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Abstract: In this manuscript, the synchronization of four-dimensional (4D) chaotic systems with
uncertain parameters using a self-evolving recurrent interval type-2 Petri cerebellar model articulation
controller is studied. The design of the synchronization control system is comprised of a recurrent
interval type-2 Petri cerebellar model articulation controller and a fuzzy compensation controller.
The proposed network structure can automatically generate new rules or delete unnecessary rules
based on the self-evolving algorithm. Furthermore, the gradient-descent method is applied to adjust
the proposed network parameters. Through Lyapunov stability analysis, bounded system stability
is guaranteed. Finally, the effectiveness of the proposed controller is illustrated using numerical
simulations of 4D chaotic systems.

Keywords: chaotic systems; self-evolving algorithm; interval type-2 fuzzy system; Petri nets;
cerebellar model articulation controller

1. Introduction

Recently, chaotic synchronization has attracted academic attention due to its nonlinear phenomena
characteristic. Recent studies have demonstrated that chaotic synchronization can be applied to
various disciplines, such as economics and chemistry as well as mechanical systems, information
systems, and electronic and communication systems [1]. In recent years, a number of real-life
applications have been studied by [2–6]. In 2016, Naderi and Kheiri proposed a secure-communication
method using the exponential synchronization of a chaotic system [2]. In 2017, Pappu et al.
presented an electronic implementation of Lorenz chaotic-oscillator synchronization for bistatic-radar
applications [3]. In 2019, Jayaprasath et al. introduced secure optical communication using chaotic
semiconductor lasers [4]. In addition, in 2019, Mandal and Das established chaos-based color
image encryption using microcontrollers [5]. In recent decades, various control methods have
been reported to synchronize master-slave chaotic systems, such as adaptive control [7], fuzzy
control [8], fuzzy-brain emotional-learning networks [9], sliding-mode control [10], and cerebellar
model articulation control [11]. However, the majority of these methods are complex, and the controlling
performance requires improvement.

The cerebellar model articulation controller (CMAC) is a type of neural network based on a model
of the mammalian cerebellum (associative memory), which was proposed by Albus [12]. Compared
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with other neural networks, CMAC is advantageous insofar that it has fast learning properties, simple
computations, and good generalization capabilities [13]. In the past decade, CMAC has been applied to
various fields, such as control systems [14–17], classification systems [18–20], signal processing [21–23],
and image processing [24,25]. Due to the work of Zadeh [26], fuzzy modeling and fuzzy control have
attracted many researchers since said methods can be used to convert problems into simple human terms.
The recent progress of fuzzy-control systems has eventuated in many novel results [27–33]. Similar to
the type-1 fuzzy system, the CMAC with type-1 membership functions (T1MFs) cannot effectively
deal with the uncertainty associated with system internalities and externalities [34]. To address these
uncertainties, type-2 membership functions (T2MFs) were introduced by Zadel [35]. Recent studies
have proven the superior effectiveness of T2MFs over T1MFs [36–38]. To reduce the computational
complexity of type-2 fuzzy logic systems (T2FLS), interval type-2 fuzzy logic systems (IT2FLS) were
established in 2000 by Liang and Mendel [39]. Recently, by combining the advantages of CMAC
and IT2FLS, the interval type-2 fuzzy CMAC (IT2CMAC) was developed and applied to various
fields [40–43].

Due to the work of Peterson and Looney [44,45], Petri nets (PNs) and fuzzy PNs (FPNs) have been
widely investigated in various fields [46–50]. A PN is a directed, weighted, and bipartite graph in which
each node is either a place or a transition. The transition nodes are enabled when the value of the inputs
connected to a transition that is greater than, or equal to, the threshold value [51]. In 2019, Rosdi et al.
proposed the speech intelligibility detection of children using an FPN-based classification method [46].
In 2018, Zhu et al. presented model-based fault identification using PNs [47]. In 2018, Hansen et al.
introduced a FPN for soccer-ball recognition and distance prediction [50]. As a special kind of PN,
FPNs have some advantages, such as simple in computation, intuitive and easy to understand [46].

The recurrent neural network (RNN) is a special kind of neural network that naturally comprises
feedback connections used as internal memories [52]. Many studies have used RNNs in their control
network design [53–57] due to their advantages of simple architecture and dynamic characteristics.
In 2018, Yen et al. proposed robust adaptive sliding-mode control using recurrent fuzzy wavelet neural
networks [54]. In 2016, Lin et al. introduced a piezo-flexural nanopositioning stage using a RNN and
intelligent integral backstepping sliding-mode control [55]. In 2016, Sharma et al. presented a robotic
manipulator using a RNN and an adaptive controller similar to proportional–integral–derivative
controllers [56]. In 2016, Wang et al. proposed a switched-reluctance motor-drive system using
adaptive recurrent CMAC [57].

To improve the work of [58], this paper incorporates the advantages of CMAC, IT2FLS, RNN, and
FPNs to propose a recurrent interval type-2 Petri cerebellar model articulation controller (RIT2PC).
However, similar to other neural networks, it is difficult to determine a suitable network size for
the RIT2PC to achieve the desired performance. The majority of studies used the trial-and-error
approach to obtain network size, but this method is not time-effective, and its performance requires
improvement. In the past, studies have provided self-organizing and self-evolving algorithms to
construct network structures autonomously [59–65]. In 2017, Lin et al. introduced a self-evolving
function-link interval type-2 fuzzy neural network for nonlinear system identification and control [60].
In addition, in 2017, Rong et al. proposed a self-evolving fuzzy model controller for hypersonic
vehicles [63]. In 2018, Ge and Zeng provided a self-evolving fuzzy system that can independently
learn dynamic threshold parameters [64]. Besides being able to automatically construct networks to
achieve optimal structure, the self-evolving algorithm also has disadvantages; for instance, choosing
the threshold to generate and delete rules significantly affects system performance [65]. This study
applies a self-evolving algorithm to establish the RIT2PC structure. Thus, the proposed controller has
the advantages of the aforementioned networks, but it has a better control performance. The main
contributions of this study include the following: successful development of a self-evolving RIT2PC
(SRIT2PC) control system; the online learning-parameter adaptation laws are obtained using the
gradient-descent method; the Lyapunov stability function is used to prove the stability of the proposed
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synchronization system; the effectiveness of the proposed control method is illustrated using numerical
experiments of four-dimensional (4D) chaotic systems.

This study is organized as follows: system description is given in Section 2; the architecture of the
proposed SRIT2PC is provided in Section 3; the illustrative examples are given in Section 4; finally,
conclusions are drawn in Section 5.

2. System Description

Consider the 4D Lorenz–Stenflo chaotic system, which was provided by Stenflo [66] as follows:

.
x1(t) = α(y1(t) − x1(t)) + γw1
.
y1(t) = τx1(t) − x1(t)z1(t) − λy1(t)
.
z1(t) = x1(t)y1(t) −ϕz1(t)
.

w1(t) = −x1(t) − αw1

(1)

where x1, y1, z1, and w1 are the master chaotic state variables; α, τ, λ, ϕ, and γ are the parameters for
defining the chaotic attractor:

α = (25θ+ 1)
τ = (26− 35θ)
λ = (1− 29θ)
ϕ =

(
2.1+θ

3

)
γ = (θ+ 1.5)

(2)

where θ used to define the feature of the chaotic system.
When the system uncertainties, external disturbances, and control inputs are under consideration,

Equation (1) can be rewritten as

.
x2(t) = α(y2(t) − x2(t)) + γw2 + dx(t) + ∆ f (x2) + ux(t)
.
y2(t) = τx2(t) − x2(t)z2(t) − λy2(t) + dy(t) + ∆ f (y2) + uy(t)
.
z2(t) = x2(t)y2(t) −ϕz2(t) + dz(t) + ∆ f (z2) + uz(t)
.

w2(t) = −x2(t) − αw2 + dw(t) + ∆ f (w2) + uw(t)

(3)

where, x2, y2, z2, and w2 are the slave chaotic state variables; dx(t), dy(t), dz(t), and dw(t) denote the
external disturbances; ∆ f (x2), ∆ f (y2), ∆ f (z2), and ∆ f (w2) denote the system uncertainties; ux(t),
uy(t), uz(t), and uw(t) denote the active control functions. The goal of the control system is to generate
the control signal, which can force the slave system, represented by Equation (3), to synchronize with
the master system, represented by Equation (1).

The tracking errors of synchronization between Equations (1) and (3) can be defined as

ex(t) = x2(t) − x1(t)
ey(t) = y2(t) − y1(t)
ez(t) = z2(t) − z1(t)

ew(t) = w2(t) −w1(t)

(4)

Thus, subtracting Equation (3) from Equation (1), yields

.
ex(t) = α

(
ey(t) − ex(t)

)
+ γew + dx(t) + ∆ f (x2) + ux(t)

.
ey(t) = τex(t) − λey(t) − x2(t)z2(t) + x1(t)z1(t) + dy(t) + ∆ f (y2) + uy(t)
.
ez(t) = x2(t)y2(t) − x1(t)y1(t) −ϕez(t) + dz(t) + ∆ f (z2) + uz(t)
.
ew(t) = −ex(t) − αew(t) + dw(t) + ∆ f (w2) + uw(t)

(5)
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Equation (5) can be rewritten as

.
e(t) = Ae(t) + d(t) + ∆f(t) + u(t) (6)

where e(t) =
[
ex(t), ey(t), ez(t), ew(t)

]T
; A =


−α α 0 γ

(τ− z1(t)) −1 −x2(t) 0
y1(t) x2(t) −ϕ 0
−1 0 0 −α


If the system dynamics and the external disturbance can be obtained, the design of the ideal

controller can be given by
u∗(t) = −Ae(t) −Ke(t) − d(t) − ∆f(t) (7)

where
.
e(t) = −Ke(t) and K = diag(k1, k2, k3, k4) is the feedback gain vector.

If K is selected to correspond to the coefficients of the Hurwitz polynomial, then lim
t→∞

e(t)→ 0 .

However, the ideal controller, which is represented by Equation (7), is generally unobtainable because
the external disturbance and system dynamics cannot be precisely known in practical applications.
Therefore, in this paper, an SRIT2PC is proposed to achieve the desired synchronization performance.

3. Architecture of SRIT2PC

The control scheme of the proposed SRIT2PC for the chaotic synchronization system is shown in
Figure 1. It consists of an SRIT2PC main controller and a fuzzy compensation controller. The high-order
sliding surface is applied to guarantee system stability and to achieve satisfactory control performance.
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Figure 1. Block diagram of self-evolving recurrent interval type-2 Petri cerebellar model articulation
controller (SRIT2PC) synchronization system.

3.1. Recurrent Interval Type-2 Petri CMAC

The fuzzy inference rules of the novel SRIT2PC are given as

Rule λ : IF x1 is µ̃1 jk and x2 is µ̃2 jk , . . . , and xni is µ̃ni jk

Then w̃ jk =

[
w

jk
w jk

]
f or i = 1, 2, . . . , ni; j = 1, 2, . . . , n j;
k = 1, 2, . . . , nk; λ = 1, 2, . . . , nλ;

(8)

where ni, n j and nk denote the input dimension, the number of layers, and the number of blocks in
each layer, respectively; nλ denotes the total number of fuzzy rules, which is given by nλ = n j ∗ nk; µ̃i jk
denotes the input membership function; w̃ jk denotes the output weight in the consequent part.
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The architecture of the SRIT2PC is composed of seven spaces, shown in Figure 2. The operation in
each space is outlined below.
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Figure 2. Structure of the SRIT2PC control system.

(1). Input space: The input signal is given as X = [xi, xi, . . . xi, . . . , xi]
Tε<ni . Herein, each input

state variable, xi, is directly propagated to the association memory space.
(2). Association memory space: Several elements can be accumulated as a block, with each block

performing a type-2 Gaussian membership function (T2GMF). Applying the xi signal from the input
space into the T2GMF, the membership grade can be given as

µ
i jk

= exp


−

(
I
ri
−mi jk

)2

2σ2
i jk

; µi jk = exp

−
(
Iri −mi jk

)2

2σ2
i jk

 (9)

I
ri
(t) = xi(t) + ri jkµ

i jk
(t− 1); Iri(t) = xi(t) + ri jkµi jk(t− 1) (10)

where µ
i jk

and µi jk denote the lower and upper membership functions (MFs), respectively; the mean of

the T2GMF is denoted by mi jk; σ
i jk

and σi jk denote the lower and upper variance, respectively; I
ri

and

Iri denote the lower and upper recurrent inputs, respectively.
(3). Petri space: Each node acts as a transition operation to produce the tokens, which are then

used to select suitable fuzzy laws. This can be described as

ti jk =

1, µi jk ≥ gth

0, µi jk < gth
(11)

where ti jk denotes the transition nodes; µi jk denotes the average value of µ
i jk

and µi jk; gth denotes the

dynamic threshold value, which is given as

gth =
ϕ exp(−ψE)

1 + exp(−ψE)
(12)
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where ϕ and ψ denote the positive constants for adjusting the Petri threshold; E denotes the energy
function, which can be described as E = 1

2 e2, in which the tracking error is denoted by e.
As shown in Equation (11), the transition node, ti jk, is enabled when the value of µi jk is at least

equal to the dynamic threshold value, gth. The operation of simple PN is illustrated in Figure 3.
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(4). Receptive-field space: Each node acts as a t-norm operation. The illustrative mechanism for
mapping two-dimensional inputs is shown in Figure 4. The multi-dimensional receptive-field function
is given by

f
jk
=

 f
11

, . . . f
1nk

, . . . , f
n j1

, . . . , f
n jnk


f jk =

[
f 11, . . . f 1nk

, . . . , f n j1
, . . . , f n jnk

] (13)

where

f
jk
=

ni∏
i=1

µ
i jk

and f jk =

ni∏
i=1

µi jk (14)
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(5). Weight memory space: Each location f̃ jk =

 f
jk

f jk

 corresponds to a particular adjustable

value in the output weight space, w̃ jk =

[
w

jk
w jk

]
, which can be described as

w
jk
=

[
w

11
, . . . w

1nk
, . . . , w

n j1
, . . . , w

n jnk

]
∈ <

n jnk

w jk =
[
w11, . . . w1nk , . . . , wn j1, . . . , wn jnk

]
∈ <

n jnk

(15)

where w jk denotes the connecting weight between the pre-output space and the receptive-field space;
the adaptive laws for the online adjusting of the weight memory space are given in Section 3.3.
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(6). Pre-output space: Each node performs defuzzification to obtain the left and right-most point
values of the type reduction for the SRIT2PC. The output of this space is given by

yl
k =

∑n j

j=1 f
jk

w
jk∑n j

j=1 f
jk

and yr
k =

∑n j

j=1 f jkw jk∑n j

j=1 f jk

(16)

(7). Output layer: The output of this space, which is the final output of the SRIT2PC is given by
the algebraic sum of the left and right most point values in the pre-output space:

ûk
SRIT2PC = uk =

yl
k + yr

k
2

(17)

The control signal, ûk
SRIT2PC, is then applied to estimate the ideal controller in Equation (7).

3.2. Self-Evolving Algorithm

In designing the network structure for the RIT2PC, choosing the number of layers greatly affects
the control system. If the number of layers is large, huge computation times will follow; however, a
few numbers of layers may not cover all cases, especially when the input changes across a wide range
of values. To overcome this problem, this study presents the self-evolving algorithm to construct the
layers of the proposed network autonomously. The flowchart of the self-evolving algorithm is shown
in Figure 5.

The condition for generating new layers can be described as follows:

I f
(
φI

g < Dg
)

Then
{
Generating a new layer

}
(18)

φI
g = max

[
µi11, . . . ,µi1nk , µi21, . . . ,µi2nk , . . . ,µin j1, . . . ,µin jnk

]
(19)

µi jk =

µ
i jk

+ µi jk

2
(20)

where φi
g and Dg denote the maximum membership grades and the generating threshold, respectively.

The T2GMF for a new layer is given as

mM(t)+1
i jk = xi(t) (21)

σM(t)+1

i jk
= vinit − ∆v and σM(t)+1

i jk = σinit + ∆σ (22)

where M(t) denotes the number of the existing rules at time t; σinit denotes the initial value of the
variance; ∆σ denotes the half of the variance uncertain.

The condition for deleting unnecessary layers can be described as

I f
(
φI

d < Dd
)

Then
{
deleting the Ith layer

}
(23)

φI
d = min

[
µi11, . . . ,µi1nk , µi21, . . . ,µi2nk , . . . ,µin j1, . . . ,µin jnk

]
(24)

where φi
d and Dd denote the minimum membership grades and the deleting threshold, respectively.
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3.3. Parameter Learning For SRIT2PC

Herein, we can assume there exists an optimal controller u∗SRIT2PC such that

u∗(t) = u∗SRIT2PC(w
∗, w∗, m∗, σ∗, σ∗, r∗, r∗, t) − ξ(t) (25)

where ξ(t) denotes the approximation error; w∗, w∗, m∗, σ∗, σ∗, r∗, r∗ denote the optimal parameters for

w, w, m, σ, σ, r, r, respectively.
Since u∗SRIT2PC cannot be determined, an online estimation controller, ûSRIT2PC, is used to estimate

u∗SRIT2PC. Thus, the control input is denoted as

û(t) = ûSRIT2PC(ŵ, ŵ, m̂, v̂, v̂, r̂, r̂, t) − ûF(t) (26)

where ŵ, ŵ, m̂, v̂, v̂, r̂, r̂ denote the estimation of w∗, w∗, m∗, v∗, v∗, r∗, r∗, respectively; ûF denotes the
estimation of fuzzy compensator controller.

A high-order sliding surface can be defined as

s(t) = e(n−1) + k1e(n−2) . . .+ kn

∫ t

0
e(τ)dτ (27)

Taking the derivative of Equation (27) and using Equation (6), the following can be obtained:

.
s(t) = e(n) + KTe = Ae(t) + d(t) + ∆f(t) + u(t) + KTe (28)

The Lyapunov function can be described as

V1(s(t)) =
1
2

s2(t) (29)
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Taking the derivative of Equation (29) and using Equations (26) and (28), the following can be
obtained:

.
V1(t) = s(t)

.
s(t)= s(t)

[
e(n) + KTe

]
= s(t)[Ae(t) + d(t) + ∆f(t) +

(
ûSRIT2PC(ŵ, ŵ, m̂, v̂, v̂, r̂, r̂, t) − ûF(t)

)
+ KTe

] (30)

Using the gradient descent method, the parameter-updating laws for SRIT2PC can be obtained as
follows:

ŵ
jk
(t + 1) = ŵ

jk
(t) − η̂w

∂
.

V1(t)
∂ŵ

jk

= ŵ
jk
(t) − η̂w

∂
.

V1(t)

∂ûk
SRIT2PC

∂ûk
SRIT2PC

∂yl
k

∂yl
k

∂ŵ
jk

= ŵ
jk
(t) −

1
2
η̂ws(t) f

jk
(31)

ŵ jk(t + 1) = ŵ jk(t) − η̂w
∂

.
V1(t)

∂ŵ jk
= ŵ jk(t) − η̂w

∂
.

V1(t)

∂ûk
SRIT2PC

∂ûk
SRIT2PC
∂yr

k

∂yr
k

∂ŵ jk
= ŵ jk(t) −

1
2
η̂ws(t) f jk (32)

m̂i jk(t + 1) = m̂i jk(t) − η̂m
∂

.
V1(t)
∂m̂i jk

= m̂i jk(t) − η̂m
∂

.
V1(t)

∂ûk
SRIT2PC

∂ûk
SRIT2PC
∂yl

k

∂yl
k

∂ f
jk

∂ f
jk

∂µ
i jk

∂µ
i jk

∂m̂i jk
+
∂ûSRIT2PC

∂yr
k

∂yr
k

∂φ jk

∂ f jk
∂µi jk

∂µi jk
∂m̂i jk

) (33)

σ̂
i jk
(t + 1) = σ̂

i jk
(t) − η̂σ

∂
.

V1(t)
∂σ̂

i jk

= σ̂
i jk
(t) − η̂σ

 ∂
.

V1(t)
∂ûk

SRIT2PC

∂ûk
SRIT2PC
∂ŷl

k

∂ŷl
k

∂ f
jk

∂ f
jk

∂µ
i jk

∂µ
i jk

∂σ̂
i jk

 = σ̂
i jk
(t) − η̂σs(t) f

jk
w

jk

(Ii−m̂i jk)
2

σ̂3
i jk

(34)

σ̂i jk(t + 1) = σ̂i jk(t) − η̂σ
∂

.
V1(t)
∂σ̂i jk

= σ̂i jk(t) − η̂σ

(
∂

.
V1(t)

∂ûk
SRIT2PC

∂ûk
SRIT2PC
∂ŷr

k

∂ŷr
k

∂ f jk

∂ f jk
∂µi jk

∂µi jk

∂σ̂i jk

)
= σ̂i jk(t) − η̂σs(t) f jkw jk

(Ii−m̂i jk)
2

σ̂
3
i jk

(35)

r̂
i jk
(t + 1) = r̂

i jk
(t) − η̂r

∂
.

V1(t)
∂r̂

i jk

= r̂
i jk
(t) − η̂σ

 ∂
.

V1(t)
∂ûk

SRIT2PC

∂ûk
SRIT2PC
∂ŷl

k

∂ŷl
k

∂ f
jk

∂ f
jk

∂µ
i jk

∂µ
i jk

∂Î
ri

∂Î
ri

∂r̂
i jk

 = r̂
i jk
(t) + 1

2 η̂rs(t) f
jk

w
jk
µ

i jk

(Ii−m̂i jk)
σ̂2

i jk

(36)

r̂i jk(t + 1) = r̂i jk(t) − η̂r
∂

.
V1(t)
∂r̂i jk

= r̂i jk(t) − η̂σ

(
∂

.
V1(t)

∂ûk
SRIT2PC

∂ûk
SRIT2PC
∂ŷr

k

∂ŷr
k

∂ f jk

∂ f jk
∂µi jk

∂µi jk

∂Îri

∂Îri
∂r̂i jk

)
= r̂i jk(t) + 1

2 η̂rs(t) f jkw jkµi jk
(Ii−m̂i jk)

σ̂
2
i jk

(37)

where the positive learning-rates are denoted by η̂w, η̂m, η̂σ, η̂r.

3.4. Compensator Controller

To address the approximation error, a simple fuzzy compensator controller can be proposed as
follows:

R1 : I f si is POS, then ui
F is FP

R2 : I f si is ZE, then ui
F is FZ

R3 : I f si is NEG, then ui
F is FN

(38)

where POS, ZE, and NEG denote the positive, zero, and negative inputs of the MFs, respectively; FP,
FZ, and FN denote the positive, zero, and negative outputs the MFs, respectively; si and ui

F denote the
control input and control output, respectively.
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Figure 6 shows the input and output MFs of the fuzzy compensator controller. Using the
center-of-gravity method, the control output is given by

ui
F =

3∑
a=1

αi
aβ

i
a

3∑
a=1

βi
a

= αi
1β

i
1 + αi

2β
i
2 + αi

3β
i
3 (39)

where αi =
[
αi

1,αi
2,αi

3

]
denotes the weight vector of the fuzzy rules and βi =

[
βi

1, βi
2, βi

3

]
denotes the

firing-strengths vector of the fuzzy rules, which is given by

Case 1 : (si ≤ −ϑ)
βi

1 = 0; βi
2 = 0; βi

3 = 1;
Case 2 : (−ϑ ≤ si ≤ 0)

βi
1 = 0; βi

2 = (si + ϑ)/ϑ; βi
3 = 1− βi

2;
Case 3 : (0 ≤ si ≤ ϑ)

βi
1 = 1− βi

2; βi
2 = (ϑ− si)/ϑ; βi

3 = 0;
Case 4 : (si > ϑ)

βi
1 = 1; βi

2 = 0; βi
3 = 0;

(40)

where ϑ is the parameter for defining the firing strengths.
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By choosing the triangular membership function for the input shown in Figure 6, we can obtain
βi

1 + βi
2 + βi

3 = 1. Using a singleton membership function for the output, letting αi
1 = α̂i, αi

2 = 0, αi
3 =

−α̂i, and rewriting Equation (39) using αi = [α̂i, 0, −α̂i], the following can be obtained:

ui
F = α̂i

(
βi

1 − β
i
3

)
(41)

Rewriting Equation (30) and using Equations (25), (26), and (41), the following can be obtained:

.
V1 =

m∑
i=1

[
si(t)ξi(t) − si(t)α̂i

(
βi

1 − β
i
3

)]
≤

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣− si(t)α̂i
(
βi

1 − β
i
3

)]
=

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣− α̂i
∣∣∣si(t)

∣∣∣.∣∣∣βi
1 − β

i
3

∣∣∣]
= −

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣βi

1 − β
i
3

∣∣∣](α̂i −
|ξi(t)|∣∣∣βi

1−β
i
3

∣∣∣
)

(42)
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where m denotes the dimension of vector si. In Equation (42), if there exists an estimated value

α̂i >
|ξi(t)|∣∣∣βi

1−β
i
3

∣∣∣ , then
.

V ≤ 0 is satisfied. An optimal value α∗i can be defined to achieve a minimum value of

α̂i with the following equation:

α∗i =

∣∣∣ξi(t)
∣∣∣∣∣∣βi

1 − β
i
3

∣∣∣ + Ωi (43)

where Ωi denotes a positive constant.
The estimation-error vector can be described as α̃i = [α̃1, . . . , α̃i, . . . , α̃m]

T, where α̃i is given as

α̃i = α∗i − α̂i (44)

Accordingly, the Lyapunov function can be defined as

V2(s(t)) =
1
2

sT(t)s(t) +
1
2
α̃Tα̃ (45)

Taking the derivative of Equation (45) and using Equations (7), (25), (30), and (41), the following
can be obtained:

=
m∑

i=1

[
si(t)

[
−u∗i (t)

]
+ si(t)

[
ûi

SRIT2PC(t) − ûi
F(t)

]
+ α̃i

.
α̃i

]
=

m∑
i=1

[
si(t)

[
ξ(t) − ûi

SRIT2PC(t)
]
+ si(t)

[
ûi

SRIT2PC(t) − ûi
F(t)

]
+ α̃i

.
α̃i

]
=

m∑
i=1

[
si(t)ξi(t) − α̂isi(t)

(
βi

1 − β
i
3

)
+ α̃i

.
α̃i

]
≤

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣+ α̃isi(t)
(
βi

1 − β
i
3

)
− α∗i

∣∣∣si(t)
∣∣∣.∣∣∣βi

1 − β
i
3

∣∣∣+ α̃i
.
α̃i

]
=

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣+ α̃i

[
si(t)

(
βi

1 − β
i
3

)
+

.
α̃i

]
− α∗i

∣∣∣si(t)
∣∣∣.∣∣∣βi

1 − β
i
3

∣∣∣]
(46)

The estimation laws can be described as

.
α̂i = −

.
α̃i = si(t)

(
βi

1 − β
i
3

)
(47)

Accordingly, rewriting Equation (46) and using Equation (43), the following can be obtained:

.
V2(s(t)) ≤

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣ − ∣∣∣si(t)
∣∣∣ ∣∣∣βi

1 − β
i
3

∣∣∣( |ξi(t)|∣∣∣βi
1−β

i
3

∣∣∣ + Ωi

)]
=

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣ − ∣∣∣si(t)
∣∣∣ (∣∣∣ξi(t)

∣∣∣+ Ωi
∣∣∣βi

1 − β
i
3

∣∣∣)]
= −

m∑
i=1

Ωi
∣∣∣si(t)

∣∣∣ ∣∣∣βi
1 − β

i
3

∣∣∣
(48)

Since
.

V2(s(t)) is a negative semidefinite, the stability of the proposed SRIT2PC control system
can be guaranteed by the Lyapunov stability theorem.

4. Illustrative Examples

To verify the feasibility and effectiveness of the proposed controller, an illustrative example is
used to describe the Lorenz–Stenflo chaotic system. Using the proposed parameter-adaptive laws,
the control signals, ûx(t), ûy(t), ûz(t), ûw(t), can be obtained, after which point the synchronization
of the slave and the master chaotic can be obtained. The initial positions for the chaotic system
are [x1, y1, z1, w1 ] = [0.028, 0.02, 0.03, 0.048 ]T and [x2, y2, z2, w2 ] = [0.01, 0.037, 0.029, 0.008 ]T.
The system uncertainties are [∆ f (x2), ∆ f (y2), ∆ f (z2), ∆ f (w2)] = rd(.)[0.2x2, 0.2y2, 0.2z2, 0.2w2]

T.
The external disturbances are

[
dx, dy, dz, dw

]
= [0.2 cosπt, 0.5 cosπt, 0.3 cosπt, 0.4 cosπt]T, where
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rd(.) denotes the random values in the range [0, 1]. The performance of the synchronization system
can be calculated using the root mean square error (RMSE):

RMSE =

√√√
1
nh

nh∑
h=1

(
(exh)

2 +
(
eyh

)2
+ (ezh)

2 + (ewh)
2
)

f or h = 1, 2, . . . nh (49)

where nh denotes the number of samples; exh, eyh, ezh, ewh denote the tracking error for the hth sample.
The parameters of the proposed controller consist of the following: σinit = 0.4, ∆σ = 0.05,

ni = 3, n j = 4, nk = 1, Dg = 0.2, Dd = 0.02, and ϑ = 0.04; the sliding surface order is n = 2; the
adaptive-learning rates are η̂w = 0.01, η̂m = 0.001, η̂σ = 0.001, and η̂r = 0.001. To limit the system
computation burden, the maximum number of membership functions for each input is limited to
seven MFs and the minimum number of MFs in each input is limited to one MF. The comparison
results in RMSE for the proposed method and the other methods are given in Table 1, from which it
is evident that the proposed SRIT2PC is superior over the wavelet CMAC controller (WCMAC) [13],
the interval type-2 Petri CMAC (IT2PCMAC) [58], and the type-2 fuzzy-brain emotional-learning
controller (T2FBELC) [59].

Case 1: θ = 0
Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor are

α = 1, τ = 26, λ = 1, ϕ = 0.7, and γ = 1.5. The synchronization results of the 4D Lorenz–Stenflo
chaotic system using the SRIT2PC are depicted in Figure 7; Figure 8 shows the trajectory signals,
x1(t), y1(t), z1(t), and w1(t), and the synchronization outputs, x2(t), y2(t), z2(t), and w2(t); Figure 9
shows the control signals, ux(t), uy(t), uz(t), and uw(t); Figure 10 shows the tracking errors, ex(t), ey(t),
ez(t), and ew(t). The number of layers of the SRIT2PC using the self-evolving algorithm are shown
in Figure 11. In this case, the simulation results suggest that the proposed SRIT2PC can effectively
synchronize the slave chaotic system with the master system.
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1: (a) ux, (b) uy, (c) uz, and (d) uw.
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Case 2: θ = 0.8
Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor

are α = 21, τ = −2, λ = −22.2, ϕ = 0.9667, and γ = 2.3. The synchronization results of the 4D
Lorenz–Stenflo chaotic system using the SRIT2PC are depicted in Figure 12; Figure 13 shows the
trajectory signals, x1(t), y1(t), z1(t), and w1(t), and the synchronization outputs, x2(t), y2(t), z2(t), and
w2(t); Figure 14 shows the control signals, ux(t), uy(t), uz(t), and uw(t); Figure 15 shows the tracking
errors, ex(t), ey(t), ez(t), and ew(t). The number of layers of the SRIT2PC using the self-evolving
algorithm is shown in Figure 16. In this case, the simulation results suggest that the proposed SRIT2PC
can effectively synchronize the slave chaotic system with the master system.
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Figure 13. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 2: (a) x1, x2, (b) y1, y2, (c) z1, z2, and (d) w1, w2.
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Case 3: θ = 1.0
Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor are

α = 26, τ = −9, λ = −28, ϕ = 1.033, and γ = 2.5. The synchronization results of the 4D Lorenz–Stenflo
chaotic system using the SRIT2PC are depicted in Figure 17; Figure 18 shows the trajectory signals,
x1(t), y1(t), z1(t), and w1(t), and the synchronization outputs, x2(t), y2(t), z2(t), and w2(t); Figure 19
shows the control signals, ux(t), uy(t), uz(t), and uw(t); Figure 20 shows the tracking errors, ex(t), ey(t),
ez(t), and ew(t). The number of layers of the SRIT2PC using the self-evolving algorithm is shown
in Figure 21. In this case, the simulation results suggest that the proposed SRIT2PC can effectively
synchronize the slave chaotic system with the master system.
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3: (a) ux, (b) uy, (c) uz, and (d) uw.
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Case 4:
In this case, the parameter for defining the feature of the Lorenz–Stenflo chaotic-system attractor,

θ, is given as a time-varying parameter ranging from zero to one during the control process. Therefore,
the parameters α, τ, λ, ϕ, and γ are also time-varying parameters. The synchronization results of the
4D Lorenz–Stenflo chaotic system using the SRIT2PC are depicted in Figure 22; Figure 23 shows the
trajectory signals, x1(t), y1(t), z1(t), and w1(t), and the synchronization outputs, x2(t), y2(t), z2(t), and
w2(t); Figure 24 shows the control signals, ux(t), uy(t), uz(t), and uw(t); Figure 25 shows the tracking
errors, ex(t), ey(t), ez(t), and ew(t). The number of layers of the SRIT2PC using the self-evolving
algorithm is shown in Figure 26. In this case, the simulation results suggest that the proposed SRIT2PC
controller can effectively synchronize the slave chaotic system with the master system.



Mathematics 2020, 8, 219 20 of 26
Mathematics 2020, 8, 219 20 of 26 

 

  
(a) (b) 

  

(c) (d) 

Figure 22. Synchronization of 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 4 (a) x-
y-z space, (b) x-y-w space, (c) x-z-w space, (d) y-z-w space. 

 
Figure 23. System outputs between the proposed SRIT2PC and other synchronization methods for 
Case 4: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w . 

Figure 22. Synchronization of 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 4 (a) x-y-z
space, (b) x-y-w space, (c) x-z-w space, (d) y-z-w space.

Mathematics 2020, 8, 219 20 of 26 

 

  

  

Figure 22. Synchronization of 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 4 (a) x-
y-z space, (b) x-y-w space, (c) x-z-w space, (d) y-z-w space. 

 
Figure 23. System outputs between the proposed SRIT2PC and other synchronization methods for 
Case 4: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w . 
Figure 23. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 4: (a) x1, x2, (b) y1, y2, (c) z1, z2, and (d) w1, w2.



Mathematics 2020, 8, 219 21 of 26

Mathematics 2020, 8, 219 21 of 26 

 

 
Figure 24. Control signals between the proposed SRIT2PC and other synchronization methods for 
Case 4: (a) xu , (b) 

yu , (c) zu , and (d) wu . 

 
Figure 25. Tracking errors between the proposed SRIT2PC and other synchronization methods for 
Case 4: (a) xe , (b) ye , (c) ze , and (d) we . 

Figure 24. Control signals between the proposed SRIT2PC and other synchronization methods for Case
4: (a) ux, (b) uy, (c) uz, and (d) uw.

Mathematics 2020, 8, 219 21 of 26 

 

 
Figure 24. Control signals between the proposed SRIT2PC and other synchronization methods for 
Case 4: (a) xu , (b) 

yu , (c) zu , and (d) wu . 

 
Figure 25. Tracking errors between the proposed SRIT2PC and other synchronization methods for 
Case 4: (a) xe , (b) ye , (c) ze , and (d) we . 

Figure 25. Tracking errors between the proposed SRIT2PC and other synchronization methods for
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Figure 11, Figure 16, Figure 21, and Figure 26 show that, at the beginning of the control process,
the structure of the proposed controller is in an adjusting period, after which point it quickly converges
to a suitable number of layers. The simulation results for Case 4 suggest that, by using the online
adaptive laws, the proposed controller can synchronize the chaotic systems effectively, even when θ is a
time-varying parameter. In all cases studied, the proposed controller is superior for the synchronization
of the 4D Lorenz–Stenflo chaotic system, since it has the fasted response and smallest RMSE tracking
errors, even when faced with external disturbances and system uncertainties. Indeed, obtaining the
appropriate threshold to generate and delete rules affects control-system performance. For instance,
a small generating threshold generates a large number of rules and, contrarily, a large generating
threshold will not generate many rules. The same can be said for the deleting threshold: if it is too
small, minimal rules are removed and, contrarily, if it is too large, too many rules are removed. In this
study, we used the trial-and-error method to obtain these thresholds.

Table 1. Comparison results in root mean square error (RMSE) of synchronization the 4-D Lorenz-Stenflo
chaotic system.

Control Method Computation
Time (s)

Case 1
θ=0

Case 2
θ=0.8

Case 3
θ=1.0

Case 4
Time-Varying θ

WCMAC 0.0147 0.1481 0.1804 0.1498 0.1379
T2FBELC 0.0183 0.0902 0.0955 0.0602 0.0797

IT2PCMAC 0.0172 0.0524 0.0716 0.0486 0.0704
SRIT1PC 0.0145 0.0507 0.0422 0.0347 0.0431

SRIT2PC (proposed controller) 0.0196 0.0476 0.0366 0.0299 0.0322

5. Conclusions

In this paper, an adaptive SRIT2PC controller is proposed for the synchronization of 4D
Lorenz–Stenflo chaotic systems. In doing so, we presented a new controller that can automatically
update the parameters and structure based on the tracking error and the contribution of rules.
The proposed controller has the following advantages: a dynamic threshold of PN, autonomous
network constructing due to the self-evolving algorithm, type-2 fuzzy membership function, and
recurrent-CMAC learning properties. The online adaptive laws of the control system were derived
using the gradient-descent method; system stability was guaranteed using Lyapunov stability theory.
Indeed, the numerical simulation results suggest that the proposed control system is highly effective.
In the future, the estimation method will be applied to estimate the generating and deleting thresholds
to achieve optimal control performance.
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