. However, the KS
test obviously shows a larger type I error rate than expected for unequal error variances and the F-test
seems to be a conservative test, which gives much smaller type I error probabilities than expected.
As regards the power, our PT performs best, with the largest power among all the tests. In unequal
variance cases where n = 200, 400, the KS test has larger power than our PT. However, the KS test is
not reliable since it tends to reject the null hypothesis too easily in those cases. Finally, all tests tend to
show higher power with larger sample sizes.

Table 1. Type I error and power of the single input case with equal and unequal error variances.

Type I Error Power
(Rejection Rate When β0 = 0) (Rejection Rate When β0 = 0.3305)

Variances n PT OLS T MW KS F PT OLS T MW KS F

Equal 100 0.052 0.050 0.050 0.050 0.037 0.013 0.377 0.336 0.320 0.283 0.200 0.152
(σ1,v = σ2,v) 200 0.062 0.058 0.056 0.062 0.047 0.006 0.595 0.555 0.547 0.483 0.397 0.300

400 0.063 0.064 0.062 0.061 0.052 0.003 0.848 0.822 0.818 0.761 0.665 0.533

Unequal 100 0.047 0.065 0.060 0.050 0.062 0.037 0.337 0.337 0.328 0.276 0.277 0.279
(σ1,v 6= σ2,v) 200 0.053 0.064 0.063 0.052 0.099 0.029 0.505 0.468 0.463 0.388 0.521 0.401

400 0.044 0.051 0.050 0.048 0.179 0.026 0.738 0.722 0.712 0.645 0.836 0.650

3.2. Multiple Input Case

We next consider a multiple input case with p = 3. All the components in the simulation,
except for the frontier function φ, are the same as in the single input case. As regards the frontier
function, we consider two scenarios: the production function has an additive form, and the production
function does not have an additive form. The additive assumption on the production function is used
in Ferrara and Vidoli [16], but it may not be satisfied in some cases. However, in case of multiple
covariates, the practical applicability of our proposed method may become worse since it requires
multivariate smoothing and therefore suffers from the well-known “curse of dimensionality” problem
as the dimension of the covariates becomes higher. In this case, additive modeling can be a meaningful
alternative. For this, we try to estimate the difference in group efficiencies and test whether it is
zero with an alternative estimating strategy, where we employ a backfitting procedure, which is
a well-known estimating approach under the additive assumption. See Appendix B for details of
the alternative method. Considering these two scenarios (additive and non-additive production
functions), we examine how our PT(n) and its alternative based on the additive assumption, PT(a),
behave depending on the validity of the assumption. The model considered here is

Yi = φ(Xi) + V1,i −U1,i, i ∈ {1, . . . , n1}
Yi = φ(Xi) + V2,i −U2,i, i ∈ {n1 + 1, . . . , n1 + n2},

where Xj,i, j = 1, 2, 3, are generated from U(0, 1) independently. For the
first scenario, we set φ(x) = (30x1 − 9x2

1) + (5 + 2 arctan(10(x2 − 0.5))) +

(4
√

x3); this has an additive structure. For the second scenario, we consider
φ(x) = (4

√
x1 + 7

√
x2 + 5

√
x3 + 8

√
x1x2 + 10

√
x2x3 + 9

√
x1x3)

1.1. Note that both these production
functions are concave. For PT(n), we select bandwidths by a generalized cross validation method
(see Hastie and Tibshirani [17]), and for PT(a), we adopt a plug-in principle, as in the single input case.
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The performances of PT(n) and PT(a) as well as the other five tests are reported in Tables 2 and 3.
From Table 2, our PT(n) outperforms the competitors overall, especially in the unequal variances
case. Note that its type I error rates do not deviate much from 0.05, which means that the type I error
rate is under control as desired; those of other competitors such as the OLS, T and KS tests tend to
be a bit smaller than this level in case of equal variances, and considerably larger in case of unequal
variances. The MW test seems to respect the level like PT(n) but PT(n) turns to be more powerful than
MW. Note that PT(a) shows good results in terms of type I error rate, with comparable power to the
MW test. Its power is lower than that of PT(n), but this is natural since the true production function is
not additive. The F-test seems to be anticonservative leading to too high of a type I error probability,
especially in the unequal variances case. However, in the equal variance case, the F-test shows shows
very good performance in terms of type I error rate and power in large samples, as reported in
Banker et al. [9]. From Table 3, our proposed two tests outperform their competitors when the additive
assumption is true. Note that under the additive assumption, both PT(a) and PT(n) correctly specify
the model. From our simulation, PT(a) slightly outperforms PT(n), since their type I error rates are
close to 0.05 and the power of PT(a) is larger than that of PT(n). In case of equal variances, the type
I error rates of the five competitors tend to be below 0.05, but when the variances are unequal, their
power becomes much lower than our proposed tests although overall they show satisfactory type I
errors. The only exception is the F-test. It shows the largest power in the unequal variances case but
such merit is dimmed by considerably larger type I errors than other tests.
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Table 2. Type I error and power of the multiple input case with equal and unequal error variances when the true production function is not additive.

Type I Error Power
(Rejection Rate When β0 = 0) (Rejection Rate When β0 = 0.3305)

Variances n PT(a) PT(n) OLS T MW KS F PT(a) PT(n) OLS T MW KS F

Equal 100 0.066 0.053 0.044 0.043 0.054 0.040 0.141 0.220 0.294 0.234 0.235 0.170 0.133 0.492
(σ1,v = σ2,v) 200 0.059 0.077 0.049 0.050 0.044 0.035 0.113 0.328 0.488 0.473 0.471 0.356 0.268 0.644

400 0.048 0.056 0.039 0.039 0.037 0.031 0.064 0.509 0.765 0.705 0.706 0.580 0.517 0.815

Unequal 100 0.061 0.063 0.101 0.099 0.054 0.046 0.316 0.199 0.258 0.346 0.340 0.173 0.143 0.649
(σ1,v 6= σ2,v) 200 0.058 0.074 0.139 0.137 0.062 0.053 0.381 0.302 0.433 0.583 0.580 0.347 0.331 0.849

400 0.048 0.060 0.128 0.130 0.046 0.093 0.385 0.468 0.682 0.793 0.792 0.530 0.650 0.947

Table 3. Type I error and power of the multiple input case with equal and unequal error variances when the true production function is additive.

Type I Error Power
(Rejection Rate When β0 = 0) (Rejection Rate When β0 = 0.3305)

Variances n PT(a) PT(n) OLS T MW KS F PT(a) PT(n) OLS T MW KS F

Equal 100 0.054 0.072 0.046 0.045 0.041 0.034 0.065 0.364 0.328 0.213 0.208 0.170 0.132 0.279
(σ1,v = σ2,v) 200 0.066 0.060 0.063 0.061 0.056 0.045 0.045 0.578 0.551 0.387 0.384 0.318 0.258 0.403

400 0.054 0.055 0.034 0.034 0.033 0.033 0.018 0.820 0.801 0.572 0.571 0.503 0.419 0.517

Unequal 100 0.057 0.070 0.066 0.062 0.044 0.048 0.144 0.301 0.295 0.236 0.228 0.153 0.121 0.381
(σ1,v 6= σ2,v) 200 0.068 0.060 0.089 0.089 0.054 0.060 0.137 0.501 0.481 0.415 0.414 0.281 0.290 0.566

400 0.057 0.054 0.058 0.058 0.032 0.056 0.096 0.719 0.695 0.588 0.586 0.446 0.535 0.720
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4. Application to PISA 2015 Data

In this section, we applied our PT to PISA 2015 data and test the efficiency difference between
male and female student groups at a specific age in terms of learning time (Xi) and achievement
(Yi) in mathematics. The data can be downloaded from http://www.oecd.org/pisa/data/. PISA is
a worldwide study to evaluate educational systems by measuring the scholastic performance of
15-year-old school students in mathematics, science, and reading. We considered the regional averages
of the students’ learning time and achievement in mathematics based on test results of the 2015 version
as production data. Out of the 103 regions in the data, two regions, Nova Scotia in Canada and Chile,
were excluded from our analysis in view of their outlier characteristics in efficiency analysis.

Usually, international large-scale assessments data include measurement errors at the individual
as well as group level. Therefore, we considered the following stochastic frontier model for such data:

(Male Students) Yi = φ(Xi) + Vmale
i −Umale

i , i ∈ {1, . . . , 101}

(Female Students) Yi = φ(Xi) + V f emale
i −U f emale

i , i ∈ {102, . . . , 202}.

In this model, we assumed that there would be no gender difference in learning ability from
a biological point of view and use the same production frontier for both gender group. It means that
all the socio-economic characteristics of differentiation between the gender groups were in the random
error terms and not introduced in the frontier function.

Table 4 shows summary statistics of each student group data. We applied the six tests in Section 3
to the data and calculated the p-values for the following hypothesis testing:

H0 : E(Umale) = E(U f emale) vs. H1 : E(Umale) < E(U f emale)

Table 4. Summary statistics of our PISA 2015 data.

min Q1 median mean Q3 max

male Xi 27.89 39.52 41.72 43.10 47.81 56.70

Yi 338.5 470.6 499.7 483.9 513.8 565.6

female Xi 25.23 38.99 41.49 41.98 45.26 56.67

Yi 339.0 456.9 487.9 474.8 501.9 565.0

From Samuelsson and Samuelsson [18], it is known that male students are often more involved in
mathematics classes than female students. Additionally, since women are more involved in domestic
chores than men and for men time is often made free by their families and relatives for the learning
activity, male students are likely to be in an environment where they can focus more on studying than
female students. Hence, we expected the results of the test to indicate that the effectiveness of male
students was greater than that of female students in average.

Table 5 gives the test results. At a significance level of around α = 0.05, our PT, the MW
test, and the KS test (with p-value slightly higher that α = 0.05) supported the hypothesis that
on average male students are more efficient in mathematics than female students. However, the OLS
test, the T-test and the F-test reported no significant difference in learning efficiency between the
two groups. The reason for this could be the somewhat restrictive assumptions for test validity.
Thus, the three tests seem to face the risk of unreasonable results if the assumptions are not satisfied in
practice, but our PT does not seem to suffer from this problem.

http://www.oecd.org/pisa/data/
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Table 5. P-values of the six tests to detect efficiency difference in groups of male and female students in
terms of learning time and achievement in mathematics.

test PT OLS T MW KS F

p-value 0.049 0.150 0.150 0.044 0.057 0.322

5. Discussion and Conclusions

In this study, we developed tests with sound statistical theory for group efficiency comparison
under SFM with considerably better performance than the previous tests proposed in numerical
simulations. However, there is still room for improvement in our methods.

First, since we perform full nonparametric modeling for the frontier function φ(·), which can
be multivariate, our test might suffer from the “curse of dimensionality” and require high-order
kernels for implementation with four or more input variables. In such a situation, we can consider
an alternative test with spirit as in our test when the frontier function φ(X) has an additive structure,
that is, φ(X) = ∑

p
j=1 φj(Xj), or could be well-approximated by it.

Second, we only deal with one output case, which limits practical applications. Our methods
should be extended to cover the case of multi-output production frontiers, which DEA methods cover.

Third, we assume the same production frontier for both group, which is a clear limitation in
practice since such situation is not frequently observed. If it is important to assume separate production
frontier functions for different groups, one can use the meta-frontier approach. O’Donnell et al. [6]
proposed a meta-frontier approach to compare the group technical efficiencies under stochastic frontier
framework. The proposed method has the advantage that it can be used without assuming a common
frontier function. However, the use of their method sometimes can be restricted by their assumption
that the frontier production function is log-linear.

Finally, if one is interested in estimating the mean inefficiency of each group, we refer to Noh and
Van Keiligom [19], which is a recent work along that direction.

Author Contributions: Conceptualization, H.N.; methodology, H.N. and S.J.Y.; software, H.N. and S.J.Y.; formal
analysis, H.N. and S.J.Y.; investigation, H.N. and S.J.Y.; writing–original draft preparation, H.N. and S.J.Y.;
writing–review and editing, H.N. and S.J.Y.. All authors have read and agree to the published version of
the manuscript.

Funding: H. Noh was supported by the Basic Science Research Program through the National Research
Foundation of Korea funded by the Ministry of Education (NRF-2017R1D1A1A09000804), and S.J.Y. was supported
by research funds for newly appointed professors of Jeonbuk National University in 2018.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

In this appendix, we provide details of the asymptotic normality of the proposed estimator β̂0 in
Section 2.2. For this, we first list the relevant assumptions.

Assumption

1. The kernel function K is symmetric, and Lipschitz continuous in [−1, 1].
2. φ is twice partially continuously differentiable.
3. The density functions of Xj (j ∈ {1, . . . , p}) are continuous, and bounded away from zero and

infinity on their supports Cj, which are bounded.
4. V1, V2, U1 and U2 have finite second moments.
5. For j ∈ {1, . . . , p}, hj are asymptotic to n−a for a > 0 such that n(∏

p
j=1 hj)

2/ log n → ∞ and

nh8
j → 0 as n goes to infinity.
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Theorem A1. Under the above assumptions,

√
n(β̂0 − β0) −→ N(0, σ2)

where

σ2 = E(T̃2)−2E(ε∗2T̃2)

T̃ = T − E(T|X)

Proof. We write

√
n(β̂0 − β0) =

[
n−1T>(I− S)>(I− S)T

]−1

× n−1/2
[
T>(I− S)>(ε∗ + φ∗ − S(Y− β0T))

]
where φ∗ = (φ∗(X1), . . . , φ∗(Xn))> and ε∗ = (ε∗1, . . . , ε∗n)

>. It suffices to show that

n−1T>(I− S)>(I− S)T
p−→ E(T̃2), and (A1)

n−1/2
[
T>(I− S)>(ε + φ∗ − S(Y− β0T))

]
d−→ N(0, E(ε∗)T̃2). (A2)

To prove these, we first give the following fact.

sup
x∈C1×···×Cp

∣∣ξ̂(x)− ξ(x)
∣∣ = Op(n−2a + n−(1−ap)/2 log n), (A3)

where ξ(x) = E(R|X = x) and ξ̂(x) is its local linear estimator. That is, ξ̂(x) = s>x R with R =

(R1, . . . , Rn)> when Rj is a response variable. (A3) can be shown from the standard theory of kernel
smoothing. Note that

(I− S)T = (T− E(T|X)) + (E(T|X)− ST).

The second term of the right-hand side of the above equation is op(1) from (A3). This proves (A1).
Next, we write

n−1/2
[
T>(I− S)>(ε∗ + φ∗ − S(Y− β0T))

]
= n−1/2(T− E(T|X))>ε∗ + n−1/2(T− E(T|X))>(φ∗ − S(Y− β0T))

+n−1/2(E(T|X)− ST)>ε∗ + n−1/2(E(T|X)− ST)>(φ∗ − S(Y− β0T))

≡ n−1/2(T− E(T|X))>ε∗ + A1,n + A2,n + A3,n.

Since n−1/2(T− E(T|X))>ε∗ = N(0, E(ε∗)T̃2) + op(1), it is enough to show that Aj,n = op(1),
j = 1, 2, 3, to claim (A2).

To treat A1,n, we note that

sup
xj∈Cj

∣∣∣∣∣ ∂

∂xj
ξ̂(x)− ∂

∂xj
ξ(x)

∣∣∣∣∣ = Op(n−2a + n−(1−ap−2a)/2 log n), j ∈ {1, . . . , p} (A4)

and denote φ̂∗ = S(Y− β0T). Then,

A1,n = n−1/2
n

∑
i=1

(Ti − E(Ti|Xi))(φ
∗(Xi)− φ̂∗(Xi)).

Let G denote a class of functions satisfying |g(x) − g(y)| ≤ ‖x − y‖ for x, y ∈ [0, 1]p.
Then, na0(φ̂∗(·) − φ∗(·)) belongs to G with probability tending to 1 from (A3) and (A4),
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where a0 < max{2a, (1− ap− 2a)/2}. We can show that the δ-entropy of G for the supremum
norm satisfies

H∞(δ,G) ≤ K
(

log
1
δ
+

1
δp

)
for some constant K. Here, we consider an empirical process

n−1/2
n

∑
i=1

(Ti − E(Ti|Xi))g(Xi), g ∈ G

indexed by G. Then, E[(Ti − E(Ti|Xi))g(Xi)] = 0, and by the Corollary 8.8 of van de Geer [20],
we conclude that sup

g∈G

∣∣∣n−1/2 ∑n
i=1(Ti − E(Ti|Xi))g(Xi)

∣∣∣ = Op(1), to result in A1,n = op(1). Note that

the exponential tail condition, required to apply the empirical process technique, is automatically
satisfied in our case since T is a binary variable.

As for A2,n, we first note that E(A2,n|(T1, X1), . . . , (Tn, Xn)) = 0. Moreover,

E(A2
2,n|(T1, X1), . . . , (Tn, Xn))

≤ n−1[var(ε1,∗
1 ) + var(ε2,∗

1 )](E(T|X)− ST)>(E(T|X)− ST)

= Op(n−4a + n−(1−ap) log n)

from (A3). This establishes A2,n = op(1). Finally, A3,n = Op(n1/2−4a + n−1/2+ap/2 log n) = op(1)
from (A3), to complete the proof.

Appendix B

In this appendix, we describe an alternative test for (2) when the frontier function φ(X) has an
additive structure, that is, φ(X) = ∑

p
j=1 φj(Xj). Under the additive structure assumption, model (1)

can be written as two nonparametric mean regression models:

Yi =

[
p

∑
j=1

Eφj(Xj,i)− E(U1)

]
+

[
p

∑
j=1

(φj(Xj,i)− Eφj(Xj))

]
+ [V1,i − (U1,i − E(U1))]

≡ µ +
p

∑
j=1

φ∗j (Xj,i) + ε∗1,i , i ∈ {1, . . . , n1}; (A5)

Yi =

[
p

∑
j=1

Eφj(Xj,i)− E(U1)

]
+ [E(U1)− E(U2)] +

[
p

∑
j=1

(φj(Xj,i)− Eφj(Xj))

]
+[V2,i − (U2,i − E(U2))]

≡ µ + β0 +
p

∑
j=1

φ∗j (Xj,i) + ε∗2,i , i ∈ {n1 + 1, . . . , n1 + n2}, (A6)

where φ∗j (Xj) = φ∗j (Xj)− Eφj(Xj) and E(φ∗(Xj)) = 0 for j ∈ {1, . . . , p}. If we introduce the same
dummy variable Ti as in the single input case, models (A5) and (A6) can be integrated into one single
semiparametric regression model, which would be a (heteroscedastic) partial linear additive model:

Yi = µ + β0Ti +
p

∑
j=1

φ∗j (Xj,i) + ε∗i , i ∈ {1, . . . , n}, (A7)

where ε∗i = (1− I(Ti = 1))ε∗1,i + I(Ti = 1)ε∗2,i and E(ε∗i |Ti, Xi) = 0. Partial linear additive models have
been studied by several authors; for example, Fan et al. [21], Fan and Li [22], Li [23], and Wei and
Liu [24]. For the test, we use the profile least square estimator of β0 in Wei and Liu [24]. However,
Wei and Liu [24] only showed the asymptotic distribution of the estimator of the parametric component
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vector (in our case, the estimator of β = (µ, β0)
>) under the homoscedasticity assumption of the error

(Theorem 2.1 of their paper), and so we extended their result to the heteroscedasticity case.
To introduce the profile least square estimator of β0 using the method of Wei and Liu [24],

we define some notations. Let

Xdes =

 1 X1
...

...
1 Xn

 = [1n X] , ST =


In S∗1 · · · S∗1
S∗2 In · · · S∗2
...

...
. . .

...
S∗p S∗1 · · · In

 , C =


S∗1
S∗2
...

S∗p

 , (A8)

where Sk is the smoothing matrix for local linear regression with respect to the jth (j ∈ {1, . . . , p})
covariate vector Xj = (Xj,1, . . . , Xj,n)

> with kernel function K(·) and bandwidth hj, S∗j = (In −
1n1>n /n)Sj, and 1n = (1, . . . , 1)> with length n. Additionally, we define the additive smoother matrix
Wj as Wj = EjS−1

T C, where Ej is a partitioned matrix of dimension n× np with n× n identity matrix
as the jth “block” and zeros elsewhere. Then, the profile least squares estimator of β = (µ, β0)

> is
obtained as the estimator of the coefficient vector β of a synthetic linear regression model

Yi − Ỹi = (Tdes,i − T̃des,i)
>β + εi, (A9)

where WM = ∑
p
j=1 Wj, Ỹ = (Ỹ1, . . . , Ỹn)> = WMY and T̃des = (T̃des,1, . . . , T̃des,n)

> = WMTdes.

Additionally, since WM1n = (0, . . . , 0)>, we know that the linear model (A9) becomes

Yi − Ỹi = µ + (Ti − T̃i)β0 + ε∗i , (A10)

where T̃ = (T̃1, . . . , T̃n)> = WMT. Hence, after a standard calculation in linear model theory, we obtain
the profile least squares estimator of β0 as

β̂0 =
[
T>(In −WM)>(In − J)(In −WM)T

]−1
T>(In −WM)>(In − J)(In −WM)Y, (A11)

where J = 1n1>n /n. Using the results to prove Theorem 2.1 in Wei and Liu [24], we show below that
under some regularity conditions, estimator β̂0 is asymptotically normal with mean zero and variance

σ2
add = E(T̃2)−2E(ε∗2T̃2), (A12)

where T̃ = T − E(T)− ∑
p
j=1

[
E(T|Xj)− E(T)

]
. Once we have a consistent estimate of σ2

add, we can
test (7) for a given significance level α. As with the case of single input variable, we can directly
estimate the variance σ2

β0
using estimates ε̂∗i and Ê(T|Xj,i). Here, Ê(T|Xj,i) can be obtained as the

ith element of Sj(T1, . . . , Tn)>. Alternatively, we can estimate the variance via the sandwich formula
estimate based on (A11) following similar steps in Section 2.2.

Now, we can show the asymptotic property of the profile least square estimator of β0. For this,
we first list the relevant assumptions.

Assumption

1. The kernel function K is symmetric, and Lipschitz continuous in [−1, 1].
2. φj (j ∈ {1, . . . , p}) are twice continuously differentiable.
3. The density functions of Xj (j ∈ {1, . . . , p}) are continuous, and bounded away from zero and

infinity on their supports, which are bounded.
4. V1, V2, U1 and U2 have finite second moments.
5. For j ∈ {1, . . . , p}, hj → 0, nhj/ log n→ ∞ and nh8

j → 0 as n goes to infinity.
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Theorem A2. Under the above assumptions,

√
n(β̂0 − β0) −→ N(0, σ2

add)

where

σ2
add = E(T̃2)−2E(ε∗2X̃2)

T̃ = T − E(T)−
p

∑
j=1

[
E(T|Xj)− E(T)

]
Proof. β̂0 can be expressed as follows:

β̂0 =
[
T>(In −WM)>(In − J)(In −WM)T

]−1
T>(In −WM)>(In − J)(In −WM)Y

where T = (T1, . . . , Tn)> and J = 1n1>n /n. Then,

√
n(β̂0 − β0)

=
[
n−1T>(In −WM)>(In − J)(In −WM)T

]−1

×n−1/2T>(In −WM)>(In − J)(In −WM)(φ∗ + ε∗),

where φ∗ = (∑
p
j=1 φ∗(Xj,1), . . . , ∑

p
j=1 φ∗(Xj,n))

> and ε∗ = (ε∗1, . . . , ε∗n)
>. Here, the term associated with

the intercept µ vanishes because WM1n = (0, . . . , 0)>. To prove the theorem, it suffices to show that

n−1T>(In −WM)>(In − J)(In −WM)T

= n−1
n

∑
i=1

[
Ti − E(Ti)−

p

∑
j=1

[
E(Ti|Xj,i)− E(Ti)

]]2

+ op(1) (A13)

and

n−1/2T>(In −WM)>(In − J)(In −WM)(φ∗ + ε∗)

= n−1/2
n

∑
i=1

[
Ti − E(Ti)−

p

∑
j=1

[
E(Ti|Xj,i)− E(Ti)

]]
ε∗i + op(1). (A14)

Note that (In − J)(In −WM)X = (In −WM)X − 1nX̄, where X̄ = n−1 ∑n
i=1 Xi because fact

1>n WM = (0, . . . , 0). Then, one can easily see that

n−1X>(In −WM)>(In − J)(In −WM)T

= n−1(T− 1nµX)
>(In −WM)>(In −WM)(T− 1nµT) + Op(n−1/2)

for µT = E(T1). Therefore, Equation (A13) can be verified as in the proof of Lemma 6.2 in Wei and Liu
(2012). For Equation (A14), note that

n−1/2T>(In −WM)>(In − J)(In −WM)φ∗

= n−1/2(T− 1nµT)
>(In −WM)>(In −WM)(φ∗ − 1nµφ∗) + Op(n−1/2) (A15)

and

n−1/2T>(In −WM)>(In − J)(In −WM)ε∗

= n−1/2(T− 1nµX)
>(In −WM)>(In −WM)ε∗ + Op(n−1/2), (A16)
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where µφ∗ = E(∑
p
j=1 φ∗(Xj,1)). Then, we have

(In −WM)ε∗ = ε∗ −
p

∑
j=1

Sjε
∗ + Op

(
n

p

∑
j=1

h4
j

)

from Lemma B.6 in [25]. Note that this is true as long as the conditional variance of the ε∗ given
covariates exists. This is guaranteed by assumption 4. Wei and Liu (2012) used a similar fact under the
homoscedastic error assumption. Then, with a derivation similar to that in Lemma 6.3 of Wei and Liu
(2012), we can show that (A15) converges to zero in probability and (A16) can be written as:

n−1/2
n

∑
i=1

[
Ti − E(Ti)−

p

∑
j=1

[
E(Ti|Xj,i)− E(Ti)

]]
ε∗i + op(1),

to complete the proof.
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