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Abstract: The Kriging-based reliability method with a sequential design of experiments (DoE)
has been developed in recent years for implicit limit state functions. Such methods include the
efficient global reliability analysis, the active learning reliability method combining Kriging and
MCS Simulations. In this research, a novel local approximation method based on the most probable
failure point (MPFP) is proposed to improve such methods. In this method, the MPFP calculated
in the last iteration is the center of the next sampling region. The size of the local region depends
on the reliability index obtained by the First Order Reliability Method (FORM) and the deviation
distance of the standard deviation. The proposed algorithm, which approximates the limit state
function accurately near MPFP rather than in the whole design space, can avoid selecting samples
in regions that have negligible effects on the reliability analysis results. In addition, a multi-point
enrichment technique is also introduced to select multiple sample points in each iteration. After the
high-quality approximation of limit state function is obtained, the failure probability is calculated by
the Monte Carlo method. Four numerical examples are used to validate the accuracy and efficiency
of the proposed method. Results show that the proposed method is very effective for an accurate
evaluation of the failure probability.

Keywords: surrogate-based structural reliability; Kriging; local sampling; MPFP; parallelizability

1. Introduction

There are numerous uncertainties [1] in the material properties, applied loads and geometrical
characteristics of structures. The reliability analysis aims at considering the effects of these uncertainties
and evaluating the failure probability of the structures. In order to carry out reliability analysis,
various techniques have been presented in related literature. The Monte Carlo method (MCS) [2] is a
well-known algorithm and is considered as the reference approach. However, for the time-consuming
models, low failure probabilities or large-scale models, the MCS method needs a very large number of
evaluations of limit state function. Due to the large computational cost, the MCS is infeasible. Some
approximation methods [2] have also been developed, such as the First Order Reliability Method and
the Second Reliability Method, which can deal with the failure surface of linear or second-order Taylor
series approximation. Because they are based on the assumption that the limit state function is linear
or quadratic, these methods may cause large errors when applied to engineer applications with a
nonlinear limit state function.

In order to overcome these shortcomings, more advanced simulation methods have been developed.
Examples of these methods are variance reduction strategies (subset simulation [3–6], line sampling [7]
and importance sampling [8–10]). However, even if such techniques require much less numerical
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effort, computational costs are still prohibitively high. Several types of surrogate models have thus
been proposed to replace the limit state functions in the reliability field, including quadratic response
surfaces [11–13], neural networks [14], support vector machines [4,15] and Kriging [16–20].

Unlike other surrogate models, Kriging not only provides the predicted mean value of the
structural response, but also a measure of local errors. Based on the feature of the Kriging model, the
sequential Kriging reliability analysis (SKRA) method has been proposed. Such methods include the
efficient global reliability analysis (EGRA) presented by Bichon et al. [21], the active learning reliability
method combining Kriging and MCS (AK–MCS) developed by Echard et al. [22], the metamodel-based
importance sampling for structural reliability analysis proposed by Dubourg et al. [10] and the
Polynomial-Chaos–Kriging (PC–Kriging) proposed by Schöbi et al. [23]. Whether the limit state
function is non-linear or multimodal, they can significantly improve the accuracy of the reliability
evaluation and reduce the number of calls to the actual performance function.

More recently, some improved approaches have been developed to improve the existing sequential
Kriging reliability analysis methods. Wen et al. [24] proposed an improved sequential Kriging reliability
analysis method based on the EGRA. Sun et al. [25] proposed an adaptive reliability analysis method
that used the least improvement function. Gaspar et al. [26] developed an adaptive surrogate model
technique combining the Kriging and trust region method. Lelièvre et al. [27] presented an improved
AK–MCS method named AK–MCSi. Xufang et al. [28] proposed a novel active learning function which
is named expected improvement function (REIF).

In this paper, an improved EGRA algorithm is proposed to improve its accuracy and efficiency.
It is well known that EGRA is a sequential reliability analysis algorithm. EGRA searches for sample
points near the limit state function over the whole design space, and the point at which the expected
improvement function (EFF) gets the maximum value is added into the DoE iteratively. In other
regions, the high prediction accuracy is not required, because they are not critical. The results in the
literature [21] show that EGRA has high precision and efficiency. However, the EGRA algorithm still
has the following drawbacks. The first is that EGRA fits the limit state function accurately in the whole
design region. In reliability analysis, only the local region near the most probable failure point (MPFP)
is required to be more accurate. Therefore, it is not necessary to select samples in the region that
has little influence on the failure probability. The second is that EGRA is a serial reliability analysis
algorithm. This means that the new candidate sample point cannot be determined until the simulation
of the current sampling point is completed in each iteration. That is, it only adds one sample point to
update itself at a time. Therefore, EGRA cannot handle simultaneous multiple calculations.

To overcome the drawbacks presented previously in EGRA, a new local approximation strategy
based on the most probable failure point (MPFP) is proposed to improve the performance of the
sequential Kriging reliability analysis. Unlike EGRA, which selects samples in the whole design space,
the proposed method carries out sequential sampling in a local region near the current MPFP and
new candidate sample points are selected in this local region. Moreover, the center and size of the
next local sampling regions are not fixed, which are determined by the MPFP calculated by the last
iteration. By focusing the samples near the MPFP, only a few real function evaluations are needed, and
a high-quality Kriging model can be obtained with a small number of true function evaluations. Since
the proposed method samples in the local region, which has a great influence on the result of reliability
analysis and the size of the sampling region is changing, it is more effective than EGRA.

Besides, a multipoint enrichment technique is also introduced for parallelizing sequential Kriging
reliability method. This technique uses a clustering technique to provide multiple points per iteration.
Although this method may require more samples, due to the use of parallel technologies, it is much
more efficient and less iteration than EGRA.

The remainder of this paper is structured as follows. Section 2 briefly presents the theory of
the Kriging surrogate model and the EGRA. Section 3 proposes a local approximation method and
introduces a multipoint enrichment strategy. Section 4 presents the academic validation. Finally,
Section 5 provides concluding remarks.
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2. Reliability Analysis Using a Kriging Model

2.1. The Kriging Model

Kriging assumes that the response of interest F(x) consists of two parts: a linear regression model
and a random function.

F(x)= h(x)Tβ+Z(x) (1)

where h(x) is the basis regression function, β is the coefficient vector of h(x), Z(x) [21,22] follows a
Gaussian process whose mean is zero and the covariance between Z(xi) and Z(x j) is defined as

Cov(Z(xi) , Z(x j)) = σ2R(xi, x j,θ) (2)

where σ2 is the variance, R(xi, x j,θ) denotes the correlation function of Z(x) with parameter θ.
According to the Kriging theory, the predictions at point x are

Ĝ(x) = Fβ̂+ rTR−1(G(x) − Fβ̂) (3)

where F is the regression matrix, β̂ = (F TR−1 F)−1FTR−1G denotes the least square estimate of β, R is a
correlation matrix, r is the correlation vector between an unknown point x and all the known points
of the training design and G = [G1 · · ·Gn]

T is a vector composed of observations of the initial sample
point. The Kriging prediction variance can be calculated as

s2(x) = σ2
− [ F rT ]

[
0 FT

F R

][
F
r

]T

(4)

2.2. Efficient Global Reliability Analysis Algorithm

The EGRA algorithm developed by Bichon et al. [21] is based on Gaussian process models.
In EGRA, the limit state function is approximated by a small number of samples throughout the whole
design space of random variables. Then, the failure probability is accurately estimated by using the
inexpensive surrogate model. In the whole design space of random variables, the limit state function
is approximated by a small number of samples. Then, the inexpensive surrogate model is used to
estimate the failure probability accurately.

EGRA adds new training points to the initial sample data set iteratively by maximizing the
expected feasibility function (EFF) to ensure that the model is accurate around the limit state function.
The EFF can provide a measure that the true value of the response satisfies the equality constraint
G(x) = z. By integrating in the region near the threshold, the EFF z = ±ε expectation can be calculated.

EF[x] =
∫ z+ε
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∣∣∣z−G(x)] fĜdx (5)

where G is a realization of the distribution Ĝ. This integral can be formulated as follows:
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where φ(·) is the standard normal density function, Φ(·) is the cumulative distribution function,
ε = 2σĜ(x) and z = 0. The new sample can be selected by maximizing the EFF.

x∗ = arg(max(EFF(x))) (7)

By maximizing the EFF, EGRA adds new candidate points to the initial data set iteratively until
the stopping criterion is met. The results of the literature [21] show that EGRA only needs a few
samples to get accurate results.

However, EGRA updates itself by adding one sample point per iteration in the whole design
region and cannot deal with multiple calculations at the same time.

3. The Proposed Local Approximation Method and Multipoint Enrichment Technique

In reliability analysis, the limit state constraint boundaries condition and local region near the
most probable failure point (MPFP) are more critical than other regions. However, EGRA adds samples
in the vicinity of the limit state function in the whole design space, which contains unnecessary regions.
Therefore, it is more reasonable to add new samples in a small region around the MPFP on the limit
state boundary.

3.1. The Local Approximation Region

3.1.1. Determine the Center of Locally Adaptive Sampling Region

It is well known that MPFP is very important in reliability analysis. It is located on the boundaries
of limit state constraints and has the shortest distance to the current design point. In random variables
space, MPFP is also the location point that has the greatest influence on the accuracy of failure
probability calculation on the limit state surface. If MPFP is used as the center of the local sampling
region, the newly added sampling points will be more distributed near the limit state surface and the
MPFP. Moreover, if the sampling points are only selected in the local sampling regions, the number of
iterations needed for EGRA can significantly reduce. Therefore, the MPFP obtained from the previous
iteration by FORM algorithm is used as the center of the local sampling region of the next iteration in
the proposed method.

3.1.2. Define the Size of Locally Adaptive Sampling Region

For reliability analysis problems, Bucher and Bourgund [11] proposed a response surface method
based on the Bucher-star design and quadratic polynomials. The Bucher-star design is a star-shaped
design scheme as shown in Figure 1. The points around the sampling center point are selected by
deviating from a certain distance in the positive and negative directions of the coordinate axis of
random variables. The deviation distance is generally f times the standard deviation of the basic
random variables.

∆i = f · σi (8)

where ∆i is the deviation distance of random variables xi, σi is the standard deviation of xi and f is a
factor which is used to define the size of sampling region.

It is well known that βc is a very important index in reliability analysis, which represents the
radius of hyper-sphere. Therefore, the local sampling region should not less than βc. According to
Zhao et al. [29], the radius of hyper-sphere should be 1.2–1.5 times βc based on the nonlinearity of the
limit state function.
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Inspired by the Bucher-star design scheme, a new method for determining deviation distance is
proposed in this paper. The ∆iadjust is formulated as follows:

∆iadjust = max(∆i, cβci) (9)

where ∆i is the deviation distance of xi, βc, c denote reliability index and the scaling factor, separately.
Then, in the proposed method, the size of the locally adaptive sampling region is defined as[
xMPFP

i ± ∆iadjust
]

instead of the fixed truncated simulation region [µx ± 5σx] as in the EGRA method.

3.2. Multipoint Enrichment Technique

EGRA is a sequential sampling algorithm. In each iteration, only one point is added to update
itself, so parallel computing is not possible. However, compared to running a single simulation, it is
meaningful to perform multiple simulations at once. Although parallelization requires more samples
to achieve specific accuracy, the time can be saved by simulating the response of the samples at the
same time.

To select multiple sample points in each iteration, the k-means clustering [30] technique is provided
in this paper. The k-means clustering strategy is a partitioning method. It classifies a given data set
into k clusters by minimizing the sum of the distances between the centroid and all member objects of
the cluster. The objective function is defined by Equation (10):

min
k∑

j=1

n∑
i=1

‖x j
i − c j‖ (10)

where ‖x j
i − c j‖ is the distance between a point x j

i and the cluster center c j.
The algorithm is summarized as following:

1. Randomly initialize the k centroids c j;

2. Divide each sample x j
i into the cluster that has the closest centroid;

3. Calculate the centroid for each cluster c j again;
4. Repeat steps 2 and 3 until the centroids no longer change.

Figure 2 is an illustration of a two-dimensional example using the k-means clustering technique.
With this algorithm, sample points are divided into three clusters.
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Since the limit state constraint boundaries condition and local region near the most probable
failure point (MPFP) are more critical than other regions for reliability analysis, in this paper, the points
with the expected feasibility larger than a threshold value in the local sampling region can be considered
as members of the points set to be clustered. Then, those points are divided into k groups, and for each
group, the points which have the largest expected feasibility value are selected as the candidate sample
points for the Kriging model. Therefore, k sample points can be selected simultaneously.

4. Academic Validation

In this section, four examples are used and compared with the results in the literature to prove the
accuracy and efficiency of the proposed approach.

4.1. Example 1: Multimodal Function

This two-dimensional analytical example was already adopted in [21], which involves a quite
complex limit state function. The limit state function is:

g(x) =
(x2

1 + 4)(x2 − 1)

20
− sin

5x1

2
− 2 (11)

x1 is subject to normal distribution (µ = 1.5, σ = 1) and x2 is also subject to normal distribution
(µ = 2.5, σ = 1). Different methods are compared for this example. These methods use the same initial
samples and the number of initial samples was 10. All the results for this example are shown in Table 1
and Figure 3a–d. The solid curves are the true values while the dotted curves are the predicted values
by the Kriging model. “*” and “o” denote the locations of initial sample points and the locations of
subsequent sample points separately. MPFPT is the true failure point marked in red, and MPFPK is the
failure point obtained by Kriging marked with different colors. To compare the accuracy of different
methods in reliability analysis, the result by MCS method with 106 calls of the performance function is
considered as a reference.

From Figure 3a, we can see that the majority of the sample points in EGRA are near the limit state
function and the accuracy of the whole design domain is very high. However, numerous samples
of EGRA are located in the unnecessary region, which has little effect on the probability of failure.
As mentioned above, only the local region near the MPFP is required to be more accurate for reliability
analysis. In EGRA, there are only a few sampling points around the MPFP. In addition, it can be
seen from Table 1 that EGRA requires at least 27 iterations to estimate the failure probability well.
The efficiency of EGRA needs to be further improved.
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Table 1. Results of the reliability analysis of Example 1.

Method Ncall Niteration Pf ∆Pf (%)

MCS 106 3.133× 10−2 −

EGRA [21] 37 27 3.132× 10−2 0.32
Local approximation method 23 13 3.136× 10−2 0.96

Local approximation method (k-means) 26 4 3.131× 10−2 0.64

Ncall denotes the number of calls to the performance function; Niteration denotes the number of iterations; P f denotes
the failure probability and ∆P f denotes the relative error compared with MCS method.
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Figure 3b shows the result of the local approximation method. Compared with EGRA, the sampling
points of the proposed method are mainly near the most probable fault points (MPFP). Therefore, the
accuracy of Kriging can be improved more quickly. This is also demonstrated by comparative results
in Table 1. After only 13 iterations, the proposed method can provide similar accuracy. It is more
efficient than EGRA.

In order to improve the efficiency of reliability analysis, the k-means clustering technique is also
introduced, which is enabled to select multiple sample points in each iteration. In the proposed method,
the locally adaptive sampling region is divided into several sub-regions by the k-means clustering
strategy. In each sampling region, the clustered points with expected feasibility greater than 0.001 are
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selected. In this example, four clusters are used. Therefore, four points are selected simultaneously at
a time.

The results of two iterations and four iterations of Example 1 are shown in Figure 3c,d, respectively.
It can be noted that the divergence is still very large after two iterations. It is mainly caused by the
sparsity of the sample in the initial iterations. However, with the increase of iterations, the Kriging
prediction near the MPFP becomes quite accurate. Meanwhile, we also notice that the local sampling
region tends to be smaller and the number of points to be clustered also reduced. After only four
iterations, the prediction of the Kriging model is the same as the true value. The results show that the
proposed approach can estimate the failure probability well with fewer iterations and is more efficient
than EGRA.

4.2. Example 2: Cubic Function

This example, which was adopted in [21], is a highly nonlinear problem. The limit state function is:

g(x) = x3
1 + x3

2 − 18 (12)

where xi(i = 1, 2) are mutually independent normal basic random variables. They are summed up in
Table 2.

Table 2. Distribution information of the random variables of Example 2.

Random Variables Mean Standard Deviation Distribution

x1 10.0 5 Normal
x2 9.9 5.05 Normal

The initial samples used by different methods are the same. For this example, four clusters are
used and four candidate points are selected at the same time in each iteration. The results of Example 2
are summarized in Table 3 and shown in Figure 4a–d.

Table 3. Results of the reliability analysis of Example 2.

Method Ncall Niteration Pf ∆Pf (%)

MCS 106 5.728× 10−3 −

EGRA [21] 28 22 5.694× 10−3 0.59
Local approximation method 19 13 5.634× 10−3 1.64

Local approximation method (k-means) 22 4 5.657× 10−3 1.24

As seen in Figure 4a, the majority of the sample points are near the limit state function in EGRA.
The limit state function is approximated accurately in the whole design space. However, it is not
necessary to have high precision in the whole design space as the accuracy of local regions around
the most probable failure point (MPFP) is more important for reliability analysis. Figure 4b shows
the result of the local approximation method. It can be observed that the candidate points are mainly
near the most probable failure point (MPFP). In addition, from Table 3, it can be seen that EGRA and
the local approximation method provide similar accuracy, but the number of iterations in the local
approximation method is much less.

Figure 4c,d are the results of the proposed method after two iterations and four iterations,
respectively. From Figure 4c, we can see that the divergence is still very large after two iterations.
However, the results of Figure 4d and Table 3 show that with the decrease of the local sampling
region, the proposed method can estimate the failure probability well after only four iterations. This
example certifies that the proposed method can provide accurate failure probability predictions for
such problems with higher efficiency.
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4.3. Example 3: Dynamic Response of a Nonlinear Oscillator

When comparing the efficiency and accuracy of one surrogate, it may be misleading to consider
only the analytic function. Therefore, we also consider the following engineering problem presented
in [22], which is a nonlinear undamped single-degree-of-freedom oscillation system, as shown in
Figure 5. The limit state function is:

g(x) = 3s−
∣∣∣ymax

∣∣∣ = 3s−

∣∣∣∣∣∣∣ 2F1

mω2
0

sin(
ω2

0t1

2
)

∣∣∣∣∣∣∣ (13)

where ω0 =
√
(k1 + k2)/m. This example consists of six independent random variables, which are

given in Table 4.

Table 4. Distribution parameters of the random variables of Example 3.

Random Variables Mean Standard Deviation Distribution

m 1 0.05 Normal
k1 1 0.1 Normal
k2 0.1 0.01 Normal
s 0.5 0.05 Normal

F1 1 0.2 Normal
t1 1 0.2 Normal
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To investigate the performance of the proposed approach, all methods use the same initial samples
and four clusters are used in each iteration. Table 5 presents the reliability analysis results.

Table 5. Results of the reliability analysis of Example 3.

Method Ncall Niteration Pf ∆Pf (%)

MCS 7x104 2.834× 10−2 −

EGRA 73 45 2.861× 10−2 0.95
local approximation method 56 28 2.886× 10−2 1.83

local approximation method (k-means) 60 8 2.873× 10−2 1.4

As can be seen from Table 5, the proposed method can greatly reduce the average Niteration for this
problem. The reason is that the proposed method does not give the global approximation of the limit
state function like the EGRA, but mainly approximate the performance function in the vicinity of the
MPFP. Although the EGRA method provides better prediction accuracy, the difference is not significant.

From Table 5, we can also note that the k-means clustering technology requires more calls to
performance functions than using only local approximation technology. But with the help of parallel
computing technology, the proposed method needs fewer iterations and is more efficient.

4.4. Example 4: A Planar Truss Structure

In order to further illustrate the engineering applicability of the proposed method, a plane truss
structure [31] is introduced. The structure contains 10 bars as shown in Figure 6. Random variables of
the structure include the cross-sectional area of each bar Ai(i = 1, . . . , 10), the extern loads Pi(i = 1, 2, 3),
the lengths of all horizontal and vertical bars L and the elastic modulus E. These fifteen random
variables are independent and the distribution information is summed up in Table 6.Mathematics 2020, 8, x FOR PEER REVIEW 11 of 13 

 

 
Figure 6. Diagram of Example 4. 

Table 6. Distribution information of the random variables of the truss structure. 

Random Variables Mean Standard Deviation Distribution 
L  1 0.05 Normal 
E  100 5 Normal 
iA  0.001 0.0001 Normal 
1P  80 4 Normal 
2P  10 0.5 Normal 
3P  10 0.5 Normal 

Taking the displacement of Node 4 in the vertical direction not more than 0.004 m as the 
constraint condition, the limit state function is defined as 

0.004 yg = − Δ  (14) 

where yΔ  is the displacement of Node 4 in the vertical direction and is determined by the finite 
element method. 

To investigate performance of the proposed approach, 10 clusters are used in each iteration. The 
reliability results are summarized in Table 7. 

Table 7. Results of the reliability analysis of Example 4. 

Method callN  i te ra tionN  fP  fPΔ  (%) 

MCS 610   6.77 × 210 −  −  
EGRA 112 82 6.811 × 210 −  0.61 

Local approximation 
method 76 46 6.702 × 210 −  1.0 

Local approximation 
method (k-means) 

140 11 6.681 × 210 −  1.3 

As can be observed in Table 7, the results of the EGRA and the proposed methods are both 
efficient in assessing the failure probability well. However, we also note the EGRA method does not 
converge within 82 iterations. In contrast, the proposed local approximation method requires only 46 
iterations to estimate the failure probability well. Moreover, by introducing the k-mean clustering 
algorithm, the method proposed in this paper needs only 11 iterations to obtain a convergent solution, 
which confirms its effectiveness. 

In addition, this example also indicates that the method presented in this paper is a powerful 
reliability method for engineering problems involving complex computer simulation. 
  

Figure 6. Diagram of Example 4.



Mathematics 2020, 8, 209 11 of 13

Table 6. Distribution information of the random variables of the truss structure.

Random Variables Mean Standard Deviation Distribution

L 1 0.05 Normal
E 100 5 Normal
Ai 0.001 0.0001 Normal
P1 80 4 Normal
P2 10 0.5 Normal
P3 10 0.5 Normal

Taking the displacement of Node 4 in the vertical direction not more than 0.004 m as the constraint
condition, the limit state function is defined as

g = 0.004− ∆y (14)

where ∆y is the displacement of Node 4 in the vertical direction and is determined by the finite
element method.

To investigate performance of the proposed approach, 10 clusters are used in each iteration. The
reliability results are summarized in Table 7.

Table 7. Results of the reliability analysis of Example 4.

Method Ncall Niteration Pf ∆Pf (%)

MCS 106 6.77× 10−2 −

EGRA 112 82 6.811× 10−2 0.61
Local approximation method 76 46 6.702× 10−2 1.0

Local approximation method (k-means) 140 11 6.681× 10−2 1.3

As can be observed in Table 7, the results of the EGRA and the proposed methods are both efficient
in assessing the failure probability well. However, we also note the EGRA method does not converge
within 82 iterations. In contrast, the proposed local approximation method requires only 46 iterations
to estimate the failure probability well. Moreover, by introducing the k-mean clustering algorithm,
the method proposed in this paper needs only 11 iterations to obtain a convergent solution, which
confirms its effectiveness.

In addition, this example also indicates that the method presented in this paper is a powerful
reliability method for engineering problems involving complex computer simulation.

5. Conclusions

In this paper, a local approximation method and a multipoint enrichment technique are proposed.
The aim is to improve the accuracy and efficiency of EGRA. Compared with the existing EGRA
method, the proposed method selects samples in a local region rather than in the whole design space.
EGRA contains unnecessary sampling regions, which have little influence on the result of reliability
calculation. It is well known that the accuracy of limit state function in the vicinity of MPFP is
more critical than other regions in reliability analysis. Only the limit state function in such a region
is accurately approximated can the analysis efficiency be improved significantly. Therefore, in the
proposed method, MPFP is used as a sampling center in the local sampling regions, and the size of
the local sampling regions is adapted according to the maximum of the standard deviation of the
basic random variables and reliability index calculated by the last iteration. By confining the sampling
regions to the local regions, the number of iterations is significantly reduced. In addition, to select
multiple samples for enrichment in each iteration, a clustering technique is also introduced. By this
way, only a few iterations are needed to get the desired results.
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The proposed approach is evaluated by four examples. The numerical results show that the
proposed method is able to deal with highly nonlinear limit state functions and has high accuracy and
efficiency, even though the total number of calls to performance function is usually greater than EGRA.
Since calls to performance function could be parallelized, the number of iterations seems to be a more
appropriate measure. Thus, the proposed method is a promising approach for reliability computation.

However, it should be noted that the proposed algorithm, as other methods in the literature, is
greatly influenced by the initial samples and relevant parameters. In future work, we will explore
a more effective local initial sampling method and reasonably define the parameters of the method
according to some prior knowledge.
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