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1 Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa 18000, Pakistan;
msherpak55@gmail.com (M.S.); kamalshah408@gmail.com (K.S.); rahmat_alipk@yahoo.com (R.A.K.)

2 Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics,
Physics and Informatics, Comenius University in Bratislava, Mlynská Dolina, 842 48 Bratislava, Slovakia

3 Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia
* Correspondence: michal.feckan@fmph.uniba.sk

Received: 6 January 2020; Accepted: 4 February 2020; Published: 8 February 2020
����������
�������

Abstract: With the help of the topological degree theory in this manuscript, we develop qualitative
theory for a class of multi-terms fractional order differential equations (FODEs) with proportional
delay using the Caputo derivative. In the same line, we will also study various forms of Ulam stability
results. To clarify our theocratical analysis, we provide three different pertinent examples.
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1. Introduction

Fractional calculus is the fastest growing area for research in the last three decades. Nowadays it
has become an important tool due to its wide range of applications in various scientific disciplines
such as biology, chemistry, physics, dynamical systems, electrodynamics, etc. (see [1–6] and references
therein). Its importance can also be explored in other fields like fluid dynamics traffic models,
oscillation due to earthquakes, flow in porous media due to seepage, etc.

Therefore such problems have been considered from different aspects to check whether the
problem of a differential or integral equation that is to be investigated has a solution or not.
To guarantee the answer, the existence theory is used to find the conditions under which the problem
under investigation has a solution or not. Therefore, existence and uniqueness are the important
aspects of differential equations (DEs), which have been studied very openly by different authors using
various approaches (for example, see [7,8], etc.). Classical fixed point theory has been utilized to study
existence and uniqueness for certain problems [9,10]. Using these results, one needs to establish strong
compact conditions, which shorten the study to some boundary value problems (BVPs). To manage
this limitation and to generalize the techniques to greater extent for BVPs, researchers have been
looking for a tool of nonlinear analysis. One of the important tools is topological degree theory which
needs weak compact conditions instead of strong compact conditions for operation. The suggested
method provides very basic criteria for existence results for many problems. Enormous numbers of
problems, both linear and nonlinear DEs and FODEs, have been investigated for existence results by
researchers. Mawhin [11] applied degree theory to develop appropriate results for the given BVPs to
derive existence and uniqueness results:

w′′(t) + f(t, w(t), w′(t)) = 0, t ∈ [0, π],

w(0) = w(π) = 0
(1)
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and

w′′(t) + f(t, w(t)) = 0, t ∈ [0, 1],

w(0) = w(1) = 0.
(2)

Isaia [12] has applied the method of degree theory to form some adequate results about existence
and uniqueness results to the integral equations given by

w(t) = ϕ(t, w(t)) +
∫ b

a
ψ(t, s, w(s))ds, t ∈ J = [a, b], (3)

where ϕ ∈ C[J× R, R], ψ ∈ C[J× J× R, R] under some growth conditions.
One of the weighty classes of DEs is known as pantograph equations (PEs), which involve

proportional type delay. In the 1960s, the British railways wanted to make the electric locomotive
faster. An important construction was the pantograph, which collects current from an overhead wire.
Therefore, Ockendon and Tayler studied the motion of the pantograph for an electric locomotive [13].
The above mentioned class of DEs has a large numbers of applications in real-world scientific
disciplines such as dynamical systems, quantum mechanics and electrodynamics. Particularly, as
mentioned above, the mentioned delay DEs are used to collect current from overhead wire. Therefore
several researchers have attempted to develop conditions for existence and uniqueness of solution
to the aforesaid DEs. Many authors also have considered delay DEs using analytical and numerical
techniques [14–16].

Liu and Li [16] studied the following multi-term FODEs with proportional delay for existence
and uniqueness via fixed point theory{

cDκ
0+w(t) = f(t, w(t), w(γ1t), . . . , w(γnt)), t ∈ J = [0, θ],

w(0) = w0,
(4)

where 0 < κ ≤ 1, for i = 1, 2, . . . , n, λi ∈ (0, 1) and f ∈ C[J× Rm, R].
Since most nonlinear problems cannot be solved for exact solutions, we need powerful numerical

or analytical techniques. For good numerical results one needs stable algorithms and methods. For such
needs, the stability theory was founded. This aspect is important in numerical study and optimization
procedures. In the literature, there are different type of stability such as exponential, Mittag–Leffler and
Lyapunov type. These stabilities were studied for DEs of ordinary order. In the past few years stability
results have been generalized for linear and nonlinear FODEs, (for details, see [17,18]). To establish
these stabilities for DEs, some of them need a pre-defined Lyapunov function which is sometimes very
difficult and also needs much time. On the other hand the exponential and Mittag–Leffler stability
involving exponential functions have difficulties during numerical analysis of the problems. To handle
these difficulties Ulam [19] in 1940 introduced another kind of stability, known as Ulam–Hyer’s (UH)
stability which was further studied by Hyer [20] in 1941. For the first time Wang [21] studied the UH
stability for the impulsive ordinary DEs in 2012. UH stability for DEs of different orders have been
studied by different authors (see [22,23]). Further we state that the stability analysis is one of the basic
problems in the fields of systems and signal processing and control.

Since then, the evolution of a physical system in time has been described using initial value
problems. However, this is less informative. Therefore, to get more and better information, the initial
(local) conditions are replaced nonlocal conditions. In fact, nonlocal conditions give a better effect as
compared to local initial conditions and also the measurement due to nonlocal conditions is usually
more precise than the one measurement produced by local conditions. Therefore investigation of
problems under nonlocal initial or boundary conditions is one of the important areas of research in
recent times (for detail we refer to [24,25]). Inspired by the aforesaid work, this research aims to study
Equation (5) under generalized nonlocal integral boundary condition as:
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cDκ
0+w(t) = f(t, w(t), w(γ1t), . . . , w(γnt)), t ∈ J,

w(0)−w0 =
∫ θ

0
(θ−s)κ−1

Γ(κ) g(s, w(s))ds,
(5)

where 0 < κ ≤ 1, for i = 1, 2, . . . , n, λi ∈ (0, 1) and g ∈ C[J× R, R], f ∈ C[J× Rm, R], for existence and
uniqueness of solutions using the mentioned method. Moreover, some adequate results of various UH
type stabilities such as UH stability, generalized UH (GUH) stability, UH-Rasaias (UHR) stability and
generalized UHR (GUHR) stability are established. Finally the analysis is justified by some examples.

2. Fundamental Material

Here, we provide some fundamental material about fractional calculus, topological degree theory
and UH type stability.

Definition 1 ([10]). If κ ∈ R+, then integral of fractional order for the function w ∈ L1(J, R) is expressed as

Iκ
0+w(t) =

1
Γ(κ)

∫ t

0
(t− s)κ−1w(s)ds. (6)

Definition 2 ([10]). THe derivative of fractional order to a function w on the interval J in Caputo sense is
expressed as

cDκ
0+w(t) =

1
Γ(r− κ)

∫ t

0
(t− s)r−κ−1w(r)(s)ds, (7)

where r = [κ] + 1 and [κ] represents an integral part of κ.

Lemma 1 ([10]). The solution of FODE

cDκ
0+w(t) = 0, r− 1 < κ ≤ r, (8)

is given as w(t) = ∑r−1
i=0 citi, where ci ∈ R, i = 0, 1, 2, . . . , r− 1.

Lemma 2 ([10]). Moreover, for the given FODE cDκ
0+w(t) = y(t)

w(t) = Iκ
+0[y(t)] +

r−1

∑
i=0

citi, (9)

results holds, for ci ∈ R, i = 0, 1, 2, . . . , r− 1.

In the following Y = C[J, R] will be Banach space with norm ‖w‖ = sup{|w(t)|, t ∈ J} and
the family W ⊂ P(Y) represents all its bounded sets. Below are some notions and results recalled
from [12].

Definition 3. The mapping χ : W→ R+ for Kuratowski measure of non-compactness is defined as

χ(W) = in f {ε > 0}, (10)

whereW ∈ W is covered by finite sets with diameter ≤ ε.

Proposition 1. The mapping χ due to non-compactness enjoys the properties given below:

(i) χ(W) = 0 ⇐⇒ W is compact relatively.
(ii) χ is a seminorm, i.e., χ(σW) = |σ| χ(W), σ ∈ R and χ(W1 +W2) ≤ χ(W1) + χ(W2).

(iii) W1 ⊂ W2 implies χ(W1) ≤ χ(W2); χ(W1 ∪W2) = max{χ(W1), χ(W2)}.
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(iv) χ(convW) = χ(W).
(v) χ(W̄) = χ(W).

Definition 4. Let the map Λ : Φ→ Y be bounded and continuous, where Φ ⊂ Y . Then Λ is χ-Lipschitz if ∃
K ≥ 0 such that

χ(Λ(W)) ≤ Kχ(W), ∀ W ⊂ Φ bounded.

Further, if K < 1 then Λ is strict χ-contraction.

Proposition 2. Let Λ, Π : Φ→ Y be χ-Lipschitz for constants K and K′ , respectively, and Λ + Π : Φ→ Y
also be χ-Lipschitz for constants K+K′ .

Proposition 3. Λ is χ-Lipschitz for constant K = 0 If Λ : Φ→ Y is compact.

Proposition 4. If Λ : Φ→ Y is Lipschitz for constant K, then Λ is χ-Lipschitz for the same constant K.

Theorem 1 ([12]). Let Λ : Y → Y be χ-condensing and

Θ = {ω ∈ Y : ∃ µ ∈ [0, 1] 3 ω = µΛ}. (11)

If Θ is a bounded set in Y , then ∃ r > 0 3 Θ ⊂ Wr(0), then the degree

deg(I − µΛ,Wr(0), 0) = 1, ∀ µ ∈ [0, 1]. (12)

Consequently, Λ has at least one fixed point and the set of the fixed points of Λ lies inWr(0).

The following definitions are recalled from [26].

Definition 5. The Equation (5) is UH stable if for every ε > 0, ∃ Cq ∈ R+ and w ∈ Y is any solution of

|cDκ
0+w(t)− f(t, w(t), w(γ1t), . . . , w(γnt))| ≤ ε, ∀ t ∈ J = [0, θ], (13)

∃ a unique solution w̄ ∈ Y of (5), such that

|w− w̄| ≤ Cqε, ∀ t ∈ J.

Definition 6. The Equation (5) is GUH stable if ∃ ξ ∈ C(R+, R+), ξ(0) = 0, such that for any solution
w ∈ Y of (13) there is a unique solution w̄ ∈ Y of (5), such that

|w− w̄| ≤ ξ(ε), ∀ t ∈ J.

Definition 7. The Equation (5) is UHR stable with respect to ζ ∈ C[J, R+], if ∃ Cq ∈ R+ such that for every
ε > 0 and for any solution w ∈ Y of the inequality

|cDκ
0+w(t)− f(t, w(t), w(γ1t), · · · , w(γnt))| ≤ ζ(t)ε, ∀ t ∈ J, (14)

there is a unique solution w̄ ∈ Y of (5), such that

|w− w̄| ≤ Cqεζ(t), ∀ t ∈ J.

Definition 8. The Equation (5) is GUHR stable with respect to ζ ∈ C[J, R+] if ∃ Cq,ζ ∈ R+ such that for every
ε > 0 and for any solution w ∈ Y of the inequality (14) there is a unique solution w̄ ∈ Y of (5), such that

|w− w̄| ≤ Cq,ζ ζ(t), ∀ t ∈ J.
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Remark 1. A function w̄ ∈ Y is a solution of (13) if there is a function η(t) ∈ C(J; R) (dependent on w̄),
such that

(i) |η(t)| ≤ ε, ∀ t ∈ J.
(ii) cDκw̄(t) = f(t, w̄(t), w̄(γ1t), . . . , w̄(γnt)) + η(t), ∀ t ∈ J.

Remark 2. A function w̄ ∈ Y is a solution of (14) if there is a function η(t) ∈ C(J; R) (dependent on w̄),
such that

(i) |η(t)| ≤ εϕ, ∀ t ∈ J.
(ii) cDκw̄(t) = f(t, w̄(t), w̄(γ1t), · · · , w̄(γnt)) + η(t), ∀ t ∈ J.

3. Main Results

In this section we study existence results for nonlinear delay FODEs under integral boundary
condition, we use J = [0, θ] and Z = C(J).

By Lemma 2, the considered problem (5) is converted to the following delay integral equation as

w(t) = w0 +
∫ θ

0

(θ − s)κ−1

Γ(κ)
g(s, w(s))ds +

∫ t

0

(t− s)κ−1

Γ(κ)
f(s, w(s), w(γ1s), · · · , w(γns))ds, (15)

for t ∈ J and g ∈ C[J× R, R], f ∈ C[J× Rm, R], such that

(i) There exist a, b ≥ 0, c1 ∈ [0, 1) such that

‖g(t, w)‖ ≤ a‖w‖c1 + b,

∀ (t, w) ∈ J× R.
(ii) There exist K1 ∈ [0, 1) such that

‖g(t, w1)− g(t, w2)‖ ≤ K1‖w1 −w2‖,

for every (t, w1), (t, w2) ∈ J× R.
(iii) There exist c, d and cf≥ 0, c2 ∈ [0, 1), such that

|f(t, w(t), w(γ1t), · · · , w(γnt))| ≤ c[|w(t)|c2 + |w(γ1t)|c2 , · · · , |w(γnt)|c2 ] + d

≤ c f |w(t)|c2 + d, where cf = (n + 1)c,

for all (t, w(t), w(γ1t), · · · , w(γnt)) ∈ J× Rm.

The above three conditions will be used to show the existence and uniqueness of the solution
of (5).

Here we define some operators as

A : Z→ Z, (Aw)(t) = w0 +
∫ θ

0

(θ − s)κ−1

Γ(κ)
g(s, w(s))ds,

B : Z→ Z, (Bw)(t) =
∫ t

0

(t− s)κ−1

Γ(κ)
f(s, w(s), w(γ1s), · · · , w(γns))ds,

M : Z→ Z,Mw = Aw + Bw.

Then (15) in operator form becomes
w =Mw. (16)

The fixed point ofM will insure the existence of the solution of (5).
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Proposition 5. The map A : Z → Z is Lipschitz with constant L. Consequently it is χ-Lipchitz with
constant L.

Proof. Consider

‖Au−Aw‖ = sup {|(Au)(t)− (Aw)(t)|, t ∈ J}

≤ sup
{∫ θ

0

∣∣∣∣ (θ − s)κ−1

Γ(κ)

∣∣∣∣|g(s, u(s))− g(s, w(s))|ds, s ∈ J
}

≤ K1 sup
{∫ θ

0

∣∣∣∣ (θ − s)κ−1

Γ(κ)

∣∣∣∣|u(s)−w(s)|ds, s ∈ J
}

= L ‖u−w‖ , where L =
K1θκ

Γ(κ + 1)
and K1 be such that L < 1.

for every u, w ∈ Z. Thus A is χ-Lipschitz with constant L, proposition (4).
Using condition (i), A obeys the result given by:

‖Aw‖ ≤ a′‖w‖c1 + b′, where a′ =
aθκ

Γ(κ + 1)
and b′ = |w0|+

bθκ

Γ(κ + 1)
,

for every w ∈ Z.

Proposition 6. The map B : Z→ Z is compact. Consequently B is χ-Lipschitz with zero constant.

Proof. To prove B is a continuous, let {wn} ⊂ Z, w ∈ Z be such that ‖wn −w‖ → 0 as n → ∞.
We must have to show ‖Bwn −Bw‖ → 0 as n→ ∞. For ε > 0, ∃ K ≥ 0 such that

‖wn‖ ≤ K, ∀ n ∈ N,

‖w‖ ≤ K.

Since f is continuous, f is uniform continuous on Z × S̄(0,K), where S̄(0,K) =
{q ∈ Rm : d(q, 0) ≤ K} and d is usual metric on Rm. Using the definition of uniform continuity
∃ δ = δ(ε) such that

|f(t1, ρ, ρ1, ρ2, · · · , ρn)− f(t2, σ, σ1, σ2, · · · , σn)| < ε′, where ε′ =
εΓ(κ + 1)

θκ
,

for every (t1, ρ, ρ1, ρ2, · · · , ρn), (t2, σ, σ1, σ2, · · · , σn) ∈ J× S̄(0,K) such that |t1 − t2|+ |ρ− σ|+ |ρ1 −
σ1|+ |ρ2 − σ2|+ · · ·+ |ρn − σn| < δ. Since ‖wn −w‖ → 0 as n→ ∞ so for ε > 0 ∃m ∈ N such that
sup|wn(t)−w(t)| < ε, for every n ≥m. Thus

‖Bwn −Bw‖ = sup
t∈J

∣∣∣∣ ∫ t

0

(t− s)κ−1

Γ(κ)
f(s, wn(s), wn(γ1s), · · · , w(γns))ds

−
∫ t

0

(t− s)κ−1

Γ(κ)
f(s, w(s), w(γ1s), · · · , w(γns))ds

∣∣∣∣
≤ sup

t∈J

∫ t

0

∣∣∣∣ (t− s)κ−1

Γ(κ)

∣∣∣∣ ∣∣∣∣f(s, wn(s), wn(γ1s), · · · , w(γns))

− f(s, w(s), w(γ1s), · · · , w(γns))
∣∣∣∣ds

≤ ε′θκ

Γ(κ + 1)

< ε.
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To prove B is compact, consider a bounded set S ⊂ Z. Let K ≥ 0, such that

‖w‖ ≤ K,

for every w ∈ S . B satisfies the growth condition as

‖Bw‖ ≤ c′‖w‖c2 + d′, where c′ =
cfθ

κ

Γ(κ + 1)
and d′ =

dθκ

Γ(κ + 1)
, (17)

for every w ∈ S . Now using the above growth condition, we have

‖Bw‖ ≤ c′Kc2 + d′.

So B(S) is bounded in Z. Since f ∈ C[J× Rm, R]. Thus f is uniform continuous on J× S̄(0,K),
let t1, t2 ∈ [0, θ] such that t1 ≥ t2|, then

|(Bw)(t1)− (Bw)(t2)| ≤
[ ∫ t1

0

(t− 1− s)κ−1

Γ(κ)
−
∫ t2

0

(t2 − s)κ−1

Γ(κ)

]
|f(s, w(s), w(γ1s), · · · , w(γns))|ds

≤
[c fKc2 + d]

Γ(κ + 1)
(tκ

1 − tκ
2). (18)

The right side of (18) tends to zero when t1 → t2. Therefore, ‖(Bw)(t1) − (Bw)(t2)‖ → 0 on
using t1 → t2. Hence in light of the Arzelá–Ascoli theorem, B(S) ⊂ Z is relatively compact. Thus B is
χ-Lipschitz with zero constant.

4. Existence Criteria

In this part of our paper we derive results for the existence and uniqueness of the solution to the
considered problem.

Theorem 2. If the functions g and f satisfy conditions (i), (ii) and (iii), then the integral equation

w(t) = w0 +
∫ θ

0

(θ − s)κ−1

Γ(κ)
g(s, w(s))ds +

∫ t

0

(t− s)κ−1

Γ(κ)
f(s, w(s), w(γ1s), · · · , w(γns))ds (19)

possesses at least one solution, w ∈ Z, and the solution(s) set is bounded in Z.

Proof. The operators A, B, M : Z → Z are bounded and continuous. Moreover, A is χ-Lipschitz
with constant L ∈ [0, 1) and B is χ-Lipschitz with zero constant (Propositions 4 and 3).M is a strict
χ-contraction with constant L (Proposition 2).

Consider the set
Θ = {w ∈ Z : ∃ µ ∈ [0, 1) such that w = µMw}.

Θ is bounded in Z. Take w ∈ Θ and µ ∈ [0, 1) such that w = µMw then

‖w‖ = µ‖Mw‖ ≤ µ (‖Aw‖+ ‖Bw‖)
≤ µ

[
a′‖w‖c1 + b′ + c′‖w‖c2 + d′

]
.

Thus Θ is bounded in Z for c1 < 1, c2 < 1. Therefore, Theorem 1 guarantees thatM possesses
at least one fixed point, and the set of the fixed points ofM is bounded in Z. Hence the considered
problem has at least one solution.

Let the given condition hold:
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(iv) There exist constants Lt > 0, Lf > 0 such that

|f(t, u(t), u(γ1t), · · · , u(γnt))− f(t, w(t), w(γ1t), · · · , w(γnt)|

≤ Lt

[
|u(t)−w(t)|+ |u(γ1t)−w(γ1t)|+ · · ·+ |u(γnt)−w(γnt)|

]
≤ Lf|u(t)−w(t)|,

where Lf = (n + 1)Lt, ∀ t ∈ J, and u, w ∈ R.

Theorem 3. Under hypotheses (i)–(iv), let ∃ a constant r > 0 such that

r = (K1 + Lf)
(

θκ

Γ(κ + 1)

)
< 1, (20)

then (19) possesses at most one solution. Consequently our considered problem (5) has at most one solution.

Proof. Thanks to the Banach fixed point theorem for u, w ∈ Z, take

‖Mu−Mw‖ ≤ ‖Au−Aw‖+ ‖Bu−Bw‖

≤ (K1 + Lf)
(

θκ

Γ(κ + 1)

)
‖u−w‖

= r‖u−w‖.

Hence, problem (19) possesses at most one solution. Consequently our considered problem (5)
has at most one solution.

5. Stability

Now we provide stability results for the problem (5). Here we say that the goal of stability
analysis of time delay problems/systems is to find the region in the delay parameter space where
the considered problem/system is still stable. In fact, in dynamical problems, we search for a fixed
point also called an equilibrium point and its stability. Therefore, investigating UH stability and its
different kinds, we do not need an exact equilibrium point (exact solution) but there exists a close exact
solution (fixed point) when the system is UH or UHR stable. First we provide a lemma which will
help in establishing stability analysis.

Lemma 3. For the perturb problem

cDκ
0+w(t) = f(t, w(t), w(γ1t), · · · , w(γnt)) + η(t), ∀ t ∈ J, 0 < κ ≤ 1,

w(0) = w0 +
∫ θ

0

(θ − s)κ−1

Γ(κ)
g(s, w)ds,

(21)

the following holds

|w(t)−Mw| ≤ θκε

Γ(κ + 1)
, t ∈ J.

Proof. By Lemma 2 the solution of perturb problem (21) is given by

w(t) =Mw +
∫ t

0

(t− s)κ−1

Γ(κ)
η(s)ds.
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By Remark 1, we get

|w(t)−Mw| ≤
∫ t

0

∣∣∣∣ (t− s)κ−1

Γ(κ)

∣∣∣∣|η(s)|ds

≤ θκε

Γ(κ + 1)
.

Theorem 4. By assumption (iv) and Lemma 3, problem (5) is UH and GUH stable if Γ(κ + 1) 6= (K1 +

Lf)θκ holds.

Proof. Let w ∈ Y be at most one result of (5) and w̄ be any other solution of (21), then

‖w̄−w‖ = ‖w̄−Mw‖
≤ ‖w̄−Mw̄‖+ ‖Mw̄−Mw‖

≤ θκε

Γ(κ + 1)
+ (K1 + Lf)

(
θκ

Γ(κ + 1)

)
‖w̄−w‖

= Cqε, where Cq =
θκ

Γ(κ + 1)− (K1 + Lf)θκ
.

Hence problem (5) is UH stable. For GUH stability if ∃ a nondecreasing function ξ : (0, 1)→ (0, ∞)

such that ξ(ε) = ε and ξ(0) = 0, then the above inequality gives,

‖w̄−w‖ ≤ Cqξ(ε).

which shows GUH stability of (5).

Lemma 4. For perturb problem (21) the relation provided by

|w(t)−Mw| ≤ θκ ϕε

Γ(κ + 1)
, t ∈ J

holds.

Proof. Similarly we can prove Lemma 3.

Theorem 5. By assumption (iv) and Lemma 4 problem (5) is UHR and GUHR stable if Γ(κ + 1) 6= (K1 +

Lf)θκ holds.

Proof. Let w ∈ Y be a unique solution of (5) and w̄ be any solution of (21), then

‖w̄−w‖ = ‖w̄−Mw‖
≤ ‖w̄−Mw̄‖+ ‖Mw̄−Mw‖

≤ θκ ϕε

Γ(κ + 1)
+ (K1 + Lf)

(
θκ

Γ(κ + 1)

)
‖w̄−w‖

= Cq,ϕ ϕ(t)ε, where Cq,ϕ =
θκ

Γ(κ + 1)− (K1 + Lf)θκ
.

Hence the problem (5) is UHR stable. Now using the above inequality with

Cq,ϕ =
θκε

Γ(κ + 1)− (K1 + Lf)θκ
,
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we have
‖w̄−w‖ ≤ Cq,ϕ ϕ(t).

Thus problem (5) is GUHR stable.

6. Application of Aforesaid Analysis

Here we present some applications for our analysis.

Example 1. Consider the given problem as

cD
1
2
0+w(t) = t2 +

1
100

(
|w(t)|

1 + |w(t)| 12
+

|w(γ1t)|
1 + |w(γ1t)| 12

+
|w(γ2t)|

1 + |w(γ2t)| 12
(22)

+
|w(γ3t)|

1 + |w(γ3t)| 12

)

w(0) = w0 +
∫ 1

0

1
500

(1− s)
−1
2

Γ( 1
2 )

(
w(s)

1 + |w(s)| 12

)
ds.

Here we have

f(t, w(t), w(γ1t), w(γ2t), w(γ3t)) = t2 +
1

100

(
|w(t)|

1 + |w(t)| 12
+

|w(γ1t)|
1 + |w(γ1t)| 12

+
|w(γ2t)|

1 + |w(γ2t)| 12
+

|w(γ3t)|
1 + |w(γ3t)| 12

)
, g(t, w) =

1
500

(
w(t)

1 + |w(t)| 12

)
.

Now f, g satisfies conditions (i)–(iii) for κ = 1
2 , J = [0, 1], a = K1 = 1

500 , b = 0, c1 = c2 = 1
2 , cf = 1

25 ,
d = 1 and w0 = 1, consider the set

Θ = {w ∈ Z : ∃ µ ∈ [0, 1] such that w = µMw}.

Let w ∈ Θ and µ ∈ [0, 1], such that w = µMw, then

‖w‖ = µ‖Mw‖ ≤ µ (‖Aw‖+ ‖Bw‖)
≤ µ

[
a′‖w‖c1 + b′ + c′‖w‖c2 + d′

]
≤ µ

[
1

250
√

π
‖w‖

1
2 + 1 +

2
25
√

π
‖w‖

1
2 +

2√
π

]
,

which shows Θ is bounded in Z. Thus by using Theorem 2, the problem (22) possesses at least one solution and
the set of solutions is bounded.

For uniqueness, if f satisfies condition (iv) with Lf = 1
25 , then

r ≈ 0.0472 < 1.

Hence Theorem 3 guarantees that problem (22) has a unique solution.
The problem (22) is UR and GUH stable, since Γ(κ + 1) 6= (K1 + Lf)θκ for Lf = 1

25 , θ = 1, κ =
1
2 , K1 = 1

500 . Similarly problem (22) is UHR and GUHR stable with ϕ(t) = t for t ∈ (0, 1).
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Example 2. Now, we discuss the same analysis for the problem given below:

cD
1
5
0+w(t) =

1√
exp (t)

+
1
5
|w(t)|+ sin(|w(γ1t)|)

1 + |w(γ2t)| 14
(23)

w(0) = w0 +
∫ 1

0

(1− s)
−4
5

Γ( 1
5 )

1
10

(s + w(s))ds.

Here we have

f(t, w(t), w(γ1t), w(γ2t)) =
1√

exp (t)
+

1
5
|w(t)|+ sin(|w(γ1t)|)

1 + |w(γ2t)| 14
and

g(t, w) =
1
10

(t + w(t)).

Now f, g satisfies condition (i)–(iii) for κ = 1
5 , J = [0, 1], a = b = K1 = 1

10 , c1 = 1, c2 = 3
4 , cf = 2

5 ,
d = w0 = 1; consider the set

Θ = {w ∈ Z : ∃ µ ∈ [0, 1] such that w = µMw}.

Let w ∈ Θ and µ ∈ [0, 1], such that w = µMw, then

‖w‖ = µ‖Mw‖ ≤ µ (‖Aw‖+ ‖Bw‖)
≤ µ

[
a′‖w‖c1 + b′ + c′‖w‖c2 + d′

]
≤ µ

[
1

2Γ( 1
5 )
‖w‖+ 1 +

1
2Γ( 1

5 )
+

2
Γ( 1

5 )
‖w‖

3
4 +

5
Γ( 1

5 )

]
,

which shows Θ is bonded in Z. Thus by using Theorem 2, problem (23) possesses at least one solution and the set
of solutions is bounded.

For uniqueness, if f satisfies condition (iv) with Lf = 2
5 , then

r ≈ 0.544563 < 1.

Hence Theorem 3 guarantees that problem (23) has a unique solution.
The problem (23) is UH and GUH stable, since Γ(κ + 1) 6= (K1 + Lf)θκ for Lf = 2

5 , θ = 1, κ =
1
5 , K1 = 1

10 . Similarly problem (23) is UHR and GUHR stable with ϕ(t) = t for t ∈ (0, 1).

Example 3. Let us take another problem as

cD
7
9
0+w(t) = 10 exp(−t) +

(
− 1

20

(
|w(t)|+ |w(γ1t)|+ |w(γ2t)|

5 exp(t) + |w(γ3t)| 13

))
(24)

w(0) =
∫ 1

0

(1− s)
−2
9

Γ( 7
9 )

1
5

(
w(s)

1 + | sin(w(s))| 35

)
ds.

Here we have

f(t, w(t), w(γ1t), w(γ2t), w(γ3t)) = 10 exp(−t) +

(
− 1

20

(
|w(t)|+ |w(γ1t)|+ |w(γ2t)|

5 exp(t) + |w(γ3t)| 13

))
dt,

g(t, w) =
1
5

(
w(t)

1 + | sin(w(t))| 35

)
.
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Now f, g satisfies conditions (i)–(iii) for κ = 7
9 , J = [0, 1], a = K1 = 1

5 , b = 0, c1 = 2
5 , c2 = 2

3 , cf = 3
20 ,

d = 10e and w0 = 0, consider the set

Θ = {w ∈ Z : ∃ µ ∈ [0, 1] such that w = µMw}.

Let w ∈ Θ and µ ∈ [0, 1], such that w = µMw, then

‖w‖ = µ‖Mw‖ ≤ µ (‖Aw‖+ ‖Bw‖)
≤ µ

[
a′‖w‖c1 + b′ + c′‖w‖c2 + d′

]
≤ µ

[
9

35Γ( 7
9 )
‖w‖

2
5 +

27
140Γ( 7

9 )
‖w‖

2
3 +

10
7Γ( 7

9 )

]
,

which shows Θ is bonded in Z. Thus by using Theorem 2, the problem (24) possesses at least one solution and
the set of solutions is bounded.

For uniqueness, if f satisfies condition (iv) with Lf = 3
20 , then

r ≈ 0.378103 < 1.

Hence Theorem 3 guarantees that problem (24) has a unique solution.
The problem (24) is UH and GUH stable, since Γ(κ + 1) 6= (K1 + Lf)θκ for Lf = 3

20 , θ = 1, κ =
7
9 , K1 = 1

5 . Similarly problem (24) is UHR and GUHR stable with ϕ(t) = t for t ∈ (0, 1).

7. Concluding Remarks

Upon the application of the tool of nonlinear analysis known as the degree theory, we have
successfully established some sufficient results for the existence and uniqueness of the solution
to multi-terms delay FODEs under nonlinear integral boundary conditions. Further, some stable
results regarding Ulam and its various kinds have also been derived via nonlinear functional analysis.
The whole theoretical results have been testified to by providing some interesting examples. Hence,
we claim that the suggested method can be used as a strong technique instead of the usual fixed point
theory to study nonlinear delay FODEs under different boundary conditions. In future, we will extend
the topological degree theory approach to more general problems involving other kinds of fractional
derivatives like Riemann–Liouvile, Hadamard and Caputo–Fabrizo.
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