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Abstract: In this paper, we set up an adequate condition for the presence of a solution of the
nonlinear matrix equation. To do so, we prove the existence of fixed points for multi-valued modified
F-contractions in the context of complete metric spaces, which generalize, refine, and extend several
existing results in the literature. An example is accompanies the obtained results to show that derived
results are a proper generalization.
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1. Introduction and Preliminaries

It has always been an attractive problem to find an adequate method to solve matrix equations
because the existence of solutions of matrix equations arises in a number of applications such as in
stochastic filtering, system theory, dynamic programming, control theory, statistics, ladder networks,
and many other fields. In 2003, Ran and Reurings [1] obtained a sufficient condition for the presence
of positive definite solution of two classes of matrix equations

V = Q±
f

∑
j=1

C ∗j F (V)Cj, (1)

where F is a order-preserving (or order-reversing) mapping on H(s), Q ∈ P(s) and Cj is an s × s

complex matrix. Since then, many fixed point theorems have been presented by several authors to find
solutions for different classes of matrix equations (see [2,3]). In [4], Berzig proved the existence and
uniqueness of solution of the matrix equations of the form

V = Q+
f

∑
i=1

C ∗i VCi −
k

∑
i=1

D∗i VDi. (2)

In the present paper, our goal is to find a sufficient condition to determine a solution for nonlinear
matrix equations of the form

V = Q+
f

∑
i=1

Ci$(V)C ∗i −
k

∑
j=1

Dj$(V)D∗j , (3)
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where Q is a positive definite matrix, Ci, Dj are arbitrary s × s matrices for all i = 1, ..., f , j = 1, ..., k,
and $ is a self mapping on the set of all s × s Hermitian matrices, which maps the set of all s × s

Hermitian positive definite matrices onto itself. To do this, we prove the existence of fixed points for
multi-valued modified F-contractions in the frame of complete metric spaces. Henceforth, for a metric
space (U, m), define

2U = {A ⊆ U : A 6= ∅},

C(U) =
{

A ⊆ 2U : A is closed
}

,

CB(U) =
{

A ⊆ 2U : A is closed and bounded
}

,

K(U) =
{

A ⊆ 2U : A is compact
}

.

Note that K(U) ⊆ CB(U) ⊆ C(U) ⊆ 2U . Let

H(B, A ) = max

{
sup
µ∈B

M(µ, A ), sup
ω∈A

M(ω, B)

}
,

where M(µ, B) = inf {m(µ, ω) : ω ∈ B} and A , B ∈ C(U). Symbolize

F = {F : R+ → R : F satisfies (F1), (F2) and (F3)}

and
F∗ = {F ∈ F : F satisfies (F4)},

where

(F1) F is strictly increasing;
(F2) for all, sequence {rq} ⊆ R+, limq→∞ rq = 0 if and only if limq→∞ F(rq) = −∞;
(F3) there exist 0 < k < 1 such that limn→0+ tkF(t) = 0; and
(F4) F(inf A ) = inf F(A ) for all A ⊂ (0, ∞) with inf A > 0.

Feng and Liu gave an important and interesting generalization of Nadler’s fixed point
theorem [5] as:

Theorem 1. [6] Let (U, m) be a complete metric space and G : U → C(U). If there exists a, c ∈ (0, 1) such
that c < a and for any µ ∈ U, there is ω ∈ Iµ

a satisfying

M(ω,Gω) ≤ cm(µ, ω), (4)

where Iµ
a = {ω ∈ Gµ : am(µ, ω) ≤ M(µ,Gµ)}. Then, G has a fixed point, provided that the map µ →

M(µ,Gµ) is lower semi-continuous.

Altun et al. [7] defined multi-valued F-contractions and found some fixed point results. Further,
Minak et al. [8] extended Theorem 1 and claimed that their obtained results are factual or proper
generalizations of Feng and Liu’s theorem (Theorem 1). However, Nguyen et al. [9] showed that their
claim is not true by giving an example (see Example 1.1 in [9]) and gave refinements of Minak et al.’s
theorems [9] by replacing “for any µ ∈ U there is ω ∈ Gµ” by “for any µ ∈ U there is ω ∈ U” and
extending functions F to [0, ∞) by putting F(0) = −∞. Very recently, Nashine and Kadelburg [10]
proved the following result as generalization of Theorem 1.
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Theorem 2. Let (U, m) be a complete metric space, G : U → C(U) and F ∈ F∗ [10]. If there exist two
functions ξ : (0, ∞)→ (0, ∞) and π : (0, ∞)→ (ξ, ∞) such that

π(t) > ξ(t), lim
t→s+

inf π(t) > lim
t→s+

inf ξ(t) for s ≥ 0 (5)

and, for any µ ∈ U with M(µ,Gµ) > 0, there exists ω ∈ Fµ
ξ satisfying

π(Mµ,ω) + F(M(ω,Gω)) ≤ F(m(µ, ω)), (6)

where Fµ
ξ = {ω ∈ Gµ : F(m(µ, ω)) ≤ F(max{m(µ,Gµ), m(ω,Gω)}) + ξ(Mµ,ω)} and Mµ,ω is defined in

Equation (8), then G has a fixed point, provided that the map µ→ M(µ,Gµ) is lower semi-continuous.

However, the following example shows that Theorem 2 is not proper generalization of Theorem 1.

Example 1. Let U = [0, 1] ⊂ R with the usual metric m. Then, (U, m) is complete metric space. Consider
ξ : (0, ∞) → (0, ∞) and π : (0, ∞) → (ξ, ∞) are two functions satisfying Equation (5). Define G : U →
C(U) by

Gµ =

{
U if µ = 0,
{0} if µ 6= 0.

Then, M(µ,Gµ) = µ for all x ∈ V. In this example, Theorem 2 cannot be applied. Indeed, for µ 6= 0, we have
M(µ,Gµ) > 0. Therefore, if ω ∈ Gµ, then ω = 0 and M(ω,Gω) = 0, thus Equation (6) is not satisfied
for any F.

Motivated by Nguyen et al. [9], we overcome the error mentioned in Example 1.1 of [9] by
another way. We define contractions involving F-functions and prove fixed point results for these
type of contractions. In our results, the domain of the function F is not extended from (0, ∞) to [0, ∞).
Our results generalize (see [11–31]), refine, and extend the results of [6,8,32,33].

2. Fixed Point Results

Let G : U → 2U be the multi-valued map, F ∈ F, ξ : (0, ∞) → (ξ, ∞), ξ > 0 and µ ∈ U with
M(µ,Gµ) > 0. Define the set

Fµ
ξ = {ω ∈ Gµ : M(ω,Gω) > 0 and F(m(µ, ω)) ≤ F(Mµ,ω) + ξ(m(µ, ω))}, (7)

where

Mµ,ω =max
{

m(µ, ω), M(µ,Gµ), M(ω,Gω),
M(ω,Gµ) + M(µ,Gω)

2

}
. (8)

By considering ξ : (0, ∞) → (ξ, ∞), ξ > 0 a constant function, that is, ξ(t) = ξ+constant= b,
Equation (7) becomes

Fµ
b = {ω ∈ Gµ :M(ω,Gω) > 0 and F(m(µ, ω)) ≤ F(M(µ,Gµ)) + b}. (9)

Definition 1. Let G : U → 2U be a multi-valued mapping on a metric space (U, m); then, G is said to be
modified-F-contraction on U, if there exists π : (0, ∞)→ (0, ∞), ξ : (0, ∞)→ (ξ, ∞), ξ > 0 and a function
F ∈ F such that, for all µ ∈ U with M(µ,Gµ) > 0, there exists ω ∈ Fµ

ξ satisfying

π(m(µ, ω)) + F(M(ω,Gω)) ≤ F(Mµ,ω), (10)

where Mµ,ω is defined in Equation (8).
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Now, we prove our main results.

Theorem 3. Let (U, m) be a complete metric space and G : U → K(U) be a multi-valued mapping satisfying
the following assertions:

1. G is modified-F-contraction for F ∈ F;
2. µ→ M(µ,Gµ) is lower semi-continuous mapping; and
3. π : (0, ∞)→ (0, ∞) and ξ : (0, ∞)→ (ξ, ∞), ξ > 0 satisfy

π(t) >ξ(t) (11)

and

lim
t→s+

inf π(t) > lim
t→s+

infξ(t) for all s ≥ 0. (12)

Then, G has a fixed point in U.

Proof. Assume that G has no fixed point in U. Let µ0 ∈ U. Then, M(µ0,Gµ0) > 0, otherwise µ0 is the
fixed point of G. Since Gµ ∈ K(U) for every µ, there exists µ1 ∈ Gµ0 such that m(µ0, µ1) = M(µ0,Gµ0).
It also follows that

F(m(µ0, µ1)) ≤ F(Mµ0,µ1) + ξ(m(µ0, µ1)) (13)

M(µ1,Gµ1) > 0, otherwise µ1 is the fixed point of G. Thus, µ1 ∈ Fµ0
ξ and µ1 6= µ0, therefore,

from Equation (10), we have

π(m(µ0, µ1)) + F(M(µ1,Gµ1)) ≤ F(Mµ0,µ1), (14)

where

Mµ0,µ1 = max {m(µ0, µ1), M(µ0,Gµ0), M(µ1,Gµ1),

M(µ1,Gµ0) + M(µ0,Gµ1)

2

}
.

(15)

Since Gµ0 and Gµ1 are compact, Equation (15) gives

Mµ0,µ1 = max
{

m(µ0, µ1), m(µ1, µ2),
m(µ0, µ2)

2

}
. (16)

Since

m(µ0, µ2)

2
≤ m(µ0, µ1) + m(µ1, µ2)

2
≤ max{m(µ0, µ1), m(µ1, µ2)},

it follows that

Mµ0,µ1 ≤ max{m(µ0, µ1), m(µ1, µ2)}. (17)

Suppose that m(µ0, µ1) < m(µ1, µ2); then, Equation (14) implies that

π(m(µ0, µ1)) + F(M(µ1,Gµ1)) ≤ F(m(µ1, µ2)); (18)
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consequently,

π(m(µ0, µ1)) + F(m(µ1, µ2)) ≤ (m(µ1, µ2)), (19)

or F(m(µ1, µ2)) ≤ F(m(µ1, µ2))− π(m(µ0, µ1)), which is a contradiction. Hence, Mµ0,µ1 ≤ m(µ0, µ1);
therefore, by using (F1), Equations (13) and (14) imply that

F(m(µ0, µ1)) ≤ F(m(µ0, µ1)) + ξ(m(µ0, µ1)) (20)

and

π(m(µ0, µ1)) + F(m(µ1, µ2) ≤ F(m(µ0, µ1)). (21)

On continuing recursively, we get a sequence {µq : µq ∈ Gµq−1}n∈N in U, where µq+1 ∈ Fµq
ξ , µq+1 /∈

Gµq+1, Mµq ,µq+1 ≤ m(µq, µq+1) and

π(m(µq, µq+1)) + F(M(µq+1,Gµq+1)) ≤ F(m(µq, µq+1)). (22)

Since µq+1 ∈ Fµq
ξ and Gµq and Gµq+1 are compact, we have

π(m(µq, µq+1)) + F(m(µq+1, µq+2)) ≤ F(m(µq, µq+1)) (23)

and

F(m(µq, µq+1)) ≤ F(m(µq, µq+1)) + ξ(m(µq, µq+1)). (24)

Combining Equations (23) and (24) gives

F(m(µq+1, µn+2)) ≤ F(m(µq, µq+1)) + ξ(m(µq, µq+1))

− π(m(µq, µq+1))
(25)

Set m(µq, µq+1) = Lq. From Equation (25), we get

F(Lq+1) ≤ F(Lq) + ξ(Lq)− π(Lq)

≤ F(Lq−1) + ξ(Lq) + ξ(Lq−1)− π(Lq)− π(Lq−1)

...

≤ F(L0) + ξ(Lq) + ξ(Lq−1) + · · ·+ ξ(L0)

− π(Lq)− π(Lq−1)− · · · − π(L0).

(26)

Let π(Lpn) = min{π(L0), π(L1), · · · , π(Lq)} and ξ(Lqn) = max{ξ(L0), ξ(L1), · · · , ξ(Lq)} for all n ∈
N. From Equation (26), we get

F(Lq+1) ≤ F(L0) + q(ξ(Lqn)− π(Lpn)). (27)

From Equation (22), we also get

F(M(µq+1,Gµq+1)) ≤ F(M(µ0,Gµ0))+

n(ξ(Lqn)− π(Lpn)).
(28)



Mathematics 2020, 8, 212 6 of 18

Equations (12) and (28) imply limq→∞ F(Lq) = −∞, thus, by (F2), limq→∞ Lq = 0. Now, we prove that
{µq : µq ∈ Gµq−1} is a Cauchy sequence. From (F3), there exists 0 < r < 1 such that

lim
q→∞

(Lq)
rF(Lq) = 0. (29)

By Equation (27), we get for all n ∈ N

(Lq)
rF(Lq)− (Lq)

rF(L0) ≤ (Lq)
rq(ξ(Lqn)− π(Lpn)) ≤ 0. (30)

Letting q→ ∞ in Equation (30), we obtain

lim
q→∞

q(Lq)
r = 0 (31)

This implies that there exists n1 ∈ N such that q(Lq)r ≤ 1 or Lq ≤ 1
q1/r , for all q > q1. Next,

for m > q ≥ q1, we have

m(µq, µm) ≤
f−1

∑
i=q

m(µi, µi+1) ≤
f−1

∑
l=q

1
l1/k ,

since 0 < k < 1, ∑
f−1
l=q

1
l1/k converges. Therefore, m(µq, µ f )→ 0 as f , q→ ∞. Thus, {µq : µq ∈ Gµq−1}

is a Cauchy sequence. Since U is complete, there exists µ∗ ∈ U such that µq → µ∗ as q → ∞.
From Equation (28) and (F2), we have

lim
q→∞

M(µq,Gµq) = 0.

From the hypothesis in Equation (2), we obtain

0 ≤ M(µ,Gµ) ≤ lim
q→∞

inf M(µq,Gµq) = 0,

which is a contradiction. Thus, G has a fixed point.

In the following theorem, we take C(U) instead of K(U); thus, we need to take F ∈ F∗.

Theorem 4. Let (U, m) be a complete metric space and G : U → C(U) be a multi-valued mapping such that
G is modified-F-contraction for F ∈ F∗ and satisfying the assertions in Equations (2) and (3) of Theorem 3.
Then, G has a fixed point in U.

Proof. Assume that G has no fixed point in U. Let µ0 ∈ U, then M(µ0,Gµ0) > 0, otherwise µ0 is the
fixed point of G. Since Gµ ∈ C(U) for every µ ∈ U and F ∈ F∗, there exist µ1 ∈ Gµ0 such that

F(m(µ0, µ1)) ≤ inf{F(m(µ0, µ1)) : µ1 ∈ Gµ0}+ ξ(m(µ0, µ1)

= F(inf{m(µ0, µ1) : µ1 ∈ Gµ0}) + ξ(m(µ0, µ1)

= F(M(µ0,Gµ0)) + ξ(m(µ0, µ1)

≤ F(Mµ0,µ1) + ξ(m(µ0, µ1)

and M(µ1,Gµ1) > 0, otherwise µ1 is the fixed point of G. Thus, from Equation (10), we have

π(m(µ0, µ1)) + F(M(µ1,Gµ1)) ≤ F(Mµ0,µ1), (32)
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where

Mµ0,µ1 = max {m(µ0, µ1), M(µ0,Gµ0), M(µ1,Gµ1),

M(µ1,Gµ0) + M(µ0,Gµ1)

2

}
≤ max {m(µ0, µ1), m(µ0, µ1), m(µ1, µ2),

m(µ1, µ1) + m(µ0, µ2)

2

}
.

Since

m(µ0, µ2)

2
≤ m(µ0, µ1) + m(µ1, µ2)

2
≤ max{m(µ0, µ1), m(µ1, µ2)},

it follows that

Mµ0,µ1 ≤ max{m(µ0, µ1), m(µ1, µ2)}. (33)

Due to (F4), we obtain

F(M(µ1,Gµ1)) = inf
ω∈Gµ

F(m(µ1, ω)) (34)

Suppose that m(µ0, µ1) < m(µ1, µ2); then, Equations (32) and (34) imply that

inf
ω∈Gµ

F(m(µ1, ω)) ≤ F(m(µ1, µ2))− π(m(µ0, µ1)). (35)

Then, by Equation (35), there exists µ2 ∈ Gµ1 such that

F(m(µ1, µ2)) ≤ F(m(µ1, µ2))− π(m(µ0, µ1)), (36)

which is a contradiction. Hence, Mµ0,µ1 ≤ m(µ0, µ1). Therefore, from Equations (32) and (34), we obtain

F(m(µ1, µ2)) ≤ F(m(µ0, µ1))− π(m(µ0, µ1)), (37)

The rest of the proof can be completed as in the proof of Theorem 3.

By defining ξ : (0, ∞)→ (ξ, ∞), ξ > 0 as ξ(t) = ξ + constant = b > 0 for all t ∈ [0, ∞), we get

Corollary 1. Let (U, m) be a complete metric space and G : U → K(U) be a multi-valued mapping. If there
exists b > 0 and a function π : (0, ∞)→ (b, ∞) such that

lim
t→s+

inf π(t) > b for s ≥ 0

and for F ∈ F, µ ∈ U with M(µ,Gµ) > 0, there exists ω ∈ Fµ
b satisfying

π(m(µ, ω)) + F(M(ω,Gω)) ≤ F(Mµ,ω).

Then, G has a fixed point in U, provided that µ→ M(µ,Gµ) is a lower semi-continuous mapping.

Corollary 2. Let (U, m) be a complete metric space and G : U → C(U) be a multi-valued mapping satisfying
all the assertions of Corollary 1 for F ∈ F∗. Then, G has a fixed point in U.
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Corollary 3. Let (U, m) be a complete metric space and G : U → K(U) be a multi-valued mapping. If there
exists b > 0 and a function π : (0, ∞)→ (b, ∞) such that

lim
t→s+

inf π(t) > b for s ≥ 0

and for F ∈ F, x ∈ U with M(µ,Gµ) > 0, there exists y ∈ Fx
b satisfying at least one of the following:

(F1) π(m(µ, ω)) + F(M(ω,Gω)) ≤ F(m(µ, ω));
(F2) π(m(µ, ω)) + F(M(ω,Gω)) ≤ F (max{M(µ,Gµ), M(ω,Gω)}); and

(F3) π(m(µ, ω)) + F(M(ω,Gω)) ≤ F
(

1
2 [M(µ,Gω) + M(ω,Gµ)]

)
.

Then, G has a fixed point in U provided that the map µ→ M(µ,Gµ) is lower semi-continuous.

Corollary 4. Let (U, m) be a complete metric space and G : U → C(U) be a multi-valued mapping satisfying
all the assumptions of Corollary 3 for F ∈ F∗. Then, G has a fixed point in U.

Corollary 5. Let (U, m) be a complete metric space and G : U → C(U) be a multi-valued mapping. If there
exists a function ϕ : [0, ∞)→ (0, 1) and a non-decreasing function b : [0, ∞)→ [b, 1), b > 0 such that

ϕ(t) < b(t) and lim
t→s+

sup ϕ(t) < lim
t→s+

sup b(t)

for all t ∈ [0, ∞) and for any µ ∈ U there is ω ∈ Gµ satisfying the following two conditions:

b(m(µ, ω))m(µ, ω) ≤ Mµ,ω

and

M(ω, Tω) ≤ ϕ(m(µ, ω))Mµ,ω,

where Mµ,ω is defined in Equation (8). Then, G has a fixed point in U provided that µ→ M(µ,Gµ) is lower
semi-continuous.

Proof. Define F : [0, ∞) → R, π : (0, ∞) → (0, ∞) and ξ : (0, ∞) → (ξ, ∞), ξ > 0 by F(r) = ln r for
r ∈ (0, 1), π(t) = − ln ϕ(t) and ξ(t) = − ln b(t) for t ∈ (0, ∞). Then, all conditions of Theorem 4 hold
true and thus G has a fixed point in U.

Corollary 6. Let (U, m) be a complete metric space and G : U → K(U) be a multi-valued mapping satisfying
all the assertions of Corollary 5 for F ∈ F. Then, G has a fixed point in U.

Corollary 7. Let (U, m) be a complete metric space and G : U → C(U) be a multi-valued mapping. If there
exists constants b, c ∈ (0, 1) such that c < b and for any µ ∈ U there is ω ∈ Tx satisfying the following
conditions:

bd(µ, ω) ≤ Mµ,ω

and

M(ω,Gω) ≤ cMµ,ω,

where Mµ,ω is defined in Equation (8). Then, G has a fixed point in U provided that µ→ M(µ,Gµ) is lower
semi-continuous.
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Proof. Define ϕ : [0, ∞) → (0, 1) and b : [0, ∞) → [b, 1) by ϕ(t) = c and b(t) = b, respectively, for
all t ∈ [0, ∞), where b, c ∈ (0, 1). Then, all conditions of Corollary 5 are satisfied and hence G has
a fixed point.

Remark 1. Corollary 5 generalizes Theorem 6 of [33] and Corollary 7 generalizes the Theorem 1.

Example 2. Let U = {0, 1, 2, 3, ...} with

m(µ, ω) =

{
0 if µ = ω,
µ + ω if µ 6= ω,

then (U, m) is complete metric space. Define G : U → C(U), F : R+ → R, π : (0, ∞) → (0, ∞) and
ξ : (0, ∞)→ (ξ, ∞) by

Gµ =


{0, 4} if µ ∈ {0, 3},
{2, 3} if µ ∈ {2},
{1, 2, ..., µ− 1} if µ ∈ {4, 5, ...} ∪ {1}

F(t) = ln(t), π(t) = 1
t + 0.12, and ξ(t) = 1

t + 0.05 for all t > 0. Then,

M(µ,Gµ) =


0 if µ ∈ {0, 1, 2}
3 if µ = 3

µ + 1 if µ ∈ {4, 5, ...},

π(t) > ξ(t) and limt→s+ inf π(t) > limt→s+ inf ξ(t) for all s ≥ 0. Now, let M(µ,Gµ) > 0; then, there exists
two cases:

Case 1. When µ = 3, Gµ = {0, 4}. Thus, for ω = 4 ∈ Gµ such that M(4,G4) = 5 > 0, we have

F(m(µ, ω))− F(Mµ,ω) = F(7)− F(7) = 0 < ξ(m(µ, ω)).

In addition,

F(M(ω,Gω))− F(Mµ,ω) = F(5)− F(7)

= ln
(

5
7

)
= −0.336

< −
(

1
7
+ 0.12

)
= −π(m(µ, ω)).

Case 2. When µ ∈ {4, 5, ...},
Gµ = {1, 2, ..., µ− 1}. Thus, for ω = 3 ∈ Gµ such that M(3,G3) = 3 > 0, we have

F(m(µ, ω))− F(Mµ,ω) = F(µ + 1)− F(µ + 1)

= 0 < ξ(m(µ, ω)).
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In addition,
F(M(ω,Gω))− F(Mµ,ω) = F(3)− F(µ + 1)

= ln
(

3
µ + 1

)
≤ −

(
1

µ + 3
+ 0.12

)
= −π(m(µ, ω)).

Hence, G is modified-F-contraction.
Next, let limq→∞ m(µq, µ) = 0. Then,

lim
q→∞

inf M(µq,Gµq) = M(µ,Gµ).

Hence, G is a lower semi-continuous mapping. Thus, all conditions of Theorem 4 hold and 0, 1, and 2 are fixed
points of G.

Remark 2. In Example 2, Theorem 2 cannot be applied. Indeed, for µ = 3, Gµ = {0, 4}. Thus, for ω = 4 ∈ Gµ

such that M(4,G4) = 5 > 0, we have

F(m(µ, ω))− F (max{M(µ,Gµ), M(ω,Gω)})
=F(7)− F(5)

= ln
(

7
5

)
<ξ(m(µ, ω)).

Then,

F(M(ω,Gω))− F(m(µ, ω))

=F(5)− F(7)

=− ln
(

7
5

)
≥− ξ(m(µ, ω))

≥− π(Mµ,ω).

Hence, Equation (6) does not hold.

Definition 2. Let G : U → 2U be a multi-valued mapping on a metric space (U, m), F1 : (0, ∞) → R be a
nondecreasing function, and F2 : (0, ∞) → R satisfy (F2) and (F3). Then, G is said to be F1-F2-contraction
on U, if there exists π : (0, ∞) → (0, ∞) and ξ : (0, ∞) → (ξ, ∞), ξ > 0 such that, for all x ∈ U with
M(µ,Gµ) > 0, there exists ω ∈ Gµ with M(ω,Gω) > 0 satisfying

π(m(µ, ω)) + F1(M(ω,Gω)) ≤ F1(Mµ,ω) (38)

and

F2(m(µ, ω)) ≤ F1(M(µ,Gµ)) + ξ(m(µ, ω)), (39)

where M1(µ, ω) is defined in Equation (8).

Theorem 5. Let (U, m) be a complete metric space and G : U → K(U) be a F1-F2-contraction satisfying the
hypotheses in Equations (2) and (3) of Theorem 3. Then, G has a fixed point in U.
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Proof. Assume that G has no fixed point in U. Let µ0 ∈ U; then, M(µ0,Gµ0) > 0, otherwise µ0 is the
fixed point of G. Since Gµ ∈ K(U) for every µ, there exists µ1 ∈ Gµ0 such that m(µ0, µ1) = M(µ0,Gµ0)

with M(µ1,Gµ1) > 0, otherwise µ1 is the fixed point of G. Thus, from Equations (38) and (39), we have

π(m(µ0, µ1)) + F1(M(µ1,Gµ1)) ≤ F1(Mµ0,µ1), (40)

and

F2(m(µ0, µ1)) ≤ F1(M(µ0,Gµ0)) + ξ(m(µ0, µ1)) (41)

where

Mµ0,µ1 =max {m(µ0, µ1), M(µ0,Gµ0), M(µ1,Gµ1),

M(µ1,Gµ0) + M(µ0,Gµ1)

2

}
.

(42)

Since Gµ0 and Gµ1 are compact, Equation (42) gives

Mµ0,µ1 =max {m(µ0, µ1), m(µ0, µ1), m(µ1, µ2),

m(µ1, µ1) + m(µ0, µ2)

2

}
=max

{
m(µ0, µ1), m(µ1, µ2),

m(µ0, µ2)

2

}
.

(43)

Since

m(µ0, µ2)

2
≤ m(µ0, µ1) + m(µ1, µ2)

2
≤ max{m(µ0, µ1), m(µ1, µ2)},

it follows that

Mµ0,µ1 ≤ max{m(µ0, µ1), m(µ1, µ2)}. (44)

Suppose that m(µ0, µ1) < m(µ1, µ2); then, Equation (40) implies that

π(m(µ0, µ1)) + F1(M(µ1,Gµ1)) ≤ F1(m(µ1, µ2)); (45)

consequently,

π(m(µ0, µ1)) + F1(m(µ1, µ2)) ≤ F1(m(µ1, µ2)), (46)

or F(m(µ1, µ2)) ≤ F(m(µ1, µ2))− π(m(µ0, µ1)), which is a contradiction. Hence, Mµ0,µ1 ≤ m(µ0, µ1).
Since F1 is nondecreasing, from Equation (40), we get

π(m(µ0, µ1)) + F1(m(µ1, µ2) ≤ F1(m(µ0, µ1)). (47)

On continuing recursively, we get a sequence {µq : µq ∈ Gµq−1}n∈N in U, where M(µq,Gµq) > 0,
µq+1 /∈ Gµq+1 and Mµq ,µq+1 ≤ m(µq, µq+1) satisfying

π(m(µq, µq+1)) + F1(M(µq+1,Gµq+1)) ≤ F1(m(µq, µq+1)). (48)
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and

F2(m(µq, µq+1)) ≤ F1(m(µq, µq+1)) + ξ(m(µq, µq+1)). (49)

Since µq+1 ∈ Fξ,µq
1,2 and Gµq and Gµq+1 are compact, we have

π(m(µq, µq+1)) + F1(m(µq+1, µq+2)) ≤ F1(m(µq, µq+1)) (50)

and

F2(m(µq, µq+1)) ≤ F1(m(µq, µq+1)) + ξ(m(µq, µq+1)). (51)

From Equation (50) and by monotonicity of F1, we obtain that {m(µq, µq+1)} is nondecreasing sequence.
Hence, there exists r ≥ 0 such that m(µq, µq+1) → r as q → ∞. Assume that r > 0; then, combining
Equations (50) and (51) gives

F2(m(µq+1, µq+2)) ≤ F1(m(µq, µq+1)) + ξ(m(µq, µq+1))

− π(m(µq, µq+1))
(52)

From Equation (52), we get

F2(Lq+1) ≤ F1(Lq) + ξ(Lq)− π(Lq)

≤ F1(Lq−1) + ξ(Lq) + ξ(Lq−1)− π(Lq)− π(Lq−1)

...

≤ F1(L0) + ξ(Lq) + ξ(Lq−1) + · · ·+ ξ(L0)

− π(Lq)− π(Lq−1)− · · · − π(L0).

(53)

Let π(Lpn) = min{π(L0), π(L1), · · · , π(Lq)} and ξ(Lqn) = max{ξ(L0), ξ(L1), · · · , ξ(Lq)} for all n ∈
N. From Equation (53), we get

F2(Lq+1) ≤ F1(L0) + q(ξ(Lqn)− π(Lpn)). (54)

From Equation (48), we also get

F2(M(µq+1,Gµq+1)) ≤ F1(M(µ0,Gµ0)) + q(ξ(Lqn)− π(Lpn)). (55)

Equations (12) and (55) imply limq→∞ F2(Lq) = −∞; thus, by (F2), limq→∞ Lq = 0. Now, we prove
that {µq : µq ∈ Gµq−1} is a Cauchy sequence. Since F2 satisfies (F3), there exists 0 < r < 1 such that

lim
q→∞

(Lq)
rF2(Lq) = 0. (56)

By Equation (54), we get for all q ∈ N

(Lq)
rF2(Lq)− (Lq)

rF1(L0) ≤ (Lq)
rq(ξ(Lqn)− π(Lpn))

≤ 0.
(57)

Letting q→ ∞ in Equation (57), we obtain

lim
q→∞

n(Lq)
r = 0 (58)
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This implies that there exists q1 ∈ N such that q(Lq)r ≤ 1, or, Lq ≤ 1
q1/r , for all n > q1. Next,

for m > q ≥ q1, we have

m(µq, µm) ≤
m−1

∑
i=q

m(xi, xi+1) ≤
m−1

∑
i=q

1
i1/k ,

since 0 < k < 1, ∑m−1
i=q

1
i1/k converges. Therefore, m(µq, µm)→ 0 as m, q→ ∞. Thus, {µq : µq ∈ Gµq−1}

is a Cauchy sequence. Since U is complete, there exists µ∗ ∈ U such that µq → µ∗ as q→ ∞. Since F2

satisfies (F2), from Equation (55), we have

lim
q→∞

M(µq,Gµq) = 0.

From the hypothesis in Equation (2), we obtain

0 ≤ M(µ,Gµ) ≤ lim
q→∞

inf M(µq,Gµq) = 0,

which is a contradiction. Thus, G has a fixed point.

Theorem 6. Let (U, m) be a complete metric space and G : U → C(U) be a F1-F2-contraction satisfying the
hypotheses in Equations (2) and (3) of Theorem 3. Assume that F1 satisfies (F4), then G has a fixed point in U.

Proof. Assume that G has no fixed point in U. Let µ0 ∈ U, then M(µ0,Gµ0) > 0, otherwise µ0 is the
fixed point of G. Since G is F1-F2-contraction there exists µ1 ∈ Tx0 with M(µ1,Gµ1) > 0, otherwise µ1

is the fixed point of G, satisfying

π(m(µ0, µ1)) + F1(M(µ1,Gµ1)) ≤ F1(Mµ0,µ1), (59)

and

F2(m(µ0, µ1)) ≤ F1(M(µ0,Gµ0)) + ξ(m(µ0, µ1)) (60)

where

Mµ0,µ1 =max {m(µ0, µ1), M(µ0,Gµ0), M(µ1,Gµ1),

M(µ1,Gµ0) + M(µ0,Gµ1)

2

}
≤ max {m(µ0, µ1), m(µ0, µ1), m(µ1, µ2),

m(µ1, µ1) + m(µ0, µ2)

2

}
.

Since

m(µ0, µ2)

2
≤ m(µ0, µ1) + m(µ1, µ2)

2
≤ max{m(µ0, µ1), m(µ1, µ2)},

it follows that

Mµ0,µ1 ≤ max{m(µ0, µ1), m(µ1, µ2)}. (61)

Since F1 satisfies (F4), we obtain

F1(M(µ1,Gµ1)) = inf
ω∈Gµ

F1(m(µ1, ω)) (62)



Mathematics 2020, 8, 212 14 of 18

Suppose that m(µ0, µ1) < m(µ1, µ2); then, Equations (59) and (62) imply that

inf
ω∈Gµ

F1(m(µ1, ω)) ≤ F1(m(µ1, µ2))− π(m(µ0, µ1)). (63)

Then, by Equation (63), there exists µ2 ∈ Gµ1 such that

F1(m(µ1, µ2)) ≤ F1(m(µ1, µ2))− π(m(µ0, µ1)), (64)

which is a contradiction. Hence, Mµ0,µ1 ≤ m(µ0, µ1). Therefore, from Equations (59) and (62), we
obtain

F1(m(µ1, µ2)) ≤ F1(m(µ0, µ1))− π(m(µ0, µ1)), (65)

The rest of the proof follows as the proof of Theorem 5.

Theorem 7. Let (U, m) be a complete metric space and G : U → C(U). Assume that F1 : (0, ∞) → R is
a nondecreasing function, F2 : (0, ∞) → R satisfies (F2) and (F3), and there exists π : (0, ∞) → (0, ∞)

and ξ : (0, ∞) → (ξ, ∞), ξ > 0 such that, for all µ ∈ U with M(µ,Gµ) > 0, we have ω ∈ Gµ with
M(ω,Gω) > 0 satisfying

π(m(µ, ω)) + F1(M(ω,Gω)) ≤ F1(M(µ,Gµ)) (66)

and

F2(m(µ, ω)) ≤ F1(M(µ,Gµ)) + ξ(m(µ, ω)). (67)

If the hypotheses in Equations (2) and (3) of Theorem 3 hold, then G has a fixed point in U.

Proof. Assume that G has no fixed point in U. Let µ0 ∈ U, we can construct a sequence {µq} in
U satisfying

π(m(µq, µq+1)) + F1(M(µq+1,Gµq+1)) ≤ F1(M(µq,Gµq)), (68)

and

F2(m(µq, µq+1)) ≤ F1(M(µq,Gµq)) + ξ(m(µq, µq+1)), (69)

µq+1 ∈ Gµq and M(µq,Gµq) > 0. The rest of the proof follows as the proof of Theorem 5.

3. Notations and Setting of the Problem

Consider the following nonlinear matrix equation

V = Q+
f

∑
i=1

Ci$(V)C ∗i −
k

∑
j=1

Dj$(V)D∗j , (70)

where Q is a positive definite matrix, Ci, Dj are arbitrary s × s matrices for all i = 1, ..., f , j = 1, ..., k
and $ is a self mapping on the set of all s × s Hermitian matrices, which maps set of all s × s Hermitian
positive definite matrices into itself. Designate

H(s) = {V : V is s × s Hermitian matrix},
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which is a complete metric space in respect of the Ky Fan norm ||.||1, defined by

||C ||1 =
n

∑
l=1

sl(C ),

where sl(C ), l = 1, ..., n, are the singular values of C . In addition,

||C ||1 = tr((C ∗C )1/2),

which is tr(C ) for (Hermitian) nonnegative matrices and

P(s) = {V ∈ H(s) : V is positive definite}.

Define G : H(s)→ H(s) and F : R+ → R by

G(V) = Q+
f

∑
i=1

Ci$(V)C ∗i −
k

∑
j=1

Dj$(V)D∗j (71)

and F(r) = ln r, respectively. Then, F ∈ F. For a function ξ : (0, ∞)→ (ξ, ∞), ξ > 0 and V ∈ U with
M(V,GV) = inf {m(V, Y) : Y ∈ GV} > 0, define the set

FV
ξ = {Y ∈ GV : M(Y,GY) > 0 and F(m(V, Y)) ≤ F(MV,Y) + ξ(m(V, Y))}, (72)

where

MV,Y = max
{

m(V, Y), M(V,GV), M(Y,GY),
M(Y,GV) + M(V,GY)

2

}
. (73)

Note that a fixed point of G is a solution of Equation (70).

4. Existence of Solution to Nonlinear Matrix Equations

In this section, we prove the existence of the positive definite solution to the nonlinear matrix
equation in Equation (70) by using the fixed point results in Section 2.

Theorem 8. Let $ : H(s)→ H(s), which maps P(s) into P(s) and Q ∈ P(s). Assume the following

(1) there exists a positive number N for which ∑
f
i=1 CiC

∗
i + ∑k

j=1 DjD
∗
j < NIs ; and

(2) for all V, Y ∈ P(s),‖$(Y)− $(V)‖1 ≤ N−1(MV,Y)exp
(
−
(

2‖Y−V‖+1
2

))
.

Then, Equation (70) has a solution in P(s).

Proof. Let V ∈ H(s). For the functions π : (0, ∞) → (0, ∞) and ξ : (0, ∞) → (ξ, ∞) defined by
π(t) = t + 1

2 and ξ(t) = 1
t +

1
4 , there exist Y ∈ FV

ξ such that Y = GV. Thus, for M(V,GV) > 0,
Equation (11) holds true, M(Y, TY) > 0, and

F(m(V, Y)) = F(m(V,GV))

= ln(||GV −V||1)

< ln(||GV −V||1) +
1

||GV −V||1
+

1
||GV −V||1

= F(M(V,GV)) + ξ(m(V, Y)).
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Now,

M(Y,GY) = m(GV,GY)

= ||GY− GV||1
= tr(GY− GV)

= tr

(
f

∑
i=1

(Ci$(V)C ∗i − Ci$(Y)C ∗i ) +
k

∑
j=1

(Dj$(V)D∗j −Dj$(Y)D∗j )

)

≤
f

∑
i=1
‖CiC

∗
i ‖ ‖$(V)− $(Y)‖+

k

∑
j=1

∥∥∥DjD
∗
j

∥∥∥ ‖$(Y)− $(V)‖

=

[
f

∑
i=1
‖CiC

∗
i ‖+

k

∑
j=1

∥∥∥DjD
∗
j

∥∥∥] ‖$(Y)− $(V)‖

≤
∑

f
i=1

∣∣CiC
∗
i

∣∣+ ∑k
j=1

∣∣∣DjD
∗
j

∣∣∣
N

(MY,V)exp
(
−
(

2‖Y−V‖+ 1
2

))
< (MY,V)exp

(
−
(

2‖Y−V‖+ 1
2

))
,

and, thus,

ln(||GY−Y||1) = ln(||GY− GV||1) < ln
(
(MY,V)e

−
(

2‖Y−V‖+1
2

))
= ln(MV,Y)−

{
2‖Y−V‖+ 1

2

}
.

This implies that

||Y−V||1 +
1
2
+ ln(||GY−Y||1) < ln(MV,Y).

Consequently,

π(m(V, Y)) + F(m(Y,GY)) < F(MV,Y).

Thus, by using Theorem 3, we conclude that G has a fixed point and hence Equation (70) has a solution
in P(s).

Corollary 8. Consider the matrix equation in Equation (70) with unitary matrices Ci, Dj for all i = 1, 2, ..., f ,
j = 1, 2, ..., k. Assume that there exists a positive number N for which m + k < N and Hypothesis (2) of
Theorem 8 holds for all V, Y ∈ P(s). Then, Equation (70) has a solution in P(s).

Corollary 9. Consider the matrix equation

V = Q+ C VC ∗ −DVD∗. (74)

Assume that there exists a positive number N for which CiC
∗
i +DjD

∗
j < NIs , and Hypothesis (2) of Theorem 8

holds for all V, Y ∈ P(s). Then, Equation (74) has a solution in P(s).

5. Conclusions

The motivation of the presented work is to get a new approach to the existence of the solution to
nonlinear matrix equations via fixed point results for newly introduced multi-valued mappings, named
as modified-F-contractions. It is also proved that our obtained results generalize and extend many
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existing results in the literature and nontrivial examples are provided to verify it. Here, we overcome
the error mentioned in Example 1.1 of [9] by adopting a way other than that of Nguyen et al.
In addition, we show that the main result of Nashine and Kadelburg [10] (see Theorem 2) is not
a proper generalization of Feng and Liu’s theorem by giving an example.
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