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Abstract: In the subject of statistics for engineering, physics, computer science, chemistry, and earth
sciences, one of the sampling challenges is the accuracy, or, in other words, how representative the
sample is of the population from which it was drawn. A series of statistics were developed to measure
the departure between the population (theoretical) and the sample (observed) distributions. Another
connected issue is the presence of extreme values—possible observations that may have been wrongly
collected—which do not belong to the population selected for study. By subjecting those two issues
to study, we hereby propose a new statistic for assessing the quality of sampling intended to be used
for any continuous distribution. Depending on the sample size, the proposed statistic is operational
for known distributions (with a known probability density function) and provides the risk of being in
error while assuming that a certain sample has been drawn from a population. A strategy for sample
analysis, by analyzing the information about quality of the sampling provided by the order statistics
in use, is proposed. A case study was conducted assessing the quality of sampling for ten cases, the
latter being used to provide a pattern analysis of the statistics.
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1. Introduction

Under the assumption that a sample of size n, was drawn from a certain population (x1, ..., xn ∈
X) with a known distribution (with known probability density function, PDF) but with unknown
parameters (in number of m, {π1, ..., πm}), there are alternatives available in order to assess the quality
of sampling.

One category of alternatives sees the sample as a whole—and in this case, a series of statistics was
developed to measure the agreement between a theoretical (in the population) and observed (of the
sample) distribution. This approach is actually a reversed engineering of the sampling distribution,
providing a likelihood for observing the sample as drawn from the population. To do this for any
continuous distribution, the problem is translated into the probability space by the use of a cumulative
distribution function (CDF).

Formally, if PDF(x; (πj)1≤j≤m) takes values on a domain D, then CDF is defined by Equation (1)
and {p1, ..., pn} defined by Equation (2) is the series of cumulative probabilities associated with the
drawings from the sample.

CDF(x; (πj)1≤j≤m) =
∫ x

in f (D)
PDF(t; (πj)1≤j≤m)dt (1)

{p1, ..., pn} = CDF({x1, ..., xn}; (πj)1≤j≤m). (2)
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CDF is always a bijective (and invertible; let InvCDF be its inverse, Equation (3)) function.

x = InvCDF(p; (πj)1≤j≤m). (3)

The series of cumulative probabilities {p1, ..., pn}, independently of the distribution (PDF) of the
population (X) subjected to the analysis, have a known domain (0 ≤ pi ≤ 1 for all 1 ≤ i ≤ n) belonging
to the continuous uniform distribution (p1, ..., pn ∈ U(0, 1)). In the sorted cumulative probabilities
({q1, ..., qn} defined by Equation (4)), sorting defines an order relationship (0 ≤ q1 ≤ ... ≤ qn ≤ 1).

{q1, ..., qn} = SORT({p1, ..., pn}; “ascending”). (4)

If the order of drawing in sample ({x1, ..., xn}) and of appearance in the series of associated CDF
({p1, ..., pn}) is not relevant (e.g., the elements in those sets are indistinguishable), the order relationship
defined by Equation (4) makes them ({q1, ..., qn}) distinguishable (the order being relevant).

A series of order statistics (OS) were developed (to operate on ordered cumulative probabilities
{q1, ..., qn}) and they may be used to assess the quality of sampling for the sample taken as a whole
(Equations (5)–(10) below): Cramér–von Mises (CMStatistic in Equation (5), see [1,2]), Watson U2
(WUStatistic in Equation (6), see [3]), Kolmogorov–Smirnov (KSStatistic in Equation (7), see [4–6]), Kuiper
V (KVStatistic in Equation (8), see [7]), Anderson–Darling (ADStatistic in Equation (9), see [8,9]), and H1
(H1Statistic in Equation (10), see [10]).

CMStatistic =
1

12n
+

n

∑
i=1

(2i− 1
2n

− qi

)2
(5)

WUStatistic = CMStatistic +
(1

2
− 1

n

n

∑
i=1

qi

)2
(6)

KSStatistic =
√

n · max
1≤i≤n

(
qi −

i−1
n

,
i
n
− qi

)
(7)

KVStatistic =
√

n ·
(

max
1≤i≤n

(
qi−

i−1
n
)
+ max

1≤i≤n

( i
n
−qi

))
(8)

ADStatistic = −n− 1
n

n

∑
i=1

(2i− 1)ln
(
qi(1− qn−i)

)
(9)

H1Statistic = −
n

∑
i=1

qiln(qi)−
n

∑
i=1

(1− qi)ln(1− qi). (10)

Recent uses of those statistics include [11] (CM), [12] (WU), [13] (KS), [14] (AD), and [15] (H1).
Any of the above given test statistics are to be used, providing a risk of being in error for the assumption
(or a likelihood to observe) that the sample ({x1, ..., xn}) was drawn from the population (X). Usually
this risk of being in error is obtained from Monte Carlo simulations (see [16]) applied on the statistic
in question and, in some of the fortunate cases, there is also a closed-form expression (or at least, an
analytic expression) for CDF of the statistic available as well. In the less fortunate cases, only ’critical
values’ (values of the statistic for certain risks of being in error) for the statistic are available.

The other alternative in assessing the quality of sampling refers to an individual observation
in the sample, specifically the less likely one (having associated q1 or qn with the notations given in
Equation (4)). The test statistic is g1 [15], given in Equation (11).

g1Statistic = max
1≤i≤n

|pi − 0.5|. (11)
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It should be noted that ’taken as a whole’ refers to the way in which the information contained in
the sample is processed in order to provide the outcome. In this scenario (’as a whole’), the entirety
of the information contained in the sample is used. As it can be observed in Equations (5)–(10), each
formula uses all values of sorted probabilities ({q1, ..., qn}) associated with the values ({x1, ..., xn})
contained in the sample, while, as it can be observed in Equation (11), only the extreme value
(max({q1, ..., qn}) or min({q1, ..., qn})) is used; therefore, one may say that only an individual
observation (the extremum portion of the sample) yields the statistical outcome.

The statistic defined by Equation (11) no longer requires cumulative probabilities to be sorted;
one only needs to find the most departed probability from 0.5—see Equation (11)—or, alternatively,
to find the smallest (one having associated q1 defined by Equation (4)) and the largest (one having
associated qn defined by Equation (4)), and to find which deviates from 0.5 the most (g1Statistic =

max{|q1 − 0.5|, |qn − 0.5|}).
We hereby propose a hybrid alternative, a test statistic (let us call it TS) intended to be used in

assessing the quality of sampling for the sample, which is mainly based on the less likely observation
in the sample, Equation (12).

TSStatistic =

max
1≤i≤n

|pi − 0.5|

∑
1≤i≤n

|pi − 0.5| . (12)

The aim of this paper is to characterize the newly proposed test statistic (TS) and to analyze its
peculiarities. Unlike the test statistics assessing the quality of sampling for the sample taken as a whole
(Equations (5)–(10), and like the test statistic assessing the quality of sampling based on the less likely
observation of the sample, Equation (11), the proposed statistic, Equation (12), does not require that the
values or their associated probabilities ({p1, ..., pn}) be sorted (as {q1, ..., qn}); since (like the g1 statistic)
it uses the extreme value from the sample, one can still consider it a sort of OS [17]. When dealing with
extreme values, the newly proposed statistic, Equation (12), is a much more natural construction of a
statistic than the ones previously reported in the literature, Equations (5)–(10), since its value is fed
mainly from the extreme value in the sample (see the max function in Equation (12)). Later, it will be
given a pattern analysis, revealing that it belongs to a distinct group of statistics that are more sensitive
to the presence of extreme values. A strategy of using the pool of OS (Equations (5)–(12)) including TS
in the context of dealing with extreme values is given, and the probability patterns provided by the
statistics are analyzed.

The rest of the paper is organized as follows. The general strategy of sampling a CDF from an OS
and the method of combining probabilities from independent tests are given in Section 2, while the
analytical formula for the proposed statistic is given in Section 3.1, and computation issues and proof
of fact results are given in Section 3.2. Its approximation with other functions is given in Section 3.3.
Combining its calculated risk of being in error with the risks from other statistics is given in Section 3.4,
while discussion of the results is continued with a cluster analysis in Section 3.5, and in connection
with other approaches in Section 3.6. The paper also includes an appendix of the source codes for two
programs and accompanying Supplementary Material.

2. Material and Method

2.1. Addressing the Computation of CDF for OS(s)

A method of constructing the observed distribution of the g1 statistic, Equation (11),
has already been reported elsewhere [15]. A method of constructing the observed distribution
of the Anderson–Darling (AD) statistic, Equation (9), has already been reported elsewhere [17];
the method for constructing the observed distribution of any OS via Monte Carlo (MC) simulation,
Equations (5)–(12), is described here and it is used for TS, Equation (12).

Let us take a sample size of n. The MC simulation needs to generate a large number of
samples (let the number of samples be m) drawn from uniform continuous distribution ({p1, ..., pn} in
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Equation (2)). To ensure a good quality MC simulation, simply using a random number generator is
not good enough. The next step (Equations (10)–(12) do not require this) is to sort the probabilities to
arrive at {q1, ..., qn} from Equation (4) and to calculate an OS (an order statistic) associated with each
sample. Finally, this series of sample statistics ({OS1, ..., OSw} in Figure 1) must be sorted in order to
arrive at the population emulated distribution. Then, a series of evenly spaced points (from 0 to 1000
in Figure 1) corresponding to fixed probabilities (from InvCDF0 = 0 to InvCDF1000 = 1 in Figure 1) is
to be used saving the (OS statistic, its observed CDF probability) pairs (Figure 1).

 
Si = {pi,1, …, pi,n} 

↓i = 1, …, w 

{S1, …, Sw} 

→ 

eq.10 

→ 

OSi 

↓i = 1, …, w 

{OS1, …, OSw} 

sort 

→ 

SOSi ← i-th sorted value 

from {OS1, …, OSw} 

{SOS1, …, SOSw} 
collect 

→ 
InvCDFj = SOS(w+1)∙j/1000 

{InvCDF0, …, InvCDF1000} 

Step 1 Step 2 Step 3 Step 4 

 
Figure 1. The four steps to arrive at the observed CDF of OS.

The main idea is how to generate a good pool of random samples from a uniform U(0, 1)
distribution. Imagine a (pseudo) random number generator, Rand, is available, which generates
numbers from a uniform U(0, 1) distribution, from a [0, 1) interval; such an engine is available in many
types of software and in most cases, it is based on Mersenne Twister [18]. What if we have to extract a
sample of size n = 2? If we split in two the [0, 1) interval (then into [0, 0.5) and [0.5, 1)) then for two
values (let us say v1 and v2), the contingency of the cases is illustrated in Figure 2.

[0, 1) v1 v2 v1v2 v1+v2 

[0, 0.5) 0 1 0 1 00 01 10 11 0 1 2 

occurrence 50% 50% 50% 50% 25% 25% 25% 25% 25% 50% 25% 

 

Figure 2. Contingency of two consecutive drawings from [0, 1).

According to the design given in Figure 2, for 4 (=22) drawings of two numbers (v1 and v2) from
the [0, 1) interval, a better uniform extraction (v1v2, ’distinguishable’) is (“00”) to extract first (v1) from
[0, 0.5) and second (v2) from [0, 0.5), then (“01”) to extract first (v1) from [0, 0.5) and second (v2) from
[0.5, 1), then (“10”) to extract first (v1) from [0, 0.5) and second (v2) from [0.5, 1), and finally (“11”) to
extract first (v1) from [0.5, 1) and second (v2) from [0.5, 1).

An even better alternative is to do only 3 (=2 + 1) drawings (v1 + v2, ’undistinguishable’), which
is (“0”) to extract both from [0, 0.5), then “1”) to extract one (let us say first) from [0, 0.5), and another
(let us say second) from [0.5, 1), and finally, (“2”) to extract both from [0.5, 1) and to keep a record for
their occurrences (1, 2, 1), as well. For n numbers (Figure 3), it can be from [0, 0.5) from 0 to n of them,
with their occurrences being accounted for.

|{vi, vi[0, 0.5), 1  i  n}| 0 … j … n 

Occurrence 1 … n!/((n-j)!∙j!) … 1 

 

Figure 3. Contingency of n consecutive drawings from [0, 1).

According to the formula given in Figure 3, for n numbers to be drawn from [0, 1), a multiple
of n + 1 drawings must be made in order to maintain the uniformity of distribution (w from Figure 1
becomes n + 1). In each of those drawings, we actually only pick one of n (random) numbers (from the
[0, 1) interval) as independent. In the (j + 1)-th drawing, the first j of them are to be from [0, 0.5), while
the rest are to be from [0.5, 1). The algorithm implementing this strategy is given as Algorithm 1.

Algorithm 1 is ready to be used to calculate any OS (including the TS first reported here). For each
sample drawn from the U(0, 1) distribution (the array v in Algorithm 1), the output of it (the array
u and its associated frequencies n!/j!/(n − j)!) can be modified to produce less information and
operations (Algorithm 2). Calculation of the OS (OSj output value in Algorithm 2) can be made to any
precision, but for storing the result, a single data type (4 bytes) is enough (providing seven significant
digits as the precision of the observed CDF of the OS). Along with a byte data type (j output value
in Algorithm 2) to store each sampled OS, 5 bytes of memory is required, and the calculation of
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n!/(n− j)!/j! can be made at a later time, or can be tabulated in a separate array, ready to be used at a
later time.

Algorithm 1: Balancing the drawings from uniform U(0, 1) distribution.
Input data: n (2 ≤ n, integer)
Steps:

For i from 1 to n do v[i]← Rand
For j from 0 to n do

For i from 1 to j do u[i]← v[i]/2
For i from j+1 to n do u[i]← v[i]/2+1/2
occ← n!/j!/(n-j)!
Output u[1], ..., u[n], occ

EndFor
Output data: (n+1) samples (u) of sample size (n) and their occurrences (occ)

Algorithm 2: Sampling an order statistic (OS).
Input data: n (2 ≤ n, integer)
Steps:

For i from 1 to n do v[i]← Rand
For j from 0 to n do

For i from 1 to j do u[i]← v[i]/2
For i from j+1 to n do u[i]← v[i]/2+1/2
OSj← any Equations (5)–(12) with p1←u[1], ..., pn←u[n]
Output OSj, j

EndFor
Output data: (n+1) OS and their occurrences

As given in Algorithm 2, each use of the algorithm sampling OS will produce two associated
arrays: OSj (single data type) and j (byte data type); each of them with n + 1 values. Running the
algorithm r0 times will require 5 · (n+ 1) · r0 bytes for storage of the results and will produce (n+ 1) · r0
OSs, ready to be sorted (see Figure 1). With a large amount of internal memory (such as 64 GB when
running on a 16/24 cores 64 bit computers), a single process can dynamically address very large arrays
and thus can provide a good quality, sampled OS. To do this, some implementation tricks are needed
(see Table 1).

Table 1. Software implementation peculiarities of MC simulation.

Constant/Variable/Type Value Meaning

stt← record v:single; c:byte; end (OSj, j) pair from Algorithm 2 stored in 5 bytes
mem← 12,800,000,000 in bytes, 5*mem← 64Gb, hardware limit

buf← 1,000,000 the size of a static buffer of data (5*buf bytes)
stst← array[0..buf-1]of stt static buffer of data

dyst← array of stst dynamic array of buffers
lvl← 1000 lvl + 1: number of points in the grid (see Figure 1)

Depending on the value of the sample size (n), the number of repetitions (r2) for sampling of OS,
using Algorithm 2, from r0 ← mem/(n + 1) runs, is r2 ← r0 · (n + 1), while the length (sts) of the
variable (CDFst) storing the dynamic array (dyst) from Table 1 is sts← 1 + r2/bu f . After sorting the
OSs (of sttype, see Table 1; total number of r2) another trick is to extract a sample series at evenly spaced
probabilities from it (from InvCDF0 to InvCDF1000 in Figure 1). For each pair in the sample (lvli varying
from 0 to lvl = 1000 in Table 1), a value of the OS is extracted from CDFst array (which contains ordered
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OS values and frequencies indexed from 0 to r2−1), while the MC-simulated population size is r0 · 2n.
A program implementing this strategy is available upon request (project_OS.pas).

The associated objective (with any statistic) is to obtain its CDF and thus, by evaluating the CDF
for the statistical value obtained from the sample, Equations (5)–(12), to associate a likelihood for the
sampling. Please note that only in the lucky cases is it possible to do this; in the general case, only
critical values (values corresponding to certain risks of being in error) or approximation formulas are
available (see for instance [1–3,5,7–9]). When a closed form or an approximation formula is assessed
against the observed values from an MC simulation (such as the one given in Table 1), a measure of
the departure such as the standard error (SE) indicates the degree of agreement between the two. If a
series of evenly spaced points (lvl + 1 points indexed from 0 to lvl in Table 1) is used, then a standard
error of the agreement for inner points of it (from 1 to lvl − 1, see Equation (13)) is safe to be computed
(where pi stands for the observed probability while p̂i for the estimated one).

SE =

√
SS

lvl − 1
, SS =

lvl−1

∑
i=1

(pi − p̂i)
2. (13)

In the case of lvl + 1, evenly spaced points in the interval [0, 1] in the context of MC simulation
(as the one given in Table 1) providing the values of OS statistic in those points (see Figure 1),
the observed cumulative probability should (and is) taken as pi = i/lvl, while p̂i is to be (and
were) taken from any closed form or approximation formula for the CDF statistic (labeled p̂) as
p̂i = p̂(InvCDFi), where InvCDFi are the values collected by the strategy given in Figure 1 operating
on the values provided by Algorithm 2. Before giving a closed form for CDF of TS (Equation (12)) and
proposing approximation formulas, other theoretical considerations are needed.

2.2. Further Theoretical Considerations Required for the Study

When the PDF is known, it does not necessarily imply that its statistical parameters ((πj)1≤j≤m
in Equations (1)–(3)) are known, and here, a complex problem of estimating the parameters of the
population distribution from the sample (it then uses the same information as the one used to assess
the quality of sampling) or from something else (and then it does not use the same information as the
one used to assess the quality of sampling) can be (re)opened, but this matter is outside the scope of
this paper.

The estimation of distribution parameters (πj)1≤j≤m for the data is, generally, biased by the
presence of extreme values in the data, and thus, identifying the outliers along with the estimation of
parameters for the distribution is a difficult task operating on two statistical hypotheses. Under this
state of facts, the use of a hybrid statistic, such as the proposed one in Equation (12), seems justified.
However, since the practical use of the proposed statistics almost always requires estimation of the
population parameters (and in the examples given below, as well), a certain perspective on estimation
methods is required.

Assuming that the parameters are obtained using the maximum likelihood estimation method
(MLE, Equation (14); see [19]), one could say that the uncertainty accompanying this estimation
is propagated to the process of detecting the outliers. With a series of τ statistics (τ = 6 for
Equations (5)–(10) and τ = 8 for Equations (5)–(12)) assessing independently the risk of being in error
(let be α1, ..., ατ those risks), assuming that the sample was drawn from the population, the unlikeliness
of the event (αFCS in Equation (15) below) can be ascertained safely by using a modified form of
Fisher’s “combining probability from independent tests” method (FCS, see [10,20,21]; Equation (15)),
where CDFχ2(x; τ) is the CDF of χ2 distribution with τ degrees of freedom.

max
(

∏
1≤i≤n

PDF(xi; (πj)1≤j≤m)
)
→ min

(
∑

1≤j≤m
ln
(
PDF(xi; (πj)1≤j≤m)

))
(14)
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FCS = −ln
(

∏
1≤k≤τ

αk

)
, αFCS = 1−CDFχ2(FCS; τ). (15)

Two known symmetrical distributions were used (PDF, see Equation (1)) to express the relative
deviation from the observed distribution: Gauss (G2 in Equation (16)) and generalized Gauss–Laplace
(GL in Equation (17)), where (in both Equations (16) and (17)) z = (x− µ)/σ.

G2(x; µ, σ) = (2π)−1/2σ−1e−z2/2 (16)

GL(x; µ, σ, κ) =
c1

σ
e−|c0z|κ , c0 =

(Γ(3/κ)

Γ(1/κ)

)1/2
, c1 =

κc0

2Γ(1/κ)
. (17)

The distributions given in Equations (16) and (17) will be later used to approximate the CDF of TS
as well as in the case studies of using the order statistics. For a sum (x ← p1+...+pn in Equation (18))
of uniformly distributed (p1, ..., pn ∈ U(0, 1)) deviates (as {p1, ..., pn} in Equation (2)) the literature
reports the Irwin–Hall distribution [22,23]. The CDFIH(x; n) is:

CDFIH(x; n) =
bxc

∑
k=0

(−1)k (x− k)n

k!(n− k)!
. (18)

3. Results and Discussion

3.1. The Analytical Formula of CDF for TS

The CDF of TS depends (only) on the sample size (n), e.g., CDFTS(x; n). As the proposed equation,
Equation (12), resembles (as an inverse of) a sum of normal deviates, we expected that the CDFTS will
also be connected with the Irwin–Hall distribution, Equation (18). Indeed, the conducted study has
shown that the inverse (y ← 1/x) of the variable (x) following the TS follows a distribution (1/TS)
of which the CDF is given in Equation (19). Please note that the similarity between Equations (18)
and (19) is not totally coincidental; 1/TS (see Equation (12)) is more or less a sum of uniform distributed
deviates divided by the highest one. Also, for any positive arbitrary generated series, its ascending (x)
and descending (1/x) sorts are complementary. With the proper substitution, CDF1/TS(y; n) can be
expressed as a function of CDFIH—see Equation (20).

CDF1/TS(y; n) =
bn−yc

∑
k=0

(−1)k (n− y− k)n−1

k!(n− 1− k)!
(19)

CDF1/TS(y; n) = CDFIH(n− y; n− 1). (20)

Unfortunately, the formulas, Equation (18) to Equation (20), are not appropriate for large n
and p (p = CDF1/TS(y; n) from Equation (19)), due to the error propagated from a large number of
numerical operations (see further Table 2 in Section 3.2). Therefore, for p > 0.5, a similar expression
providing the value for α = 1− p is more suitable. It is possible to use a closed analytical formula
for α = 1−CDF1/TS(y; n) as well, Equation (21). Equation (21) resembles the Irwin–Hall distribution
even more closely than Equation (20)—see Equation (22).

1−CDF1/TS(y; n) =
byc−1

∑
k=0

(−1)k (y− 1− k)n

k!(n− 1− k)!
(21)

1−CDF1/TS(y; n) = CDFIH(y− 1; n− 1). (22)
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For consistency in the following notations, one should remember the definition of CDF, see
Equation (1), and then we mark the connection between notations in terms of the analytical expressions
of the functions, Equation (23):

CDFTS(x; n)=1−CDF1/TS(1/x; n), CDFTS(1/x; n)=1−CDF1/TS(x; n),
since InvCDFTS(p; n)·InvCDF1/TS(p; n) = 1.

(23)

One should notice (Equation (1); Equation (23)) that the infimum for the domain of 1/TS (1) is
the supremum for the domain of TS (1) and the supremum (n) for the domain of 1/TS is the infimum
(1/n) for the domain of TS. Also, TS has the median (p = α = 0.5) at 2/(n + 1), while 1/TS has the
median (which is also the mean and mode) at (n + 1)/2. The distribution of 1/TS is symmetrical.

For n = 2, the p = CDF1/TS(y; n) is linear (y + p = 2), while for n = 3, it is a mixture of two
square functions: 2p = (3− y)2, for p ≤ 0.5 (and y ≥ 2), and 2p + (y− 1)2 = 1 for p ≥ 0.5 (and x ≤ 2).
With the increase of n, the number of mixed polynomials of increasing degree defining its expression
increases. Therefore, it has no way to provide an analytical expression for InvCDF of 1/TS, not even
for certain p values (such as ’critical’ analytical functions).

The distribution of 1/TS can be further characterized by its central moments (Mean µ,
Variance σ2, Skewness γ1, and Kurtosis κ in Equation (24)), which are closely connected with the
Irwin–Hall distribution.

For 1/TS(y; n): µ=(n + 1)/2; σ2=(n−1)/12, γ1 = 0; κ = 3−6/(5n−5). (24)

3.2. Computations for the CDF of TS and Its Analytical Formula

Before we proceed in providing the simulation results, some computational issues must be
addressed. Any of the formulas provided for CDF of TS (Equations (19) and (21); or Equations (20)
and (22) both connected with Equation (18)), will provide almost exact calculations as long as
computations with the formulas are conducted with an engine or package that performs the operations
with rational numbers to an infinite precision (such as is available in the Mathematica software [24]),
when also the value of y (y← 1/x, of floating point type) is converted to a rounded, rational number.
Otherwise, with increasing n, the evaluation of CDF for TS using either Equation (19) to Equation (22)
carries huge computational errors (see the alternating sign of the terms in the sums of Equations (18),
(19), and (21)). In order to account for those computational errors (and to reduce their magnitude)
an alternate formula for the CDF of TS is proposed (Algorithm 3), combining the formulas from
Equations (19) and (21), and reducing the number of summed terms.

Algorithm 3: Avoiding computational errors for TS.
Input data: n (n ≥ 2, integer), x (1 ≤ x ≤ 1/n, real number, double precision)

y← 1/x; //p1/TS ← Equation (19), α1/TS ← Equation (21)
if y <(n+1)/2

p← ∑
byc−1
k=0 (−1)k (y−1−k)n

k!(n−1−k)! ; α← 1− p
else if y >(n+1)/2

α← ∑
bn−yc
k=0 (−1)k (n−y−k)n−1

k!(n−1−k)! ; p← 1− α

else
α← 0.5 ; p← 0.5

Output data: α=α1/TS=pTS←CDFTS(x; n) and p= p1/TS=αTS←1−pTS
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Table 2 contains the sums of the residuals (SS = ∑999
i=1(pi − p̂i)

2 in Equation (13), lvl = 1000) of
the agreement between the observed CDF of TS (pi = i/1000, for i from 1 to 999) and the calculated
CDF of TS (the p̂i values are calculated using Algorithm 3 from xi = InvCDF(i/1000; n) for i from 1 to
999) for some values of the sample size (n). To prove the previous given statements, Table 2 provides
the square sums of residuals computed using three alternate formulas (from Equation (20) and from
Equation (22), along with the ones from Algorithm 3).

Table 2. Square sums of residuals calculated in double precision (IEEE 754 binary64, 64 bits).

n pi Calculated with Equation (19) pi Calculated with Equation (21) pi Calculated with Algorithm 4

34 3.0601572482628 × 10−8 3.0601603616294 × 10−8 3.0601364353173 × 10−8

35 6.0059397209079 × 10−8 6.0057955311142 × 10−8 6.0057052975471 × 10−8

36 1.1567997676343 × 10−8 1.1572997605838 × 10−8 1.1567370749831 × 10−8

37 8.9214456109544 × 10−8 8.9215230398577 × 10−8 8.9213063043724 × 10−8

38 1.1684682533384 × 10−8 1.1681544866285 × 10−8 1.1677646550768 × 10−8

39 1.2101651325053 × 10−8 1.2181659126285 × 10−8 1.2100378665608 × 10−8

40 1.1041708665520 × 10−7 1.1043952711846 × 10−7 1.1036003349029 × 10−7

41 7.2871410520319 × 10−8 7.2755412302319 × 10−8 7.2487977100103 × 10−8

42 1.9483807018501 × 10−8 1.9626447735907 × 10−8 1.9273186509959 × 10−8

43 3.1128379331196 × 10−8 1.7088238120170 × 10−8 1.3899520242290 × 10−8

44 8.7810761126831 × 10−8 3.8671367222236 × 10−8 1.0878689813951 × 10−8

45 1.1914784602127 × 10−7 3.1416715528555 × 10−7 5.8339481916925 × 10−8

46 2.0770754629042 × 10−6 1.2401177918843 × 10−6 4.4594953399233 × 10−8

47 5.0816356972050 × 10−7 4.1644326761832 × 10−7 1.8942487765410 × 10−8

48 1.5504732794049 × 10−6 5.5760558048026 × 10−6 5.7292512517324 × 10−8

49 1.1594466754136 × 10−5 6.4164330856396 × 10−6 1.7286761495408 × 10−7

50 1.0902858025759 × 10−5 8.0190771776360 × 10−6 8.5891058550425 × 10−8

51 6.4572577668164 × 10−6 1.6023753568028 × 10−4 1.9676739380922 × 10−8

52 1.0080944275181 × 10−4 9.1080176774820 × 10−5 1.0359121739272 × 10−7

53 9.3219609856284 × 10−4 2.7347575817507 × 10−4 1.5873847007230 × 10−8

54 4.8555844748161 × 10−4 1.6086902937472 × 10−3 9.2930071189138 × 10−9

55 6.2446720485774 × 10−4 1.6579954395873 × 10−3 1.2848119194342 × 10−7

In red: computing affected digits.

As given in Table 2, the computational errors by using either Equation (20) (or Equation (19))
and Equation (22) (or Equation (21)) until n = 34 are reasonably low, while from n = 42, they become
significant. As can be seen (red values in Table 2), double precision alone cannot cope with the large
number of computations, especially as the terms in the sums are constantly changing their signs
(see (−1)k in Equations (19) and (21)).

The computational errors using Algorithm 3 are reasonably low for the whole domain of the
simulated CDF of TS (with n from 2 to 55), but the combined formula (Algorithm 3) is expected to lose
its precision for large n values, and therefore, a solution to safely compute (CDF for IH, TS and 1/TS)
is to operate with rational numbers.

One other alternative is to use GNU GMP (Multiple Precision Arithmetic Library [25]).
The calculations are the same (Algorithm 3); the only difference is the way in which the temporary
variables are declared (instead of double, the variables become mp f _t initialized later with a
desired precision).

For convenience, the FreePascal [26] implementation for CDF of the Irwin–Hall distribution
(Equation (18), called in the context of evaluating the CDF of TS in Equations (20) and (22)) is given as
Algorithm 4.
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Algorithm 4: FreePascal implementation for calculating the CDF of IH.

Input data: n (integer), x (real number, double precision);
vark,i: integer; //integer enough for n < 32,768
varz,y: mpf_t; //doubleorextended insteadofmp f_t

Begin //CDF for Irwin–Hall distribution
mpf_set_default_prec(128); //or bigger,256,512,...
mpf_init(y); mpf_init(z); //y := 0.0;
for k := trunc(x) downto 0 do begin //main loop

If(k mod 2 = 0) // z := 1.0 or z := −1.0;
then mpf_set_si(z,1) //z := 1.0;
else mpf_set_si(z,-1); //z := -1.0;

for i := n − k downto 1 do z := z*(x − k)/i;
for i := k downto 1 do z := z*(x− k)/i;
y := y + z;

end;
pIH_gmp := mpf_get_d(y); mpf_clear(z); mpf_clear(y);

End;
Output data: p (real number, double precision)

In Algorithm 4, the changes made to a classical code running without GNU GMP floating point
arithmetic functions are written in blue color. For convenience, the combined formula (Algorithm 3)
trick for avoiding the computation errors can be implemented with the code given as Algorithm 4 at the
call level, Equation (25). If pIH(x:double; n:integer):double returns the value from Algorithm 4,
then pg1, as given in Equation (25), safely returns the combined formula (Algorithm 3) with (or without)
GNU GMP.

pg1←
{

1−pIH(n−1, n−1/x), if x(n+1) < 2.

pIH(n− 1, 1/x− 1), otherwise.
(25)

Regarding Table 2, Algorithm 4 listed data, from n = 2 to n = 55, the calculation of the residuals
were made with double (64 bits), extended (FreePascal 80 bits), and mp f _t-128 bits (GNU GMP).
The sum of residuals (for all n from 2 to 55) differs from double to extended with less than 10−11 and
the same for mp f_t with 128 bits, which safely provides confidence in the results provided in Table 2
for the combined formula (last column, Algorithm 4). The deviates for agreement in the calculation of
CDF for TS are statistically characterized by SE (Equation (13)), min, and max in Table 3.

The SE of agreement (Table 3) between the expected value and the observed one (Algorithm 4,
Equation (12), Table 1) of the CDF1/TS(x; n) is safely below the resolution for the grid of observing
points (lvl−1 = 10−3 in Table 1; SE ≤ 1.2× 10−5 in Table 3; two orders of magnitude). By using
Algorithm 4, Figures 4–7 depict the shapes of CDFTS(x; n), CDF1/TS(x; n), InvCDFTS(x; n), and
InvCDF1/TS(x; n) for n from 2 to 20.

Finally, for the domain of the simulated CDF of the TS population for n from 2 to 54, the error
in the odd points of the grid (for 1000 · p from 1 to 999 with a step of 2) is depicted in Figure 8
(the calculations of theoretical CDF for TS made with gmp f loat at a precision of at least 256 bits).
As can be observed in Figure 8, the difference between p and p̂ is rarely larger than 10−5 and never
larger than 3× 10−5 (the boundary of the representation in Figure 8) for n ranging from 2 to 54.
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Table 3. Descriptive for the agreement in the calculation of the CDF of TS (Equation (12) vs. Algorithm 4).

n SE minep maxep n SE minep maxep n SE minep maxep

2 3.0 × 10−6 −2.1 × 10−6 1.8 × 10−6 20 5.4 × 10−6 −4.1 × 10−6 3.9 × 10−6 38 3.4 × 10−6 −7.3 × 10−6 6.1 × 10−6

3 3.2 × 10−6 −2.4 × 10−6 2.7 × 10−6 21 3.0 × 10−6 −4.5 × 10−6 4.1 × 10−6 39 3.5 × 10−6 −7.3 × 10−6 6.4 × 10−6

4 3.5 × 10−6 −2.3 × 10−6 2.7 × 10−6 22 6.3 × 10−6 −4.8 × 10−6 4.0 × 10−6 40 1.1 × 10−5 −7.2 × 10−6 5.5 × 10−6

5 4.2 × 10−6 −2.8 × 10−6 2.2 × 10−6 23 5.6 × 10−6 −5.6 × 10−6 4.6 × 10−6 41 8.5 × 10−6 −7.2 × 10−6 7.4 × 10−6

6 2.8 × 10−6 −3.2 × 10−6 2.4 × 10−6 24 4.0 × 10−6 −6.4 × 10−6 4.6 × 10−6 42 4.4 × 10−6 −7.0 × 10−6 7.8 × 10−6

7 4.4 × 10−6 −3.3 × 10−6 3.1 × 10−6 25 4.1 × 10−6 −6.3 × 10−6 4.5 × 10−6 43 3.7 × 10−6 −6.5 × 10−6 6.9 × 10−6

8 3.5 × 10−6 −3.7 × 10−6 2.6 × 10−6 26 1.2 × 10−5 −6.2 × 10−6 5.1 × 10−6 44 3.3 × 10−6 −6.1 × 10−6 7.0 × 10−6

9 3.7 × 10−6 −3.9 × 10−6 2.2 × 10−6 27 1.2 × 10−5 −6.3 × 10−6 4.9 × 10−6 45 7.6 × 10−6 −6.1 × 10−6 6.8 × 10−6

10 4.5 × 10−6 −3.7 × 10−6 2.9 × 10−6 28 7.8 × 10−6 −6.3 × 10−6 5.1 × 10−6 46 6.7 × 10−6 −6.1 × 10−6 6.9 × 10−6

11 5.7 × 10−6 −3.7 × 10−6 2.7 × 10−6 29 7.2 × 10−6 −6.6 × 10−6 5.4 × 10−6 47 4.4 × 10−6 −6.2 × 10−6 7.3 × 10−6

12 7.6 × 10−6 −3.9 × 10−6 2.5 × 10−6 30 3.5 × 10−6 −6.3 × 10−6 5.7 × 10−6 48 7.6 × 10−6 −6.2 × 10−6 8.0 × 10−6

13 5.2 × 10−6 −3.8 × 10−6 3.0 × 10−6 31 4.1 × 10−6 −6.2 × 10−6 5.0 × 10−6 49 1.3 × 10−5 −6.3 × 10−6 7.8 × 10−6

14 5.6 × 10−6 −4.3 × 10−6 3.2 × 10−6 32 5.2 × 10−6 −6.0 × 10−6 4.9 × 10−6 50 9.3 × 10−6 −6.0 × 10−6 7.0 × 10−6

15 1.0 × 10−5 −3.8 × 10−6 3.5 × 10−6 33 3.5 × 10−6 −6.0 × 10−6 4.5 × 10−6 51 4.4 × 10−6 −6.4 × 10−6 7.0 × 10−6

16 6.9 × 10−6 −3.9 × 10−6 3.6 × 10−6 34 5.5 × 10−6 −6.6 × 10−6 4.3 × 10−6 52 1.0 × 10−5 −6.4 × 10−6 6.4 × 10−6

17 8.4 × 10−6 −4.2 × 10−6 3.5 × 10−6 35 7.8 × 10−6 −6.3 × 10−6 5.2 × 10−6 53 4.0 × 10−6 −6.1 × 10−6 6.1 × 10−6

18 5.1 × 10−6 −4.1 × 10−6 4.1 × 10−6 36 3.4 × 10−6 −6.7 × 10−6 5.7 × 10−6 54 3.1 × 10−6 −6.4 × 10−6 6.7 × 10−6

19 5.4 × 10−6 −4.2 × 10−6 4.4 × 10−6 37 9.4 × 10−6 −6.8 × 10−6 6.4 × 10−6 55 1.1 × 10−5 −6.7 × 10−6 7.1 × 10−6

minep = min(pi − p̂i), maxep = max(pi − p̂i).
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Figure 4. InvCDFTS(x; n) for n = 2 to 20.

Figure 5. CDFTS(x; n) for n = 2 to 20.

Figure 6. InvCDF1/TS(x; n) for n = 2 to 20.
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Figure 7. CDF1/TS(x; n) for n = 2 to 20.

Figure 8. Agreement estimating CDFTS for n = 2...54 and 1000p = 1...999 with a step of 2.

Based on the provided results, one may say that there is no error in saying that Equations (19)
and (21) are complements (see Equation (23) as well) of the CDF of TS given as Equation (12). As long
as the calculations (of either Equations (19) and (21)) are conducted using rational numbers, either
formula provides the most accurate result. The remaining concerns are how large those numbers can
be (e.g., the range of n). This is limited only by the amount of memory available and how precise the
calculations are. This reaches the maximum defined by the measurement of data precision, and finally,
the resolutions are provided, which are given by the precision of converting (if necessary) the TS
value given by Equation (12) from float to rational. Either way, some applications prefer approximate
formulas, which are easier to calculate, and are considered common knowledge for interpreting the
results. For those reasons, the next section describes approximation formulas.

3.3. Approximations of CDF of TS with Known Functions

Considering, once again, Equation (24), for sufficiently large n, the distribution of 1/TS is
approximately normal (Equation (26). For normal Gauss distribution, see Equation (16)).

PDF1/TS(y; n) n→∞−−→PDFG2((n+1)/2;
√
(n−1)/12)). (26)
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Even better (than Equation (26)), for large values of n, a generalized Gauss–Laplace distribution
(see Equation (17)) can be used to approximate the 1/TS statistic. Furthermore, for those looking for
critical values of the TS statistic, the approximation of the 1/TS statistic to a generalized Gauss–Laplace
distribution may provide safe critical values for large n. One way to derive the parameters of the
generalized Gauss–Laplace distribution approximating the 1/TS statistic is by connecting the kurtosis
and skewness of the two (Equation (27)).

Ku(β)=
Γ( 5

β )Γ(
1
β )

Γ( 3
β )Γ(

3
β )
→ β=Ku−1

(
3− 6

5n−5

)
, α=

√
n−1
12

Γ(1/β)

Γ(3/β)
. (27)

With α and β given by Equation (27) and µ = (n+ 1)/2 (Equation (24)), the PDF of the generalized
Gauss–Laplace distribution (Equation (17)), which approximates 1/TS (for large n), is given in
Equation (28).

PDFGL(x; µ, α, β) =
β

2αΓ(1/β)
e−
( |x−µ|

α

)β

. (28)

The errors of approximation (with Equation (29)) of pi = CDF1/TS (from Algorithm 3) with
p̂i = CDFGL (from Equations (27) and 28) are depicted in Figure 9 using a grid of 52 × 999 points for
n = 50...101 and p = 0.001...0.999.

SE=

√√√√999

∑
i=1

(pi− p̂i)2

999
, pi =

i
103 , p̂i = CDFGL(InvCDF1/TS(pi; n); α, β). (29)

As can be observed in Figure 9, the confidence in approximation of 1/TS with the GL increases
with the sample size (n), but the increase is less than linear. The tendency is to approximately linearly
decrease with an exponential increase.
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Figure 9. Standard errors (SE) as function of sample size (n) for the approximation of 1/TS with GL
(Equation (29)).

The calculation of CDF for 1/TS is a little tricky, as anticipated previously (see Section 3.2). To
avoid the computation errors in the calculation of CDFTS, a combined formula is more appropriate
(Algorithms 3 and 4). With p1/TS ← CDF1/TS(y; n) and α1/TS ← 1−CDF1/TS(y; n), depending on the
value of y (y← 1/x, where x is the sample statistic of TS, Equation (12)), only one (from α and p, where
α + p = 1) is suitable for a precise calculation.

An important remark at this point is that (n + 1)/2 is the median, mean, and mode for 1/TS
(see Section 3.1). Indeed, any symbolic calculation with either of the formulas from Equation (19)
to Equation (22) will provide that CDF1/TS((n + 1)/2; n) = 0.5, or, expressed with InvCDF,
InvCDF1/TS(0.5; n) = (n + 1)/2.
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3.4. The Use of CDF for TS to Measure the Departure between an Observed Distribution and a Theoretical One

With any of Equations (5)–(12), a likelihood to observe an observed sample can be ascertained.
One may ask which statistic is to be trusted. The answer is, at the same time, none and all, as
the problem of fitting the data to a certain distribution involves the estimation of the distribution’s
parameters—such as using MLE, Equation (14). In this process of estimation, there is an intrinsic
variability that cannot be ascertained by one statistic alone. This is the reason that calculating the risk
of being in error from a battery of statistics is necessary, Equation (15).

Also, one may say that the g1 statistic (Equation (11)) is not associated with the sample, but to
its extreme value(s), while others may say the opposite. Again, the truth is that both are right, as in
certain cases, samples containing outliers are considered not appropriate for the analysis [27], and
in those cases, there are exactly two modes of action: to reject the sample or to remove the outlier(s).
Figure 10 gives the proposed strategy of assessing the samples using order statistics.

 

 n 
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(eq.3) 

Distribution PDF 

1 m} 

Order statistics  eqs.4-11 

{x1 n} {p1 n} 
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AD 
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Figure 10. Using the order statistics to measure the likelihood of sampling.

As other authors have noted, in nonparametric problems, it is known that order statistics, i.e.,
the ordered set of values in a random sample from least to greatest, play a fundamental role. ’A
considerable amount of new statistical inference theory can be established from order statistics
assuming nothing stronger than continuity of the cumulative distribution function of the population’
as [28] noted, a statement that is perfectly valid today.

In the following case studies, the values of the sample statistics were calculated with
Equations (5)–(10) (AD, KS, CM, KV, WU, H1; see also Figure 10), while the risks of being in
error—associated with the values of sample statistics (αStatistic for those)—were calculated with
the program developed and posted online available at http://l.academicdirect.org/Statistics/tests.
The g1Statistic (Equation (11)) and αg1 were calculated as given in [15], while the TSStatistic (Equation (12))
was calculated with Algorithm 4. For FCS and αFCS, Equation (15) was used.

Case study 1.

Data: “Example 1” in [29]; Distribution: Gauss (Equation (16)); Sample size: n = 10; Population
parameters (MLE, Equation (14)): µ = 575.2; σ = 8.256; Order statistics analysis is given in Table 4.
Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 11.2%) but it is
a bad drawing from normal (Gauss) distribution, with less than the imposed level (α = 5%) likelihood
to appear from a random draw (αFCS = 4.5%).

http://l.academicdirect. org/Statistics/tests
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Table 4. Order statistics analysis for case studies 1 to 10.

Case Parameter AD KS CM KV WU H1 g1 TS FCS

1 Statistic 1.137 1.110 0.206 1.715 0.182 5.266 0.494 4.961 15.80
αStatistic 0.288 0.132 0.259 0.028 0.049 0.343 0.112 0.270 0.045

2 Statistic 0.348 0.549 0.042 0.934 0.039 7.974 0.496 6.653 6.463
αStatistic 0.894 0.884 0.927 0.814 0.844 0.264 0.109 0.107 0.596

3 Statistic 0.617 0.630 0.092 1.140 0.082 4.859 0.471 5.785 4.627
αStatistic 0.619 0.742 0.635 0.486 0.401 0.609 0.451 0.627 0.797

4 Statistic 0.793 0.827 0.144 1.368 0.129 3.993 0.482 4.292 8.954
αStatistic 0.482 0.420 0.414 0.190 0.154 0.524 0.255 0.395 0.346

5 Statistic 0.440 0.486 0.049 0.954 0.047 104.2 0.500 103.2 5.879
αStatistic 0.810 0.963 0.884 0.850 0.742 0.359 0.034 0.533 0.661

6 Statistic 0.565 0.707 0.083 1.144 0.061 83.32 0.499 82.17 5.641
αStatistic 0.683 0.675 0.673 0.578 0.580 0.455 0.247 0.305 0.687

7 Statistic 1.031 1.052 0.170 1.662 0.149 52.66 0.494 51.00 11.24
αStatistic 0.320 0.202 0.333 0.067 0.106 0.471 0.729 0.249 0.188

8 Statistic 0.996 0.771 0.132 1.375 0.127 22.201 0.460 27.95 5.933
αStatistic 0.322 0.556 0.451 0.248 0.162 0.853 0.980 0.978 0.655

9 Statistic 0.398 0.576 0.058 1.031 0.051 31.236 0.489 32.04 2.692
αStatistic 0.853 0.869 0.828 0.728 0.694 0.577 0.746 0.507 0.952

10 Statistic 0.670 0.646 0.092 1.170 0.085 11.92 0.460 14.66 3.549
αStatistic 0.583 0.753 0.627 0.488 0.373 0.747 0.874 0.879 0.895

Case study 2.

Data: “Example 3” in [29]; Distribution: Gauss (Equation (16)); Sample size: n = 15; Population
parameters (MLE, Equation (14)): µ = 0.018; σ = 0.532; Order statistics analysis is given in Table 4.
Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 10.9%) and
it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 59.6%).

Case study 3.

Data: “Example 4” in [29]; Distribution: Gauss (Equation (16)); Sample size: n = 10; Population
parameters (MLE, Equation (14)): µ = 3.406; σ = 0.732; Order statistics analysis is given in Table 4.
Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 45.1%) and
it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 79.7%).

Case study 4.

Data: “Example 5” in [29]; Distribution: Gauss (Equation (16)); Sample size: n = 8; Population
parameters (MLE, Equation (14)): µ = 4715; σ = 140.8; Order statistics analysis is given in Table 4.
Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 25.5%) and
it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 34.6%).

Case study 5.

Data: “Table 4” in [15]; Distribution: Gauss (Equation (16)); Sample size: n = 206; Population
parameters (MLE, Equation (14)): µ = 6.481; σ = 0.829; Order statistics analysis is given in Table 4.
Conclusion: at α = 5% risk of being in error, the sample have an outlier (αg1 = 3.4%) and it is a good
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drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%) likelihood to
appear from a random draw (αFCS = 66.1%).

Case study 6.

Data: “Table 1, Column 1” in [30]; Distribution: Gauss (Equation (16)); Sample size: n = 166;
Population parameters (MLE, Equation (14)): µ = −0.348; σ = 1.8015; Order statistics analysis is given
in Table 4. Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 24.7%)
and it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 68.7%).

Case study 7.

Data: “Table 1, Set BBB” in [31]; Distribution: Gauss (Equation (16)); Sample size: n = 105;
Population parameters (MLE, Equation (14)): µ = −0.094; σ = 0.762; Order statistics analysis is given in
Table 4. Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 72.9%)
and it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 18.8%).

Case study 8.

Data: “Table 1, Set SASCAII” in [31]; Distribution: Gauss (Equation (16)); Sample size: n = 47;
Population parameters (MLE, Equation (14)): µ = 1.749; σ = 0.505; Order statistics analysis is given in
Table 4. Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 98.0%)
and it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 65.5%).

Case study 9.

Data: “Table 1, Set TaxoIA” in [31]; Distribution: Gauss (Equation (16)); Sample size: n = 63;
Population parameters (MLE, Equation (14)): µ = 0.744; σ = 0.670; Order statistics analysis is given in
Table 4. Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 74.6%)
and it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 95.2%).

Case study 10.

Data: “Table 1, Set ERBAT” in [31]; Distribution: Gauss (Equation (16)); Sample size: n = 25;
Population parameters (MLE, Equation (14)): µ = 0.379; σ = 1.357; Order statistics analysis is given in
Table 4. Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 87.9%)
and it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 89.5%).

3.5. The Patterns in the Order Statistics

A cluster analysis on the risks of being in error, provided by the series of order statistics on the case
studies considered in this study, may reveal a series of peculiarities (Figures 11 and 12). The analysis
given here is based on the series of the above given case studies in order to illustrate similarities (and
not to provide a ’gold standard’ as in [32] or in [33]).
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Figure 11. Euclidian distances between the risks being in error provided by the order statistics.
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Figure 12. Pearson disagreement between the risks being in error provided by the order statistics.

Both clustering methods illustrated in Figures 11 and 12 reveal two distinct groups of statistics:
{AD, CM, KV, WU, KS} and {H1, TS, g1}. The combined test FCS is also attracted (as expected) to
the largest group. When looking at single Euclidean distances (Figure 11) of the largest group, two
other associations should be noticed {AD, CM, KS} and {KV, WU}, suggesting that those groups carry
similar information, but when looking at the Pearson disagreements (Figure 12), we must notice
that the subgroups are changed {CM, KV, WU}, {AD}, and {KS}, with no hint of an association with
their calculation formulas (Equations (5)–(9)); therefore, their independence should not be dismissed.
The second group {H1, TS, g1} is more stable, maintaining the same clustering pattern of the group
({H1, TS}, {g1} in Figure 12).

Taking into account that the g1 test (Equation (11)) was specifically designed to account for
outliers suggests that the H1 and TS tests are more sensitive to the outliers than other statistics, and
therefore, when the outliers (or just the presence of extreme values) are the main concern in the
sampling, it is strongly suggested to use those tests. The H1 statistic is a Shannon entropy formula
applied in the probability space of the sample. When accounting for this aspect in the reasoning,
the rassociation of the H1 with TS suggests that TS is a sort of entropic measure (max-entropy, to be
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more exact [34], a limit case of generalized Rényi’s entropy [35]). Again, the g1 statistic is alone in this
entropic group, suggesting that it carries a unique fingerprint about the sample—specifically, about its
extreme value (see Equation (11))—while the others account for the context (the rest of the sampled
values, Equations (10) and (12)).

Regarding the newly proposed statistic (TS), from the given case studies, the fact that it belongs
to the {H1, TS, g1} group strongly suggests that it is more susceptible to the presence of outliers (such
as g1, purely defined for this task, and unlike the well known statistics defined by Equations (5)–(9)).

Moreover, one may ask that, if based on the risks being in error provided by the statistics from
case studies 1 to 10, some peculiarity about TS or another statistic involved in this study could be
revealed. An alternative is to ask if the values of risks can be considered to be belonging to the same
population or not, and for this, the K-sample Anderson–Darling test can be invoked [36]. With the
series of probabilities, there are actually 29 − 1− 9 = 502 tests to be conducted (for each subgroup of 2,
3, 4, 5, 6, 7, 8, and 9 statistics picked from nine possible choices) and for each of them, the answer is
same: At the 5% risk of being in error, it cannot be rejected that the groups (of statistics) were selected
from identical populations (of statistics), so, overall, any of those statistics perform the same.

The proposed method may find its uses in testing symmetry [37], as a homogeneity test [38] and,
of course, in the process of detecting outliers [39].

3.6. Another Rank Order Statics Method and Other Approaches

The series of rank order statistics included in this study, Equations (5)–(11), covers the most
known rank order statistics reported to date. However, when considering a new order statistic not
included there, the use of it in the context of combining methods, Equation (15), only increases the
degrees of freedom τ, while the design of using (Figure 10) is changed accordingly.

It should be noted that the proposed approach is intended to be used for small sample sizes, when
no statistic alone is capable of high precision and high trueness. With the increasing sample size, all
statistics should converge to the same risk of being in error and present other alternatives, such as the
superstatistical approach [40]. In the same context, each of the drawings included in the sample are
supposed to be independent. In the presence of correlated data (such as correlated in time), again,
other approaches, such as the one communicated in [41], are more suited.

4. Conclusions

A new test statistic to be used to measure the agreement between continuous theoretical
distributions and samples drawn from TS was proposed. The analytical formula of the TS cumulative
distribution function was obtained. The comparative study against other order statistics revealed
that the newly proposed statistic carries distinct information regarding the quality of the sampling. A
combined probability formula from a battery of statistics is suggested as a more accurate measure for
the quality of the sampling. Therefore Equation (15) combining the probabilities (the risks of being in
error) from Equation (5) to Equation (12) is recommended anytime when extreme values are suspected
being outliers in samples from continuous distributions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/8/2/216/s1.
The source code for sampling order statistics (file named OS.pas) and source code evaluation of the CDF of TS
with Algorithm 4 (file named TS.pas file) are available upon request. The k-Sample Anderson–Darling test(s) on
risks of being in error from the case studies 1 to 10 is given as a supplementary file.
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