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Abstract: In this paper, we consider three sums of finite products of Chebyshev polynomials of two
different kinds, namely sums of finite products of the second and third kind Chebyshev polynomials,
those of the second and fourth kind Chebyshev polynomials, and those of the third and fourth kind
Chebyshev polynomials. As a generalization of the classical linearization problem, we represent each
of such sums of finite products as linear combinations of Hermite, generalized Laguerre, Legendre,
Gegenbauer, and Jacobi polynomials. These are done by explicit computations and the coefficients
involve terminating hypergeometric functions 2F1, 1F1, 2F2, and 4F3.

Keywords: sums of finite products; Chebyshev polynomials of the second; third and fourth kinds;
terminating hypergeometric functions
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1. Introduction and Preliminaries

The classical linearization problem consists of determining the coefficients cn,m(k) in the expansion
of the product of two polynomials qn(x) and rm(x) in terms of arbitrary polynomial sequence
{pk(x)}k≥0. See [1].

qn(x)rm(x) =
n+m

∑
k=0

cnm(k)pk(x). (1)

There are several special cases of this: If qn(x) = rn(x) = pn(x), then it is called either the
standard linearization or a Clebsch–Gordan-type problem:

qn(x)qm(x) =
n+m

∑
k=0

cnm(k)qk(x). (2)

If rm(x) = 1, then it is known as the connection problem:

qn(x) =
n

∑
k=0

cn(k)pk(x). (3)

If, furthermore, qn(x) = xn in (3), then it is called the inversion problem.
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Let n, r, s be nonnegative integers with r + s ≥ 1. Here, as one motivation for the present research,
we would like to generalize the linearization problem in (1) and consider the following three sums of
finite products of Chebyshev polynomials of two different kinds:

αn,r,s(x) = ∑
i1+···+ir+j1+···+js=n

Ui1(x) · · ·Uir (x)Vj1(x) · · ·Vjs(x), (4)

βn,r,s(x) = ∑
i1+···+ir+j1+···+js=n

Ui1(x) · · ·Uir (x)Wj1(x) · · ·Wjs(x), (5)

γn,r,s(x) = ∑
i1+···+ir+j1+···+js=n

Vi1(x) · · ·Vir (x)Wj1(x) · · ·Wjs(x), (6)

where Un(x), Vn(x), and Wn(x) are respectively Chebyshev polynomials of the second, third, and
fourth kinds, and the sums are over all nonnegative integers, i1, . . . , ir, j1, . . . , js with i1 + · · ·+ ir +
j1 + · · · + js = n. Then, we will represent each of the sums of finite products in Equations (4)–(6)
as linear combinations of Hermite polynomials Hn(x), generalized Laguerre polynomials Lα

n(x),
Legendre polynomials Pn(x), Gegenbauer polynomials C(λ)

n (x), and Jacobi polynomials P(α,β)
n (x) (see

Theorems 1–3).
As another motivation for the present study, we would like to mention a convolution identity

of Bernoulli polynomials that yields the famous Faber–Pandharipande–Zagier identity and Miki’s
identity. For this, let us first recall that the Bernoulli polynomials are given by

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
.

Then, let us put

Em(x) =
m−1

∑
k=1

1
k(m− k)

Bk(x)Bm−k(x), (m ≥ 2).

In the Introduction of [2], we noted that the following identity can be derived from the Fourier
expansion of Em(〈x〉). Here, 〈x〉 = x− [x] is the fractional part of x, for any real number x:

∑m−1
k=1

1
k(m−k)Bk(x)Bm−k(x) = 2

m2

(
Bm + 1

2

)
+ 2

m ∑m−2
k=1

(m
k )

m−k Bm−kBk(x) + 2
m Hm−1Bm(x), (m ≥ 2), (7)

where Hm =
m

∑
j=1

1
j

are the harmonic numbers.

Furthermore, (7) can be modified to give

m−1

∑
k=1

1
2k(2m− 2k)

B2k(x)B2m−2k(x) +
2

2m− 1
B1(x)B2m−1(x)

=
1
m

m

∑
k=1

1
2k

(
2m
2k

)
B2kB2m−2k(x) +

1
m

H2m−1B2m(x) +
2

2m− 1
B2m−1B1(x), (m ≥ 2). (8)

Let x = 1
2 and x = 0 in (8) give respectively Faber–Pandharipande–Zagier identity (see [3]) and a

slight variant of Miki’s identity (see [4–7]). It is worth noting that our methods are very simple at the
level of Fourier series expansions, whereas the other approaches in [4–7] use different methods from
one another and are quite involved.

Before we state our main results in Theorems 1–3, we will fix notations that will be used
throughout this paper and recall some basic facts about orthogonal polynomials that will be needed.
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Let n be a nonnegative integer. Then, the falling factorial polynomials (x)n and the rising factorial
polynomials 〈x〉n are respectively given by

(x)0 = 1, (x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1), (9)

〈x〉0 = 1, 〈x〉n = x(x + 1) · · · (x + n− 1), (n ≥ 1). (10)

The two factorial polynomials are related by

(−1)n(x)n = 〈−x〉n, (−1)n〈x〉n = (−x)n. (11)

(2n− 2j)!
(n− j)!

=
22n−2j(−1)j〈 1

2
〉

n〈 1
2 − n

〉
j

, (n ≥ j ≥ 0). (12)

(2n + 2j)!
(n + j)!

= 22n+2j
〈

1
2

〉
n

〈
n +

1
2

〉
j
, (n, j ≥ 0). (13)

Γ
(

n +
1
2

)
=

(2n)!
√

π

22nn!
, (n ≥ 0), (14)

Γ(x + 1)
Γ(x + 1− n)

= (x)n,
Γ(x + n)

Γ(x)
= 〈x〉n, (n ≥ 0), (15)

where Γ(x) is the gamma function. The hypergeometric function is defined by

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞

∑
n=0

〈a1〉n · · · 〈ap〉n
〈b1〉n · · · 〈bq〉n

xn

n!
. (16)

Next, we will recall some very basic facts about Chebyshev polynomials of the second kind Un(x),
the third kind Vn(x), and the fourth kind Wn(x) (see [8,9]). In addition, we will state those facts about
Hermite polynomials Hn(x), extended Laguerre polynomials Lα

n(x), Legendre polynomials Pn(x),
Gegenbauer polynomials C(λ)

n (x), and Jacobi polynomials P(α,β)
n (x) (see [10–14]). We let the reader

refer to the standard books [15–17] for further details on these family of orthogonal polynomials.
In terms of generating functions, the above mentioned orthogonal polynomials are given

as follows:
1

1− 2xt + t2 =
∞

∑
n=0

Un(x)tn, (17)

1− t
1− 2xt + t2 =

∞

∑
n=0

Vn(x)tn, (18)

1 + t
1− 2xt + t2 =

∞

∑
n=0

Wn(x)tn, (19)

e2xt−t2
=

∞

∑
n=0

Hn(x)
tn

n!
, (20)

(1− t)−α−1 exp
(
− xt

1− t

)
=

∞

∑
n=0

Lα
n(x)tn, (α > −1), (21)

(1− 2xt + t2)−
1
2 =

∞

∑
n=0

Pn(x)tn, (22)

1
(1− 2xt + t2)λ

=
∞

∑
n=0

C(λ)
n (x)tn, (λ > −1

2
, λ 6= 0, |t| < 1, |x| ≤ 1), (23)
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α + β

R(1− t + R)α(1 + t + R)β
=

∞

∑
n=0

P(α,β)
n (x)tn, (R =

√
1− 2xt + t2, α, β > −1). (24)

In terms of explicit expressions, they are given as follows:

Un(x) = (n + 1)2F1

(
− n, n + 2;

3
2

;
1− x

2

)
=

[ n
2 ]

∑
l=0

(−1)l
(

n− l
l

)
(2x)n−2l , (n ≥ 0), (25)

Vn(x) = 2F1

(
− n, n + 1;

1
2

;
1− x

2

)
=

n

∑
l=0

(
n + l

2l

)
2l(x− 1)l , (n ≥ 0), (26)

Wn(x) = (2n + 1)2F1

(
− n, n + 1;

3
2

;
1− x

2

)
(27)

= (2n + 1)
n

∑
l=0

2l

2l + 1

(
n + l

2l

)
(x− 1)l , (n ≥ 0),

Hn(x) = n!
[ n

2 ]

∑
l=0

(−1)l

l!(n− 2l)!
(2x)n−2l , (n ≥ 0), (28)

Lα
n(x) =

〈α + 1〉n
n! 1F1(−n; α + 1; x) =

n

∑
l=0

(−1)l(n+α
n−l )

l!
xl , (n ≥ 0), (29)

Pn(x) = 2F1

(
− n, n + 1; 1;

1− x
2

)
=

1
2n

[ n
2 ]

∑
l=0

(−1)l
(

n
l

)(
2n− 2l

n

)
xn−2l , (n ≥ 0), (30)

C(λ)
n (x) =

(
n + 2λ− 1

n

)
2F1

(
− n, n + 2λ; λ +

1
2

;
1− x

2

)
(31)

=
[ n

2 ]

∑
k=0

(−1)k Γ(n− k + λ)

Γ(λ)k!(n− 2k)!
(2x)n−2k, (n ≥ 0),

P(α,β)
n (x) =

〈α + 1〉n
n! 2F1

(
− n, 1 + α + β + n; α + 1;

1− x
2

)
(32)

=
n

∑
k=0

(
n + α

n− k

)(
n + β

k

)(
x− 1

2

)k( x + 1
2

)n−k

, (n ≥ 0).

2. Statements of Results

The following three theorems are the main results of this paper, all of which are new. Here, we
note that we treat sums of finite products of Chebyshev polynomials of two different kinds, whereas
all the results so far, except for [18], treated sums of finite products of some polynomials of single kind.

Theorem 1. Let n, r, s be nonnegative integers with r + s ≥ 1. Then, we have the following identities:

∑
i1+···+ir+j1+···+js=n

Ui1(x) · · ·Uir (x)Vj1(x) · · ·Vjs(x)
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=
n

∑
k=0

(−1)n−k

(r + s− 1)!k!

[ n−k
2 ]

∑
j=0

( s
n−k−2j)(r + s + k + 2j− 1)!

j!
(33)

× 1F1(−j; 1− r− s− k− 2j; −1)Hk(x)

=
n

∑
k=0

2n(−1)n−k

(r + s− 1)!Γ(α + n− k + 1)
(34)

×
[ k

2 ]

∑
m=0

(− 1
4 )

m(n + r + s−m− 1)!Γ(n + α− 2m + 1)

m!(k− 2m)!2F2

(
2m− k, −s; m + 1− n− r− s, 2m− n− α; − 1

2

) Lα
n−k(x)

=
n

∑
k=0

(−1)n−k2k(2k + 1)
(r + s− 1)!

[ n−k
2 ]

∑
j=0

2j( s
n−k−2j)(r + s + k + 2j− 1)!

j!(2k + 2j + 1)!!
(35)

× 2F1

(
− j,−k− j− 1

2
; 1− r− s− k− 2j; 1

)
Pk(x)

=
n

∑
k=0

(−1)n−kΓ(λ)(k + λ)

(r + s− 1)!

[ n−k
2 ]

∑
j=0

( s
n−k−2j)(r + s + k + 2j− 1)!

j!Γ(k + λ + j + 1)
(36)

× 2F1(−j, −k− λ− j; 1− r− s− k− 2j; 1)C(λ)
k (x)

=
n

∑
k=0

(−2)n+kΓ(k + α + β + 1)
(r + s− 1)!Γ(2k + α + β + 1)

[ n−k
2 ]

∑
m=0

(− 1
4 )

m

m!
(37)

×
n−k−2m

∑
l=0

( 1
2 )

l(s
l)(n + r + s− l −m− 1)!
(n− k− l − 2m)!

× 2F1(k + l + 2m− n, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x).

Here, (2n− 1)!! = (2n− 1)(2n− 3) · · · 1, for n ≥ 1, and (−1)!! = 1.

Theorem 2. Let n, r, s be nonnegative integers with r + s ≥ 1. Then, we have the following representations:

∑
i1+···+ir+j1+···+js=n

Ui1(x) · · ·Uir (x)Wj1(x) · · ·Wjs(x)

=
n

∑
k=0

1
(r + s− 1)!k!

[ n−k
2 ]

∑
j=0

( s
n−k−2j)(r + s + k + 2j− 1)!

j!
(38)

× 1F1(−j; 1− r− s− k− 2j; −1)Hk(x)

=
n

∑
k=0

2n(−1)n−k

(r + s− 1)!Γ(α + n− k + 1)

[ k
2 ]

∑
m=0

(− 1
4 )

m(n + r + s−m− 1)!Γ(n + α− 2m + 1)
m!(k− 2m)!

(39)

× 2F2

(
2m− k, −s; m + 1− n− r− s, 2m− n− α;

1
2

)
Lα

n−k(x)
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=
n

∑
k=0

(2k + 1)2k

(r + s− 1)!

[ n−k
2 ]

∑
j=0

2j( s
n−k−2j)(r + s + k + 2j− 1)!

j!(2k + 2j + 1)!!
(40)

× 2F1

(
− j, −k− j− 1

2
; 1− r− s− k− 2j; 1

)
Pk(x)

=
n

∑
k=0

Γ(λ)(k + λ)

(r + s− 1)!

[ n−k
2 ]

∑
j=0

( s
n−k−2j)(r + s + k + 2j− 1)!

j!Γ(k + λ + j + 1)
(41)

× 2F1(−j, −k− λ− j; 1− r− s− k− 2j; 1)C(λ)
k (x)

=
n

∑
k=0

(−2)n+kΓ(k + α + β + 1)
(r + s− 1)!Γ(2k + α + β + 1)

[ n−k
2 ]

∑
m=0

(− 1
4 )

m

m!
(42)

×
n−k−2m

∑
l=0

(− 1
2 )

l(s
l)(n + r + s− l −m− 1)!
(n− k− l − 2m)!

× 2F1(k + l + 2m− n, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x).

Theorem 3. Let n, r, s be nonnegative integers with r + s ≥ 1. Then, we have the following expressions:

∑
i1+···+ir+j1+···+js=n

Vi1(x) · · ·Vir (x)Wj1(x) · · ·Wjs(x)

=
n

∑
k=0

1
(r + s− 1)!k!

[ n−k
2 ]

∑
l=0

(r + s + k + 2l − 1)!( s
n−k−2l)

l!
(43)

× 1F1(−l; 1− r− s− k− 2l; −1)

× 2F1(k + 2l − n, −r; s + k + 2l − n + 1; −1)Hk(x)

=
n

∑
k=0

2n(−1)k

(r + s− 1)!Γ(α + k + 1)
(44)

×
n−k

∑
i=0

2−i
(

s
i

)
2F1(−i, −r; s− i + 1; −1)

×
[ n−k−i

2 ]

∑
m=0

(− 1
4 )

m(n + r + s− i−m− 1)!Γ(n + α− i− 2m + 1)
m!(n− k− i− 2m)!

Lα
k (x)

=
n

∑
k=0

(2k + 1)2k

(r + s− 1)!

[ n−k
2 ]

∑
l=0

2l(r + s + k + 2l − 1)!( s
n−k−2l)

(2k + 2l + 1)!! l!
(45)

× 2F1

(
− l, −k− l − 1

2
; 1− r− s− k− 2l; 1

)
× 2F1(k + 2l − n, −r; s + k + 2l − n + 1; −1)Pk(x)

=
n

∑
k=0

(k + λ)Γ(λ)
(r + s− 1)!

[ n−k
2 ]

∑
l=0

(r + s + k + 2l − 1)!( s
n−k−2l)

l!Γ(k + l + λ + 1)
(46)

× 2F1(−l, −k− l − λ; 1− r− s− k− 2l; 1)

× 2F1(k + 2l − n, −r; s + k + 2l − n + 1; −1)C(λ)
k (x)
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=
n

∑
k=0

(−2)n+kΓ(k + α + β + 1)
(r + s− 1)!Γ(2k + α + β + 1)

n−k

∑
i=0

(
− 1

2

)i(s
i

)
2F1(−i, −r; s− i + 1; −1) (47)

×
[ n−k−i

2 ]

∑
m=0

(− 1
4 )

m(n + r + s− i−m− 1)!
m!(n− k− i− 2m)!

× 2F1(k + i + 2m− n, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x).

Before we move on to the next section, we would like to recall some of the related previous works.
In [19], sums of finite products of Chebyshev polynomials of the first, third, and and fourth kinds were
represented in terms of Hn(x), Lα

n(x), Pn(x), C(λ)
n (x), P(α,β)

n (x). In addition, in [20], sums of finite
products of Chebyshev polynomials of the second kind were expressed in terms of the same orthogonal
polynomials. Here, we emphasize that, except for the paper [18], which considered the sums of finite
products in (4)–(6) and represented them in terms of all kinds of Chebyshev polynomials, all of the
results so far have treated sums of finite products of some polynomials of single type. For further
details on these, we let the reader refer to the references in [19,20].

3. Proofs of Theorems 1 and 2

In this section, we will show Theorems 1 and 2. For this, we first state Propositions 1 and 2 that
will be needed in showing Theorems 1–3. Here, we note that (a), (b), (c), (d), and (e) of Proposition 1
are respectively from (3.7) of [11], (2.3) of [13], (2.3) of [12], (2.3) of [9], and (2.7) of [14]. In fact, all the
formulas in Proposition 1 follow from the orthogonalities of Hn(x), Lα

n(x), Pn(x), C(λ)
n (x), P(α,β)

n (x)
(see (32)–(36) in [19]), and Rodrigues’ and Rodrigues-type formulas for those orthogonal polynomials
(see (27)–(31)), and integration by parts.

Proposition 1. Let q(x) ∈ R[x] be a polynomial of degree n. Then, the following hold:

(a) q(x) =
n

∑
k=0

Ck,1Hk(x), where

Ck,1 =
(−1)k

2kk!
√

π

∫ ∞

−∞
q(x)

dk

dxk e−x2
dx.

(b) q(x) =
n

∑
k=0

Ck,2Lα
k (x), where

Ck,2 =
1

Γ(α + k + 1)

∫ ∞

0
q(x)

dk

dxk (e
−xxk+α)dx.

(c) q(x) =
n

∑
k=0

Ck,3Pk(x), where

Ck,3 =
2k + 1
2k+1k!

∫ 1

−1
q(x)

dk

dxk (x2 − 1)kdx.

(d) q(x) =
n

∑
k=0

Ck,4C(λ)
k (x), where

Ck,4 =
(k + λ)Γ(λ)

(−2)k
√

πΓ(k + λ + 1
2 )

∫ 1

−1
q(x)

dk

dxk (1− x2)k+λ− 1
2 dx.
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(e) q(x) =
n

∑
k=0

Ck,5P(α,β)
k (x), where

Ck,5 =
(−1)k(2k + α + β + 1)Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

∫ 1

−1
q(x)

dk

dxk (1− x)k+α(1 + x)k+βdx.

The next proposition was stated in [19].

Proposition 2. Let m, k be nonnegative integers. Then, we have the following:

(a)
∫ ∞

−∞
xme−x2

dx =

{
0, if m ≡ 1 (mod 2),

m!
√

π
(m

2 )!2
m , if m ≡ 0 (mod2).

(b)
∫ 1

−1
xm(1− x2)kdx =

{
0, if m ≡ 1 (mod 2),

22k+2k!m!(k+ m
2 +1)!

(m
2 )!(2k+m+2)! , if m ≡ 0 (mod2).

(c)
∫ 1

−1
xm(1− x2)k+λ− 1

2 dx =

{
0, if m ≡ 1 (mod 2),

Γ(k+λ+ 1
2 )Γ(

m
2 +

1
2 )

Γ(k+λ+ m
2 +1) , if m ≡ 0 (mod2).

(d)
∫ 1

−1
xm(1− x)k+α(1 + x)k+βdx = 22k+α+β+1

m

∑
s=0

(
m
s

)
(−1)m−s2s Γ(k + α + 1)Γ(k + β + s + 1)

Γ(2k + α + β + s + 2)
.

Lemmas 1 and 2 in the following can be shown by using (17)–(19) and were derived in [18].
However, for the sake of completeness and in view of its importance, we repeat the proof for Lemma 1.
Lemma 2 can be proved analogously to Lemma 1.

Lemma 1. Let n, r, s be nonnegative integers with r + s ≥ 1. Then, we have the following identity:

∑i1+···+ir+j1+···+js=n Ui1(x) · · ·Uir (x)Vj1(x) · · ·Vjs(x) = 1
(r+s−1)!2r+s−1 ∑n

l=0 (
s
l)(−1)lU(r+s−1)

n+r+s−l−1(x), (48)

where the sum is over all nonnegative integers i1, . . . , ir, j1, . . . , js, with i1 + · · ·+ ir + j1 + · · ·+ js = n.

Proof. Let F(t, x) = (1− 2xt + t2)−1. Then, we observe that

∂r+s−1

∂xr+s−1 F(t, x) = (r + s− 1)!(2t)r+s−1(1− 2xt + t2)−(r+s). (49)
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Now, by making use of (17), (18), and (49), we have

∞

∑
n=0

(
∑

i1+···ir+j1+···+js=n
Ui1(x) · · ·Uir (x)Vj1(x) · · ·Vjs(x)

)
tn

=

(
∞

∑
i=0

Ui(x)ti

)(
∞

∑
j=0

Vj(x)tj

)s

=

(
1

1− 2xt + t2

)r ( 1− t
1− 2xt + t2

)s

= (1− t)s(1− 2xt + t2)−(r+s)

=
(1− t)s

(r + s− 1)!2r+s−1
1

tr+s−1
∂r+s−1

∂xr+s−1 F(t, x)

=
(1− t)s

(r + s− 1)!2r+s−1
1

tr+s−1

∞

∑
m=0

U(r+s−1)
m+r+s−1(x)tm+r+s−1

=
1

(r + s− 1)!2r+s−1

∞

∑
l=0

(
s
l

)
(−1)ltl

∞

∑
m=0

U(r+s−1)
m+r+s−1(x)tm

=
1

(r + s− 1)!2r+s−1

∞

∑
n=0

(
n

∑
l=0

(
s
l

)
(−1)lU(r+s−1)

n+r+s−l−1(x)

)
tn,

which completes the proof for (48).

Lemma 2. Let n, r, s be nonnegative integers with r + s ≥ 1. Then, the following identity holds:

∑i1+···+ir+j1+···+js=n Ui1(x) · · ·Uir (x)Wj1(x) · · ·Wjs(x) = 1
(r+s−1)!2r+s−1 ∑n

l=0 (
s
l)U

(r+s−1)
n+r+s−l−1(x), (50)

where the sum is over all nonnegative integers i1, . . . , ir, j1, . . . , js, with i1 + · · ·+ ir + j1 + · · ·+ js = n.

From (25), we see that the rth derivative of Un(x) is given by

U(r)
n (x) =

[ n−r
2 ]

∑
m=0

(−1)m
(

n−m
m

)
(n− 2m)r2n−2mxn−2m−r, (51)

from which we have

U(r+s+k−1)
n+r+s−l−1(x) =

[ n−k−l
2 ]

∑
m=0

(−1)m
(

n + r + s− l −m− 1
m

)
(52)

× (n + r + s− l − 2m− 1)r+s+k−12n+r+s−l−2m−1xn−k−l−2m.

Now, we are going to show Theorem 1. With αn,r,s(x) as in (4), we put

αn,r,s(x) =
n

∑
k=0

Ck,1Hk(x). (53)
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Then, from (a) of Proposition 1, (48), and (52), and integration by parts k times, we have

Ck,1 =
(−1)k

2kk!
√

π

∫ ∞

−∞
αn,r,s(x)

dk

dxk e−x2
dx

=
(−1)k

2kk!
√

π(r + s− 1)!2r+s−1

n

∑
l=0

(
s
l

)
(−1)l

∫ ∞

−∞
U(r+s−1)

n+r+s−l−1(x)
dk

dxk e−x2
dx

=
(−1)k

2kk!
√

π(r + s− 1)!2r+s−1

n−k

∑
l=0

(
s
l

)
(−1)l(−1)k

∫ ∞

−∞
U(r+s+k−1)

n+r+s−l−1(x)e−x2
dx (54)

=
1

2kk!
√

π(r + s− 1)!2r+s−1

n−k

∑
l=0

(
s
l

)
(−1)l

×
[ n−k−l

2 ]

∑
m=0

(−1)m
(

n + r + s− l −m− 1
m

)
(n + r + s− l − 2m− 1)r+s+k−1

× 2n+r+s−l−2m−1
∫ ∞

−∞
xn−k−l−2me−x2

dx.

Here, we note from (a) of Proposition 2 that

∫ ∞

−∞
xn−k−l−2me−x2

dx =

{
0, if n 6≡ k− l (mod 2),

(n−k−l−2m)!
√

π

( n−k−l
2 −m)!2n−k−l−2m , if n ≡ k− l (mod2). (55)

From (53)–(55) and after some simplifications, we get

αn,r,s(x) =
1

(r + s− 1)!

n

∑
k=0

∑
0≤l≤n−k

l≡n−k (mod 2)

[ n−k−l
2 ]

∑
m=0

(s
l)(−1)l(−1)m(n + r + s− l −m− 1)!

k!m!
( n−k−l

2 −m
)
!

Hk(x)

=
1

(r + s− 1)!

n

∑
k=0

[ n−k
2 ]

∑
j=0

(−1)n−k( s
n−k−2j)

k!

j

∑
m=0

(−1)m(r + s + k + 2j−m− 1)!
m!(j−m)!

Hk(x) (56)

=
1

(r + s− 1)!

n

∑
k=0

[ n−k
2 ]

∑
j=0

(−1)n−k( s
n−k−2j)(r + s + k + 2j− 1)!

k!j!

j

∑
m=0

(−1)m〈−j〉m
m!〈1− r− s− k− 2j〉m

Hk(x)

=
n

∑
k=0

(−1)n−k

(r + s− 1)!k!

[ n−k
2 ]

∑
j=0

( s
n−k−2j)(r + s + k + 2j− 1)!

j! 1F1(−j; 1− r− s− k− 2j ;−1)Hk(x)..

This shows (31) of Theorem 1.
Next, we let

αn,r,s(x) =
n

∑
k=0

Ck,2Lα
k (x). (57)

Then, from (b) of Proposition 1, (48), and (52), integration by parts k times and proceeding just as
in (54), we obtain

Ck,2 =
1

Γ(α + k + 1)(r + s− 1)!2r+s−1

n−k

∑
l=0

(
s
l

)
(−1)l(−1)k (58)

×
[ n−k−l

2 ]

∑
m=0

(−1)m
(

n + r + s− l −m− 1
m

)
(n + r + s− l − 2m− 1)r+s+k−1

× 2n+r+s−l−2m−1Γ(n + α− l − 2m + 1).
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From (57) and (58) and after some simplifications, we have

αn,r,s(x) =
n

∑
k=0

2n(−1)n−kLα
n−k(x)

(r + s− 1)!Γ(α + n− k + 1)

[ k
2 ]

∑
m=0

(
− 1

4
)m

m!

×
k−2m

∑
l=0

(s
l)
(
− 1

2
)l
(n + r + s− l −m− 1)!Γ(n + α− l − 2m + 1)

(k− l − 2m)!
. (59)

Here, the innermost sum of (59) is equal to

(n + r + s−m− 1)!Γ(n + α− 2m + 1)
(k− 2m)!

k−2m

∑
l=0

(
− 1

2
)l〈2m− k〉l〈−s〉l

l!〈m + 1− n− r− s〉l〈2m− n− α〉l
(60)

=
(n + r + s−m− 1)!Γ(n + α− 2m + 1)

(k− 2m)! 2F2

(
2m− k,−s ; m + 1− n− r− s, 2m− n− α ; −1

2

)
.

Combining (59) and (60), we get

αnr,s(x) =
n

∑
k=0

2n(−1)n−k

(r + s− 1)!Γ(α + n− k + 1)

[
k
2

]
∑

m=0

(
− 1

4
)m

(n + r + s−m− 1)!Γ(n + α− 2m + 1)
m!(k− 2m)!

(61)

× 2F2

(
2m− k,−s; m + 1− n− r− s, 2m− n− α ;−1

2

)
Lα

n−k(x).

This completes the proof for (32) of Theorem 1.
Let us put

αn,r,s(x) =
n

∑
k=0

Ck,3Pk(x). (62)

From (c) of Proposition 1, (48), and (52), integration by parts k times, (b) of Proposition 2 and after
some simplifications, we obtain

Ck,3 = ∑ 0≤l≤n−k
l≡n−k (mod 2)

∑
[ n−k−l

2 ]
m=0

(2k+1)(s
l)(−1)l(−1)m(n+r+s−l−m−1)!

(
n+k−l

2 −m+1
)

!2n+k−l−2m+1

(r+s−1)!m!
(

n−k−l
2 −m

)
!(n+k−l−2m+2)!

=
[ n−k

2 ]

∑
j=0

(2k + 1)( s
n−k−2j)(−1)n−k(r + s + k + 2j− 1)!

(r + s− 1)!j!〈 1
2 〉k+j+1

j

∑
m=0

〈−j〉m〈−k− j− 1
2 〉m

m!〈1− r− s− k− 2j〉m
(63)

= ∑
[ n−k

2 ]
j=0

(2k+1)( s
n−k−2j)(−1)n−k(r+s+k+2j−1)!2k+j

(r+s−1)!j!(2k+2j+1)!! 2F1

(
− j,−k− j− 1

2 ; 1− r− s− k− 2j ; 1
)

.

Combining (62) and (63), we have

αn,r,s(x) =
n

∑
k=0

(−1)n−k(2k + 1)2k

(r + s− 1)!

[ n−k
2 ]

∑
j=0

2j( s
n−k−2j)(r + s + k + 2j− 1)!

j!(2k + 2j + 1)!!

× 2F1

(
− j,−k− j− 1

2
; 1− r− s− k− 2j; 1

)
Pk(x).

This shows (35) of Theorem 1
Let us set

αn,r,s(x) =
n

∑
k=0

Ck,4C(λ)
k (x). (64)
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From (d) of Proposition 1, (48) and (52), integration by parts k times, (c) of Proposition 2 and after
some simplifications, we have

Ck,4 = ∑
0≤l≤n−k

l≡n−k (mod 2)

[ n−k−l
2 ]

∑
m=0

(−1)l(k + λ)Γ(λ)(s
l)√

π(r + s− 1)!

×
(−1)m(n + r + s− l −m− 1)!2n−k−l−2mΓ

( n−k−l+1
2 −m

)
m!(n− k− l − 2m)!Γ

(
k + λ + n−k−l

2 −m + 1
)

=
[ n−k

2 ]

∑
j=0

(−1)n−k(k + λ)Γ(λ)( s
n−k−2j)(r + s + k + 2j− 1)!

(r + s− 1)!Γ(k + λ + j + 1)j!

j

∑
m=0

〈−j〉m〈−k− λ− j〉m
m!〈1− r− s− k− 2j〉m

(65)

=
[ n−k

2 ]

∑
j=0

(−1)n−k(k + λ)Γ(λ)( s
n−k−2j)(r + s + k + 2j− 1)!

(r + s− 1)!Γ(k + λ + j + 1)j!

× 2F1(−j,−k− λ− j; 1− r− s− k− 2j; 1).

Combining (64) and (65), we obtain

αn,r,s(x) =
n

∑
k=0

(−1)n−kΓ(λ)(k + λ)

(r + s− 1)!

[
n−k

2

]
∑
j=0

( s
n−k−2j)(r + s + k + 2j− 1)!

j!Γ(k + λ + j + 1)

× 2F1(−j,−k− λ− j ; 1− r− s− k− 2j ; 1)Cλ
k (x).

This shows (36) of Theorem 1.
Let us let

αn,r,s(x) =
n

∑
k=0

Ck,5P(α,β)
k (x). (66)

From (e) of Proposition 1, (48) and (52), integration by parts k times, (d) of Proposition 2 and after
some simplifications, we get

Ck,5 =
(−1)k(2k + α + β + 1)Γ(k + α + β + 1)

Γ(α + k + 1)Γ(β + k + 1)(r + s− 1)!

n−k

∑
l=0

(
s
l

)
(−1)l(−1)k

×

[
n−k−l

2

]
∑

m=0
(−1)m

(
n + r + s− l −m− 1

m

)
(n + r + s− l − 2m− 1)r+s+k−12n+k−l−2m (67)

×
n−k−l−2m

∑
t=0

(
n− k− l − 2m

t

)
(−1)n−k−l−t2t Γ(k + α + 1)Γ(k + β + t + 1)

Γ(2k + α + β + t + 2)
.

It can be seen that the innermost sum of (67) is equal to

(−1)n−k−lΓ(k + α + 1)Γ(k + β + 1)
Γ(2k + α + β + 2) 2F1(k + l + 2m− n, k + β + 1 ; 2k + α + β + 2 ; 2). (68)
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By making use of (66)–(68), we finally obtain

αn,r,s(x) =
n

∑
k=0

(−2)n+kΓ(k + α + β + 1)
(r + s− 1)!Γ(2k + α + β + 1)

[ n−k
2 ]

∑
m=0

(
− 1

4
)m

m!

×
n−k−2m

∑
l=0

( 1
2
)l
(s

l)(n + r + s− l −m− 1)!
(n− k− l − 2m)!

× 2F1(k + l + 2m− n, k + β + 1 ; 2k + α + β + 2 ; 2)P(α,β)
k (x).

This finishes up the proof for (35) of Theorem 1.
For Theorem 2, we only need to observe the following. From (48) and (50), we see that the only

difference between αn,r,s(x) and βn,r,s(x) (see (4), (5)) are the alternating sign (−1)l in their sums.
These result in the differences (−1)n−k, for (33) and (38), (35) and (40), (36) and (41), the difference 2F2,
for (34) and (39), and the difference (−1)l , for (37) and (42).

4. Proof of Theorem 3

Here, we will show only (45) and (47) in Theorem 3, while leaving (43), (44) and (46) as exercises
to the reader.

Lemma 3. Let n, r, s be nonnegative integers with r + s ≥ 1. The following identity holds:

∑
i1+···+ir+j1+···+js

Vi1(x) · · ·Vir (x)Wj1(x) · · ·Wjs(x)

=
1

(r + s− 1)!2r+s−1

n

∑
i=0

i

∑
j=0

(−1)j
(

r
j

)(
s

i− j

)
U(r+s−1)

n+r+s−i−1(x) (69)

=
1

(r + s− 1)!2r+s−1

n

∑
i=0

(
s
i

)
2F1(−i,−r ; s− i + 1 ;−1)U(r+s−1)

n+r+s−i−1(x). (70)

Proof. The identity in (69) is stated in [18] and can be deduced from (16) and (17). On the other hand,
the identity in (70) follows from the elementary observation

i

∑
j=0

(−1)j
(

r
j

)(
s

i− j

)
=

(
s
i

)
2F1(−i,−r ; s− i + 1 ; −1).

With γn,r,s(x) as in (6), we put

γn,r,s(x) =
n

∑
k=0

Ck,3Pk(x). (71)
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Then, from (c) of Proposition 1, (70) and (52), (b) of Proposition 2, integration by parts k times and
after some simplifications, we have

Ck,3 = ∑
0≤i≤n−k

i≡n−k (mod 2)

[ n−k−i
2 ]

∑
m=0

(2k + 1)(s
i)2F1(−i,−r ; s− i + 1 ;−1)

(r + s− 1)!m!

×
(−1)m(n + r + s− i−m− 1)!2n+k−i−2m+1( n+k−i

2 −m + 1
)
!( n−k−i

2 −m
)
!(n + k− i− 2m + 2)!

(72)

=
[ n−k

2 ]

∑
l=0

l

∑
m=0

(2k + 1)( s
n−k−2l)2F1(k + 2l − n,−r ; s + k + 2l − n + 1 ;−1)

(r + s− 1)!

×
22k+2l+1(− 1

4
)m

(r + s + k + 2l −m− 1)!(k + l −m + 1)!
m!(l −m)!(2k + 2l − 2m + 2)!

.

By making use of (10), we see that (72) is equal to

Ck,3 =
[ n−k

2 ]

∑
l=0

(2k + 1)( s
n−k−2l)2F1(k + 2l − n,−r ; s + k + 2l − n + 1 ;−1)

(r + s− 1)!
(73)

× (r + s + k + 2l − 1)!
l!2〈 1

2 〉k+l+1

l

∑
m=0

〈−l〉m〈−k− l − 1
2 〉m

m!〈1− r− s− k− 2l〉l

=
[ n−k

2 ]

∑
l=0

(2k + 1)2k+l(r + s + k + 2l − 1)!( s
n−k−2l)

(r + s− 1)!(2k + 2l + 1)!! l!

× 2F1(−l,−k− l − 1
2

; 1− r− s− k− 2l ; 1)

× 2F1(k + 2l − n,−r ; s + k + 2l − n + 1 ;−1).

Combining (71) and (73), we obtain

γn,r,s(x) =
n

∑
k=0

(2k + 1)2k

(r + s− 1)!

[ n−k
2 ]

∑
l=0

2l(r + s + k + 2l − 1)!( s
n−k−2l)

(2k + 2l + 1)!! l!

× 2F1

(
− l,−k− l − 1

2
; 1− r− s− k− 2l ; 1

)
× 2F1(k + 2l − n,−r ; s + k + 2l − n + 1 ;−1)Pk(x).

This shows (45) of Theorem 3.
Lastly, we let

γn,r,s(x) =
n

∑
k=0

Ck,5P(α,β)
k (x). (74)

Then, from (e) of Proposition 1, (70) and (52), (d) of Proposition 2, integration by parts k times
and after some simplifications, we obtain

Ck,5 =
(−2)n+kΓ(k + α + β + 1)

(r + s− 1)!Γ(2k + α + β + 1)

n−k

∑
i=0

(
− 1

2

)i(s
i

)
2F1(−i,−r ; s− i + 1 ;−1)

×
[ n−k−i

2 ]

∑
m=0

(
− 1

4
)m

(n + r + s− i−m− 1)!
m!(n− k− i− 2m)!

n−k−i−2m

∑
t=0

2t〈k + i + 2m− n〉t〈k + β + 1〉t
t!〈2k + α + β + 2〉t

. (75)
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Combining (74) and (75), we get

γn,r,s(x) =
n

∑
k=0

(−2)n+kΓ(k + α + β + 1)
(r + s− 1)!Γ(2k + α + β + 1)

n−k

∑
i=0

(
− 1

2

)i(s
i

)
2F1(−i,−r ; s− i + 1 ;−1)

×
[ n−k−i

2 ]

∑
m=0

(
− 1

4
)m

(n + r + s− i−m− 1)!
m!(n− k− i− 2m)!

× 2F1(k + i + 2m− n, k + β + 1 ; 2k + α + β + 2 ; 2)P(α,β)
n (x).

This completes the proof for (45) of Theorem 3.

5. Further Remarks

Here, we note that (36) and (41) can be simplified further by making use of Gauss summation
formula when r + s < λ + 1. For this, let us recall the Gauss summation formula:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, (Re(c− a− b) > 0). (76)

We also need the following formulas:

(n + 2j)! = 22jn!
〈

n + 1
2

〉
j

〈
n + 2

2

〉
j
, (n, j ≥ 0), (77)

(n− 2j)! =
n!

22j
〈−n

2
〉

j

〈 1−n
2
〉

j

, (n ≥ 2j ≥ 0). (78)

We also observe the following:

Γ(k + λ + j + 1) =
〈
k + λ + 1

〉
j(k + λ)

〈
λ
〉

kΓ(λ), (79)

Γ(λ + 1− r− s)
Γ(λ + 1− r− s− j)

= (−1)j〈r + s− λ
〉

j, (80)

Γ(1− r− s− k− 2j)
Γ(1− r− s− k− j)

=
(−1)j(r + s + k + j− 1)!
(r + s + k + 2j− 1)!

. (81)

Assume now that r + s < λ + 1. Then, from (76), we have

(−1)n−kΓ(λ)(k + λ)

(r + s− 1)!

[ n−k
2 ]

∑
j=0

( s
n−k−2j)(r + s + k + 2j− 1)!

j!Γ(k + λ + j + 1)

× 2F1(−j, −k− λ− j; 1− r− s− k− 2j; 1)

=
(−1)n−kΓ(λ)(k + λ)

(r + s− 1)!

[ n−k
2 ]

∑
j=0

( s
n−k−2j)(r + s + k + 2j− 1)!

j!Γ(k + λ + j + 1)
(82)

× Γ(1− r− s− k− 2j)Γ(λ + 1− r− s)
Γ(1− r− s− k− j)Γ(λ + 1− r− s− j)

.
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By making use of (77)–(81), we see that (82) is equal to

(−1)n−k( s
n−k)

〈
r + s

〉
k〈

λ
〉

k

[ n−k
2 ]

∑
j=0

〈 k−n
2
〉

j

〈 k−n+1
2
〉

j

〈
r + s + k

〉
j

〈
r + s− λ

〉
j

j!
〈 s−n+k+1

2
〉

j

〈 s−n+k+2
2

〉
j

〈
k + λ + 1

〉
j

(83)

= (−1)n−k
(

s
n− k

)〈
r + s

〉
k

〈
λ
〉−1

k

× 4F3(
k− n

2
,

k− n + 1
2

, r + s + k, r + s− λ;
s− n + k + 1

2
,

s− n + k + 2
2

, k + λ + 1; 1).

Now, from (83), we obtain the following alternative expressions for (36) and (41).

Theorem 4. Let n, r, s be nonnegetive integers satisfying 1 ≤ r + s < λ + 1. Then, we have the following
alternative expressions for (36) and (41):

∑
i1+···+ir+j1+···+js=n

Ui1(x) · · ·Uir (x)Vj1(x) · · ·Vjs(x)

=
n

∑
k=0

(−1)n−k
(

s
n− k

)〈
r + s

〉
k

〈
λ
〉−1

k

× 4F3(
k− n

2
,

k− n + 1
2

, r + s + k, r + s− λ;
s− n + k + 1

2
,

s− n + k + 2
2

, k + λ + 1; 1)C(λ)
k (x),

∑
i1+···+ir+j1+···+js=n

Ui1(x) · · ·Uir (x)Wj1(x) · · ·Wjs(x)

=
n

∑
k=0

(
s

n− k

)〈
r + s

〉
k

〈
λ
〉−1

k

× 4F3(
k− n

2
,

k− n + 1
2

, r + s + k, r + s− λ;
s− n + k + 1

2
,

s− n + k + 2
2

, k + λ + 1; 1)C(λ)
k (x).

6. Conclusions

Let n, r, s be nonnegative integers with r + s ≥ 1. Then, we considered sums of finite products of
Chebyshev polynomials of two different kinds, namely those of the second and third kind Chebyshev
polynomials αn,r,s(x) in (4), those of the second and fourth kind Chebyshev polynomials βn,r,s(x) in
(5), and those of the third and fourth kind Chebyshev polynomials γn,r,s(x) in (6).

As one motivation of the present research, we noticed that this problem can be viewed as a
generalization of the classical linearization problem. As another motivation, we explained that the
standard linearlization problem for Bernoulli polynomials yields the identity (47) which in turn gives
a variant of Miki’s identity and the famous Faber–Pandharipande–Zagier identity.

In a related paper [18], we represented each of αn,r,s(x), βn,r,s(x), and γn,r,s(x) as linear
combinations of all kinds of Chebyshev polynomials. Here, as a continuation of this work, we expressed
each of them as linear combinations of the orthogonal polynomials Hn(x), Lα

n(x), Pn(x), C(λ)
n (x),

and P(α,β)
n (x). We saw that the coefficients involve some terminating hypergeometric functions

2F1, 1F1, 2F2, and 4F3. These were done by explicit computations.
We emphasize that, whereas all the results so far, except for [18], treated sums of finite products

of some polynomials of a single kind, this paper considered those of two different kinds. We would
like to continue to study this line of research, as our immediate future projects. Indeed, the cases
of sums of finite products of Chebyshev polynomials of the first kind and those of some other kind
have not been treated here, as they are of a somewhat different nature. The results on them will
appear elsewhere. Finally, it is very likely that the problems of expressing sums of finite products of
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orthogonal polynomials in terms of other orthogonal polynomials can be generalized to the cases of
q-orthogonal polynomials.
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