
mathematics

Article

Solving Second-Order Linear Differential Equations
with Random Analytic Coefficients about
Regular-Singular Points

Juan-Carlos Cortés 1,† , Ana Navarro-Quiles 2,*,† , José-Vicente Romero 1,†

and María-Dolores Roselló 1,†

1 Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, Spain; jccortes@imm.upv.es (J.-C.C.); jvromero@imm.upv.es (J.-V.R.);
drosello@imm.upv.es (M.-D.R.)

2 Department of Statistics and Operational Research, Universitat de València, Dr. Moliner 50,
46100 Burjassot, Spain

* Correspondence: ana.navarro@uv.es
† These authors contributed equally to this work.

Received: 17 January 2020; Accepted: 5 February 2020; Published: 10 February 2020
����������
�������

Abstract: In this contribution, we construct approximations for the density associated with the
solution of second-order linear differential equations whose coefficients are analytic stochastic
processes about regular-singular points. Our analysis is based on the combination of a random
Fröbenius technique together with the random variable transformation technique assuming mild
probabilistic conditions on the initial conditions and coefficients. The new results complete the ones
recently established by the authors for the same class of stochastic differential equations, but about
regular points. In this way, this new contribution allows us to study, for example, the important
randomized Bessel differential equation.

Keywords: random variable transformation technique; second-order random linear differential
equation; regular-singular point; first probability density function

1. Introduction and Motivation

As a main difference with respect to deterministic (or classical) differential equations, solving a
random differential equation (RDE) does not only consist of determining, exactly or approximately, its
solution stochastic process (SP), say X(t), but also of computing its main statistical properties such
as the mean and the variance. Even more, the approximation of the first probability density function
(1-PDF), say f1(x, t), of the solution SP is a more ambitious and useful goal since from it, one can
calculate, via its integration, the mean and the variance of X(t),

µX(t) = E [X(t)] =
∫ ∞

−∞
x f1(x, t)dx, V [X(t)] =

∫ ∞

−∞
(x− µX(t))2 f1(x, t)dx, (1)

as well as its higher one-dimensional statistical moments (such as asymmetry, kurtosis, etc.),

E
[
(X(t))k

]
=
∫
R

xk f1(x, t)dx, k = 1, 2, 3, . . . ,
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provided they exist. Moreover, given a fixed time instant t̂, the 1-PDF permits calculating key
information as the probability that the solution varies in any specific set of interest, say [a, b], just via
its integration,

P
[{

ω ∈ Ω : a ≤ x(t̂, ω) ≤ b
}]

=
∫ b

a
f1(x, t̂)dx, a, b ∈ R.

The computation of the 1-PDF in the setting of RDEs and their applications is currently a
cutting-edge topic for which a number of interesting advances have been achieved in the recent
literature. Here, we highlight the following contributions that are strongly related to the goal of the
present paper [1–4]. The main aim of this paper is to contribute to advance the field of RDEs by
extending important classical results to the stochastic context. Specifically, we address the problem
of constructing reliable approximations for the 1-PDF of the solution SP to second-order linear
differential equations whose coefficients are analytic SPs depending on a random variable (RV) about a
regular-singular point and whose initial conditions (ICs) are also RVs. Therefore, we are dealing with
what is often called RDEs having a finite degree of randomness [5] (p. 37). In this manner, we complete
the analysis performed in our previous contribution [6], where we dealt with the ordinary point case.
It is important to emphasize that the analysis of second-order linear random differential equations
has been performed in previous contributions using the random mean square calculus [5] (Ch. 4)
(see [7–12] for the Airy, Hermite, Legendre, Laguerre, Chebyshev, and Bessel equations, respectively)
and using other approaches like the random homotopy method [13,14], the Adomian method [15],
the differential transformation method [16], the variational iteration method [17], etc. However, in all
these contributions, only approximations for the two first statistical moments (mean and variance)
of the solution were calculated. In contrast, in [6] and in the present paper, we deal with the general
form of the aforementioned second-order linear RDEs, and furthermore, we provide additional key
information of the solution via the computation of approximations for the 1-PDF that, as has been
previously indicated, permits calculating not only the mean and the variance, but also higher moments
of the solution, as well as further relevant information as the probability that the solution lies in
specific sets of interest. To the best of our knowledge, these results for the 1-PDF of second-order
linear RDEs about regular-singular points are new, and then, they contribute to advance the setting
of this important class of RDEs. At this point, is important to underscore the main differences
between our previous contribution [6] and the present paper. In [6], we provided a comprehensive
study of second-order linear differential equations with random analytic coefficients about ordinary
points. Now, we propose a natural continuation of [6] by extending the analysis for the same class of
differential equations, but about singular-regular points, whose mathematical nature is completely
distinct. Our aim is to complete the stochastic analysis for this important type of differential equation
inspired by the well-known extension of the deterministic setting, the first one dealing with ordinary
points and secondly with singular-regular points, by applying the Fröbenius theorem. It is important
to point out that apparently, the problems have a strong similarity, but they are applied to differential
equations of a different nature. In this regard, this new contribution allows us to study, for example,
the important randomized Bessel differential equation, which does not fall within the mathematical
setting of the previous contribution [6].

For the sake of completeness, below, we summarize the main results about the deterministic
theory of second-order linear differential equations about ordinary and regular-singular points. These
results will be very useful for the subsequent development. Let us then consider the second-order
linear differential equation:

a0(t)ẍ(t) + a1(t)ẋ(t) + a2(t)x(t) = 0, (2)

where coefficients ai(t), i = 0, 1, 2 are analytic functions at a certain point, say t0, i.e., they admit
convergent Taylor series expansions about t0 (in practice, these coefficients are often polynomials,
which are analytic everywhere). To study when this equation admits a power series solution centered
at the point t0, say x(t) = x0 + x1(t− t0) + x2(t− t0)

2 + · · · (where the coefficients xi, i = 0, 1, 2, . . .
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must be determined so that this series satisfies the differential equation), it is convenient to recast
Equation (2) in its standard or canonical form:

ẍ(t) + p(t)ẋ(t) + q(t)x(t) = 0, (3)

where p(t) = a1(t)/a0(t) and q(t) = a2(t)/a0(t). The key question is how must we pick the center
of the previous expansion, t0, because this choice fully determines the region of convergence of the
power series. To this end, t0 is classified as an ordinary or a singular point. Specifically, t0 is called an
ordinary point of the differential Equation (3) (or equivalently (2)) if coefficients p(t) and q(t) are both
analytic at t0, otherwise t0 is termed a singular point. Recall that the quotient of analytic functions is
also an analytic function provided the denominator is distinct from zero. Therefore, if a0(t0) 6= 0 in (2)
(and using that their coefficients are analytic functions about t0), then t0 is an ordinary point. In the
particular case that ai(t), i = 0, 1, 2 are polynomials without common factors, then t0 is an ordinary
point of (2) if and only if a0(t0) 6= 0. It is well known that when t0 is an ordinary point of differential
Equation (2), then its general solution can be expressed as x(t) = ∑n≥0 xn(t− t0)

n = η1x1(t) + η2x2(t),
where η1, η2 are free constants and x1(t) and x2(t) are two linearly independent series solutions of (2)
centered at the point t0. These series are also analytic about t0, i.e., they converge in a certain common
interval centered at t0: 0 ≤ |t− t0| < ρ (ρ = min(ρ1, ρ2) being ρi the radius of convergence of xi(t),
i = 1, 2, respectively). In the important case that coefficients ai(t), i = 0, 1, 2 are polynomials, the radius
of convergence ρ > 0 of both series is at least as great as the distance from t0 to the nearest root of
a0(t) = 0. As a consequence, if the leading coefficient a0(t) is constant, then a power series solution
expanded about any point can be found, and this power series will converge on the whole real line.
In [6], we solved, in the probabilistic sense previously explained, the randomization of Equation (3) by
assuming that coefficients p(t) = p(t; A) and q(t) = q(t; A) depend on a common RV, denoted by A,
together with two random ICs fixed at the ordinary point t0, namely X(t0) = Y0 and Ẋ(t0) = Y1.
The study of Equation (3) (or equivalently, (2)) about a singular point requires further distinguishing
between regular-singular points and irregular-singular points. In this paper, we shall deal with the
former case, which happens when p(t) approaches infinity no more rapidly than 1/(t− t0) and q(t)
no more rapidly than 1/(t− t0)

2, as t→ t0. In other words, p(t) and q(t) have only weak singularities
at t0, i.e., writing Equation (3) in the form:

ẍ(t) +
p̂(t)

t− t0
ẋ(t) +

q̂(t)
(t− t0)2 x(t) = 0, (4)

where:
p̂(t) = (t− t0)p(t) and q̂(t) = (t− t0)

2q(t), (5)

then p̂(t) and q̂(t) are analytic about t0. Otherwise, the point t0 is called an irregular-singular point.
In the case that p̂(t) and/or q̂(t) defined in (4) become indeterminate forms at t0, the situation is
determined by the limits:

p̂0 = p̂(t0) = lim
t→t0

p̂(t) = lim
t→t0

(t− t0)p(t) and q̂0 = q̂(t0) = lim
t→t0

q̂(t) = lim
t→t0

(t− t0)
2q(t). (6)

If p̂0 = 0 = q̂0, then t = t0 may be an ordinary point of the differential equation (t− t0)
2 ẍ(t) +

(t− t0) p̂(t)ẋ(t) + q̂(t)x(t) = 0 (or equivalently, dividing it by t− t0 and taking into account (5), of the
differential Equation (3), i.e., ẍ(t) + p(t)ẋ(t) + q(t)x(t) = 0). Otherwise, if both limits in (6) exist and
are finite (and distinct form zero), then t = t0 is a regular-singular point, while if either limit fails to exist
or is infinite, then t = t0 is an irregular-singular point. As has been previously underlined, the most
common case in applications, in dealing with differential equations of the form (4), is when p̂(t) and
q̂(t) are both polynomials. In such a case, p̂0 and q̂0 are simply the coefficients of the terms (t− t0)

0 of
these polynomials, if they are expressed in powers of t− t0, so t0 is a regular-singular point. In dealing
with the case that t0 is a regular-singular point, once the differential Equation (2) is written in the form
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(4), we are formally working in a deleted (or punctured) neighborhood of t0, say 0 < |t− t0| < ρ,
ρ > 0. The solution of (4) (equivalently of (2)) is then sought via generalized power series (often
called Fröbenius series) centered at the point t0, x(t) = |t− t0|r ∑n≥0 xn(t− t0)

n, 0 < |t− t0| < ρ,
being x0 6= 0 and where r is a (real or complex) value to be determined, as well as coefficients xn,
n = 0, 1, 2, . . . , by imposing that this series satisfies the differential Equation (4) (equivalently of (2)).
This leads to the fact that parameter r must satisfy the following quadratic equation:

r(r− 1) + p̂0r + q̂0 = 0. (7)

This equation is called the indicial equation of differential Equation (8), and its two roots, r1 and
r2 (possibly equal), are called the exponents of the differential equation at the regular-singular point t0,

(t− t0)
2 ẍ(t) + (t− t0) p̂(t)ẋ(t) + q̂(t)x(t) = 0, (8)

which is obtained after multiplying (4) by (t− t0)
2. The full solution of differential Equation (8) (or

equivalently, (2)) is given in the following theorem in terms of the nature of r1 and r2.

Theorem 1. (Fröbenius method) [18] (p. 240). Let us consider the differential Equation (2) whose coefficients
are analytic about t0, and assume that p̂(t) and q̂(t) defined in (4) and (5) are analytic about t0. Let us assume
that t0 is a regular-singular point of the differential Equation (2). Let r1 and r2 be the roots of the indicial
equation associated with (8) at the point t0:

r(r− 1) + p̂0r + q̂0 = 0, (9)

where p̂0 and q̂0 are defined in (6). Without loss of generality, we assume that Re(r1) ≥ Re(r2), where Re(·)
stands for the real part.

Then, the differential Equation (2) has two linearly independent solutions, x1(t) and x2(t), in a certain
deleted neighborhood centered at t0, of the following form:

(a) If r1 − r2 is not a non-negative integer (i.e., r1 − r2 6= 0, 1, 2, . . . ),

x1(t) = |t− t0|r1
∞

∑
n=0

x1,n(t− t0)
n and x2(t) = |t− t0|r2

∞

∑
n=0

x2,n(t− t0)
n,

where x1,0 6= 0 and x2,0 6= 0.
(b) If r1 − r2 is a positive integer (i.e., r1 − r2 = 1, 2, . . .),

x1(t) = |t− t0|r1
∞

∑
n=0

x1,n(t− t0)
n and x2(t) = |t− t0|r2

∞

∑
n=0

x2,n(t− t0)
n + cx1(t) log |t− t0|,

where x1,0 6= 0, x2,0 6= 0, and c is a constant, which may or may not be distinct from zero.
(c) If r1 = r2,

x1(t) = |t− t0|r1
∞

∑
n=0

x1,n(t− t0)
n, and x2(t) = |t− t0|r1+1

∞

∑
n=0

x2,n(t− t0)
n + x1(t) log |t− t0|,

where x1,0 6= 0.

As was previously indicated, in this contribution, the objective is to extend the analysis performed
in [6] for the aforementioned randomization of differential Equation (3) (equivalently of (2)) about
an ordinary point t0, to the case that t0 is a regular-singular point. Specifically, we will consider the
following second-order linear RDE:
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Ẍ(t) + p(t; A)Ẋ(t) + q(t; A)X(t) = 0, (10)

together with the following random ICs:

X(t1) = Y0, Ẋ(t1) = Y1, (11)

fixed at an initial instant t1 belonging to a certain deleted interval centered at t0, T̂0 = {t : 0 < |t− t0| <
ρ}, ρ > 0. Then, we will construct approximations of the 1-PDF, f1(x, t), of the SP, X(t), to this random
initial value problem (IVP) via a random Fröbenius series centered at the regular-singular point t0.
In (10), p(t; A) and q(t; A) are SPs satisfying certain hypotheses, which will be stated later, which
depend on the common RV denoted by A. Here, we assume that we are working on a probability space
(Ω,F ,P), which is complete, to which the real RVs A, Y0, and Y1 belong. Furthermore, we assume that
these three RVs have a joint density, i.e., the random vector (A, Y0, Y1) is absolutely continuous.

As usual, observe that in (10) and (11), we are writing RVs with capital letters, for instance,
Z : Ω −→ DZ ⊂ R (here, DZ is referred to as the range of Z). Moreover, each realization of an
RV, say Z, will be denoted by z(ω), ω ∈ Ω or simply z = z(ω) ∈ DZ. To be as general as possible,
in the subsequent analysis, A, Y0, and Y1 are assumed to be dependent absolutely continuous RVs,
and fA,Y0,Y1(a, y0, y1) will denote their joint PDF. Notice that, if A, Y0, and Y1 are independent RVs,
then their PDF can be factorized as the product of their respective marginal PDFs, i.e.,

fA,Y0,Y1(a, y0, y1) = fA(a) fY0(y0) fY1(y1). (12)

Based on our previous contribution [6], together with Theorem 1 and further reasons that will be
apparent later, hereinafter, we will assume the following hypotheses:

H0: A is a bounded RV, i.e., ∃MA > 0 : |a(ω)| < MA, ∀ω ∈ Ω.

H1: fA,Y0,Y1(a, y0, y1) is continuous in the second component and bounded, i.e.,

∃M f > 0 :
∣∣ fA,Y0,Y1(a, y0, y1)

∣∣ < M f , ∀(a, y0, y1) ∈ DA,Y0,Y1 .

In addition, we will assume that the SPs p̂(t; A) = (t− t0)p(t; A) and q̂(t; A) = (t− t0)
2q(t; A)

are analytic about (t0; a0(ω)) for every a0(ω) ∈ DA, ω ∈ Ω, i.e.,

H2: There exists a common neighborhood N p̂,q̂(t0; a0(ω)) ⊂ T̂0 ×DA where:

p̂(t; A) = (t− t0)p(t; A), q̂(t; A) = (t− t0)
2q(t; A) are analytic ∀a0(ω) ∈ DA, ω ∈ Ω.

Here, T̂0 denotes a deleted interval centered at t0 that has been previously defined. Recall
that here, the SP p̂(t; A) = (t− t0)p(t; A) is analytic about a point (t0, a0(ω)), a0(ω) ∈ DA, for all
ω ∈ Ω, if the deterministic function (t − t0)p(t; a(ω)) is analytic about (t0, a0(ω)) (equivalently
to the SP q̂(t; A) = (t − t0)

2q(t; A)). To simplify notation, we shall assume that p̂(t; A) = (t −
t0)p(t; A) and q̂(t; A) = (t− t0)

2q(t; A) are analytic in a common neighborhood that will be denoted
byN p̂,q̂(t0; a0(ω)). In practice, this neighborhood is determined intersecting the domains of analyticity
of p̂(t; A) = (t− t0)p(t; A) and q̂(t, A) = (t− t0)

2q(t; A). In [5] (Th. 4.4.3), a characterization was
stated of analyticity of second-order SPs (those having finite variance) in terms of the analyticity of the
correlation function. Moreover, to ensure that the IVP (10)–(11) has a unique solution, both SPs p(t; A)

and q(t; A) are assumed to satisfy all the needed conditions. (see [5] (Th. 5.1.2), for instance).
According to the Fröbenius method (see Theorem 1) and under the analyticity condition assumed

in Hypothesis H2, the solution SP of RDE (10) about a regular-singular point, t0, can be written as a
linear combination of two uniformly convergent independent random series, X1(t; A) and X2(t; A),

X(t) = K0(A, Y0, Y1)X1(t; A) + K1(A, Y0, Y1)X2(t; A),
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where t ∈ T̂0, and the coefficients K0(A, Y0, Y1) and K1(A, Y0, Y1) can be obtained in terms of the
random ICs given in (11), which are established at the time instant t1 ∈ T̂0. In the subsequent
development, we will take advantage of the above representation along with the application of the
random variable transformation (RVT) technique [5] (p. 25), [6] (Th. 1), to construct the 1-PDF, f N

1 (x, t),
corresponding to approximations, XN(t), of the solution SP, X(t), about the regular-singular point t0.
We shall provide sufficient conditions so that f N

1 (x, t) approximate the 1-PDF, f1(x, t), of X(t). The RVT
method has been successfully applied to obtain exact or approximate representations of the 1-PDF of
the solution SP to random ordinary/partial differential and difference equations and systems [1–4].
In particular, the RVT technique has also been applied to conduct the study for the random IVP (10)
and (11) in the case that t0 is an ordinary point [6]. Thus, the present contribution can be considered as
a natural continuation of our previous paper [6]. This justifies that in our subsequent development, we
directly refer to [6] when applying a number of technical results already stated in the above-mentioned
contribution. In this manner, we particularly avoid repeating the multidimensional random variable
transformation technique [6] (Th. 1), Poincare’s expansion [6] (Th. 2), as well as several results related
to uniform convergence that can be inferred from classical real Analysis [6] (Prop. 1-4). For the sake of
clarity, we point out that we keep identical the notation in both contributions. These results were also
extensively applied in [6,19–21].

The paper is organized as follows. In Section 2, the 1-PDF, f N
1 (x, t), of the approximate solution SP,

XN(t), to the random IVP (10) and (11) is formally constructed. This function is obtained by applying
the RVT method to XN(t), which follows from truncating the random generalized power series solution
derived after applying the Fröbenius method stated in Theorem 1. Section 3 is devoted to rigorously
proving the convergence of approximations f N

1 (x, t) to the exact 1-PDF, f1(x, t), associated with the
solution SP, X(t). In Section 4, several illustrative examples are shown to demonstrate the usefulness
of the theoretical results established in Sections 2 and 3. Our main conclusions are drawn in Section 5.

2. Computation of the 1-PDF of the Truncated Solution SP

As was indicated in the Introduction, by the Fröbenius method, Theorem 1, the solution SP of the
random IVP (10) and (11) can be written as:

X(t) = K0(A, Y0, Y1)X1(t; A) + K1(A, Y0, Y1)X2(t; A), (13)

where t ∈ T̂0 and X1(t; A) and X2(t; A) are determined taking into account the values of the random
roots of the associated indicial Equation (9). Since A is assumed to be an absolutely continuous
RV, Cases (b) and (c) in Theorem 1 have null probability to occur, because punctual probabilities
considering continuous RVs are zero. Thus, by (a), for each t ∈ T̂0, the solution SP is given by
Expression (13) being:

X1(t; A) = |t− t0|r1(A)
∞

∑
n=0

X1,n(A) (t− t0)
n and X2(t; A) = |t− t0|r2(A)

∞

∑
n=0

X2,n(A) (t− t0)
n , (14)

where r1(A) and r2(A) are the random roots of the random indicial Equation (9). Random coefficients
X1,n(A) and X2,n(A) are recursively determined in practice. At this point, it is convenient to underline
that the factors |t− t0|r1(A) and |t− t0|r2(A) are the distinctive and major difference in dealing with the
analysis of RDEs about regular-singular points with respect to the case of RDEs about ordinary points
presented in [6].

By imposing that Expression (13) satisfies the ICs given in (11), we obtain the following random
algebraic system:

Y0 = X(t1) = K0(A, Y0, Y1)X1(t1; A) + K1(A, Y0, Y1)X2(t1; A),
Y1 = Ẋ(t1) = K0(A, Y0, Y1)Ẋ1(t1; A) + K1(A, Y0, Y1)Ẋ2(t1; A).
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Solving for K0 and K1, one gets:

K0(A, Y0, Y1) =
Y0Ẋ2(t1; A)−Y1X2(t1; A)

W(t1; A)
, K1(A, Y0, Y1) =

−Y0Ẋ1(t1; A) + Y1X1(t1; A)

W(t1; A)
, (15)

where W(t; A) = X1(t; A)Ẋ2(t; A)− X2(t; A)Ẋ1(t; A) is the Wronskian of the fundamental system
{X1(t), X2(t)} given by (14).

Remark 1. Since A is a continuous RV, then:

P [{ω ∈ Ω : W(t1; a(ω)) 6= 0}] = 1.

Moreover, there exists a positive constant, mW , such that:

0 < mW < |W(t1; a(ω))|, ∀ω ∈ Ω,

being this lower bound mW independent of ω ∈ Ω since, according to Hypothesis H0, RV A is bounded.

Hence, according to Remark 1, the functions K0(A, Y0, Y1) and K1(A, Y0, Y1), given in (15), are
well defined. Summarizing, the solution SP (13) and (14) can be written in the form:

X(t) = Y0S1(t; A) + Y1S2(t; A), (16)

where Y0 and Y1 are the random ICs and:

S1(t; A) =
1

W(t1; A)

(
Ẋ2(t1; A)X1(t; A)− Ẋ1(t1; A)X2(t; A)

)
,

S2(t; A) =
1

W(t1; A)
(−X2(t1; A)X1(t; A) + X1(t1; A)X2(t; A)) .

(17)

From an analytical point of view, it could be infeasible to obtain the explicit expression of both
series, X1(t; A) and X2(t; A). This fact makes it more advisable to consider the approximate solution
SP that comes from truncating both series:

XN(t) = Y0SN
1 (t; A) + Y1SN

2 (t; A), (18)

where:
SN

1 (t; A) =
1

WN(t1; A)

(
ẊN

2 (t1; A)XN
1 (t; A)− ẊN

1 (t1; A)XN
2 (t; A)

)
,

SN
2 (t; A) =

1
WN(t1; A)

(
−XN

2 (t1; A)XN
1 (t; A) + XN

1 (t1; A)XN
2 (t; A)

)
.

(19)

with WN(t1; A) = XN
1 (t1; A)ẊN

2 (t1; A)− XN
2 (t1; A)ẊN

1 (t1; A), and XN
1 (t; A) and XN

2 (t; A) result from
the truncation of X1(t; A) and X2(t; A), defined in (14), at a common order N, i.e.,

XN
1 (t; A) = |t− t0|r1(A) ∑N

n=0 X1,n(A) (t− t0)
n and XN

2 (t; A) = |t− t0|r2(A) ∑N
n=0 X2,n(A) (t− t0)

n . (20)

In the context of the RVT method [6] (Th. 1) and following the same methodology as in the
contribution [6], we compute the 1-PDF of the truncated solution SP (18) and (19), obtaining:

f N
1 (x, t) =

∫
DA,Y1

fA,Y0,Y1

(
a,

x− y1SN
2 (t; a)

SN
1 (t; a)

, y1

) ∣∣∣∣∣ 1
SN

1 (t; a)

∣∣∣∣∣da dy1, (21)
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for every t ∈ T̂0 arbitrary.

3. Study of the Convergence

In this section, we give sufficient conditions to guarantee the convergence of the approximation,
f N
1 (x, t), given in (21), to the exact function f1(x, t) when N tends to infinity, i.e., we study when:

lim
N→+∞

f N
1 (x, t) = f1(x, t), for each (x, t) ∈ R× T̂0 ∩ [t1,+∞[ fixed, (22)

being:

f1(x, t) =
∫
DA,Y1

fA,Y0,Y1

(
a,

x− y1S2(t; a)
S1(t; a)

, y1

) ∣∣∣∣ 1
S1(t; a)

∣∣∣∣ dy1 da, (23)

where S1(t; a) and S2(t; a) are the realizations of the random series S1(t; A) and S2(t; A) defined in (17).
Now, we include here some remarks about the convergence and boundedness of the series

involved in (23), which will play a key role in our subsequent developments.

Remark 2. Expanding first the terms |t − t0|r1(A) and |t − t0|r2(A) as their corresponding series
and interpreting the RV A as a parameter indexed by ω ∈ Ω, A = {a(ω) : ω ∈ Ω}, under the
hypothesis H2, Poincaré’s theorem, stated in [6](Th. 2), permits representing the solution X(t) as a series
of parameter a(ω), ω ∈ Ω. Therefore, S1(t; A) and S2(t; A) do. On the other hand, taking into
account the uniqueness of the solution of IVP (10)–(11), both series expansions (as powers of t − t0 and
as powers of a(ω) − a0(ω)) match. Henceforth, the series X1(t; A) and X2(t; A), given by (14), are
convergent in t0-deleted neighborhoods NX1(t0; a0(ω)) and NX2(t0; a0(ω)), respectively, for all a0(ω) ∈ DA,
ω ∈ Ω. In addition, uniform convergence takes place in every closed set contained in NX1(t0; a0(ω)) and
NX2(t0; a0(ω)). Notice that the domain of convergence, NX(t0; a0(ω)), of the series solution X(t) given in
(13), satisfies N p̂,q̂(t0; a0(ω)) ⊆ NX(t0; a0(ω)) = NX1(t0; a0(ω)) ∩ NX2(t0; a0(ω)) for all a0(ω) ∈ DA,
ω ∈ Ω, where N p̂,q̂(t0; a0(ω)) is defined in Hypothesis H1.

Remark 3. Functions S1(t; A) and S2(t; A) are linear combinations of series X1(t; A) and X2(t; A) (see (17)),
which, by Remark 2, are uniformly convergent in every closed set N ∗X(t0; a0(ω)) contained in NX(t0; a0(ω)).
Then, S1(t; A) and S2(t; A) also converge uniformly in N ∗X(t0; a0(ω)).

Remark 4. Note that for every ω ∈ Ω:

SN
1 (t1; a(ω)) =

1
WN(t1; a(ω))

(
ẊN

2 (t1; a(ω))XN
1 (t1; a(ω))− ẊN

1 (t1; a(ω))XN
2 (t1; a(ω))

)
≡ 1.

Then, according to Remark 2, there exist a certain neighborhood, NX(t1; a0(ω)), and a positive constant,
mS1 , such that for all N ≥ 0:

0 < mS1 ≤ |S
N
1 (t; a(ω))|, ∀(t, a(ω)) ∈ NX(t1; a0(ω)), ∀a0(ω) ∈ DA, ω ∈ Ω. (24)

On the other hand, by Remark 3, Si(t; A), i = 1, 2, converge uniformly in every closed set N ∗X(t0; a0(ω))

contained in NX(t0; a0(ω)) for all a0(ω) ∈ DA, ω ∈ Ω. This guarantees the existence of constants
MS1 , MS2 > 0 such that: ∣∣∣SN

i (t; a(ω))
∣∣∣ < MSi , (25)

∀(t, a(ω)) ∈ N ∗X(t0; a0(ω)) ⊂ NX(t0; a0(ω)), ∀a0(ω) ∈ DA, ω ∈ Ω, ∀N ≥ 0, i = 1, 2.

Let (x, t) ∈ R× T̂0 ∩ [t1,+∞[ be fixed; below, we establish conditions to assure the convergence
stated in (22). First, let us take limits as N → ∞ in Expression (21):
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lim
N→+∞

f N
1 (x, t) = lim

N→+∞

∫
DA,Y1

fA,Y0,Y1

(
a,

x− y1SN
2 (t; a)

SN
1 (t; a)

, y1

) ∣∣∣∣∣ 1
SN

1 (t; a)

∣∣∣∣∣da dy1.

To commute the limit as N → +∞ and the above double integral, we apply [6] (Prop. 1). We
assume the following hypothesis:

H3: DA,Y1 is a Lebesgue measurable set of R2 with finite measure such that:

M̂ = sup
{
|y1(ω)| : (a(ω), y1(ω)) ∈ DA,Y1 , ω ∈ Ω

}
< +∞. (26)

Then, we shall prove that
{

kN(a, y1) : N ≥ 0
}
⊂ L1(DA,Y1) and kN(a, y1)

uniformly DA,Y1−−−−−−−−−→
N→+∞

k(a, y1),

being:

kN(a, y1) = fA,Y0,Y1

(
a,

x− y1SN
2 (t; a)

SN
1 (t; a)

, y1

) ∣∣∣∣∣ 1
SN

1 (t; a)

∣∣∣∣∣
and:

k(a, y1) = fA,Y0,Y1

(
a,

x− y1S2(t; a)
S1(t; a)

, y1

) ∣∣∣∣ 1
S1(t; a)

∣∣∣∣ .

By Remark 4, considering the lower bound given in (24) for |SN
1 (t; a)|, one gets:

kN(a, y1) ≤
1

mS1

fA,Y0,Y1

(
a,

x− y1SN
2 (t; a)

SN
1 (t; a)

, y1

)
.

Therefore, as fA,Y0,Y1 is a PDF, we conclude that kN(a, y1) is Lebesgue integrable in DA,Y1 ,
i.e.,

{
kN(a, y1) : N ≥ 0

}
⊂ L1(DA,Y1). To prove that lim

N→+∞
kN(a, y1) = k(a, y1) uniformly in DA,Y1 , we

will apply the same argument as in the previous contribution [6]. We demonstrate that for every ε > 0,
there exists N0 such that for all N ≥ N0:∣∣∣kN(a, y1)− k(a, y1)

∣∣∣ < ε, ∀(a, y1) ∈ DA,Y1 .

Adding and subtracting the term fA,Y0,Y1

(
a, x−y1SN

2 (t;a)
SN

1 (t;a)
, y1

) ∣∣∣ 1
S1(t,a)

∣∣∣ and applying the triangular

inequality, one gets:

∣∣kN(a, y1)− k(a, y1)
∣∣ ≤ fA,Y0,Y1

(
a,

x− y1SN
2 (t; a)

SN
1 (t; a)

, y1

) ∣∣∣∣∣ 1
|SN

1 (t, a)|
− 1
|S1(t, a)|

∣∣∣∣∣
+

1
|S1(t; a)|

∣∣∣∣∣ fA,Y0,Y1

(
a,

x− y1SN
2 (t; a)

SN
1 (t; a)

, y1

)
− fA,Y0,Y1

(
a,

x− y1S2(t; a)
S1(t; a)

, y1

)∣∣∣∣∣ .

Let (x, t) ∈ R × T̂0 ∩ [t1,+∞[ be fixed and N ≥ 0 be an arbitrary non-negative integer,
and consider (t, a) = (t, a(ω)) ∈ N ∗X(t0; a0(ω)), for all a0(ω) ∈ DA, ω ∈ Ω. Then, we apply [6]
(Prop. 2) to z1 = t fixed, z2 = a ∈ DA arbitrary, D = {(t, a) ∈ R2 : a ∈ DA}, gN(t, a) = 1, g(t, a) = 1,
hN(t, a) = |SN

1 (t; a)|, and h(t, a) = |S1(t; a)|. Note that, by Remark 4, hN(t, a) × h(t, a) 6= 0 for all
(t, a) ∈ D. In addition, it is obvious that gN(t, a) converges uniformly to g(t, a) on D. Regarding
the real function hN(t, a), it converges uniformly to h(t, a), by the arguments shown in Remarks 2
and 3. As gN(t, a) = 1, its absolute value is bounded. By Remark 4, there exists constants mh = mS1

and Mh = MS1 , such that 0 < mh < |hN(t, a)| < Mh, ∀a ∈ DA. Taking into account the uniform
convergences, the bounds, and the hypothesis H1 (boundedness of the PDF fA,Y0,Y1(a, y0, y1)), for every
ε > 0, there exists N0 (which depends on ε) such that:
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fA,Y0,Y1

(
a,

x− y1SN
2 (t; a)

SN
1 (t; a)

, y1

) ∣∣∣∣∣ 1
|SN

1 (t; a)|
− 1
|S1(t; a)|

∣∣∣∣∣ ≤ M f
ε

2M f
=

ε

2
, ∀N ≥ N0,

independently of the values of (a, y1) ∈ DA,Y1 .
Now, we obtain an analogous result for the second term. First, assuming Hypothesis H3, we

apply [6] (Prop. 3) to u = a, v = −y1, c = x, lN(a) = SN
2 (t; a), l(a) = S2(t; a), bN(a, y1) = x −

y1SN
2 (t; a) and b(a, y1) = x− y1S2(t; a), with t ∈ T̂0 ∩ [t1,+∞[ fixed, and such that (t, a) = (t, a(ω)) ∈

N ∗X(t0; a0(ω)), ω ∈ Ω. By Remark 3, lN(a) converges uniformly to l(a) on N ∗X(t0; a0(ω)). Then, given
(x, t) ∈ R× T̂0 ∩ [t1,+∞[ fixed, x− y1SN

2 (t; a) converges uniformly to x− y1S2(t; a) inDA,Y1 . Secondly,
we apply [6] (Prop. 2) taking z1 = a, z2 = y1, gN(a, y1) = x − y1SN

2 (t; a), g(a, y1) = x − y1S2(t; a),
hN(a, y1) = SN

1 (t; a), and h(a, y1) = S1(t; a). Note that, previously we have proven, by applying [6]
(Prop. 3), that gN(a, y1) converges uniformly to g(a, y1). In addition, by Remark 3, hN(a, y1) converges
uniformly to h(a, y1). Let Mg = |x|+ M̂ MS2 and Mh = MS1 , these bounds being the ones established
in Hypothesis H3 and Remark 4, then:

x− y1SN
2 (t; a)

SN
1 (t; a)

uniformly DA,Y1−−−−−−−−−→
N→+∞

x− y1S2(t; a)
S1(t; a)

, (x, t) ∈ R× T̂0 ∩ [t1,+∞[ fixed.

The next step is to apply [6] (Prop. 4) with the following identification: z1 = a, z2 = y1,

(a, y1) ∈ DA,Y1 such that (t, a) ∈ N ∗X(t0; a0(ω)) for every a0(ω) ∈ DA, ω ∈ Ω, γN(a, y1) =
x−y1SN

2 (t;a)
SN

1 (t;a)
,

γ(a, y1) = x−y1S2(t;a)
S1(t;a)

, φ(a, y0, y1) = fA,Y0,Y1(a, y0, y1), ψN(a, y1) = fA,Y0,Y1

(
a, x−y1SN

2 (t;a)
SN

1 (t;a)
, y1

)
and

ψ(a, y1) = fA,Y0,Y1

(
a, x−y1S2(t;a)

S1(t;a)
, y1

)
. Finally, as it was previously shown, the sequence γN(a, y1) is

uniformly convergent to γ(a, y1), and according to Hypothesis H1, the mapping φ is continuous in
y0. Therefore, taking into account the lower bound of |S1(t; a)| given in Remark 4 and applying [6]
(Prop. 4), for every ε > 0 there exists N0, which depends on ε, such that

1
|S1(t;a)|

∣∣∣∣ fA,Y0,Y1

(
a, x−y1SN

2 (t;a)
SN

1 (t;a)
, y1

)
− fA,Y0,Y1

(
a, x−y1S2(t;a)

S1(t;a)
, y1

)∣∣∣∣ < 1
mS1

mS1
ε

2 = ε
2 , ∀N ≥ N0,

independently of the values of (a, y1). Hence, we proved that kN(a, y1)
uniformly DA,Y1−−−−−−−−−→

N→+∞
k(a, y1),

and then, by [6] (Prop. 1) and Hypothesis H3, we can commute the limit and the integral. Therefore,
applying the continuity of the joint PDF fA,Y1,Y2(a, y1, y2) with respect to the second variable (see
Hypothesis H1) and taking into account Expression (23), one gets:

lim
N→∞

f N
1 (x, t) =

∫
DA,Y1

lim
N→∞

fA,Y0,Y1

(
a,

x− y1SN
2 (t; a)

SN
1 (t; a)

, y1

) ∣∣∣∣∣ 1
SN

1 (t; a)

∣∣∣∣∣da dy1,

=
∫
DA,Y1

fA,Y0,Y1

(
a, lim

N→∞

x− y1SN
2 (t; a)

SN
1 (t; a)

, y1

) ∣∣∣∣∣∣ 1
lim

N→∞
SN

1 (t; a)

∣∣∣∣∣∣da dy1

=
∫
DA,Y1

fA,Y0,Y1

(
a,

x− y1S2(t; a)
S1(t; a)

, y1

) ∣∣∣∣ 1
S1(t; a)

∣∣∣∣da dy1 = f1(x, t).

Summarizing, we establish the following result.

Theorem 2. Let us consider the random IVP (10) and (11), and assume that:

(i) The RV A satisfies Hypothesis H0.
(ii) The joint PDF, fA,Y0,Y1(a, y0, y1), of the random input data (a, y0, y1) satisfies Hypothesis H1.
(iii) The coefficients p(t; A) and q(t; A) satisfy Hypothesis H2.
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(iv) The DA,Y1 domain of the random vector (A, Y1) satisfies Hypothesis H3.

Let XN
1 (t, a) and XN

2 (t; a) be the finite sum defined in (20). Then, f N
1 (x, t), defined by (19)–(21), is the

1-PDF of the truncated solution SP XN(t) given by (13)–(15) to the IVP (10) and (11). Furthermore, for each
(x, t), 1-PDF f N

1 (x, t) converges to f1(x, t) given in (17) and (23).

4. Examples

In this section, we present two examples to illustrate the theoretical results previously established.
In both examples, we calculate the 1-PDF of the approximate solution SP, and from it, we also
approximate the mean and the variance of the solution by taking advantage of the expressions given
in (1).

Example 1. Let us consider the random IVP:

At2Ẍ(t) + t(t + 1)Ẋ(t)− X(t) = 0,
X(1) = Y0,
Ẋ(1) = Y1.

 (27)

Notice that t0 = 0 is a regular-singular point since according to Equation (2), a0(t) = At2,
a1(t) = t(t + 1) and a2(t) = −1, being a0(t0) = 0 and, according to (4) and (5), p(t; A) = t(t + 1)/(At2)

and q(t; A) = −1/(At2), which are not analytic about t0 = 0, while p̂(t; A) = (t + 1)/A and
q̂(t; A) = −1/A are both analytic about t0 = 0. We will assume that A, Y0, and Y1 are independent RVs with
the following distributions:

• A has a uniform distribution on the interval [1, 2], i.e., A ∼ U([1, 2]).
• Y0 has a Gaussian RV with mean zero and standard deviation 0.1, i.e., Y0 ∼ N(0; 0.1).
• Y1 has a beta distribution with parameters α = 2 and β = 3, i.e., Y1 ∼ Be(2; 3).

First, we check that Hypotheses H0–H3 hold:

• H0: Since A ∼ U([1, 2]), it is bounded. With the notation of Hypothesis H0, we can take MA = 2.
• H1: Since A, Y0, and Y1 are assumed to be independent RVs, their joint PDF is given by the product of the

PDF of each RV; see Expression (12). In this case, proving the continuity of the joint PDF with respect to
the second variable, y0, is equivalent to proving the continuity of the PDF of the RV Y0. Since Y0 has a
Gaussian distribution, then it is continuous and bounded on the whole real line. As the PDFs of A and Y1

are also bounded, Hypothesis H1 holds,

fA(a) fY0(y0) fY1(y1) =
1

2−1
10√
2π

exp−50y2
0 4!

1!2! y1(1− y1)
2 ≤ 120√

2π
, ∀(a, y0, y1) ∈ [1, 2]×R× [0, 1].

• H2: As it was previously indicated, p(t; A) and q(t; A) are not analytic functions at t0 = 0, but p̂(t; A)

and q̂(t; A) are, since both are polynomials as a function of t for every a = a(ω), ω ∈ Ω.
• H3: The domain of random vector (A, Y1) is:

DA,Y1 = DA ×DY1 = [1, 2]× [0, 1].

Hence, DA,Y1 is a Lebesgue measurable set of R2 and M̂ = 1 < ∞. Therefore, Hypothesis H3 is fulfilled.

In this case, the solution SP of IVP (27) is given by:

X(t) = Y0S1(t; A) + Y1S2(t; A), (28)

where Si(t; A), i = 1, 2, are defined in (17) with:
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X1(t; A) = t

(
1 +

∞

∑
n=1

(−1)n
n

∏
j=1

1
(j + 1)A + 1

tn

)
and X2(t; A) = t−1/A

(
∞

∑
n=0

(−1)n

n!An tn

)
; (29)

see Appendix A for further details. In this case, we can compute, via Mathematica R©, the exact value of both
power series,

X1(t; A) = −(1 + A) e−t/A
(
− t

A

)−1/A (
Γ
(

1 +
1
A

)
− Γ

(
1 +

1
A

,− t
A

))
and X2(t) = e−t/A t−1/A, (30)

where Γ(z) and Γ(b, z) are the gamma and the incomplete gamma function defined, respectively, by:

Γ(z) =
∫ ∞

0
tz−1 e−t dt and Γ(b, z) =

∫ ∞

z
tb−1 e−t dt. (31)

Notice that in the above expression of X1(t; A), these gamma functions must be interpreted as random
functions [22].

In Figures 1–3, the 1-PDF of the exact solution SP, f1(x, t), and the 1-PDF of the truncation, f N
1 (x, t),

are plotted, respectively, for different values of the truncation order N ∈ {1, 2, 3, 4, 5} at the time instants t ∈
{1.1, 1.5, 2}. In order to graphically check the convergence, in all of these figures, we plotted the approximation
corresponding to the highest order (N = 5) from Expression (21) together with the exact 1-PDF. In this latter
case, the 1-PDF can been obtained by applying the RVT technique from the exact representation of the solution SP
given by (28), (30), and (31) and using the software Mathematica R©. From this latter plot, we can observe in the
three cases (t ∈ {1.1, 1.5, 2}) that f1(x, t) and f N

1 (x, t), with N = 5, practically coincide, so illustrating quick
convergence. For the sake of completeness, in Table 1, we show the values of the error measure eN(t), defined in
(32), which has been calculated for each t ∈ {1.1, 1.5, 2} using different orders of truncation N ∈ {1, 2, 3, 4, 5}:

eN(t) =
∫ +∞

−∞
| f N

1 (x, t)− f1(x, t)|dx. (32)

From values collected in Table 1, we observe that for N fixed, the error increases as t goes far from the initial
value t = 1 (except for N = 1 since the approximations are still rough), while for t fixed, the error decreases as
the order of truncation N increases, as expected.

N=1

N=2

N=3

N=4

N=5

Exact

-1.0 -0.5 0.5 1.0
x

1

2

3

4

t = 1.1

N=5

Exact

-1.0 -0.5 0.5 1.0
x

1

2

3

4

t = 1.1

Figure 1. Left: 1-PDF, f N
1 (x, t), of the truncated solution stochastic process (SP), XN(t), to the random

initial value problem (IVP) (27) taking as the order of truncation N ∈ {1, 2, 3, 4, 5} and the corresponding
1-PDF, f1(x, t), of the exact solution SP at t = 1.1. Right: To facilitate the comparison, f N

1 (x, 1.1),
with N = 5, is plotted together with f1(x, 1.1). Example 1.



Mathematics 2020, 8, 230 13 of 19

N=1

N=2

N=3

N=4

N=5

Exact

-1.0 -0.5 0.5 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

t = 1.5

N=5

Exact

-1.0 -0.5 0.5 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

t = 1.5

Figure 2. Left: 1-PDF, f N
1 (x, t), of the truncated solution SP, XN(t), to the random IVP (27) taking as

the order of truncation N ∈ {1, 2, 3, 4, 5} and the corresponding 1-PDF, f1(x, t), of the exact solution
SP at t = 1.5. Right: To facilitate the comparison, f N

1 (x, 1.5), with N = 5, is plotted together with
f1(x, 1.5). Example 1.

N=1

N=2

N=3

N=4

N=5

Exact

-1.0 -0.5 0.5 1.0
x

0.5

1.0

1.5

2.0

t = 2

N=5

Exact

-1.0 -0.5 0.5 1.0
x

0.5

1.0

1.5

2.0

t = 2

Figure 3. Left: 1-PDF, f N
1 (x, t), of the truncated solution SP, XN(t), to the random IVP (27) taking as

the order of truncation N ∈ {1, 2, 3, 4, 5} and the corresponding 1-PDF, f1(x, t), of the exact solution
SP at t = 2. Right: To facilitate the comparison, f N

1 (x, 2), with N = 5, is plotted together with f1(x, 2).
Example 1.

Table 1. Error measure eN(t) defined by (32) for different time instants, t ∈ {1.1, 1.5, 2}, and orders of
truncation of the approximate solution SP, N ∈ {1, 2, 3, 4, 5}. Example 1.

eN(t) N = 1 N = 2 N = 3 N = 4 N = 5

t = 1.1 0.519832 0.166420 0.039233 0.007228 0.001129

t = 1.5 0.437495 0.219520 0.071847 0.018712 0.004031

t = 2.0 0.319464 0.249286 0.117028 0.0428193 0.0125606

In Figure 4, we compare the expectation and the variance of the exact solution SP in the interval t ∈ [1, 2]
with the corresponding approximations for different orders of truncation, N ∈ {1, 2, 3, 4, 5}. We measure the
accuracy of the approximations for these two moments via the errors defined in (33),

eEN =
∫ 2

1

∣∣∣E [X(t)]−E
[

XN(t)
]∣∣∣dt, eVN =

∫ 2

1

∣∣∣V [X(t)]−V
[

XN(t)
]∣∣∣dt. (33)

In Table 2, we collect the values for theses errors. For both moments, we observe that the corresponding
error decreases as the order of truncation increases, as expected.
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Figure 4. Left: Comparison of the exact mean and the mean different approximations of the solution
SP to the random IVP (27) taking as orders of truncation for the approximate series the values N ∈
{1, 2, 3, 4, 5}. Right: Comparison of exact variance and the variance different approximations of the
solution SP to the random IVP (27) using the same orders of truncation. Example 1.

Table 2. Values of errors for the mean, eEN , and the variance eVN , given by (33) for N ∈ {1, 2, 3, 4, 5}. Example 1.

Error N = 1 N = 2 N = 3 N = 4 N = 5

eEN 0.077488 0.037504 0.013075 0.003708 0.000903

eVN 0.001776 0.001317 0.000343 0.000015 0.000012

Example 2. In this example, we consider the randomized Bessel equation:

t2Ẍ(t) + tẊ(t) + (t2 − A2)X(t) = 0, X(0.5) = Y0, Ẋ(0.5) = Y1, (34)

where Y0 and Y1 denote RVs fixed at the time instant t1 = 0.5. In [12], the authors provided sufficient conditions
on the input random data (A, Y0, and Y1) to extend the classical analysis for the Bessel equation to the random
setting in the so-called mean squared sense [5]. In the aforementioned contribution, approximations for the
mean and the variance of the solution SP to the Bessel RDE were given. In this example, we go further since,
based on the results established in previous sections, we will construct approximations for the 1-PDF of the
solution SP of this important RDE. To this end, let us first observe that, according to [12], the solution is given
by X(t) = Y0S1(t; A) + Y1S2(t; A), where Si(t; A), i = 1, 2 are defined by (17), being:

X1(t; A) = tA

(
1 +

∞

∑
n=1

(−1)n

4nn! ∏n
i=1(A + i)

t2n

)
, X2(t; A) = t−A

(
1 +

∞

∑
n=1

(−1)n

4nn! ∏n
i=1(−A + i)

t2n

)
. (35)

Hereinafter, we assume that A, Y0, and Y1 are independent RVs with the following distributions:

• A has a gamma distribution with shape and scale parameters α = 2 and β = 0.5, respectively, truncated
on the interval I = [2.25, 2.75], i.e., AI ∼ Ga(2; 0.5).

• Y0 has a beta distribution with parameters α = 4 and β = 3, i.e., Y0 ∼ Be(4; 3).
• Y1 has a uniform distribution on the interval [1, 2], i.e., Y1 ∼ U([1, 2]).

Similarly to Example 1, we first check that Hypotheses H0–H3 are fulfilled:

• H0: Since A is a truncated RV on the interval I = [2.25, 2.75], A is bounded. With the notation of
Hypothesis H0, notice that we can take, for instance, MA = 2.75.

• H1: Since A, Y0, and Y1 are assumed to be independent RVs, their joint PDF is given by the product of the
PDF of each RV,

fA,Y0,Y1(a, y0, y1) = 115.823a e−2a 6!
3!2!

y3
0(1− y0)

2, ∀(a, y0, y1) ∈ [2.25, 2.75]× [0, 1]× [1, 2].
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From this expression, it is clear that this function is continuous with respect to its second argument, y0,
and it is bounded. As we deal with a rectangular domain where the first factor is a decreasing function
and the second factor, y3

0(1− y0)
2, has a maximum value at y0 = 0.6 below 0.035, the maximum of

fA,Y0,Y1(a, y0, y1) is obtained taking this value and evaluating the first factor at a = 2.25. Therefore,
with the notation of H1, we can take, for instance, M f = 6.1. Therefore, Hypothesis H1 is fulfilled.

• H2: Notice that t0 = 0 is a regular-singular point of the Bessel RDE (34). On the one hand, observe
that according to Equation (2), a0(t) = t2, a1(t) = t, and a2(t) = t2 − A2, being a0(t0) = 0. On the
other hand, according to (4) and (5), p(t; A) = t/t2 and q(t; A) = (t2 − A2)/t2, which are not analytic
functions at t0 = 0, while p̂(t; A) = 1 and q̂(t; A) = t2 − A2 are both analytic at t0 = 0 inasmuch as
they are polynomials as functions of t, for every a = a(ω), ω ∈ Ω.

• H3: Since A and Y1 are assumed to be independent RVs, then the domain of the random vector (A, Y1) is:

DA,Y1 = DA ×DY1 = [2.25, 2.75]× [1, 2].

Hence, DA,Y1 is a Lebesgue measurable set of R2, and with the notation of Hypothesis H3, we can take
M̂ = 2 < ∞. Therefore, Hypothesis H3 holds.

The 1-PDFs of the truncated solution SP, f N
1 (x, t), for different orders of truncation, N ∈ {1, 2, 3, 4, 5},

at the time instants t ∈ {1.5, 2.5, 3.5} are plotted in Figures 5–7, respectively. As in Example 1, using the
RVT method and the exact representation of series X1(t, A) and X2(t, A), defined in (35), in terms of the
Bessel function JA(t) integrated in Mathematica R© and the gamma function Γ(z) defined in (31), namely
X1(t, A) = 2A JA(t)Γ(1 + A) and X2(t, A) = 2−A J−A(t)Γ(1− A), we can obtain the exact 1-PDF, f1(x, t).
On the one hand, taking this benchmark, in the left panel of Figures 5–7, we show the convergence of the
approximations, f N

1 (x, t), to the exact 1-PDF, f1(x, t), as N increases (N ∈ {1, 2, 3, 4, 5}) for different values of
t ∈ {1.5, 2.5, 3.5}. On the other hand, to illustrate better the convergence, in the right panel of the aforementioned
figures, we show the approximations corresponding to the highest order of truncation, f N

1 (x, t), N = 5, and the
exact 1-PDF, f1(x, t). We observe that both plots overlap, thus showing quick convergence.

As in Example 1, we use the error eN(t) defined in (32) to measure the quality of approximations f N
1 (x, t).

In Table 3, we calculated, for each t ∈ {1.5, 2.5, 3.5}, the values of this error for the following orders of truncation
N ∈ {1, 2, 3, 4, 5}. Notice that for each t, the error diminishes as the order of truncation increases, while the
error increases as we move far from the initial data t1 = 0.5, as expected.
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Figure 5. Left: 1-PDF, f N
1 (x, t), of the truncated solution SP, XN(t), to the random IVP (34) taking as

the order of truncation N ∈ {1, 2, 3, 4, 5} and the corresponding 1-PDF, f1(x, t), of the exact solution
SP at t = 1.5. Right: To facilitate the comparison, f N

1 (x, 1.5), with N = 5, is plotted together with
f1(x, 1.5). Example 2.
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Figure 6. Left: 1-PDF, f N
1 (x, t), of the truncated solution SP, XN(t), to the random IVP (34) taking as

the order of truncation N ∈ {1, 2, 3, 4, 5} and the corresponding 1-PDF, f1(x, t), of the exact solution SP
at t = 2.5. Right: To facilitate the comparison, f N

1 (x, 2.5), with N = 5, is plotted together with f1(x, 2.5).
Example 2.
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Figure 7. Left: 1-PDF, f N
1 (x, t), of the truncated solution SP, XN(t), to the random IVP (34) taking as

the order of truncation N ∈ {1, 2, 3, 4, 5} and the corresponding 1-PDF, f1(x, t), of the exact solution
SP at t = 3.5. Right: To facilitate the comparison, f N

1 (x, 3.5), with N = 5, is plotted together with
f1(x, 3.5). Example 2.

Table 3. Values of the error measure, eN , defined by (32) for different time instants, t ∈ {1.5, 2.5, 3.5},
and orders of truncation to the approximate solution SP of (34), N ∈ {1, 2, 3, 4, 5}. Example 2.

eN N = 1 N = 2 N = 3 N = 4 N = 5

t = 1.5 0.03446 0.001593 0.000069 2.3272 ·10−6 5.5373 ·10−8

t = 2.5 0.153784 0.030282 0.002078 0.000108 0.000020

t = 3.5 1.518306 0.285614 0.038847 0.003435 0.000233

Taking f N
1 (x, t), given by (21), as an approximation to f1(x, t), in the expressions (1), we can calculate

approximations for the mean (E[XN(t)]) and the variance (V[XN(t)]) of the solution of the random IVP (34).
In Figure 8, we plotted the above-mentioned approximations on the interval t ∈ [0.5, 3.5] for different orders
of truncation, N ∈ {1, 2, 3, 4, 5}, as well as their respective exact values, E [X(t)] and V [X(t)], using as
the expression to f1(x, t) the one obtained via the RVT method. In these plots, we can clearly see that the
approximations quickly improve on the whole interval as N increases. To finish, we calculated the errors of these
approximations by means of the following expressions:

eEN =
∫ 3.5

0.5

∣∣∣E[XN(t)]−E [X(t)]
∣∣∣dt, eVN =

∫ 3.5

0.5

∣∣∣V[XN(t)]−V [X(t)]
∣∣∣dt, (36)
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Values of errors for the mean, eEN , and the variance, eVN , for each truncation are shown in Table 4. From these
values, we observe that errors decrease as N increases.

Table 4. Values of errors for the approximations of mean, eEN , and the variance, eVN , given by (36) for
N ∈ {1, 2, 3, 4, 5}. Example 2.

Error N = 1 N = 2 N = 3 N = 4 N = 5

eEN 6.766564 1.052105 0.108092 0.008096 0.000475

eVN 20.769241 3.761294 0.352357 0.025039 0.001421
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N=5

Exact
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Figure 8. Left: Expectation of the solution to Problem (34) using different orders of truncation N ∈
{1, 2, 3, 4, 5} in the series (17). Right: Variance of the solution to Problem (34) using different orders of
truncation N ∈ {1, 2, 3, 4, 5} in the series (17).

5. Conclusions

In this paper, we presented a methodology to construct reliable approximations to the first
probability density function of the solution of second-order linear differential equations about a
regular-singular point with a finite degree of randomness in the coefficients and also assuming that
both initial conditions were random variables. Therefore, we studied this class of differential equations
assuming randomness in all its input data, which provided great generality to our analysis. The results
completed the ones already presented in a previous paper where the same class of random initial value
problems was solved about an ordinary point. In this manner, the results obtained in both contributions
permitted solving, from a probabilistic standpoint, a number of important randomized differential
equations that appear in the field of mathematical physics like Airy, Hermite, Legendre, Laguerre,
Chebyshev, Bessel, etc. Under our approach, we could compute the first probability density function
of the solution. This is really advantageous since apart from allowing us to determine the mean and
the variance, the knowledge of the first probability density function also permits determining higher
one-dimensional moments, as well as the probability that the solution lies in any interval of interest,
which might be key information in many practical problems.
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Appendix A. Computing the solution of IVP (27) in Example 1

For the sake of completeness, in this Appendix, we detail how to obtain the expressions (28) and
(29) used in Example 1. Let us consider the deterministic differential equation:

at2 ẍ(t) + t(t + 1)ẋ(t)− x(t) = 0, a 6= 0, t ≥ 0. (A1)

It is clear that the time instant t0 = 0 is a regular-singular point. The indicial equation associated with
the differential Equation (A1) is given by:

r2 + (−1 + 1/a)r− 1/a = 0. (A2)

The solution of (A1) is sought in the form of generalized power series, x(t) = ∑∞
n=0 xntn+r, t > 0,

where coefficients xn are determined by imposing that this series is a solution provided x0 6= 0. This
leads to the following relationship:

at2
∞

∑
n=0

(n + r)(n + r− 1)xntn+r−2 + t(t + 1)
∞

∑
n=0

(n + r)xntn+r−1 −
∞

∑
n=0

xntn+r = 0.

We work out with the last expression, obtaining:

∞

∑
n=0

a(n + r)(n + r− 1)xntn+r +
∞

∑
n=0

(n + r)xntn+r+1 +
∞

∑
n=0

(n + r)xntn+r −
∞

∑
n=0

xntn+r = 0,

∞

∑
n=0

a(n + r)(n + r− 1)xntn+r +
∞

∑
n=1

(n + r− 1)xn−1tn+r +
∞

∑
n=0

(n + r)xntn+r −
∞

∑
n=0

xntn+r = 0,

(ar(r− 1)x0 + rx0 − x0)tr +
∞

∑
n=1

(a(n + r)(n + r− 1)xn + (n + r− 1)xn−1 + (n + r)xn − xn) tn+r = 0.

In this last expression, we can take out the common factor tr, obtaining the following expression:

(ar(r− 1)x0 + rx0 − x0) +
∞

∑
n=1

(a(n + r)(n + r− 1)xn + (n + r− 1)xn−1 + (n + r)xn − xn) tn = 0

Now, using the uniqueness of the expansion, one gets (ar(r − 1) + r − 1)x0 = 0 (for the first
addend), which corresponds to indicial Equation (A2), since x0 6= 0 and the following recurrence
relationship derived from the other terms:

xn = − xn−1

a(n + r) + 1
, n ≥ 1. (A3)

The roots of the indicial Equation (A2) are r1 = 1 and r2 = −1/a, then according to the Fröbenius
method stated in Theorem 1, if a 6= −1 and 1 + 1/a is not an integer, differential Equation (A1) has
two linearly independent solutions of the form:

x1(t) =
∞

∑
n=0

x1,ntn+1 and x2(t) =
∞

∑
n=0

x2,ntn− 1
a ,

where terms x1,n and x2,n are obtained from the recurrence (A3) with r = r1 = 1 and r = r2 = −1/a,
respectively, for x0 6= 0 fixed. Taking x0 = 1, one recursively calculates:

x1,n = (−1)n
n

∏
j=1

1
(j + 1)a + 1

, x2,n = (−1)n 1
ann!

.
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