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Abstract: Quality function deployment (QFD) is a useful design quality control tool in service
enterprises and manufacturing enterprises. However, there are several issues in extant QFD
frameworks, that is, in three aspects: description of evaluation information, weight determination of
expert team members (TMs), and weight identification of customer requirements (CRs). In order
to address these issues, a novel QFD framework is first proposed utilizing linguistic Z-numbers
(LZNs) with integrated subjective and objective weights of TMs and CRs. The LZNs can represent
uncertain information and the reliability of information in a specific way while the fuzzy numbers
cannot. Moreover, the order relation analysis (G1) method and improved maximum consensus (MC)
method are developed to get the subjective and objective weights of TMs, respectively. Further, the
step-wise weight assessment ratio analysis (SWARA) method and statistical distance (SD) method are
studied to acquire combined weights of CRs. Next, the proposed QFD framework is applied to a case
of logistics service provider, which illustrates the availability and utility of the framework. Then, a
sensitivity analysis is conducted to prove the reliability of the framework. Finally, two comparative
analyses are performed to declare the advantages of the framework. Results indicate the proposed
QFD framework is better than existing models.

Keywords: quality function deployment; multi-criteria decision-making; linguistic Z-numbers;
combined weights; improved maximum consensus method

1. Introduction

As one of the most famous design quality control technologies, quality function deployment
(QFD) [1] is an effective and efficient way to convert customer requirements into production demand [2].
This facilitates research and development (R&D) companies to design and manufacture customer-driven
products. Generally speaking, there are four phases in classical QFD models, including product overall
design phase, part design phase, process design phase, and production system design phase [3]. In
these phases, customer requirements are translated into engineering characteristics, part characteristics,
process plans, and production requirements, respectively [4]. Further, a matrix is required in each
phase to construct these relationships which is called as house of quality (HOQ).

The HOQ in the first phase is the most fundamental and central one [5] which is illustrated in
Figure 1. In particular, the seven components of HOQ are customer requirements (CRs), engineering
characteristics (ECs), relationship between CRs and ECs, importance of CRs, importance of ECs,
correlation among ECs, and benchmarking analysis [4]. As far as we know, numerous researchers have
integrated QFD models with multi-criteria decision-making (MCDM) theories to rank the ECs [6,7].
However, although the usefulness of QFD models has improved a little, three deficiencies still exist in
these studies which are formulated below: (1) the evaluation information of relationships between
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CRs and ECs was given with crisp values or various kinds of fuzzy numbers [8]. Nevertheless, in most
actual circumstances, the information provided by experts may be unreliable or a bit reliable because
of their lacks of professional knowledge and limited time to make decisions; (2) as a rule, the ranking
process of ECs requires several QFD experts to participate in the consultations. However, the weights
of expert team members (TMs) were provided directly without any discussions [2], which was not
scientific and rational. What’s more, it was inconsistent with actuality to determine the experts’ weights
by an either subjective or objective method [9]; (3) the ranking results may be inaccurate in real-life
decision-making processes when only subjective or objective weighting method employed [10,11].Mathematics 2020, 8, x FOR PEER REVIEW 3 of 21 
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To address the above mentioned deficiencies, a new framework is essential for QFD models. At
that point, the motivations of this paper are itemized as follows:

(1) Considering the fuzzy information and reliability of this information at the same time, Z-numbers
are suitable tools to describe the evaluation values [12,13]. Nonetheless, the operations of
Z-numbers are complex [14,15]. Meanwhile, the processing of Z-numbers into various fuzzy
numbers may lose the original information. Therefore, in this paper, linguistic Z-numbers
(LZNs) [16,17] are utilized to represent the evaluation information.

(2) To dispose the improper ways to determine the weights of TMs with single preference, the
proposed QFD model takes the subjective and objective weights into considerations. Since order
relation analysis (G1) method [18] and maximum consensus (MC) method [19] are practical means
to identify the subjective and objective weights, separately. Further, MC method is improved
due to the issue that it merely thinks over the positive ideal point. Thus, the G1 method and
improved MC method are developed to obtain combined weights of TMs.

(3) In order to fill the research gap about the combined weights of TMs, SWARA method [20] and
extended statistical distance (SD) method [21] are mixed to acquire the hybrid weights of CRs.
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This paper aims to propose a novel framework for QFD using LZNs with integrated weights of
TMs and CRs. This framework contains three stages. The first stage is to construct the decision matrix,
the second is to determine the combined weights of TMs and CRs, and the third is to rank ECs in terms
of their importance. In sum, the contributions of this study are listed below:

(1) The novel framework for QFD is set up. The sensitivity analysis and comparative analyses
indicate the reliabilities, effectiveness, and practicality of the proposed QFD model. Namely, the
proposed QFD framework is superior to existing QFD models.

(2) LZNs are absorbed to express the evaluation information, which involves the fuzzy information
and the reliability of fuzzy information simultaneously.

(3) The G1 method and improved MC method are utilized to get the combined weights of experts.
And SWARA method and extended SD method are used to gain the combined weights of CRs.
These methods are appropriate for QFD to be applied in real life.

(4) The MC approach is improved by considering both the positive and negative ideal points. The
weights derived by improved MC method may be more precise than traditional MC method.

(5) The technique for order performance by similarity to ideal solution (TOPSIS) method is extended
with LZNs which enriches the theories of LZNs.

The rest of this study is established in the following order. In Section 2, the literatures about
QFD models are reviews. Section 3 introduces the definitions of Z-numbers and linguistic terms sets.
Moreover, the relevant theories of LZNs are presented. In Section 4, the concrete QFD framework is
proposed. Section 5 implements the proposed QFD framework in a case to verify the availability and
validity of it. Finally, the conclusions are drawn in Section 6.

2. Literature Review

With the development of the social economy and enlarged volume of information, the application
of multiple criteria decision-making (MCDM) has become increasingly wide. Many popular and topical
MCDM methods have been proposed by researchers, such as: SAW (simple additive weighting method),
AHP (analytic hierarchy process) [22], TOPSIS (technique for order of preference by similarity to ideal
solution) [23], ELECTRE (elimination and choice expressing reality) [24], VIKOR (VlseKriterijumska
Optimizacija I Kompromisno Resenje) [25], PROMETHEE (preference ranking organization method
for enrichment evaluations) [26], GDM (grey decision-making) [27], SWARA [20], and BWM [28].

The QFD model, integrating with fuzzy theories and MCDM methods, has been widely investigated
by many scholars [29]. For instance, analytical network process (ANP) and fuzzy logic were utilized to
structure the intensive QFD framework by Zaim et al. [30]. Abdel-Basset, Manogaran [31] presented
a QFD method where analytical hierarchy process (AHP) was adopted to determine the weights
of CRs. Hsu et al. [29] developed a new QFD approach with fuzzy Delphi method. Wu et al. [32]
proposed a two-phase robust fuzzy QFD procedure to assess the service station for nail catering service.
Wu et al. [3] provided a hybrid QFD model with decision-making trial and evaluation laboratory
(DEMATEL) technique and VIKOR method within hesitant fuzzy environment. In addition, the fuzzy
QFD-MCDM frameworks were applied to various fields, such as supply chain management strategies
formulation problems [2,33], risk management of hazardous material transportation process [34], and
green supplier selection problems [6].

However, as indicated above, the ways to determine weights of QFD experts and customer
requirements were inaccurate in extant studies. That is, the weights of experts and CRs were either
supposed to be known completely or calculated by only one type of approach: subjective approach or
objective approach. To be specific, in subjective weight estimation methods, the weights information is
obtained based on humans’ subjective judgments or experience [35,36]. In contrast with the subjective
methods, the objective weights are derived merely by the data given in the decision matrices [37,38].
Therefore, it may cause the intense subjectivity or the absence of subjective preference if only the
subjective method or objective method is used in weights determination.
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There was an issue in the information representation of extant fuzzy QFD-MCDM models, i.e.,
the models cannot reserve the irresponsible evaluation integrally. Hence, Z-numbers are the pretty
helpful instruments to denote this information [12]. Two ways were investigated to handle Z-numbers.
One is to dispose Z-numbers straightforward with the operations of them [15]. However, Wang et
al. [16] pointed out that the operations are too intricate to be employed in common life. The other is
to transform Z-numbers into other forms of fuzzy numbers. Nevertheless, Wang et al. [16] indicated
that this way may lead to information distortion. As a result, Wang et al. [16] defined the linguistic
Z-numbers (LZNs) to cover these problems.

In this paper, the evaluation information of relationships between CRs and ECs is depicted by
LZNs so that the information can be kept perfectly. What’s more, both subjective and objective methods
are proposed to derive the combined weights of QFD experts and CRs. The outcomes show that the
proposed QFD framework outperforms state-of -the-art QFD methods.

3. Preliminaries

In this section, we review some basic notions related to linguistic Z-numbers and the operational
law, distance, and comparison method of linguistic Z-numbers are introduced. Since linguistic
Z-numbers can be an integrated formation of Z-numbers and linguistic terms sets [16], we briefly
present the definitions of Z-numbers and linguistic terms sets.

Definition 1 ([12]). Let X be a real-valued uncertain variable. A Z-number (A, B) is an ordered pair of fuzzy
numbers which is related to X , where A is a fuzzy restriction on the values that X is allowed to take, and B is a
reliability measure of A.

In general, the two components A and B are described in nature languages. For example, the
Z-number (A, B) = (about 45 million, quite sure) can be used to evaluate the population of Spain (X).

Definition 2 ([39]). Let S = {sa|a = 0, 1, . . . , 2t } be a finite ordered discrete term set, where Sa represents a
possible value for a linguistic variable. We require that sa and sb satisfy the following conditions:

(1) The set S is ordered: sa > sb if and only if a > b;
(2) Negation operator: neg(sa) = s2t−a.

Definition 3 ([16]). Let X be a universe of discourse,S1 =
{
s0, s1, . . . , s2p

}
and S2 =

{
s′0, s′1, . . . , s′2q

}
be two

linguistic term sets. A linguistic Z-number set (LZNS) in X is composed of the fuzzy restriction A(x) and the
reliability measure B(x) , where A(x) ∈ S1 and B(x) ∈ S2. Then, a LZNS can be defined as follows:

Z =
{〈

x, A(x), B(x)
〉
|x ∈ X

}
(1)

It should be noted that two LTSs, S1 and S2, denote different linguistic preference information,
separately. In particular, a LZNS is regarded as a linguistic Z-number (LZN) when X has only one
element which is illustrated by Z =

〈
x, A(x), B(x)

〉
. In order to facilitate the representation, a LZN can

be also denoted by Z = 〈A, B〉, where A and B are linguistic terms, respectively.

Definition 4 ([40]). Let S = {si|i = 0, 1, . . . , 2t } be a linguistic term set, and θi is a numeric value ranging
from 0 to 1. The linguistic scale function (LSF) conducts the mapping from si to θi which is defined below:

f : si → θi(i = 0, 1, . . . , 2t) (2)
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where 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θ2t ≤ 1. A LSF is a strictly monotonically increasing function regarding to label i.
Simultaneously, symbol θi expresses the preference information of decision-makers (DMs) when linguistic term
si is used. Thus, LSF represents the semantics of si. There are three types of LSFs are shown as follows:

(1) The first LSF is defined in terms of subscript function sub(si) = i. Further, the appraisement scale for
linguistic term is even.

f1(si) = θi =
i

2t
(i = 0, 1, . . . , 2t) (3)

(2) The second LSF is developed according to the exponential scale. Moreover, from the middle of given
linguistic term to both ends, the absolute deviation between adjacent linguistic terms increases.

f2(si) = θi =


γt
−γt−i

2γt−2 (i = 0, 1, . . . , t)
γt+γi−t

−2
2γt−2 (i = t + 1, t + 2, . . . , 2t)

(4)

As we can see in Equation (4), there is a parameter γ which can be identified by experts’ advice or subjective
approach. On the basis of lots of experiment researches, Bao, Lian [41] explained that the value γ usually is
derived in the interval [1.36, 1.4].

(3) The third LSF is proposed based on prospect theory’s value function. Prospect theory [42], is a very
successful descriptive model about decision making under risk. This theory acknowledges value gains and
losses differently, placing more weight on perceived gains versus perceived losses. This theory is more
consistent with the practical decision, and it can explain a lot of things that the expected utility theory can’t.
From the middle of given linguistic term to both ends, the absolute deviation between adjacent linguistic
terms decreases.

f3(si) = θi =


tα−(t−i)α

2tα (i = 0, 1, . . . , t)
tβ+(i−t)β

2tβ
(i = t + 1, t + 2, . . . , 2t)

(5)

where α, β ∈ 0, 1 are the concavo-convex degree of the subjective value function in the area of the gain and
loss, respectively. On the basis of empirical data, Kahneman and Tversky [42] gave α = β = 0.88.

For information integrity and calculation convenience in the process of decision-making, these three
aforementioned functions are supposed to be continuous, that is, f ∗ : si → θi(0 ≤ i ≤ 2t) . Further, the inverse
function of f ∗ is marked as f ∗−1.

There are also some LSFs based on other distances could be considered, such as fuzzy divergence [43] and
fuzzy similarity [44].

In this study, we assume γ = 1.4, α = β = 0.88, and the characteristics of three LSFs are displayed in
Figure 2.

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 21 

 

(1) The first LSF is defined in terms of subscript function 𝑠𝑢𝑏(𝑠௜) = 𝑖. Further, the appraisement scale for 
linguistic term is even. 

𝑓ଵ(𝑠௜) = 𝜃௜ = 𝑖2𝑡 (𝑖 = 0,1, . . . ,2𝑡) (3) 

(2) The second LSF is developed according to the exponential scale. Moreover, from the middle of given 
linguistic term to both ends, the absolute deviation between adjacent linguistic terms increases. 

𝑓ଶ(𝑠௜) = 𝜃௜ = ⎩⎪⎨
⎪⎧𝛾௧ − 𝛾௧ି௜2𝛾௧ − 2 (𝑖 = 0,1, . . . , 𝑡)𝛾௧ + 𝛾௜ି௧ − 22𝛾௧ − 2 (𝑖 = 𝑡 + 1, 𝑡 + 2, . . . ,2𝑡) (4) 

As we can see in Equation (4), there is a parameter 𝛾 which can be identified by experts’ advice or 
subjective approach. On the basis of lots of experiment researches, Bao, Lian [41] explained that the value 𝛾 
usually is derived in the interval ሾ1.36,1.4ሿ. 
(3) The third LSF is proposed based on prospect theory’s value function. Prospect theory [42], is a very 

successful descriptive model about decision making under risk. This theory acknowledges value gains and 
losses differently, placing more weight on perceived gains versus perceived losses. This theory is more 
consistent with the practical decision, and it can explain a lot of things that the expected utility theory 
can’t. From the middle of given linguistic term to both ends, the absolute deviation between adjacent 
linguistic terms decreases. 

𝑓ଷ(𝑠௜) = 𝜃௜ = ⎩⎨
⎧𝑡ఈ − (𝑡 − 𝑖)ఈ2𝑡ఈ (𝑖 = 0,1, . . . , 𝑡)𝑡ఉ + (𝑖 − 𝑡)ఉ2𝑡ఉ (𝑖 = 𝑡 + 1, 𝑡 + 2, . . . ,2𝑡) (5) 

where 𝛼, 𝛽 ∈ 0,1 are the concavo-convex degree of the subjective value function in the area of the gain and loss, 
respectively. On the basis of empirical data, Kahneman and Tversky [42] gave 𝛼 = 𝛽 = 0.88. 

For information integrity and calculation convenience in the process of decision-making, these three 
aforementioned functions are supposed to be continuous, that is, 𝑓∗: 𝑠௜ → 𝜃௜(0 ൑ 𝑖 ൑ 2𝑡). Further, the inverse 
function of 𝑓∗ is marked as 𝑓∗ିଵ. 

There are also some LSFs based on other distances could be considered, such as fuzzy divergence [43] and 
fuzzy similarity [44]. 

In this study, we assume 𝛾 = 1.4, 𝛼 = 𝛽 = 0.88, and the characteristics of three LSFs are displayed in 
Figure 2. 

 
Figure 2. Graphical representation of three LSFs. Figure 2. Graphical representation of three LSFs.



Mathematics 2020, 8, 224 6 of 20

Definition 5 ([16]). Let zi = (Ai, Bi) and z j = (A j, B j) be two LZNs, and f ∗ and g∗ be one of three LSFs
denoted by Equations (1) and (2), separately. The operational laws of LZNs are defined as follows:

(1) neg(zi) = ( f ∗−1( f ∗(A2p) − f ∗(Ai)), g∗−1(g∗(B2q) − g∗(Bi)));

(2) zi ⊕ z j = ( f ∗−1( f ∗(Ai) + f ∗(A j)), g∗−1(
f ∗(Ai)×g∗(Bi)+ f ∗(A j)×g∗(B j)

f ∗(Ai)+ f ∗(A j)
));

(3) zi ⊗ z j = ( f ∗−1( f ∗(Ai) f ∗(A j)), g∗−1(g∗(Bi)g∗(B j)));
(4) λzi = ( f ∗−1(λ f ∗(Ai)), Bi) , where λ ≥ 0;

(5) zi
λ = ( f ∗−1( f ∗(Ai)

λ), g∗−1(g∗(Bi)
λ)) , where λ ≥ 0.

Definition 6 ([16]). Let zi = (Ai, Bi) and z j = (A j, B j) be two LZNs, the score function of zi is defined below:

SF(zi) = f ∗(Ai) × g∗(Bi) (6)

The accuracy function of zi is defined as follows:

AF(zi) = f ∗(Ai) × (1− g∗(Bi)) (7)

Therefore, the comparison approach can be proposed by the following rules:

(1) If Ai > A j and Bi > B j, then zi is strictly superior than z j, denoted by zi > z j;
(2) If SF(zi) > SF(z j) or SF(zi) = SF(z j) and AF(zi) > AF(z j), then zi is superior than z j, denoted by

zi > z j.
(3) If SF(zi) = SF(z j) and AF(zi) = AF(z j), then zi is equal to z j, denoted by zi ∼ z j.
(4) If SF(zi) = SF(z j) and AF(zi) < AF(z j) or SF(zi) < SF(z j), then zi is inferior than z j, denoted by

zi < z j.

Definition 7 ([16]). Let zi = (Ai, Bi) and z j = (A j, B j) be two LZNs, and f ∗ and g∗ be two LSFs. The distance
between zi and z j is defined as follows:

d(zi, z j) = 1
2 (

∣∣∣ f ∗(Ai) × g∗(Bi) − f ∗(A j) × g∗(B j)
∣∣∣

+max
{∣∣∣ f ∗(Ai) − f ∗(A j)

∣∣∣, ∣∣∣g∗(Bi) − g∗(B j)
∣∣∣}). (8)

4. The Proposed Model for QFD

This section develops a hybrid decision-making model to obtain the importance degrees of
engineering characteristics (ECs). In this model, both subjective and objective weights are considered
for QFD team members (TMs) and customer requirements (CRs) at the same time. There are three
stages included in the proposed model. The first stage is to determine the subjective weights of
QFD experts TMs by order relation analysis (G1) method and objective weights of TMs by improved
maximum consensus (MC) method, and the second stage is to estimate the subjective weights of CRs
by SWARA method and objective weights of CRs by statistical distance (SD) method. In addition,
the last stage is to prioritize the ECs according to the importance ratings of them. For convenience,
Figure 3 is provided to visualize the decision-making procedures in the developed model.
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In order to facilitate the description of the proposed model, we assume that there are m ECs
(ECi, i = 1, 2, . . . , m) with respect to n CRs (CR j, j = 1, 2, . . . , n) to be evaluated by h QFD experts TMs
(TMk, k = 1, 2, . . . , h). The subjective and objective weight vectors of TMs are λ′ = (λ′1,λ′2, . . . ,λ′h)
and λ′′ = (λ′′1 ,λ′′2 , . . . ,λ′′h ), respectively. Further, the subjective and objective weight vectors of
CRs are w′ = (w′1, w′2, . . . , w′n) and w′′ = (w′′1 , w′′2 , . . . , w′′n ), separately. Moreover, the equalities∑h

k=1 λ
′ =

∑h
k=1 λ

′′ = 1 and
∑n

j=1 w′ =
n∑

j=1
w′′ = 1. What’s more, the combined weights of TMs and

CRs are calculated by the following equations:

λk = τλ′k + (1− τ)λ′′k , for k = 1, 2, . . . , h, (9)



Mathematics 2020, 8, 224 8 of 20

w j = ξw′j + (1− ξ)w′′j , for j = 1, 2, . . . , n, (10)

where 0 < τ, ξ < 1, λk and w j are the integrated weights of TMk and CR j, respectively.
Furthermore, let Uk = [uk

i j]m×n
(k = 1, 2, . . . , h) be the evaluation matrix given by TMk where uk

i j is

assessed value of ECi with regard to CR j. In addition, assume V = [vi j]m×n be the collective decision
matrix in which vi j = uk

i j · λk.

4.1. Identifying the Integrated Weights of TMs

In this part, the order relation analysis (G1) method and improved maximum consensus (MC)
method are utilized to capture the integrated subjective and objective weights of QFD team members.

4.1.1. Determining the Subjective Weights of TMs

A deal of subjective weights determining methods has conducted by many scholars. For example,
AHP method was employed to derive the criteria weights in the case of tourism environmental impact
assessment [35], What’s more, Wang, Zhang [45] used multi-criteria group decision-making method
to hotel building energy efficiency retrofit project selection. However, all of these subjective weights
determining methods have lots of complexity and inconvenience. Thus, the G1 method was proposed
by Ruan and Yang [46] as a succinct method to get the subjective weights. Due to G1 method’s
characteristics, it was applied by Xu, Liu [18] to identify criteria weight vector. In this paper, we utilize
G1 method to figure out the weights of TMs subjectively. The detailed steps are shown below.

Step O1. Rank the TMs on the basis of their importance.
The ranking order of TMs, which is denoted by a set TM =

{
TM1, . . . , TMk, . . . , TMh

}
, should be

given decreasingly by the leader of them according to their importance.
Step O2. Identify the relative importance degree between adjacent TMs.
Based on a description of the relative importance degree as shown in Table 1, the relative

importance degree θk =
λ′k−1
λ′k

of the QFD expert TMk−1 and TMk can be determined for k = 2, 3, . . . , h.

Table 1. The description of the relative importance degree.

θk Description

1.0 TMk−1 is equally important as TMk
1.2 TMk−1 is slightly more important than TMk
1.4 TMk−1 is more important than TMk
1.6 TMk−1 is strongly more important than TMk
1.8 TMk−1 is extremely more important than TMk

Step O3. Compute the subjective weights of TMs.
The subjective weights of TMs can be derived by the following equations:

λ′h =

1 +
h∑

l=2

h∏
k=l

θk


−1

(11)

λ′k =
h∏

l=k+1

θlλ
′

h (12)

4.1.2. Determining the Objective Weights of TMs

There is a mass of subjectivity when obtaining the weights of QFD team members with only
subjective method. Therefore, to avoid much subjectivity, it is quite necessary to derive the weights of
TMs as a supplement by an objective method. Inspired by the maximum consensus (MC) method in
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the current literature [19,47], this study proposes an improved MC method which takes both positive
and negative ideal assessment into account simultaneously, by contrast, the traditional MC method in
related literatures only considers the positive ideal point.

Step M1. Determine the positive and negative ideal assessment matrices.
The average of all QFD team members’ evaluation can be deemed as the positive ideal assessment,

and the positive ideal assessment matrix is denoted by the following formula:

U+ =
[
u+

i j

]
m×n

=

1
h

k=1
h
⊕ uk

i j


m×n

(13)

There are two negative ideal assessment matrices. One is composed with the maximum evaluation
value of an EC with respect to a certain CR, and the other consists of the minimum assessment value
of an EC regarding a certain CR. Moreover, these two negative ideal assessment matrices can be
represented as follows:

Umax =
[
umax

ij

]
m×n

=
[
max

k

{
uk

i j

}]
m×n

(14)

Umin =
[
umin

ij

]
m×n

=
[
min

k

{
uk

i j

}]
m×n

(15)

Step M2. Calculate the distances between every TM’s evaluation and ideal assessments.
Based on the distance defined in Definition 7, the differences between personal evaluation and

ideal assessments are shown below:

di f f (Uk, U+) =
1

n×m

m∑
i=1

n∑
j=1

d(uk
i j, u+

i j ) (16)

di f f (Uk, Umax) =
1

n×m

m∑
i=1

n∑
j=1

d(uk
i j, umax

ij ) (17)

di f f (Uk, Umin) =
1

n×m

m∑
i=1

n∑
j=1

d(uk
i j, umin

ij ) (18)

Step M3. Compute the objective weights of QFD team members.
Obviously, the bigger weights can be assigned if the TM’s evaluation is closer to positive ideal

assessment and farther from any negative ideal assessments. Thus, the objective weights of QFD
experts TMs can be identified by the expression below:

λ′′k =
1− di f f (Uk, U+) + min

{
di f f (Uk, Umax), di f f (Uk, Umin)

}
∑h

k=1 (1− di f f (Uk, U+)) +
∑h

k=1 min
{
di f f (Uk, Umax), di f f (Uk, Umin)

} (19)

where k = 1, 2, . . . , h.

4.2. Identifying the Integrated Weights of CRs

This subsection develops SWARA method and statistical distance (SD) method to obtain subjective
and objective weights of CRs, separately. And the integrated weights of CRs are acquired ultimately.

4.2.1. Determining the Subjective Weights of CRs

To the best of our knowledge, the SWARA method is adopted widely to derive the weight
vector [20,48]. For example, the SWARA method was employed to prospect for polymetallic
mineralization [49]. Further, Nakhaei, Bitarafan [50] utilized the SWARA method to assess the
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weights of indexes and sub-indexes. Due to SWARA method’s practical applicability, this study
constructs subjective weights of CRs with this utility method.

Step S1. Rank the CRs according to their importance.
Through QFD experts team members’ discussions, the order of CRs concerning importance degree

can be provided and the most important CR is listed at the first place. The order is represented by
CR =

{
CR1, . . . , CR j, . . . , CRn

}
.

Step S2. Calculate the weighted average comparative importance value of adjacent CRs.
Each QFD expert TMk shall give a comparative importance value of adjacent CRs sk

j for k =

1, 2, . . . , h and j = 2, 3, . . . , n. Moreover, the symbol s j = λk · sk
j denotes weighted average comparative

importance value in which λk is the combined weights of TMs.
Step S3. Determine characteristics of the comparative importance and recalculated weights.
The characteristic of the comparative importance x j and recalculated weight y j for j = 1, 2, . . . , n

can be computed by Equations (17) and (18)

x j = s j + 1, (20)

y j =
y j−1

x j
. (21)

Step S4. Determine the final weight.
On the basis of the recalculated weight, the final subjective weight w′j for j = 1, 2, . . . , n can be

calculated by the following formula:

w′j =
y j∑n

j=1 y j
. (22)

4.2.2. Determining the Objective Weights of CRs

It is not sufficient to only consider the QFD experts’ subjective preference on the weights of CRs.
There are many objective weights determination methods, such as maximizing deviation method [51]
and entropy weight method [52]. Compared with these methods, statistical distance (SD) method is
simple during the process of weight determination. Motivated by relevant researches about SD method,
this paper utilizes extended SD method to identify the objective weights of CRs under linguistic
Z-number environment.

According to the distance of LZNs introduced in Definition 7, the weights of CRs can be determined
by the following formulae:

v j =
1
m

i=1
m
⊕ vi j, (23)

σ2
j =

1
m

∑
m
i=1d(vi j, v j)

2, (24)

w′′j =
σ2

j∑n
j=1 σ

2
j

. (25)

4.3. Prioritizing All the ECs

In order to rank engineering characteristics (ECs), this subsection extends TOPSIS method into
LZNs environment. Next, the algorithm of the extended TOPSIS method is listed below.

Step T1. Identify the positive ideal solution (PIS) and negative ideal solution (NIS).
In terms of the comparison method in Definition 6, PIS and NIS can be defined as:

v+j = max
i

vi j, i = 1, 2, . . . , m for j = 1, 2, . . . , n, (26)
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v−j = min
i

vi j, i = 1, 2, . . . , m for j = 1, 2, . . . , n. (27)

Step T2. Calculate the distances between CRs and both PIS and NIS.
Using the distance of LZNs in Definition 7, the distances between CRs and both PIS and NIS can

be computed by:
d+i =

∑
n
j=1w jd(vi j, v+j ), for i = 1, 2, . . . , m, (28)

d−i =
∑

n
j=1w jd(vi j, v−j ), for i = 1, 2, . . . , m, (29)

where w j is the combined weights of CR j.
Step T3. Compute the closeness degrees.
The closeness degree can be calculated by Equation (27)

Ci =
d−i

d−i + d+i
, for i = 1, 2, . . . , m, (30)

It easily can be seen that the bigger is Ci, the prior is ECi at the ranking order.

4.4. The Decision-Making Procedures

The brief steps of the proposed approach are summarized below:
Step 1. Establish the decision matrices.
The evaluation values uk

i j should be provided for the relationships between engineering
characteristics ECi(i = 1, 2, . . . , m) and customer requirements CR j( j = 1, 2, . . . , n) by the QFD team
members TMk(k = 1, 2, . . . , h), in which uk

i j is in the form of LZNs.
Step 2. Determine the combined weights of TMs.
This paper employs Equations (8) and (9) to compute the subjective weights of TMs. Then,

Equations (10)–(16) are utilized to calculate the objective weights of TMs. Finally, Equation (6) is used
to determine the combined weights of TMs λ = (λ1,λ2, . . . ,λh).

Step 3. Determine the combined weights of CRs.
Equations (17)–(19) are used to calculate the subjective weights of CRs. Next, Equations (20)–(22)

are applied to compute the objective weights of CRs. Finally, Equation (7) is utilized to identify the
integrated weights of CRs w = (w1, w2, . . . , wn).

Step 4. Calculate the closeness degree.
This paper utilizes Equations (23)–(27) to obtain the closeness degree to positive ideal solution

Ci(i = 1, 2, . . . , m).
Step 5. Obtain the ranking orders of ECs.
The ECs are ranked according to the closeness degree Ci.

5. Illustration Example

In this section, a logistics service provider (LSP) [53] is absorbed as a case example to illustrate the
effectiveness and efficiency of the proposed QFD model.

5.1. Problem Description

As the market changes rapidly and the customer demand shifts unpredictably, the LSP faces more
and more serious challenges. For instance, many clients request better service with shorter delivery
time, greater order accuracy and lower service cost. That is, in order to maintain core competitiveness,
LSP should transform the traditional operations to just-in-time service. In this sense, it is essential to
have research on the operations by taking customer requirements into accounts. Owing to the features
of QFD model, this paper uses the proposed MCDM approach to determine the importance ratings of
operation characteristics according to customer service demands.



Mathematics 2020, 8, 224 12 of 20

In the case, three experts are selected as the QFD team members, including a
senior manager of quality control TM1, a representative of the client TM2, and a
professor of industry engineering TM3. After a mass of investigations and discussions,
six customer requirements (CR1, CR2, CR3, CR4, CR5, CR6) and eight engineering characteristics
(EC1, EC2, EC3, EC4, EC5, EC6, EC7, EC8) are defined for LSP as shown in Table 2.

Table 2. CRs and ECs in the case study.

CRs Customer Requirements ECs Engineering Characteristics

CR1 Lead-time EC1 Just-in time
CR2 Accuracy EC2 Information technology
CR3 Fill rate EC3 Order picking optimization
CR4 Flexibility EC4 Demand forecasting methods
CR5 Reliability EC5 Quality of services
CR6 Frequency EC6 Customer relationship management

EC7 Warehouses lay-out optimization
EC8 Information sharing and mutual trust

5.2. Implementation of the Proposed Model

In this part, the proposed QFD model considering combined subjective and objective weights is
applied for the case of LSP.

Step 1. Establish the decision matrices.
Since LZNs can express fuzzy and uncertain information perfectly, it is employed to evaluate the

relationships between CRs and ECs by QFD expert team members. For a LZN Z = 〈A, B〉, the fuzzy
restriction A is a linguistic term in set S1:

S1 =

{
s0 = Very low, s1= low, s2= Medium low, s3 = Medium,
s4 = Medium high, s5= High, s6 = Very High

}
;

Meanwhile, the reliability measure B is a linguistic term in set S2:

S2 =
{
s′0 = Uncertain, s′1= Slightly Uncertain, s′2= Medium, s′3 = Slightly Sure, s′4 = Sure

}
The relationship evaluation information between CRs and ECs is represented in Table 3 given by

three QFD experts.
Step 2. Determine the combined weights of TMs.

(1) The CEO of LSP thinks that the senior manager of quality control TM1 accounts for the maximum
weights and the professor of industry engineering TM3 is designate as the minimum weights.
Further, the relative importance degrees provided by CEO are θ2 = 1.2 and θ3 = 1.8 according
to Table 1. By the means of Equations (8) and (9), the subjective weight vector of TMs are
λ′ = (0.4355, 0.3629, 0.2016)T.

(2) On the basis of the operational method and comparison method of LZNs in Definition 5 and
(3) Definition 6, the ideal assessments can be obtained as shown in Tables 4–6. The differences between

personal evaluation of TMs and ideal assessments can be computed by Equations (13)–(15). The
calculated results are listed below:

di f f (U1, U+) = 0.1758; di f f (U2, U+) = 0.1166; di f f (U3, U+) = 0.1626;

di f f (U1, Umax) = 0.1997; di f f (U2, Umax) = 0.1814; di f f (U3, Umax) = 0.1749;

di f f (U1, Umin) = 0.1623; di f f (U2, Umin) = 0.1823; di f f (U3, Umin) = 0.1984.
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By Equation (16), the objective weights vector of TMs can be determined a λ′′ =

(0.3220, 0.3476, 0.3304)T.
(4) From the above analyses, we assume that the preference coefficient τ is 0.5, the integrated weights

of TMs can be identified by Equation (6) which is λ = (0.3788, 0.3552, 0.2660)T.

Table 3. The relationship evaluation information between CRs and ECs.

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8

TM1

CR1
〈
s5, s′3

〉 〈
s6, s′4

〉 〈
s2, s′4

〉 〈
s0, s′2

〉 〈
s1, s′0

〉 〈
s1, s′3

〉 〈
s2, s′3

〉 〈
s1, s′2

〉
CR2

〈
s4, s′3

〉 〈
s3, s′4

〉 〈
s0, s′1

〉 〈
s0, s′2

〉 〈
s2, s′2

〉 〈
s1, s′1

〉 〈
s0, s′2

〉 〈
s6, s′4

〉
CR3

〈
s1, s′3

〉 〈
s4, s′3

〉 〈
s0, s′1

〉 〈
s3, s′2

〉 〈
s1, s′0

〉 〈
s2, s′2

〉 〈
s0, s′4

〉 〈
s1, s′3

〉
CR4

〈
s5, s′3

〉 〈
s4, s′1

〉 〈
s0, s′1

〉 〈
s1, s′2

〉 〈
s0, s′2

〉 〈
s3, s′4

〉 〈
s0, s′3

〉 〈
s1, s′4

〉
CR5

〈
s4, s′4

〉 〈
s4, s′1

〉 〈
s1, s′2

〉 〈
s2, s′3

〉 〈
s1, s′2

〉 〈
s0, s′1

〉 〈
s1, s′2

〉 〈
s3, s′1

〉
CR6

〈
s4, s′1

〉 〈
s2, s′2

〉 〈
s4, s′3

〉 〈
s1, s′1

〉 〈
s5, s′2

〉 〈
s1, s′0

〉 〈
s4, s′2

〉 〈
s0, s′4

〉

TM2

CR1
〈
s3, s′4

〉 〈
s5, s′1

〉 〈
s3, s′2

〉 〈
s2, s′3

〉 〈
s2, s′2

〉 〈
s2, s′0

〉 〈
s1, s′2

〉 〈
s1, s′3

〉
CR2

〈
s6, s′2

〉 〈
s2, s′3

〉 〈
s2, s′1

〉 〈
s1, s′3

〉 〈
s1, s′2

〉 〈
s2, s′2

〉 〈
s1, s′4

〉 〈
s5, s′2

〉
CR3

〈
s2, s′2

〉 〈
s2, s′4

〉 〈
s1, s′0

〉 〈
s4, s′3

〉 〈
s2, s′1

〉 〈
s3, s′1

〉 〈
s2, s′4

〉 〈
s3, s′2

〉
CR4

〈
s4, s′2

〉 〈
s3, s′2

〉 〈
s1, s′2

〉 〈
s3, s′4

〉 〈
s2, s′1

〉 〈
s5, s′2

〉 〈
s1, s′2

〉 〈
s2, s′4

〉
CR5

〈
s6, s′2

〉 〈
s5, s′2

〉 〈
s0, s′3

〉 〈
s1, s′2

〉 〈
s2, s′2

〉 〈
s2, s′0

〉 〈
s1, s′3

〉 〈
s4, s′2

〉
CR6

〈
s3, s′2

〉 〈
s1, s′2

〉 〈
s5, s′2

〉 〈
s3, s′2

〉 〈
s4, s′3

〉 〈
s2, s′1

〉 〈
s3, s′0

〉 〈
s1, s′3

〉

TM3

CR1
〈
s3, s′3

〉 〈
s4, s′3

〉 〈
s2, s′1

〉 〈
s0, s′3

〉 〈
s1, s′2

〉 〈
s3, s′1

〉 〈
s1, s′3

〉 〈
s2, s′2

〉
CR2

〈
s5, s′3

〉 〈
s1, s′2

〉 〈
s3, s′2

〉 〈
s2, s′4

〉 〈
s1, s′1

〉 〈
s0, s′4

〉 〈
s0, s′2

〉 〈
s6, s′4

〉
CR3

〈
s4, s′1

〉 〈
s1, s′3

〉 〈
s0, s′2

〉 〈
s5, s′4

〉 〈
s3, s′3

〉 〈
s2, s′1

〉 〈
s1, s′2

〉 〈
s5, s′1

〉
CR4

〈
s3, s′1

〉 〈
s4, s′1

〉 〈
s2, s′3

〉 〈
s2, s′2

〉 〈
s4, s′0

〉 〈
s6, s′1

〉 〈
s3, s′2

〉 〈
s4, s′4

〉
CR5

〈
s5, s′2

〉 〈
s4, s′1

〉 〈
s1, s′2

〉 〈
s2, s′3

〉 〈
s1, s′3

〉 〈
s1, s′1

〉 〈
s2, s′2

〉 〈
s3, s′4

〉
CR6

〈
s2, s′4

〉 〈
s3, s′0

〉 〈
s6, s′3

〉 〈
s4, s′1

〉 〈
s5, s′1

〉 〈
s1, s′3

〉 〈
s2, s′2

〉 〈
s0, s′2

〉
Table 4. The positive ideal assessment.

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8

CR1
〈
s3.67, s′3.27

〉 〈
s5.00, s′2.73

〉 〈
s2.33, s′2.29

〉 〈
s0.67, s′3.00

〉 〈
s1.33, s′1.50

〉 〈
s2.00, s′1.00

〉 〈
s1.33, s′2.75

〉 〈
s1.33, s′2.25

〉
CR2

〈
s5.00, s′2.60

〉 〈
s2.00, s′3.33

〉 〈
s1.67, s′1.60

〉 〈
s1.00, s′3.67

〉 〈
s1.33, s′1.75

〉 〈
s1.00, s′1.67

〉 〈
s0.33, s′4.00

〉 〈
s5.67, s′3.41

〉
CR3

〈
s2.33, s′1.57

〉 〈
s2.33, s′3.29

〉 〈
s0.33, s′0.00

〉 〈
s4.00, s′3.17

〉 〈
s2.00, s′1.83

〉 〈
s2.33, s′1.29

〉 〈
s1.00, s′3.33

〉 〈
s3.00, s′1.56

〉
CR4

〈
s4.00, s′2.17

〉 〈
s3.67, s′1.27

〉 〈
s1.00, s′2.67

〉 〈
s2.00, s′3.00

〉 〈
s2.00, s′0.33

〉 〈
s4.67, s′2.00

〉 〈
s1.33, s′2.00

〉 〈
s2.33, s′4.00

〉
CR5

〈
s5.00, s′2.53

〉 〈
s4.33, s′1.38

〉 〈
s0.67, s′2.00

〉 〈
s1.67, s′2.80

〉 〈
s1.33, s′2.25

〉 〈
s1.00, s′0.33

〉 〈
s1.33, s′2.25

〉 〈
s3.33, s′2.30

〉
CR6

〈
s3.00, s′2.00

〉 〈
s2.00, s′1.00

〉 〈
s5.00, s′2.67

〉 〈
s2.67, s′1.38

〉 〈
s4.67, s′1.93

〉 〈
s1.33, s′1.25

〉 〈
s3.00, s′1.33

〉 〈
s0.33, s′3.00

〉
Table 5. The negative ideal assessment—maximum value.

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8

CR1
〈
s5, s′3

〉 〈
s6, s′4

〉 〈
s2, s′4

〉 〈
s2, s′3

〉 〈
s2, s′2

〉 〈
s3, s′1

〉 〈
s2, s′3

〉 〈
s2, s′2

〉
CR2

〈
s5, s′3

〉 〈
s3, s′4

〉 〈
s3, s′2

〉 〈
s2, s′4

〉 〈
s2, s′2

〉 〈
s2, s′2

〉 〈
s1, s′4

〉 〈
s6, s′4

〉
CR3

〈
s4, s′1

〉 〈
s4, s′3

〉 〈
s1, s′0

〉 〈
s5, s′4

〉 〈
s3, s′3

〉 〈
s2, s′2

〉 〈
s2, s′4

〉 〈
s3, s′2

〉
CR4

〈
s5, s′3

〉 〈
s3, s′2

〉 〈
s2, s′3

〉 〈
s3, s′4

〉 〈
s2, s′1

〉 〈
s3, s′4

〉 〈
s3, s′2

〉 〈
s4, s′4

〉
CR5

〈
s4, s′4

〉 〈
s5, s′2

〉 〈
s1, s′2

〉 〈
s2, s′3

〉 〈
s2, s′2

〉 〈
s1, s′1

〉 〈
s2, s′2

〉 〈
s3, s′4

〉
CR6

〈
s2, s′4

〉 〈
s2, s′2

〉 〈
s6, s′3

〉 〈
s3, s′2

〉 〈
s4, s′3

〉 〈
s1, s′3

〉 〈
s4, s′2

〉 〈
s1, s′3

〉
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Table 6. The negative ideal assessment—minimum value.

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8

CR1
〈
s3, s′3

〉 〈
s5, s′1

〉 〈
s2, s′1

〉 〈
s0, s′3

〉 〈
s1, s′0

〉 〈
s2, s′0

〉 〈
s1, s′2

〉 〈
s1, s′2

〉
CR2

〈
s4, s′3

〉 〈
s1, s′2

〉 〈
s0, s′1

〉 〈
s0, s′2

〉 〈
s1, s′1

〉 〈
s0, s′4

〉 〈
s0, s′2

〉 〈
s5, s′2

〉
CR3

〈
s1, s′3

〉 〈
s1, s′3

〉 〈
s0, s′2

〉 〈
s3, s′2

〉 〈
s1, s′0

〉 〈
s2, s′1

〉 〈
s0, s′4

〉 〈
s1, s′3

〉
CR4

〈
s3, s′1

〉 〈
s4, s′1

〉 〈
s0, s′1

〉 〈
s1, s′2

〉 〈
s0, s′2

〉 〈
s6, s′1

〉 〈
s0, s′3

〉 〈
s1, s′4

〉
CR5

〈
s5, s′2

〉 〈
s4, s′1

〉 〈
s0, s′3

〉 〈
s1, s′2

〉 〈
s1, s′2

〉 〈
s0, s′1

〉 〈
s1, s′2

〉 〈
s3, s′1

〉
CR6

〈
s4, s′1

〉 〈
s3, s′0

〉 〈
s5, s′2

〉 〈
s1, s′1

〉 〈
s5, s′1

〉 〈
s1, s′0

〉 〈
s3, s′0

〉 〈
s0, s′2

〉
Step 3. Determine the combined weights of CRs.

(1) With QFD experts’ consultations, CRs are sorted according to their importance and the descending
order is Lead-time CR1, Accuracy CR2, Reliability CR5, Fill rate CR3, Flexibility CR4, and Frequency
CR6. Next, the comparative importance values between adjacent CRs are provided which
are declared in Table 7. Finally, the subjective weights of CRs can be derived by Equations
(17) and (19), the results are shown in Table 8. That is, CRs’ subjective weight vector is
w′ = (0.32, 0.24, 0.12, 0.10, 0.15, 0.07)T.

(2) The comprehensive decision matrix, as shown in Table 9, can be obtained by integrating the
weights of QFD experts and their evaluation values. According to the Equations (20)–(22), the
objective weights vector of CRs is w′′ = (0.1641, 0.2669, 0.1353, 0.1546, 0.1519, 0.1272)T.

(3) We suppose that the preference coefficient ξ is 0.5, then the combined weights vector of CRs is
calculated by Equation (7) which is w′′ = (0.2421, 0.2534, 0.1277, 0.1273, 0.1509, 0.0986)T.

Table 7. The comparative importance values between adjacent CRs.

CR1↔2 CR2↔5 CR5↔3 CR3↔4 CR4↔6

TM1 0.20 0.60 0.10 0.00 0.50
TM2 0.40 0.50 0.30 0.40 0.70
TM3 0.50 0.60 0.40 0.30 0.40

Table 8. The final subjective weights of CRs.

Weighted Average
Comparative

Importance Value sj

The Characteristic of
the Comparative

Importance xj

The Recalculated
Weight yj

The Final Subjective
Weight w

′

j

CR1 - 1.00 1.00 0.32
CR2 0.35 1.35 0.74 0.24
CR5 0.56 1.56 0.47 0.15
CR3 0.25 1.25 0.38 0.12
CR4 0.22 1.22 0.31 0.10
CR6 0.54 1.54 0.20 0.07

Table 9. The comprehensive decision matrix.

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8

CR1
〈
s3.76, s′3.28

〉 〈
s5.11, s′2.75

〉 〈
s2.36, s′2.42

〉 〈
s0.71, s′3.00

〉 〈
s1.36, s′1.44

〉 〈
s1.89, s′1.02

〉 〈
s1.38, s′2.74

〉 〈
s1.27, s′2.28

〉
CR2

〈
s4.98, s′2.57

〉 〈
s2.11, s′3.41

〉 〈
s1.51, s′1.53

〉 〈
s0.89, s′3.60

〉 〈
s1.38, s′1.81

〉 〈
s1.09, s′1.65

〉 〈
s0.36, s′4.00

〉 〈
s5.64, s′3.37

〉
CR3

〈
s2.15, s′1.68

〉 〈
s2.49, s′3.29

〉 〈
s0.35, s′0.00

〉 〈
s3.89, s′3.05

〉 〈
s1.89, s′1.65

〉 〈
s2.36, s′1.32

〉 〈
s0.98, s′3.46

〉 〈
s2.77, s′1.66

〉
CR4

〈
s4.11, s′2.27

〉 〈
s3.64, s′1.29

〉 〈
s0.89, s′2.60

〉 〈
s1.98, s′3.08

〉 〈
s1.97, s′0.40

〉 〈
s4.51, s′2.15

〉 〈
s1.15, s′2.00

〉 〈
s2.15, s′4.00

〉
CR5

〈
s4.98, s′2.61

〉 〈
s4.36, s′1.41

〉 〈
s0.64, s′2.00

〉 〈
s1.64, s′2.78

〉 〈
s1.36, s′2.20

〉 〈
s0.98, s′0.27

〉 〈
s1.27, s′2.28

〉 〈
s3.36, s′2.14

〉
CR6

〈
s3.11, s′1.86

〉 〈
s1.91, s′1.16

〉 〈
s4.89, s′2.64

〉 〈
s2.51, s′1.42

〉 〈
s4.64, s′2.02

〉 〈
s1.36, s′1.11

〉 〈
s3.11, s′1.32

〉 〈
s0.36, s′3.00

〉
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Step 4. Calculate the closeness degree.
Drawing on the comparison method in Definition 6, the PIS and NIS of engineering characteristics

(EC) are acquired as follows:

v+ =
{〈

s5.11, s′2.75

〉
,
〈
s5.64, s′3.37

〉
,
〈
s3.89, s′3.05

〉
,
〈
s4.51, s′2.15

〉
,
〈
s4.98, s′2.61

〉
,
〈
s4.89, s′2.64

〉}
;

v− =
{〈

s1.89, s′1.02

〉
,
〈
s0.36, s′4.00

〉
,
〈
s0.36, s′0.00

〉
,
〈
s1.77, s′0.40

〉
,
〈
s0.98, s′0.27

〉
,
〈
s0.36, s′3.00

〉}
.

The closeness degrees Ci can be computed for i = 1, 2, . . . , m by Equations (25)–(27) which are
illustrated in Table 10.

Table 10. The closeness degrees of ECs.

EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8

d+i 0.1723 0.2790 0.5029 0.4765 0.5046 0.5069 0.5533 0.3080
d−i 0.4901 0.3845 0.2806 0.3054 0.2195 0.1829 0.2301 0.4213
Ci 0.7399 0.5794 0.3581 0.3906 0.3031 0.2652 0.2937 0.5777

Step 5. Obtain the ranking orders of ECs.
In terms of the closeness degrees of ECs, the ranking order of ECs is EC1 � EC2 � EC8 � EC4 �

EC3 � EC5 � EC7 � EC6. Note that the most important three ECs are Just-in time EC1, Accuracy EC2,
and Frequency EC8.

5.3. Sensitivity Analysis

This subsection studies a sensitivity analysis of different LSFs is.
In the proposed QFD model, three LSFs are absorbed to deal with linguistic terms of the utilized

LZNs. If different LSFs are employed, different ranking results of ECs may be obtained. Thus, we
should alter the LSFs to see how the ranking orders are varied. What’s more, for a LZN Z = 〈A, B〉, the
fuzzy restriction A is a linguistic term which expresses the correlation degree between CRs and ECs in
this paper while the reliability measure B is the uncertainty estimation of A provided by TMs. Namely,
it is worth noting that two parts of LZNs describe disparate evaluation preferences. Therefore, the two
components of LZNs may choose different LSFs.

On the one hand, we use the first LSF f1 to handle the fuzzy restriction A and change the LSFs to
dispose reliability measure B. On the other hand, different LSFs are utilized to transform linguistic
information A to a numeric value and the LSF of linguistic term B is always f1. The results are offered
in Table 11.

Table 11. Ranking results with different LSFs.

f*(A) g*(B) Ranking Results

f ∗(A) = f1(A) g∗(B) = f1(B) EC1 � EC2 � EC8 � EC4 � EC3 � EC5 � EC7 � EC6
f ∗(A) = f1(A) g∗(B) = f2(B) EC1 � EC2 � EC8 � EC4 � EC3 � EC5 � EC6 � EC7
f ∗(A) = f1(A) g∗(B) = f3(B) EC1 � EC2 � EC8 � EC4 � EC3 � EC5 � EC7 � EC6

f ∗(A) = f1(A) g∗(B) = f1(B) EC1 � EC2 � EC8 � EC4 � EC3 � EC5 � EC7 � EC6
f ∗(A) = f2(A) g∗(B) = f1(B) EC1 � EC8 � EC2 � EC4 � EC3 � EC7 � EC5 � EC6
f ∗(A) = f3(A) g∗(B) = f1(B) EC1 � EC2 � EC8 � EC4 � EC3 � EC5 � EC7 � EC6

As the results shown in Table 11, no matter how the utilized LSFs of the fuzzy restriction A
and reliability measure B change, the Just-in time EC1, Accuracy EC2, and Frequency EC8 are always
the three engineering characteristics needed to pay close attention to mostly. As a consequence, the
robustness of proposed QFD model can be concluded.
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5.4. Comparative Analysis

In this subsection, two cases of comparative analysis are conducted to demonstrate the validity
and practicality of the developed model in this study. One is to compare the proposed method with
state-of -the-art MCDM method using LZNs. The other is to make a comparison between the proposed
QFD model and other QFD models.

Case 1: The proposed method is compared with existing methods under LZNs environment.
At present, only one MCDM method is investigated with LZNs [16]. In this method, Wang et al.

defined the distance measure of LZNs and extended the TODIM method based on Choquet Integral
and distance measure. Hence, Wang et al.’s method is applied in the LSP example to find the most
significant engineering characteristics. However, since the criteria weights were confirmed by a
subjective method by Wang et al., the weights are assigned as the combined weights of CRs in this
study. And the ranking orders of ECs are presented in Table 12.

Table 12. The comparison between the proposed method and existing methods utilizing LZNs.

Method Rank Orders

Wang et al.’s method (θ = 1) [16] EC1 � EC2 � EC8 � EC4 � EC3 � EC7 � EC5 � EC6
The proposed method ( f ∗(A) = f1(A), g∗(B) = f1(B)) EC1 � EC2 � EC8 � EC4 � EC3 � EC5 � EC7 � EC6

From Table 12, the most vital engineering characteristic is EC1 and the least crucial engineering
characteristic is EC6 for the both methods with LZNs. As a result, the feasibility of proposed method
is proved. Meanwhile, there are two differences between these two methods. The first is that the
computations of two methods are diverse. Wang et al.’s method needed to calculate the dominance
degree of one engineering characteristic over another engineering characteristic with respect to a
certain customer requirement. In other words, it should make a comparison between each pair of
engineering characteristic regarding every customer requirement. However, if a lot of ECs are adopted
in the case of LSP, it will cause the calculated amounts of Wang et al.’s method increase tremendously.
By contrast, the proposed method only requires comparing engineering characteristics with PIS and
NIS which haves less calculated quantities. The second is that the weights determining methods of
CRs are distinctive in these two methods using LZNs. Wang et al. employed a subjective method
to identify the weights. Nevertheless, in the practical processes, it is not enough to derive weights
only by a subjective method. The objective weights determining methods are also wanted just like the
proposed method does in this paper. In conclusion, the proposed method is more likely to be applied
in real-life cases than Wang et al.’s method. Thus, the utility of proposed method is validated.

Case 2: The proposed QFD model is compared with extant QFD models.
For all we know, many MCDM approaches have been integrated into conventional QFD models

to address the problems of them [3,6,54]. In order to demonstrate the strength of proposed QFD model,
these QFD models are selected to do a comparative analysis. However, Yazdani et al. [6], Liao and
Kao [54], Wu et al. [3], and this paper use crisp numbers (CNs), triangular fuzzy numbers (TFNs),
hesitant fuzzy numbers (HFNs), and LZNs for evaluation information representations, separately.
Namely, it is hard to compare these QFD models in the examples of this study due to different
information expressions. Thus, we only make a comparison of the frameworks among these integrated
QFD models. Furthermore, the frameworks of QFD models [3,6,54] are declared in Table 13.

As we can see in Table 13, Yazdani et al. [6] utilized crisp numbers to describe the relationship
between CRs and ECs. Meanwhile, Liao and Kao [54] and Wu et al. [3] employed fuzzy numbers for
information description. By contrast, this paper uses LZNs to denote the correlation between CRs
and ECs. As for the weights of TMs, Wu et al. [3] only took objective weighting method into accounts
while this paper considers both subjective and objective weighting method. What’s more, as for the
weights of CRs, Yazdani et al. [6], Liao and Kao [54], and Wu et al. [3] determined the weights of CRs
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by merely subjective weighting method while this paper derives a combined subjective and objective
weights of CRs as well.

Table 13. The comparative analysis of integrated QFD models.

Yazdani et al.
[6]

Liao and Kao
[54]

Wu et al.
[3] This Paper

Information representation CNs TFNs HFNs LZNs
Weights
of TMs

Subjective weighting method × × ×
√

Objective weighting method × ×
√ √

Weights
of CRs

Subjective weighting method
√ √ √ √

Objective weighting method × × ×
√

Through the aforementioned comparisons, the advantages of proposed QFD models can be
summarized as follows:

(1) Compared with crisp numbers and fuzzy numbers, LZNs can take fuzzy information and the
reliability of information into considerations at the same time. Owing to powerful ability of LZNs’
expressions, the proposed framework using LZNs can depict evaluation information perfectly.

(2) It is inadvisable that only adopting objective method to obtain weights of TMs. Because some data
is be hard to obtain and quantify. The QFD experts have discrepant professional backgrounds and
areas, the subjective preferences to the importance degree of expert TMs should also be thought of.
With regard to the weights of CRs, it may cause large deviation when only subjective weighting
method is employed. Therefore, the QFD model with integrated subjective and objective weights
of CRs may be more reasonable.

(3) Compared with other MCDM method using LZNs, the proposed method only requires comparing
engineering characteristics with PIS and NIS and avoids the problem: with the dimension
increased, the calculated quantity rapidly does.

6. Conclusions

Since LZNs can deal with the uncertain and unreliable information well which exists in actual
situations commonly, it is imperative to investigate the QFD framework utilizing LZNs. In this study,
at first place, the weights of team members are identified by G1 method and improved MC method,
respectively. Then, SWARA and SD methods are put forward to derive the subjective and objective
weights of customer requirements. At this point, the combined weights of experts and customer
requirements are determined. Next, the extended TOPSIS is proposed to aggregate the correlation
between customer requirements and engineering characteristics. Finally, a case of logistics service
provider is studied by the proposed QFD model to verify the efficiency and applicability of it. Moreover,
a sensitivity analysis of LSFs is conducted to prove the robustness of our model. A comparison with
the methods under LZN environment, and comparative analysis are conducted, the results indict the
proposed QFD model has reliability. The way to determine the weights of CRs is a combined subjective
and objective method, and the proposed method is more likely to be applied in real-life cases.

There are three main contributions in this paper. First, this paper develops an improved
MC method which takes both positive and negative ideal assessment into account. Second, the
novel QFD model is proposed by using LZNs and considering the combined weights of experts
and customer requirements. Because LZNs can take fuzzy information and the reliability of
information into considerations simultaneously, the proposed method can depict evaluation information
more flexible and precisely. Third, the proposed QFD framework is utilized to discover the most
significant engineering characteristics, which helps the logistics service providers to enhance their
services. Compared with other MCDM method using LZNs, it only requires comparing engineering
characteristics with PIS and NIS, which have fewer calculated quantities.
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In the future, researches can be made on these aspects. First of all, the interactive relationships
among customer requirements could be paid attention to in the stage of weights determination and
information fusion. Subsequently, both qualitative and quantitative data can be considered in the
meantime to strengthen the completeness of information expression. Ultimately, the proposed QFD can
be applied to improve operational services or product design, such as medical services [55], industrial
wastewater management [56], and energy selection [57].
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