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Abstract: To avoid solving the complex systems, we first rewrite the complex-valued nonlinear
system to real-valued form (C-to-R) equivalently. Then, based on separable property of the linear and
the nonlinear terms, we present a C-to-R-based Picard iteration method and a nonlinear C-to-R-based
splitting (NC-to-R) iteration method for solving a class of large sparse and complex symmetric
weakly nonlinear equations. At each inner process iterative step of the new methods, one only
needs to solve the real subsystems with the same symmetric positive and definite coefficient
matrix. Therefore, the computational workloads and computational storage will be saved in actual
implements. The conditions for guaranteeing the local convergence are studied in detail. The
quasi-optimal parameters are also proposed for both the C-to-R-based Picard iteration method and
the NC-to-R iteration method. Numerical experiments are performed to show the efficiency of the
new methods.

Keywords: weakly nonlinear equations; C-to-R preconditioner; local convergence; Picard iteration;
complex symmetric matrix.
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1. Introduction

We consider the iterative solutions of nonlinear system of equations in the following form,

Au = φ(u), or F(u) = Au− φ(u) = 0, (1)

where A = W + iT ∈ Cn×n is a large, sparse, complex symmetric matrix, with W ∈ Rn×n and
T ∈ Rn×n being the real parts and the imaginary parts of the coefficient matrix A, respectively.
Here, we assume that W and T are both symmetric positive and semidefinite (SPSD) and at least one
of them being symmetric positive and definite (SPD). The right hand vector function φ : D ⊂ Cn → Cn

is a continuously differential function defined on the open convex domain D in the n-dimensional Cn.
u ∈ Cn is an unknown vector. When the linear term Au is strongly dominant over the nonlinear term
φ(u) in certain norm [1], we say that the system of nonlinear Equation (1) is weakly nonlinear. Here,
and in the sequence, we assume that the Jacobian matrix of the nonlinear function φ(u) at the solution
point u? ∈ D, denoted as φ′(u?), is the non-Hermitian and negative semidefinite.

Weakly nonlinear equations of the form (1) arise in many areas of scientific computing and
engineering applications, e.g., nonlinear ordinary and partial differential equations, nonlinear integral
and integro differential equations, nonlinear optimization and variational problems, saddle point
problems from image processing, and so on. For more details, see [2–8].
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By substituting u = x + iy, where x ∈ Rn and y ∈ Rn, we can rewrite the system of nonlinear
Equations (1) as

(Wx− Ty) + i(Tx + Wy) = R(u) + iI(u),

where R(u) = real(φ(u)) ∈ Rn and I(u) = imag(φ(u)) ∈ Rn are the real parts and imaginary parts of
φ(u), respectively. Here, we reformulate the complex nonlinear system (1) as a block two-by-two real
form in the following,

C

(
x
y

)
:=

(
W −T
T W

)(
x
y

)
=

(
R(u)
I(u)

)
, Φ(u). (2)

When R(u) and I(u) are both constant vectors, the system (2) reduces to a linear system with
structural block two-by-two coefficient matrix. To solve the linear system (2) efficiently, many methods
have been proposed. Particularly, when the block matrices W and T are both SPSD and at least one of
them is SPD, some classical iterative methods can be found in existed references, for example, the block
preconditioned methods [9,10], the additive block diagonal preconditioned method [11]. There are also
sequences of preconditioners based on the modified Hermitian and skew-Hermitian splitting (MHSS),
such as, the preconditioned MHSS (PMHSS) iteration method [12,13]. Some other methods such as
the preconditioned GSOR (PGSOR) iteration method [14], the complex-value to real-value (C-to-R)
preconditioner [15], and so on, also attract a lot of researchers’ interest. For more efficient methods, we
refer to the works in [16–18].

When Au is strong dominant than the nonlinear term φ(u), and R(u) and I(u) are dependent on
the variable vector u, then we say the system (2) is weakly nonlinear. The most classic and important
solvers for the system of nonlinear Equations (1) is the Newton method [3,6,19], which can be described
as

u(k+1) = u(k) − F′(u(k))−1F(u(k)), k = 0, 1, 2, · · · .

It can be seen from the Newton method that the dominant task in implementations is to solve the
following equation at each iteration step,

F′(u(k))s(k) = −F(u(k)), with u(k+1) = u(k) + s(k),

and to recompute the Jacobian matrix F′(u(k)) at every iteration step. When the Jacobian matrix F′(u(k))

is large and sparse, we usually use either the splitting relaxation form [6] or the Krylov subspace
method form [5,20,21] to compute an approximation to update the vector s(k). However, those methods
are all heavy in both computational workload and computational storage.

To improve the efficiency of the Newton iteration method, Bai and Guo [4] use the Hermitian and
skew-Hermitian splitting (HSS) method to solve approximately the Newton Equations (2), called the
Newton-HSS method and then Guo and Duff [22] analyze the Kantorovich-type semilocal convergence.
Many efficient methods based on the Hermitian and skew-Hermitian splitting (HSS) have come forth
since then. For example, Bai and Yang [1] present the nonlinear HSS-like iteration method based on
the Hermitian and skew-Hermitian (HS) splitting of the non-Hermitian coefficient matrix of the linear
term Au. Some variants of the HSS-based methods for nonlinear equations can be found in references,
e.g., the lopsided preconditioned modified HSS (LPMHSS) iteration method [23], the Newton-MHSS
method [24], the accelerated Newton-GPSS iteration method [25], the preconditioned modified
Newton-MHSS method [26], the modified Newton-SHSS method [27], the modified Newton-DPMHSS
method [28], and so on. See [4,29–32] for more details.

In this paper, we will concentrate on the efficient methods of the real value equivalent nonlinear
system (2). By utilizing the C-to-R preconditioning technique proposed in [16], we will first construct
a C-to-R-based Picard iteration method. This method is actually the inexact Picard method with the
C-to-R iterative method as inner process iteration. Therefore, the convergence results based on Picard
iteration method can be used directly. To further improve the efficiency, we then introduce a nonlinear
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C-to-R splitting iteration method for solving the weakly nonlinear equations. The local convergence
for both of the two new methods are analyzed in detail. The way to determine the theoretical optimal
parameters is also studied.

The organization of this paper is outlined as follows. In Section 2, we firstly give the C-to-R-based
Picard iteration method. Then, we give the convergence results and the choice of the quasi-optimal
parameters. In Section 3, we construct the nonlinear C-to-R-based splitting iteration method for solving
the nonlinear system (2) and then we give a detailed theoretically analysis about the convergence
properties. Theoretical optimal parameters are also proposed subsequently. Numerical experiments
are given in Section 4 to illustrate the feasibility and effectiveness of the new methods. Finally, a brief
conclusion and some remarks are drawn in Section 5 to end this work.

Throughout this paper, we use ρ(B) to denote the spectral radius of the matrix B. Denote
u = x + iy ∈ Cn with x ∈ Rn and y ∈ Rn being its real parts and imaginary parts, respectively.

2. The C-To-R-Based Picard Iteration Method

In this section, we will propose the C-to-R-based Picard iteration method. To begin with, according
to [16], we review the C-to-R preconditioner for the block two-by-two coefficient matrix in Equation (2) as

B(α) =

(
α2W + 2αT −T

T W

)
, (3)

where α is a positive constant. We know that the implementing of the preconditioner B(α) at each
iterative step needs one to solve the generalized residual linear equations

B(α)

(
x
y

)
=

(
f
g

)
.

Or equivalently, {
α(αW + T)x + T(αx− y) = f ,

T(αx− y) + (αW + T)y = αg,

i.e., {
(αW + T)(αx− y) = f − αg,

α(αW + T)x = f − T(αx− y).

Therefore, we can summarize the implementation as the algorithm 1 for solving the
above equations.

Algorithm 1 (The C-to-R iteration method). Let α be a given positive constant. Use the following steps to
solve the generalized residual equation.

Step 1. solve (αW + T)z = f − αg to obtain z.
Step 2. solve (αW + T)x = 1

α ( f − Tz) to obtain x.
Step 3. compute y = αx− z.

The preconditioner B(α) can be seen as a splitting matrix from the following matrix splitting,(
W −T
T W

)
=

(
α2W + 2αT −T

T W

)
−
(
(α2 − 1)W + 2αT 0

0 0

)
. (4)

On the other hand, because Au is strong dominant over the nonlinear term φ(u), then the Picard
iteration method can be used based on the separable property of the linear term and nonlinear term, i.e.,

Au(k+1) = φ(u(k)). (5)
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Or equivalently, the iteration of the real value form can be described as

C

(
x(k+1)

y(k+1)

)
:=

(
W −T
T W

)(
x(k+1)

y(k+1)

)
=

(
R(u(k))

I(u(k))

)
= Φ(u(k)), (6)

where u(k) = x(k) + iy(k) ∈ Cn with x(k), y(k) ∈ Rn. Therefore, to improve the efficiency, we can use the
splitting iterative method as inner process iteration based on (6) to obtain the solution approximately at
each Picard iteration process. We describe the C-to-R-based Picard iteration method in the Algorithm 2.

Algorithm 2 (The C-to-R-based Picard iteration method). Let φ ⊂ Cn → Cn be a continuously
differentiable function and A = W + iT ∈ Cn×n be a large, sparse complex symmetric matrix, where W ∈ Rn×n

and T ∈ Rn×n are the real parts and the imaginary parts of A, respectively. Given an initial guess u(0) ∈ Cn.
For k = 0, 1, 2, · · · , until {u(k)} converges, compute the next iterate {u(k+1)} according to the following steps.

Step 1. set ũ(k,0) := u(k).
Step 2. for a given positive constant α and l = 0, 1, 2, . . . , lk− 1, set x(k,l) = real(ũ(k,l)), y(k,l) = imag(ũ(k,l)),

then solve the following subsystem(
α2W + 2αT −T

T W

)(
x(k,l+1)

y(k,l+1)

)
=

(
(α2 − 1)W + 2αT 0

0 0

)(
x(k,l)

y(k,l)

)
+

(
R(u(k,l))

I(u(k,l))

)

to obtain x(k,l+1) and y(k,l+1). Set ũ(k,l+1) = x(k,l+1) + iy(k,l+1).
Step 3. set u(k+1) = ũ(k,lk).

We can also describe the Algorithm 2 in a detailed implementing steps as the Algorithm 3.

Algorithm 3 (The detailed implementing process of the C-to-R-based Picard iteration method).
Given an initial guess u(0) ∈ Cn and a sequence positive integers {lk}∞

k=0, use the following iteration steps to
compute u(k+1) for k = 0, 1, 2, . . ., until u(k) satisfies the stopping criterion:

Step 1. set r(k) = φ(u(k))− Au(k).
Step 2. given an initial guess z̃(k,0) ∈ Cn. For l = 0, 1, 2, . . . , lk − 1,
Step 3. compute r̃(k,l) = r(k) − Az̃(k,l), set f̃ (k,l) = real(r̃(k,l)), g̃(k,l) = imag(r̃(k,l)).
Step 4. solve (αW + T)z(k,l) = f̃ (k,l) − αg̃(k,l) to obtain z(k,l).
Step 5. solve (αW + T)x(k,l) = 1

α ( f̃ (k,l) − Tz̃(k,l)) to obtain x(k,l).
Step 6. compute y(k,l) = αx(k,l) − z(k,l).
Step 7. set z̃(k,l+1) = z̃(k,l) + x(k,l) + iy(k,l).

If z̃(k,l+1) satisfies the inner stopping criterion, go to Step 8.

If z̃(k,l+1) does not meet the inner stopping criterion, return to Step 3.
Step 8. set u(k+1) = u(k) + z̃(k,lk).

From Algorithm 3, we find that the main workload is to solve the linear subsystem with the
coefficient matrix being αW + T both in Step 4 and Step 5. Therefore, we can solve the corresponding
system exactly by sparse Cholesky decomposition or inexactly by symmetric Krylov subspace methods
(e.g., the conjugate gradient method).

Next, we denote

L(α) =

(
α2W + 2αT −T

T W

)−1(
(α2 − 1)W + 2αT 0

0 0

)
, (7)

then the local convergence results for the C-to-R-based Picard iteration method can be summarized in
the following theorem.
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Theorem 1. Denoted by

θ(α) = ‖L(α)‖, µ = ‖A−1‖ and ν = ‖A−1φ′(u?)‖.

Then, for any initial guess u(0) ∈ Cn and any sequence of positive integers lk, k = 0, 1, 2, . . ., if ν < 1

and l0 ≥ b
ln( 1−ν

1+ν )

ln θ(α)
c, the iteration sequence generated by the C-to-R-based Picard method converges to the exact

solution u? and it holds
lim
k→∞

sup ‖u(k) − u?‖
1
k ≤ ν + (1 + ν)θ(α)l∗ ,

where l∗ = inf{limk→∞ lk}. Particularly, let limk→∞ lk, it follows

lim
k→∞

sup ‖u(k) − u?‖
1
k ≤ ν, (8)

or equivalently, the convergence rate of the C-to-R-based Picard method is R-rate, with the R-factor being ν.

Proof. The results can be obtained immediately from the results in [1].

Theorem 1 shows that the convergence rate of the C-to-R-based Picard iteration method depends
on the quantities of θ(α) and ν. The weakly nonlinear property leads to the dominant of the quantities of
θ(α). Therefore, we can obtain the quasi-optimal parameter by minimizing the R-factor θ(α) = ‖L(α)‖.
In other words, we need to find α such that the eigenvalues of the following matrix cluster around 1.(

α2W + 2αT −T
T W

)−1(
W −T
T W

)
.

Therefore, we can use the results in [33,34] to obtain the quasi-optimal parameter α in the
following theorem.

Theorem 2. Let α be a given positive constant and assume that the conditions of Theorem 1 are satisfied. Then,

the optimal parameter α that minimizes θ(α) is α =
4√8
2 .

Remark 1. Because there exists an extra term φ′(u?), then we use the above optimal parameter as a
quasi-optimal parameter. In actual implementation, we use this value as a suggestion. The true optimal
parameter may vary dependent on the weakly nonlinear term.

3. The Nonlinear C-to-R-Based Splitting Iteration Method

In this section, we will further introduce the NC-to-R method for solving the block two-by-two
nonlinear Equations (2) by making use of the nonlinear fixed-point equation(

α2W + 2αT −T
T W

)(
x
y

)
=

(
(α2 − 1)W + 2αT 0

0 0

)(
x
y

)
+

(
R(u)
I(u)

)
. (9)

The NC-to-R method can be described as the algorithm 4.

Algorithm 4 (The nonlinear C-to-R splitting iteration method). Let φ ⊂ Cn → Cn be a continuously
differentiable function and A = W + iT ∈ Cn×n be a large, sparse complex matrix, where W ∈ Rn×n and
T ∈ Rn×n are the real parts and the imaginary parts of A, respectively. Given an initial guess u(0) ∈ Cn.
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For k = 0, 1, 2, · · · , until {u(k)} converges, compute the next iterate {u(k+1)} by solving the following
subsystems.(

α2W + 2αT −T
T W

)(
x(k+1)

y(k+1)

)
=

(
(α2 − 1)W + 2αT 0

0 0

)(
x(k)

y(k)

)
+

(
R(u(k))

I(u(k))

)

to obtain u(k+1) = x(k+1) + iy(k+1).

The detailed implementing process of the NC-to-R method can be carried out in the Algorithm 5.

Algorithm 5 (The detailed implementing process of the NC-to-R method). Given an initial guess
u(0) ∈ Cn. For k = 0, 1, 2, · · · , until {u(k)} converges, compute the next iterate {u(k+1)} according to the
following steps.

Step 1. set x(k) = real(u(k)), y(k) = imag(u(k)) and compute R̃(u(k)) = R(u(k)) + (α2 − 1)Wx(k) +
2αTx(k).

Step 2. solve (αW + T)z = R̃(u(k))− αI(x(k)) to obtain z.
Step 3. solve (αW + T)z̃1 = 1

α (R̃(u(k))− Tz) to obtain z̃1.
Step 4. compute z̃2 = αz̃1 − z.
Step 5. set u(k+1) = z̃1 + iz̃2.

Next, we will focus on the convergence analysis for the NC-to-R method. By utilizing the
Ostrowski Theorem (Theorem 10.1.3 in [6]), we can establish the local convergence theory for the
NC-to-R method in the following theorem.

Theorem 3. Assume φ : D ⊂ Cn → Cn is F-differentiable at a point u? ∈ D such that Au? = φ(u?).
Denoted by

T̃(α; u?) =

(
α2W + 2αT −T

T W

)−1 [(
(α2 − 1)W + 2αT 0

0 0

)
+ Φ′(u?)

]
,

where

Φ(u?) =

(
R(u?)

I(u?)

)

is defined in (2). If ρ(T̃(α; u?)) < 1, then u? ∈ D is a point of attraction of the NC-to-R iteration method.

Proof. By making use of (9), we can rewrite the nonlinear system (1) as

w = Ψ(w),

where

Ψ(w) =

(
α2W + 2αT −T

T W

)−1 [(
(α2 − 1)W + 2αT 0

0 0

)
w + Φ(w)

]
,

Φ(w) =

(
R(u)
I(u)

)
and w =

(
x
y

)
=

(
real(u)

imag(u)

)
.

Then, the NC-to-R method can be expressed as

w(k+1) = Ψ(w(k)), k = 0, 1, 2, . . . .
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After a few simple algebra computations, we have

Ψ′(u?) =

(
α2W + 2αT −T

T W

)−1 [(
(α2 − 1)W + 2αT 0

0 0

)
+ Φ′(u?)

]
= T̃(α; u?).

As φ : D ⊂ Cn → Cn is F-differentiable at a point u? ∈ D, then the real parts and the imaginary
parts are also F-differentiable at the point u?. Therefore, Φ and Ψ are F-differentiable at the point
u? [35]. Therefore, by making use of the Ostrowski Theorem (Theorem 10.1.3 in [6]), we can conclude
that if ρ(T̃(α; u?)) < 1, then u? is a point of attraction of the NC-to-R method.

At the end of this section, we will give a strategy to determine the optimal iterative parameter α

by following the some strategy proposed in [36].
We use tr(.) to denote the trace of a matrix in the following. First, we do a partition of the matrix

Φ′(u?) as

Φ′(u?) =

(
D11(u?) D12(u?)

D21(u?) D22(u?)

)
,

then the conjugate transpose of Φ′(u?) can be expressed as

(Φ′(u?))∗ =

(
(D11(u?))∗ (D21(u?))∗

(D12(u?))∗ (D22(u?))∗

)
,

where D11(.), D12(.), D21(.), and D22(.) have the same size as the matrix W and T.
The following theorem gives a strategy to choose the optimal parameter for the NC-to-R method.

Theorem 4. Assume that the conditions of Theorem 3 are satisfied. Denoted by

δ = tr(Φ′(u?)(Φ′(u?))∗)

= tr(D11(u?)(D11(u?))∗) + tr(D12(u?)(D12(u?))∗) + tr(D21(u?)(D21(u?))∗) + tr(D22(u?)(D22(u?))∗),

η = tr(WD11(u?)) + tr((D11(u?)∗W), ξ = tr(TD11(u?)) + tr((D11(u?)∗T),

a = tr(W2), b = tr(WT) + tr(TW), and c = tr(T2).

Then, the optimal parameter αopt for the NC-to-R method satisfies

h′(αopt) = 0 and h′′(αopt) > 0,

where
h(α) = aα4 + 2bα3 + (−2a + 4c + η)α2 + 2(ξ − b)α + (a + δ− η).

Here, h′(α) and h′′(α) are the first derivative and second derivative of h(α) with respect to the variable α,
respectively.

Proof. As it is known, if α is such a value such that B(α) is close to C, then B(α)−1(C− B(α)) should
be zero approximately. Therefore, C− B(α) should be approaching to zeros. Furthermore, the square
norm ‖C− B(α) + Φ′(u?)‖2

F could be reach the minimal with respect to α.
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By direct algebra computations, it follows

‖C−B(α) + Φ′(u?)‖2
F

= tr

([(
(α2 − 1)W + 2αT 0

0 0

)
+ Φ′(u?)

] [(
(α2 − 1)W + 2αT 0

0 0

)
+ Φ′(u?)

]∗)

= tr

((
(α2 − 1)W + 2αT 0

0 0

)(
(α2 − 1)W + 2αT 0

0 0

)∗)

+ tr

(
+

(
(α2 − 1)W + 2αT 0

0 0

)(
D11(u?) D12(u?)

D21(u?) D22(u?)

)∗)

+ tr

((
D11(u?) D12(u?)

D21(u?) D22(u?)

)(
(α2 − 1)W + 2αT 0

0 0

)∗)

+ tr

((
D11(u?) D12(u?)

D21(u?) D22(u?)

)(
D11(u?) D12(u?)

D21(u?) D22(u?)

)∗)
.

Then, by using the notation in the theorem and after some simple algebra computations, we
can obtain

‖C− B(α) + Φ′(u?)‖2
F = aα4 + 2bα3 + (−2a + 4c + η)α2 + 2(ξ − b)α + (a + δ− η) = h(α).

Therefore, by taking the first derivative of h(α) to be zero, it follows h′(αopt) = 0. Then the
solution that satisfies the second derivative h′′(α) > 0 is the exact optimal parameter αopt that we
need.

4. Numerical Experiments

In this section, we will testify the effectiveness of the C-to-R-based iteration methods by numerical
experiments. All the tests are performed in MATLAB R2017a [version 9.2.0.538062] in double precision,
on a personal computer with 2.40 GHz central processing unit (Intel(R) Core(TM) 2 Duo CPU), 4.00 GB
memory and Windows 64-bit operating system. In our calculations, the stopping criterion for the
proposed methods is the current relative residual satisfying ‖rk‖2

‖r0‖
< 10−6, where rk is the residual

at the k-th iteration with u(k) being the k-th approximate solution of Equation (1). We use the zero
vector as the initial guess. To show the advantages of the new methods, we compare the C-to-R-based
methods with the methods listed in Table 1, which shows the abbreviations and the corresponding full
description. All the parameter choices in our experiments are listed in Table 2 and we classify the cases
as follows.

Table 1. Abbreviations and the corresponding description of the proposed tested methods.

Abbreviation Description

N-G Newton method using the GMRES method as inner iteration process
N-H Newton method using the HSS method as inner iteration process
HSS-N-G Newton method using the HSS preconditioned GMRES method as inner iteration process
P-G Picard method using the GMRES method as inner iteration process
P-H Picard method using the HSS method as inner iteration process
HSS-P-G Picard method using the HSS preconditioned GMRES method as inner iteration process
N-HSS nonlinear HSS-like method
P-C Picard method using the C-to-R ietrative method as inner iteration process
CP-P-G Picard method using the C-to-R preconditioned GMRES method as inner iteration process
N-C nonlinear C-to-R-based iteration method
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In addition, we set the stopping criterion for the inner iteration process of all the methods to be

‖φ′(u(k))s(k,lk) + φ(u(k))‖2

‖φ(u(k))‖2
≤ ηk,

where lk is the inner iteration steps number, ηk is the prescribed inner tolerance. Here, we fix the ηk
simply by η = 0.1 for all k.

Example 1. Consider the following time dependent nonlinear equation [1,37]:
ut − (β1 + iγ1)(uxx + uyy) + $u = −(β2 + iγ2) sin(

√
1 + u2

x + u2
y), for (x, y) ∈ (0, 1]×Ω

u(0, x, y) = u0(x, y), for (x, y) ∈ Ω

u(t, x, y) = 0, for (x, y) ∈ (0, 1]× ∂Ω,

where Ω = (0, 1)× (0, 1), with ∂Ω being its boundary. $ is a positive constant that measures the magnitude of
the reaction term.

By applying the centered finite element different scheme with the space step size h = 1
N+1 and the

implicit scheme with the temporal step size4t = h, we can obtain the following nonlinear equations

Au = φ(u),

where

A = h(1 + $4t)In + (β1 + iγ1)
4t
h
(AN ⊗ IN + IN ⊗ AN), AN = tridiag(−1, 2,−1) ∈ RN×N ,

φ(u) = (β2 + iγ2)h4t · sin(
√

1 + u2
x + u2

y).

Here n = N2 and ⊗ denoted the Kronecker product symbol. In and IN are identity matrices of
size n× n and N × N, respectively.

Table 2. Cases with respect different choices of parameters.

$ \ (β1 + iγ1, β2 + iγ2) = (1 + i, 1 + i) (0.5 + i, 1 + 0.5i)

1 Case 1.1 Case 2.1
10 Case 1.2 Case 2.2
100 Case 1.3 Case 2.3

Our numerical results are presented for problem sizes N = 16, 32, 64, 128, 256, and 512 (i.e., n =

162, 322, 642, 1282, 2562, and 5122). First, we search the optimal parameter that minimizes the inner
iteration count number by varying the parameter from 0.1 to 1 by step size 0.1. If the iteration number
decreases when α decreases, then we will expand the searching area with extra [0.01, 0.1] by step size
0.01, or further [0.001, 0.01] by step size 0.001. Therefore, in Table 3, we give the experimental optimal
parameters for all the proposed methods with respect to different cases and mesh grids.
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Table 3. The experimental optimal parameters with respect to different cases and mesh grids.

N × N: 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

Case 1.1 N-H 0.6 0.4 0.2 0.2 0.2 0.1
HSS-N-G 0.6 0.5 1 1 1 1
P-H 0.7 0.4 0.2 0.08 0.01 0.01
HSS-P-G 0.3 0.3 0.3 0.3 0.3 0.3
N-HSS 0.1 0.1 0.1 0.1 0.1 0.1
P-C 0.6 0.7 0.7 0.7 0.8 0.8
CP-P-G 0.6 0.7 0.8 0.7 0.7 0.7
N-C 0.001 0.4 0.1 0.5 1 1.3

Case 1.2 N-H 0.5 0.4 0.2 0.2 0.1 0.1
HSS-N-G 1 1 1 1 1 1
P-H 0.8 0.8 0.3 0.2 0.1 0.1
HSS-P-G 0.8 0.8 0.3 0.2 0.1 0.1
N-HSS 0.1 0.2 0.2 0.3 0.4 0.4
P-C 0.7 0.7 0.7 0.7 0.8 0.8
CP-P-G 0.6 0.8 0.8 0.8 0.8 0.8
N-C 0.001 0.04 0.1 0.5 1 1.3

Case 1.3 N-H 1.4 1 0.3 0.3 0.2 0.2
HSS-N-G 0.9 0.9 0.8 0.8 0.8 0.7
P-H 1.2 0.7 4 0.2 0.1 0.1
HSS-P-G 1.2 0.7 0.4 0.2 0.1 0.1
N-HSS 0.1 0.1 0.05 0.02 0.01 0.008
P-C 0.8 0.8 0.8 0.8 0.8 0.8
CP-P-G 0.8 0.8 0.8 0.8 0.8 0.8
N-C 0.001 0.02 0.07 0.2 0.5 0.8

Case 2.1 N-H 0.5 0.3 0.2 0.2 0.1 0.1
HSS-N-G 0.8 0.3 0.2 0.1 0.1 0.008
P-H 0.5 0.3 0.2 0.1 0.1 0.08
HSS-P-G 0.5 0.3 0.2 0.1 0.1 0.08
N-HSS 0.001 0.02 0.02 0.03 0.04 0.04
P-C 0.5 0.6 0.7 0.7 0.8 0.8
CP-P-G 0.5 0.6 0.7 0.7 0.8 0.8
N-C 0.001 0.05 0.2 0.4 0.7 0.5

Case 2.2 N-H 0.5 0.3 0.2 0.2 0.1 0.1
HSS-N-G 0.5 0.3 0.2 0.2 0.1 0.1
P-H 0.5 0.3 0.2 0.1 0.1 0.08
HSS-P-G 0.5 0.3 0.2 0.1 0.1 0.08
N-HSS 0.04 0.07 0.07 0.08 0.08 0.09
P-C 0.6 0.6 0.7 0.7 0.8 0.8
CP-P-G 0.6 0.7 0.8 0.8 0.8 0.9
N-C 0.001 0.04 0.2 0.4 0.6 0.8

Case 2.3 N-H 0.9 0.5 0.3 0.2 0.2 0.1
HSS-N-G 0.8 0.8 0.3 0.3 0.2 0.2
P-H 0.9 0.9 0.3 0.2 0.2 0.1
HSS-P-G 0.9 0.9 0.3 0.2 0.2 0.1
N-HSS 0.02 0.05 0.05 0.06 0.07 0.07
P-C 0.8 0.8 0.8 0.8 0.8 0.8
CP-P-G 0.8 0.8 0.9 0.9 0.9 0.9
N-C 0.001 0.02 0.08 0.2 0.5 0.6

The numerical results along with the it_out (i.e., the outer iteration counts), IT (i.e., the total inner
iteration counts running through the corresponding method), and CPU (i.e., the elapsed cpu time
in seconds) are shown in Tables 4–9. If the total inner iteration count number exceeds 500, or the
elapsed CPU time is over 500 in second, or the computational storage is out of memory (especially the
Newton-based methods), then we will denote the corresponding results as “-” in the tables.
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From Tables 4–9, we find that the outer iteration counts of the Newton-based methods are less
than the outer iteration counts of the Picard-based methods. However, the Newton-based methods
occupy more CPU time than the Picard-based methods.

Table 4. Iteration counts and elapsed CPU time for Case 1.1.

N × N: 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

N-G it_out 7 8 8 − − −
IT 94 194 327 − − −
CPU 0.078 0.359 8.823 − − −

N-H it_out 6 8 9 − − −
IT 48 74 135 − − −
CPU 0.041 0.631 4.531 − − −

HSS-N-G it_out 8 9 10 − − −
IT 31 48 98 − − −
CPU 0.419 3.406 36.891 − − −

P-G it_out 7 8 8 8 − −
IT 76 146 240 379 − −
CPU 0.046 0.139 3.578 20.891 − −

P-H it_out 6 8 9 8 8 −
IT 41 80 145 327 401 −
CPU 0.004 0.101 1.124 25.135 231.103 −

HSS-P-G it_out 8 10 10 10 − −
IT 30 44 55 87 − −
CPU 0.344 3.309 9.219 75.641 − −

N-HSS IT 27 28 29 32 33 33
CPU 0.016 0.047 0.735 4.203 35.741 302.214

P-C it_out 6 7 8 7 6 5
IT 12 14 16 17 17 15
CPU 0.001 0.016 0.111 3.031 6.516 20.406

CP-P-G it_out 6 8 8 8 − −
IT 8 12 12 12 − −
CPU 0.001 0.088 0.484 2.931 − −

N-C IT 17 7 9 7 7 6
CPU 0.001 0.016 0.047 0.406 1.047 4.516

Table 5. Iteration counts and elapsed CPU time for Case 1.2.

N × N: 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

N-G it_out 6 7 8 − − −
IT 78 166 314 − − −
CPU 0.047 0.319 8.406 − − −

N-H it_out 6 8 9 − − −
IT 56 75 140 − − −
CPU 0.051 0.638 4.559 − − −

HSS-N-G it_out 7 8 9 − − −
IT 31 56 88 − − −
CPU 0.406 6.75 32.422 − − −

P-G it_out 6 7 8 8 − −
IT 64 129 235 365 − −
CPU 0.034 0.129 3.422 19.406 − −
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Table 5. Cont.

N × N: 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

P-H it_out 6 7 9 9 8 −
IT 37 111 136 145 218 −
CPU 0.003 0.162 0.903 18.344 142.541 −

HSS-P-G it_out 7 9 10 10 − −
IT 24 48 53 67 − −
CPU 0.281 3.297 9.215 70.516 − −

N-HSS IT 26 27 28 34 33 33
CPU 0.016 0.047 0.735 4.203 35.741 302.214

P-C it_out 6 7 9 7 6 6
IT 12 14 18 18 17 18
CPU 0.001 0.016 0.128 3.037 6.516 24.194

CP-P-G it_out 6 7 8 8 − −
IT 7 12 12 12 − −
CPU 0.001 0.086 0.484 2.931 − −

N-C IT 17 8 8 6 7 7
CPU 0.001 0.021 0.041 0.401 1.047 4.844

Table 6. Iteration counts and elapsed CPU time for Case 1.3.

N × N: 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

N-G it_out 4 5 6 − − −
IT 46 101 199 − − −
CPU 0.031 0.219 6.531 − − −

N-H it_out 6 6 7 − − −
IT 25 53 84 − − −
CPU 0.023 0.441 2.917 − − −

HSS-N-G it_out 4 5 7 − − −
IT 21 33 60 − − −
CPU 0.313 2.406 25.813 − − −

P-G it_out 6 6 6 8 − −
IT 42 78 138 304 − −
CPU 0.016 0.078 1.641 16.172 − −

P-H it_out 6 6 7 9 9 −
IT 26 38 85 139 203 −
CPU 0.002 0.045 0.564 18.078 133.11 −

HSS-P-G it_out 6 7 8 10 − −
IT 16 23 36 54 − −
CPU 0.263 1.906 8.859 68.609 − −

N-HSS IT 27 27 27 27 28 28
CPU 0.016 0.047 0.734 3.984 31.406 277.66

P-C it_out 5 5 6 7 7 7
IT 14 14 17 20 20 20
CPU 0.001 0.016 0.093 3.127 7.364 24.969

CP-P-G it_out 5 5 6 7 − −
IT 9 10 12 12 − −
CPU 0.001 0.069 0.444 2.916 − −

N-C IT 17 8 6 8 7 7
CPU 0.001 0.021 0.036 0.414 1.047 4.844
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Table 7. Iteration counts and elapsed CPU time for Case 2.1.

N × N: 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

N-G it_out 7 8 8 − − −
IT 93 186 314 − − −
CPU 0.076 0.338 8.408 − − −

N-H it_out 6 7 9 − − −
IT 36 59 116 − − −
CPU 0.036 0.538 4.156 − − −

HSS-N-G it_out 4 8 8 − − −
IT 17 34 46 − − −
CPU 0.308 5.672 23.408 − − −

P-G it_out 6 7 8 8 − −
IT 66 130 242 379 − −
CPU 0.036 0.125 3.579 20.891 − −

P-H it_out 6 7 9 9 9 −
IT 32 53 107 122 163 −
CPU 0.003 0.072 0.812 16.984 91.38 −

HSS-P-G it_out 7 9 10 10 − −
IT 23 33 46 73 − −
CPU 0.274 2.063 9.063 71.75 − −

N-HSS IT 26 27 28 28 29 29
CPU 0.016 0.047 0.735 3.985 34.399 278.93

P-C it_out 6 7 8 7 6 5
IT 12 14 16 17 17 15
CPU 0.001 0.016 0.111 3.031 6.516 20.406

CP-P-G it_out 6 8 8 8 − −
IT 9 12 12 12 − −
CPU 0.001 0.088 0.484 2.931 − −

N-C IT 17 6 9 7 7 5
CPU 0.001 0.016 0.047 0.406 1.047 4.297

Table 8. Iteration counts and elapsed CPU time for Case 2.2.

N × N: 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

N-G it_out 6 7 8 − − −
IT 77 161 302 − − −
CPU 0.043 0.266 7.516 − − −

N-H it_out 6 7 9 − − −
IT 31 50 103 − − −
CPU 0.031 0.438 3.735 − − −

HSS-N-G it_out 7 8 8 − − −
IT 24 34 46 − − −
CPU 0.328 5.359 23.406 − − −

P-G it_out 6 7 8 8 − −
IT 65 127 235 365 − −
CPU 0.036 0.118 3.469 19.406 − −

P-H it_out 6 7 9 9 9 −
IT 32 53 107 122 153 −
CPU 0.003 0.072 0.812 16.984 88.38 −
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Table 8. Cont.

N × N: 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

HSS-P-G it_out 7 9 9 10 − −
IT 22 32 39 68 − −
CPU 0.266 2.052 9.891 70.953 − −

N-HSS IT 26 27 27 29 29 30
CPU 0.016 0.047 0.734 3.993 34.399 279.93

P-C it_out 6 7 9 6 7 7
IT 12 14 18 18 21 21
CPU 0.001 0.016 0.128 3.072 7.406 24.766

CP-P-G it_out 6 7 8 8 − −
IT 9 10 12 12 − −
CPU 0.001 0.063 0.484 2.931 − −

N-C IT 17 6 10 6 8 7
CPU 0.001 0.016 0.052 0.401 1.063 4.844

Table 9. Iteration counts and elapsed CPU time for Case 2.3.

N × N: 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

N-G it_out 4 4 5 − − −
IT 45 81 168 − − −
CPU 0.029 0.188 4.75 − − −

N-H it_out 5 6 7 − − −
IT 18 29 62 − − −
CPU 0.016 0.259 2.453 − − −

HSS-N-G it_out 4 4 5 − − −
IT 17 26 33 − − −
CPU 0.308 2.641 19.203 − − −

P-G it_out 6 6 6 7 − −
IT 41 72 133 270 − −
CPU 0.016 0.072 1.613 15.234 − −

P-H it_out 5 6 7 8 8 −
IT 18 48 62 128 191 −
CPU 0.002 0.068 0.632 17.953 113.11 −

HSS-P-G it_out 6 6 7 8 − −
IT 13 22 27 45 − −
CPU 0.242 1.603 7.703 65.250 − −

N-HSS IT 26 27 27 28 27 28
CPU 0.016 0.047 0.734 3.985 30.813 277.36

P-C it_out 5 6 6 6 7 7
IT 14 17 17 18 21 21
CPU 0.001 0.018 0.109 3.072 7.406 24.766

CP-P-G it_out 5 4 6 6 − −
IT 9 8 9 10 − −
CPU 0.001 0.063 0.431 2.663 − −

N-C IT 17 7 7 8 8 8
CPU 0.001 0.016 0.047 0.414 1.103 4.984

Besides, we find that the HSS-based iteration methods are more efficient than the Krylov
subspace-based methods in CPU time. Further, the N-HSS method can solve the proposed problem
efficiently with the optimal experimental parameters shown in Table 3, keeping the steady iteration
count numbers while the mesh grid increases.
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However, we also find that as the mesh grid increases, the CPU time of the N-HSS method
increases rapidly.

The good news is that the C-to-R-based iterative methods (e.g., P-C and N-C) need the least
iteration counts and CPU time. In particular, the NC-to-R method not only keeps a steady iteration
count number with respect to different mesh grids, but also increases very slowly in CPU time as the
mesh grid increases.

Therefore, we can draw a conclusion that the C-to-R-based iterative methods are the first choice
and best choice among all the proposed methods for solving this class of complex symmetric weakly
nonlinear equations.

5. Concluding Remarks

In this paper, we focus on the numerical methods for solving a class of weakly nonlinear
complex symmetric equations. First, we rewrite the original system as a real-valued form. Then,
we propose a C-to-R-based Picard iteration method. This method is actually an inexact Picard iteration
method. Therefore, the local convergence can be obtained by making use of some existed results.
To further improve the efficiency, we construct a nonlinear C-to-R-based splitting iteration method.
The convergence results and the theoretically optimal parameters are analyzed in detail. To illustrate
the feasibility and the efficiency of the new methods, we perform some numerical experiments to
compare with some classical methods. The numerical results show that our new methods are the most
efficient method among all the proposed methods.
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