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Abstract: Radio-electronic means, including equipment for transmissions, radio-location,
broadcasting, and navigation, allow the execution of various research missions and combat forces
management. Determining the target coordinates and directing the armament towards them, obtaining
and processing data about enemies, ensuring the navigation of ships, planes and outer atmospheric
means, transmitting orders, decisions, reports and other necessary information for the armed forces;
these are only some of the possibilities of radio-electronic technology. Fuzzy logic allows the linguistic
description of the laws of command, operation and control of a system. When working with complex
and nonlinear systems, it can often be observed that, as their complexity increases, there is a decrease
in the significance of the details in describing the global behavior of the system. Even though such an
approach may seem inadequate, it is often superior and less laborious than a rigorous mathematical
approach. The main argument in favor of fuzzy set theory is to excel in operating with imprecise,
vague notions. This article demonstrates the superiority of a fuzzy tracking system over the standard
Kalman filter tracking system under the conditions of uneven accelerations and sudden change of
direction of the targets, as well as in the case of failure to observe the target during successive scans.
A cascading Kalman filtering algorithm was used to solve the speed ambiguity and to reduce the
measurement error in real-time radar processing. The cascade filters are extended Kalman filters
with controlled gain using fuzzy logic for tracking targets using radar equipment under difficult
tracking conditions.

Keywords: target tracking; Kalman; fuzzy logic; radar prediction trajectory

1. Introduction

Tracking of targets represents the forecast of the possible trajectories of the target as a function
of its previous positions. The prediction accuracy depends on how much precisely the previous and
current positions of the object were measured. Unfortunately, due to parasitic echoes generated on
the radio locator screen, the limitations of algorithms related to processing the signals coming from
different sensors [1], the position of the targets can be determined with approximation. The values
measured can enhance multiple variable features and may be constrained by different initial conditions
depending on the flight angle [2] and on the position of the target towards the radar [3].

In [4], Zhou et al. proposed an alternative to the standard Kalman filter for target tracking in the
case when the radar has a faulty functioning with model mismatching. Their solution was to use an
adaptive unscented Kalman filter in which the parameters (innovation vector, covariance matrix) can
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be corrected in real time by using an adaptive matrix gene. The performance of the new filter proved
to be higher than the standard one, being suitable for tracking missions.

A modified Kalman filter was also used by Zhang et al. in [5]. Their idea was to use
variations of the cubature Kalman filter for achieving higher robustness and reducing the algorithm
complexity simultaneously.

Cao et al., presented in [6], two algorithms used to detect and track moving targets in infrared
aerial domain. The two algorithms presented are SFDLC (symmetric frame differencing target detection
based on local clustering segmentation) used for target detection and MSDU (kernel-based mean shift
target tracking based on detection updates) used for target tracking, both being based on gray-scale
image processing. The use of the latter one led to an overall improvement of the tracking error.

Regarding fuzzy logic, Dahmani et al., proposed in [7] a new fuzzy α-β filter for tracking targets
with high maneuvering. The coefficients were determined based on tracking index λ (index of
maneuverability), having the advantages of being able to detect the starting and ending moment of a
maneuver and being easy to implement through the use of the Takagi Sugeno model with few fuzzy
rules. Liang-qun et al., also used fuzzy logic in [8] for tracking multiple objects.

Kalman algorithm and fuzzy logic have also been linked in [9] by Amirzadeh and Karimpour,
in which they considered an interacting fuzzy fading memory based augmented Kalman filter for
target tracking during maneuvers. Their solution solved the problem of unknown target acceleration.

In relation to the ideas presented in [10], the method proposed by the authors differs in many
aspects. First of all, the superiority of the tracking system with extended cascade Kalman fuzzy filter
over a tracking system based on a second order Kalman fuzzy filter was demonstrated, under the
conditions of uneven accelerations and sudden change of target direction, as well as in the case
of failure to detect the target during several successive scans. Secondly, this paper presents a new
implementation method for the extended cascade Kalman fuzzy filters, which can be used practically
in robotics and radar target tracking in difficult conditions. Innovation consists in using possibility
distributions instead of Gaussian distributions (white Gaussian noise). Lastly, the contribution of this
paper also includes a method of propagating uncertainty through both the process and the observation
models. This is based on quantifying uncertainty as trapezoidal possibilities distributions.

For the Gaussian method, the noise is estimated by experimentation; an accurate model is needed,
otherwise a lot of measurements will be rejected; small errors are allowed; probable data is accepted
and it has to start with an accurate estimation. By comparison, in the case of the fuzzy method,
the noise is estimated by approximation, an accurate model is not needed, any uncertainties will be
corrected later; larger errors are allowed; only impossible data is rejected and, by default, works with
uncertain estimations.

In this context, we propose a fuzzy gain filter which implements fuzzy logic for target tracking in
difficult conditions and we will also show its superiority against a traditional Kalman filter.

The authors propose a cascading Kalman filtering algorithm, which is used to deal with speed
ambiguity and to lower the error of measurement given by the radar processing. In comparison
to the methods that use the standard Kalman filter, the gain-controlled cascaded extended Kalman
filtering algorithm, using fuzzy logic, has several advantages, such as strong real-time performance,
high data rate and small computation time. The results of the simulation indicate the fact that the
method presented in this work can effectively deal with the ambiguity of the speed and can obtain high
tracking ability. In particular, this method does not imply the transmission of a multiple or staggered
pulse repetition frequency (PRF), thus, its implementation is not difficult [11].

The work was structured as follows: in the Introduction chapter, we establish the main purpose
of this paper and present the state of the art regarding the use of Kalman algorithms and fuzzy logic
for target tracking; the second chapter, Materials and Methods, contains the theoretical part related
to the algorithms and also, the case study with four types of trajectories considered for achieving
the comparison between the algorithms implemented; the third chapter, Results, contains the output
of the algorithms for the given trajectories, and is followed by Discussions in which we perform a
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comparison of the results and establish the optimal type of algorithm, more specifically, the fuzzy
gain filter [12]; finally, the Conclusions chapter summarizes the work presented in this article and
establishes a solution for target tracking in difficult conditions.

2. Materials and Methods

The basis of this study is consists of documentation from the specialized scientific literature,
articles in journals, papers presented at conferences [13] on using fuzzy logic for target tracking topic.

Kalman filters have been used intensively in situations requiring a good system states estimation.
The tendency of using Kalman filters is due to the their properties of optimization [14–16], and also due
to the fact that their implementation is easy, leading to good outputs in many situations. Estimation of
states are important and interesting in many practical systems, such as vehicle tracking or state-of-health
estimation for different systems. Additionally, these estimations are also used in control systems in
order to implement their feedback state.

The stability of the fuzzy controller plays an important role and has been thoroughly
investigated [17–19]. If a certain degree of stability cannot be achieved, it will not be implemented in
applications involving delicate operations (biomedicine, aerospace) [20]. This also applies for a fuzzy
estimator. Thus, if a fuzzy estimator lacks stability, the tendency of using it will decrease considerably.
The solution proposed by the authors was proven to be stable for most testing conditions.

Additionally, this work makes use of reports and information regarding fuzzy logic for target
tracking, documents published by the International Energy Agency, Paris, France (IEA) [21] and
strategic research agenda, as well as other data from R&D institutes which is relevant to this subject.

The fact that a target with the characteristics of a military aircraft can accelerate, turn, execute
quick maneuvers, thus turning away from a trajectory with constant speed due to the orders received
and due to the atmospheric turbulences, makes the pursuit of a target a difficult task. In order to
handle these problems, different approach models have been developed [22]. These models are usually
developed based on some statistic models regarding the measurement and processing of noise and
target dynamics.

Several Kalman algorithms were developed [23–25], which make estimates about the noise
associated with a process (P), the noise associated with the system (Q) and the noise associated with
measurements (R). Some estimates [23] take into considerations the acceleration or speed constant;
other estimates [24] restrict the time lapse between two acquisitions of information or impose that the
detection probability to be equal to unit or to be independent in consecutive scans [25].

Due to the validity of the evaluations, many algorithms based on the statistic models have not
shown their superiority over those who use a simple fixed gain filter type α-β [26]. The α-β type
tracking is still often used for tracking problems, despite of the constraints they have. For example,
although the optimal areas are known, the exact values of α and β are often difficult to determine.
Systems with different values for α and β must be used in order to respond to accelerations or
decelerations, or before, during and after a turn. In addition, for the maneuver control it is necessary
to have a maneuver detector to work concurrently with a tracking system type α-β. In addition,
it is necessary to make the decision regarding the moment at which the maneuver detector must
be triggered.

It is difficult to make such decisions if the pursued targets have their own dynamics. Targets can
pass undetected during multiple successive scans when performing quick return maneuvers. In these
situations, the target will be lost due to the delay induced by the detection of the maneuver. By the
time the target return maneuver was detected, this could have already been done before the tracking
system was able to detect it.

In order to overcome these limitations associated with the pursuit of targets in hostile environments,
if the target performs one of the following maneuvers:

• Uneven accelerations or decelerations at any point along the trajectory;
• Making sudden turns (e.g., high alpha maneuvers) for a short period of time (three, four scans);
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• The impossibility of detecting the target during a number of successive scans;
• The successive positions of the target are measured with low precision or with a complete

deflection in another direction with respect to the current position

We propose a new tracking method which relies on the use of a fuzzy type gain filter. The solution
implements the fuzzy logic in conventional α-β filter through the use of if-then rules. Given the position
error and the error change in the last prediction, these rules are used to determine the linearization of
gains for α and β when making a new prediction.

Based on an α-β filter, the proposed tracking system has, first of all, the advantages of a typical α-β
filter (doesn‘t need any evaluation related to the representation of noise or maneuvers, therefore, it is a
filter easy to implement and with a low computational time). Secondly, fuzzy tracking is not affected by
the limitations of the typical α-β filter, because it is capable of rapidly changing the values of sizes α and
β with respect to the variations in direction and velocity, without using a detector for accelerations or
maneuvers. This is why the proposed tracking system can significantly reduce any delays. In addition,
using fuzzy inference, better decision can be made by taking into consideration at the same time
several different situations, even conflictual ones. As a result, the number of mispredictions can be
minimized, although the detection of turns is not always achieved, and the data can be sampled at
longer time intervals.

Simulated data is being used in order to evaluate the behavior of various tracking methods,
but, for real situations, their performance can be questionable. Therefore, for a better evaluation
of the practical performances, real tracking data coming from the radar equipment were used.
Using as reference a two-level Kalman filter, the performance of the proposed fuzzy tracking system
was evaluated.

2.1. α-β Tracking System

An α-β tracking system is one of the most used filters having fixed coefficients. The equations
below describe the filter:

xs(k) = xp(k) + α
[
x0(k) − xp(k)

]
(1)

xp(k + 1) = xs(k) + Tvxs(k) (2)

vxs(k) = vxs(k− 1) +
β

qT

[
x0(k) − xp(k)

]
(3)

where x0(k) is the x-coordinate of the observed target location during scanning k, xp(k) is the x-coordinate
of the position evaluated during scanning k, xs(k) is the x-coordinate of the linearized position of the
target during scanning k, vxs(k) the linearized speed of the target in the x-direction during scanning k,
T is the scanning interval or the sampling time, and α and β are the parameters of the fixed coefficients
filter [27–29]. Normally, the q value is defined as unit size, but, if there are unfulfilled observations,
it takes the value equal to how many scans were performed starting from the previous measurements.

Usually, the initial conditions for an α-β tracking system are defined as follows [30,31]:

xs(1) = xp(2) = x0(1) (4)

vxs(1) = 0 (5)

vxs(2) =

∣∣∣x0(2) − x0(1)
∣∣∣

T
(6)

Equations (1)–(3) are used directly when detecting a target at scanning k. However, if the detection
probability is smaller than the unit size, then, for some scans, the detection of the target might be
missed. In this case, the linearized position will be equal to the predicted position:

xs(k) = xp(k) (7)
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vxs(k) = vxs(k− 1) (8)

This is equivalent to making x0(k) = xp(k). The prediction xp(k + 1) for the next scanning will be
calculated as above. The evaluated position of the target is a simple linear extrapolation starting from
the previous position linearized with constant speed.

Linearization in an α-β filter is performed for each coordinate separately [32]. In other words,
Equations (1)–(8) ca be generalized for the y-coordinate in the following way:

ys(k) = yp(k) + α
[
y0(k) − yp(k)

]
(9)

vys(k) = vys(k− 1) +
β

qT

[
y0(k) − yp(k)

]
(10)

yp(k + 1) = ys(k) + Tvys(k) (11)

ys(1) = yp(2) = y0(1) (12)

vys(1) = 0 (13)

vys(2) =

∣∣∣y0(2) − y0(1)
∣∣∣

T
(14)

ys(k) = yp(k) (15)

vys(k) = vys(k− 1) (16)

where y0(k) is the y-coordinate for the target observed during scanning k, yp(k) is the y-coordinate of
the evaluated position of the target during scanning k, and vys(k) is the linearized value of the target
speed in the y-direction during scanning k [32].

The accurate determination of the values of α and β can be easily done. If the coefficients have
very low values, the filters can benefit from an increased noise reduction [33], but may no longer
respond to the target dynamics [34]. In the case when the coefficients are high, the filter has proper
tracking characteristics with the disadvantage of being noise sensitive. The α and β coefficients can
be easily obtained for a target that moves straight, has the same speed during its movement and it is
not subject to noise. For the situation when the target moves through a domain affected by noise and
with a constantly changing flight dynamic, the coefficients cannot be fixed. The decision regarding
the values that these coefficients have to take is not an easy one. At some points on the trajectory,
the parameters can take high values, and in other small values. For instance, if the target diverges
from the rectilinear trajectory and performs maneuvers, α and β have to be chosen from a wide range
of values in order to be sure that the tracking system ensures an accurate target tracking. However,
if the deviation is due to the noise induced by the measurement to a greater extent than that caused by
the maneuvers of the target, α and β must be chosen rather small to ensure that the tracking system is
positioned correctly [35].

Simply put, when a deviation of the target from the linear trajectory is detected, α and β can be
chosen smaller or larger depending on the cause of the deviation, noise or target maneuver.

In order to prevent false alarms [36] about approaching a target, as long as a precise tracking of
the maneuvers carried out by the target is performed, the selection of optimal values of α and β is not
done using the true-false logic. The limits of selection must be of type fuzzy in order to minimize the
target trajectory loss by reducing the transient amplitude given by a sudden change of decisions.

2.2. Fuzzy Gain Filter

In order to define the limits of decision for tracking a target in a hostile environment, a gain filter
based on fuzzy logic is described, identified by a set of fuzzy rules. Given the error and its variation
from the previous prediction, these rules output the solutions for α and β to be used in the further
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predictions. Changes in the dynamic of the target or in the tracking environment will cause changes in
the values of α and β.

The performance of the fuzzy system, evaluated according to the prediction error and the number
of missed targets, and compared to that of a system using a two stage Kalman filter, demonstrates
the effectiveness of the fuzzy system, which has a high degree of error tolerance and a better return
rate. As is the case with rule-based approaches, generalizing the use of the fuzzy system for any
type of target depends on the development of automated approaches in order to determine the most
appropriate rules and membership functions.

2.2.1. System Variables

Two sets of variables (input and output) are used for expressing the set of fuzzy rules associated
with the suggested filter. The variables used as input, E′(k) and ∆E′(k), are expressed according to the
error of prediction E(k) and the error variation ∆E(k) during scanning k, where:

E(k) =
√

E2
x(k) + E2

y(k) (17)

∆E(k) = E(k) − E(k− 1) (18)

Ex(k) = x0(k) − xp(k) (19)

Ey(k) = y0(k) − yp(k) (20)

The range of values [Emin(k), Emax(k)] for E(k) and [∆Emin(k), ∆Emax(k)] for ∆E(k) are proportional
with how big is the difference between the position of the target measured during scanning k and the
predicted position. Emin(k) and ∆Emin(k) can actually be null, and Emax(k) and ∆Emax(k) could higher
than the maximum speed of the target. As long as different targets have different speeds, the values for
Emax(k) and ∆Emax(k) can differ from one target to another. For the architecture of the tracking system,
based on fuzzy logic, that can be implemented for various targets, x and y coordinates are normalized
for E(k) and ∆E(k), such that instead of Ex(k) and Ey(k), E′(k) and ∆E′(k) are computed, where:

E′x(k) =


x0(k)−xp(k)

x0(k)−x0(k−1) , i f
∣∣∣x0(k) − xp(k)

∣∣∣ < ∣∣∣x0(k) − x0(k− 1)
∣∣∣

x0(k)−xp(k)
x0(k)−xp(k−1) , i f

∣∣∣x0(k) − xp(k)
∣∣∣ > ∣∣∣x0(k) − x0(k− 1)

∣∣∣
0, i f x0(k) − xp(k) = x0(k) − x0(k− 1) = 0

(21)

E′y(k) =


y0(k)−yp(k)

y0(k)−y0(k−1) , i f
∣∣∣y0(k) − yp(k)

∣∣∣ < ∣∣∣y0(k) − y0(k− 1)
∣∣∣

y0(k)−yp(k)
y0(k)−yp(k−1) , i f

∣∣∣y0(k) − yp(k)
∣∣∣ > ∣∣∣y0(k) − y0(k− 1)

∣∣∣
0, i f y0(k) − yp(k) = y0(k) − y0(k− 1) = 0

(22)

The values for E′x(k) and E′y(k) are in the range [−1, 1]. Similar to the definitions for E′x(k) and
E′y(k), ∆E′x(k) and ∆E′y(k) are defined as follows:

∆E′x(k) =


E′x(k)−E′x(k−1)

E′x(k−1) , i f
∣∣∣E′x(k) − E′x(k− 1)

∣∣∣ < ∣∣∣E′x(k− 1)
∣∣∣

E′x(k)−E′x(k−1)
|E′x(k)−E′x(k−1)|

, i f
∣∣∣E′x(k) − E′x(k− 1)

∣∣∣ > ∣∣∣E′x(k− 1)
∣∣∣

0, i f E′x(k) − E′x(k− 1) = E′x(k− 1) = 0

(23)

∆E′y(k) =


E′y(k)−E′y(k−1)

E′y(k−1) , i f
∣∣∣E′y(k) − E′y(k− 1)

∣∣∣ < ∣∣∣E′y(k− 1)
∣∣∣

E′y(k)−E′y(k−1)

|E′y(k)−E′y(k−1)|
, i f

∣∣∣E′y(k) − E′y(k− 1)
∣∣∣ > ∣∣∣E′y(k− 1)

∣∣∣
0, i f E′y(k) − E′y(k− 1) = E′y(k− 1) = 0

(24)



Mathematics 2020, 8, 207 7 of 20

Thus, the domain in which E′(k) and ∆E′(k) can take values is the range [0, 1], without taking into
account the target and its velocity. The values for E′(k) and ∆E′(k) within this interval are the fixed
values for E′(k) and ∆E′(k).

2.2.2. Membership Functions

Fixed values are applied to the fuzzy sets [37,38] described in the definition domain of E′(k) and
∆E′(k). The sets are described with the following notions: zero (ZE), small positive (SP), medium
positive (MP) and large positive (LP).

The functions corresponding to each set are used to determine the significance of the previous
mentioned notions. The membership functions take valued in the definition domain of E′(k) and
∆E′(k) by the following functions with trapezoidal representation shown in Figure 1. The degrees
of membership are associated to the variable values of E′(k) and ∆E′(k) through the previous
mentioned functions.
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small positive, MP = medium positive, LP = large positive).

In order to determine the membership functions for each of these fuzzy sets, the following intervals
were chosen, in which the different membership functions have the maximum value: [0, 0.1] for ZE,
[0.3, 0.4] for SP, [0.6, 0.7] for MP and [0.9, 1.0] for LP. The intervals in which no function of membership
takes the maximum value represent the boundary intervals. All of the membership functions graphs
have the same form [39,40]. Such a choice for defining the membership functions ensure equal chances
of belonging to one of the fuzzy sets defined for all possible input values and possibilities of triggering
practically equal rules. While the premises (the background) of the fuzzy rules are expressed according
to E′(k) and ∆E′(k), the consequences of rules are expressed relatively to α(k) and β(k), which represent
the α-β filter coefficients during scanning k. Even though, theoretically, α(k) and β(k) can take values
fitting into a wide interval, it is rarely fully used. For the proposed tracking system, the domain of
definition for both coefficients can be considered the interval [0, 1].

The fuzzy sets of α(k) and β(k) are described by the previously defined notions: ZE, SP, MP, LP and,
in addition, VP (very positive) and EP (extremely positive). The functions of membership specific to
each fuzzy set offer the significance of each notion and can take values in the domain of α(k) and β(k)
through triangular shaped functions, as in Figure 2.

Unlike for E′(k) and ∆E′(k), the definition domain is divided into six fuzzy sets, and their maximum
values are not evenly distributed. The central area is covered more consistently by four fuzzy sets, SP,
MP, LP and VP, due to the fact that, on one hand, the area in which takes optimal values is found in the
interval [0.3, 0.8], and, on the other hand, in order to avoid sudden output variations. In addition,
experts in defense systems agree with such a partitioning of the definition domain which allows a
faster decision of α and β values, when the specific values are available for E′(k) and ∆E′(k).
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Figure 2. Membership functions for the fuzzy sets of α and β.

2.3. Fuzzy Rules

The inclusion of fuzzy logic in conventional alpha-beta filters determines the dynamic change of
the coefficients according to the conclusions of the fuzzy rules set. These rules determine alpha and
beta depending on the size of the last prediction error and on the error change. Whenever it is necessary
to evaluate several variants simultaneously, multiple rules can be triggered. The levels at which these
rules are triggered are quantitively combined to determine the final values for alpha and beta.

The fuzzy rules are formulated in the following way, given the definition of the input and
output variables:

IF E′(k) = e′ AND, THEN α(k) = α AND β(k) = β (25)

where e′, ∆e′, α and β are fuzzy sets taking values in the domain of E′(k), ∆E′(k), α(k) and β(k). Due to
the fact that each of these rules is used by the fuzzy tracking system, it can be regarded as a connection
that explains a fuzzy relationship [41], they can be briefly described as language table or as a fuzzy
associative memory, like in Tables 1 and 2.

Table 1. Fuzzy associations for α(k).

E′(k)

α(k) ZE SP MP LP

∆E′(k)

ZE VP SP EP EP
SP LP LP VP VP
MP EP VP MP MP
LP VP ZE MP EP

Table 2. Fuzzy associations for β(k).

E′(k)

β(k) ZE SP MP LP

∆E′(k)

ZE VP SP ZE EP
SP ZE ZE ZE ZE
MP ZE ZE LP VP
LP ZE LP MP SP

The rules [42,43] are thus capable of generating the most appropriate response related to any flight
dynamic which includes acceleration, deceleration, maneuvers, lack of detection and high noise areas.
Therefore, a lot of fuzzy associations were finalized (for example, the entries in Tables 1 and 2) which
include the following characteristics:
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• The diagonal entries on the bottom left of both tables are respectively VP and ZE (except the one
in the upper right corner). These inputs are mainly used to solve the cases in which the target
maneuvers are of small amplitude. Having α = VP and β = ZE, the tracking system can describe
the target trajectory with high precision, without the need to bring the estimated speed to zero.
Due to the fact that the time required for adapting to a new speed model is quite large, changes
in β are reduced as much as it can be done in order to not have false alarms. The value of β
can stay approximately constant as long as the deviation from the real value represents a small
amplitude maneuver.

• Values in the right upper corner are generally used for restarting the tracking if the target was lost.
In such cases, assigning the EP value to α and β can significantly increase the determination of the
new dynamic of the target.

• Values in the left upper corner are used for solving the cases of lack of observation. Assigning the
VP value to α and β allows the tracking system to update its target dynamics after the observation
is reestablished.

• All other values from the first column deal with the situations when the previous predictions were
correct. As long as α has to be large in order to be able to pursue the target closely and to prepare
the system for any unexpected maneuver, β takes the ZE value to prevent a significant change of
the predicted speed value. This choice must prevent the occurrence of false alarms resulting from
observations accompanied by noise

• Entries from positions two and three in the first row are used for the cases of smooth maneuvers.
In such cases, in order to be able to track the target, the tracking systems has to perform a slight
modification in speed and a bigger modification in location.

• Entries from the second row imply minor changes of the prediction errors. These are due to a
noisy observation or due to the beginning of a target maneuver. In the second case, the speed of
the tracking system should not be significantly modified (as long as the maneuver is only in the
initial stage). If the divergence is related to a noisy observation, the adjustment in speed must be
avoided, thus, β must take the ZE value.

• The four values in the last part of the tables may be related to a possible loss of pursuit. This can
be explained by the cumulative effect generated by wrong decisions or unexpected changes in the
dynamic of the target. If the flight direction is correctly estimated, the tracking system will return
immediately to a correct pursuit.

2.4. Kalman Tracking System

The Kalman filter presented in Section 2 was chosen taken into account the following considerations
and objectives:

- Identification of the limitations of an alpha-beta tracking system and the need to use fuzzy logic
in order to extend its tracking capability.

- Establishing a method of evaluating the performance of the filter with the gain controlled by
means of fuzzy logic, by comparing them with the performances of a good Kalman estimator.

- Demonstrating the superiority of a fuzzy tracking system over the Kalman filter tracking system
under the conditions of uneven accelerations and sudden change of target direction, as well as in
the case of failing to observe the target during several successive scans, using the simultaneous
computer simulation of the tracking through the two methods.

The execution of the fuzzy tracking system was put against a performant Kalman estimator,
which takes into account the situations when the target shifts and accelerates quickly [44]. The filter
can be explained with the equations below:

KP = ΦP(k|k− 1)HT
[
HP(k|k− 1)HT + Rc

]−1
(26)
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x̂(k + 1|k) = Φx̂(k|k− 1) + Kp(k)[y(k) −Hx̂(k|k− 1)] (27)

P(k + 1|k) =
[
Φ −Kp(k)H

]
P(k|k− 1)ΦT + Q (28)

where x̂ is the state vector of the target, y is the vector of measurements, Φ is the matrix of transition,
P(k|k− 1) is the noise matrix associated to the process during scanning k based on scanning k − 1,
Kp(k) represent the gain during scanning k, Q is the covariance matrix of the system noise, H is the
measurement matrix and Rc is the covariance of the measurement noise. The variables used for the
representation of the target state vector and the vector of measurements have a lot in common with
those of the x and y coordinates for the positions measured or predicted in the previous chapters,
but are not linked to them. This is due to the fact that they are often used in the field.

The average speed of the pursued targets is 370 m/s and the sampling period T is 10s.
Thus, the average dislocation is 0.36 T = 3.6 km. Initially, x and vx are considered zero. For a
model with reduced states, the following parameters can be considered for relations (29)–(31):

Φ =

[
1 T
0 1

]
(29)

H = [1 0]T (30)

x̂ =

[
x
vx

]
(31)

In order for a maneuver model to be able to track targets with accelerations up to 6g, σm must
take the value 2 g and τm must take the value of 50 s. The following parameters result:

P =


4 0.4 0.08

0.4 0.4 0.008
0.08 0.008 0.0016

 (32)

x̂ =


x
vx

ax

 (33)

Q =
2σ2

m
τm


T5

20
T4

8
T3

6
T4

8
T3

3
T2

2
T3

6
T2

2 T

 (34)

2.5. Case Study

In order to assess the execution of a fuzzy tracking system, real data sets acquired by the defense
department of Canada and the United States of America were used. Data were collected during
experiments with tracking systems conducted at a Canadian Armed Forces site. A few F-18 planes were
used as targets, and the data were recorded simultaneously by a traffic control radar and by a radar
in the air defense system, using two multichannel analog recorders with magnetic tape. The radars
used worked on the 1300 MHz frequency, with a scanning period of 10 s. The probability of target
detection is 0.8, the lack of detection being possible even for rectilinear flight trajectories. The directivity
characteristic of the radar is 2◦, the radar being unable to distinguish very close targets when they
perform maneuvers, and thus for some target measurements, may be lost. The flight took an hour and
a half. The altitude was 7000 m and speed was 900 km/h. The turns were characterized by accelerations
between 1 g and 6 g.

The tracking method based on the extremum seeking control proposed in [45], which was tested
in [45,46] for tracking the global extremes, may be used for the aircraft trajectory tracking considering
the advantage of adaptive tracking loop.
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3. Results

Using real data sets, the execution of the suggested fuzzy tracking system and the extend Kalman
filter tracking system were assessed taking into account the number of tracking losses (general indicator
of reliability and robustness of the tracking system) and the average of the prediction error (indicator
for the ability of the system to follow the targets closely). It was also investigated the way in which
the recovery time after incorrect actions and the initial data affect the performance of the tracking
system [45].

The simulation is based on a program developed in MATLAB, which performs both the simulation
of the behavior of a Kalman estimator and the simulation of the behavior of an α-β estimator with
variable coefficients established by fuzzy methods.

The program has four sets of coordinates of four real aircraft trajectories, providing the charts
of the trajectories estimated by both methods, together with the representation of the real trajectory,
the graphs of estimation errors for each representation, as well as files containing the estimation errors.
The figures presented below show the result of the simulations.

In the first situation (Figures 3 and 4), a target accelerates rapidly and executes rapid turns. As it
can be observed, the Kalman filter performs several erroneous actions in series, which increases the
displacement between the current position and the predicted one by accumulating the errors from
one scan to another. This low rate of response to unexpected changes in the dynamic of flight is
due to the time required by the extend Kalman estimator’s response (usually during a few scans).
For the target executing a 360◦ turn over six scans, a delay of two scans may represent a 120◦ angular
deviation. Thus, the tendency of the Kalman system to overestimate the next position of the target is
not surprising, thus resulting in loss of the target.
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Figures 5 and 6 show the performances of the two systems in another situation. A target is being
tracked on an approximate linear trajectory with constant speed. There are no significant losses of the
target. It can be noticed that the predictions of the Kalman system are placed on a curve in a zig-zag
pattern. The system is thus dependent of noise, even if the noise level is minimum.
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Figures 7 and 8 illustrate the system’s capacity to follow a rapidly accelerating target over a
linear trajectory. The difficulty of the tracking conditions is low given the fact that, besides the rapid
acceleration of the target, there are no significant target losses, and the noise level is also low. As it can
be seen in the figures, the Kalman system committed multiple errors leading to the loss of trajectory.
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Finally, Figures 9 and 10 show the issues related to target tracking under lack of observation
conditions. The tracking conditions were characterized by a low noise level. The target did not
accelerate and did not perform sudden changes in the flight direction. The Kalman system did not
behave properly in this case either. The maneuver of small successive changes of the target direction
before the tracking loss determined the system to interpret it as a maneuver of significant magnitude,
thus being determined to follow a non-existing trajectory. On the other hand, the fuzzy system did
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not react to the perturbation, due to its abilities to consider multiple possibilities at the same moment
(multiple rules can be enabled simultaneously).Mathematics 2020, 8, 207 14 of 20 
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It should be noted that the probability of losing a target over the course of several successive scans
is actually quite high. This increases as the aircraft is more maneuverable. Due to the flight angle and
the ability to make sudden changes of direction, these aircraft are much more difficult to detect in the
conditions in which they perform maneuvers [45–47].
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In the case of applications that require increased computing speed, analog processors are often
the only solution, which can lead to decreased flexibility and a number of membership functions
that can overlap at certain intervals. However, it is demonstrated that, using circuits in MOS-FET
technology, simple analog fuzzification and inference circuits can be made, thus developing specialized
processors [48].

The prediction errors of the two systems are compared and presented in the Section 4.

4. Discussion

As shown in Table 3 below, the Kalman tracking system does not have the performance of the fuzzy
system, both in terms of preventing loss of tracking and closely tracking the target. The differences are
significant both when the average estimation errors and the behavior of the systems for reducing the
tracking intervals are considered [48,49]. For the fuzzy system, reducing the tracking range from 550
to 400 ms has resulted in an increase in the number of lost tracks from 3 to 9 for trajectory 1, from 7 to
10 for trajectory 2, from 6 to 8 for trajectory 3 and from 0 to 10 for trajectory 4. In the Kalman tracking
system, the same reduction in the tracking interval led to an increase in the number of lost tracking
from 9 to 12 for trajectory 1, from 7 to 10 for trajectory 2, from 6 to 8 for trajectory 3 and from 7 to 10 for
trajectory 4, as it can be seen in Table 4. A clearer picture is presented in Table 5, which represents
the percentage of lost tracking from the total measurements made. The difference between the two
systems is also significant in terms of prediction error [48].

Table 3. Comparison regarding the number of lost tracking for the Kalman and Fuzzy system.

TRAJECTORY NO.

TRACKING INTERVAL

400 ms 550 ms

KALMAN FUZZY KALMAN FUZZY

1 12 9 9 3
2 10 4 7 1
3 8 5 6 4
4 10 5 7 0
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Table 4. Comparison of prediction errors for the Kalman and Fuzzy systems.

SCAN NO.
TRAJECTORY 1 TRAJECTORY 2 TRAJECTORY 3 TRAJECTORY 4

KALMAN FUZZY KALMAN FUZZY KALMAN FUZZY KALMAN FUZZY

1 4455 4455 7885 7885 5093 5093 4294 4294
2 22,188 3340 37,887 937 20,343 6917 19,095 1916
3 6728 3012 10,179 2036 5689 5748 6419 4213
4 5556 8345 4834 4962 5185 3758 5727 1964
5 8309 9350 8035 3213 11,854 1549 4962 3163
6 6718 4188 6240 3982 8057 3087 3006 4238
7 2294 4501 8937 4510 1644 6719 1663 3113
8 3639 2015 5364 5344 6453 1578 5104 4210
9 3183 2385 1094 1810 2722 1388 5712 1716

10 4194 3346 1272 2342 3810 6015 2927 281
11 2439 7595 1457 437 8159 1748 1040 2010
12 13,545 3922 1487 231 2792 1481
13 7384 4185 1136 1122 3794 2456
14 2642 4981 856 1287 F F
15 5988 2889 1822 2331 F F
16 5889 2285 5229 1559 F F
17 2046 4006 5561 1128 F F
18 3864 1111 38,781 2114
19 3198 3135 56,989 4616
20 4243 2114 15,816 642
21 1925 492

AVERAGE
ERROR 5018 3402 6428 2654 7183 3964 11,133 2652

Table 5. Comparison regarding the percentage of lost tracking for Kalman and Fuzzy systems.

TRAJECTORY NO.

TRACKING INTERVAL

400 ms 550 ms

KALMAN FUZZY KALMAN FUZZY

1 57% 43% 43% 14%
2 59% 24% 41% 6%
3 73% 45% 55% 36%
4 63% 31% 44% 0%

The performance deterioration of the Kalman tracking system is quite significant in some cases
presented in Table 4. In the case of Trajectory 4, which is a difficult trajectory for a tracking process,
the average error on a Kalman system is five times higher than on a system based on fuzzy rules.
Careful examination of the data leads to the conclusion that the main cause is the reduced possibility
of the Kalman system to resume tracking after erroneous actions. When the tracking interval was
relatively large, the Kalman system was able to track the target, but when reducing the interval,
it needed more time to correct its errors. This is because the Kalman filter requires a longer duration to
ensure a reliable and stable prediction. Unlike the Kalman system, the fuzzy system is able to return
much faster to a stable prediction, which explains the large difference between the number of lost
targets of the two systems [50].

Proving the performance of the extended cascade fuzzy Kalman system, evaluated according to
the prediction error and the number of missed targets, and compared to that of a system using a two
stage second order Kalman fuzzy filter, demonstrates the effectiveness of the proposed fuzzy system,
which has a high degree of error tolerance and a better return rate. As is the case with rule-based
approaches, generalizing the use of the fuzzy system for any type of target depends on the development
of automated approaches to determine the most appropriate rules and membership functions.

It was also shown the possibility of implementing the fuzzy logic in a real target tracking
application in difficult conditions. As an initial approach, a classical alpha-beta system can be modified
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in order to determine alpha and beta coefficients by fuzzy logic. Based on the fuzzy gain filter presented
in the article, an automated structure can be developed that provides the tracking system with real-time
updated values for alpha and beta coefficients.

The components of a fuzzy system were defined: a rigid-fuzzy transformation component and
rigid-fuzzy transformation component. The notion of rigid set was introduced, regarding the sets of
elements that do not accept the nuanced definition of the degree of membership, but only recognize
total membership or non-membership.

The system variables were defined and also the universe of speech and the membership functions
necessary for the rigid-fuzzy transformation for a controlled gain filter that uses fuzzy logic for tracking
targets using radar equipment under difficult tracking conditions.

5. Conclusions

The performance of the fuzzy system, evaluated according to the error of prediction and the
missed targets, and measured against a system using a two-stage Kalman filter, demonstrates the
effectiveness of the fuzzy system, which has a high tolerance of error and rate of better returns. As in
the case of rule-based approaches, the generalization of using the fuzzy system for any type of target
depends on the development of automated approaches in order to determine the most appropriate
rules and membership functions.

This paper demonstrates the possibility of implementing fuzzy logic for tracking targets in difficult
conditions such as high noise levels, but also uneven acceleration of targets, sharp turns and failure to
observe the target during several successive scans during maneuvers. The inclusion of fuzzy logic in a
usual α-β filter determines the dynamic modification of the coefficients depending on the output sets
of the fuzzy rules suggested. The rules are used to find the values of α and β depending on the size
of the previous error of prediction and the error modification. Whenever it is necessary to evaluate
several variants simultaneously, several rules can be triggered. The levels where the rules are triggered
are quantitatively used to obtain the overall values for α and β.

The efficiency of the fuzzy tracking system was computed based on some cases with different
levels of difficulty. The performance of the fuzzy system, evaluated based on the error of prediction
and the number of missed targets is compared to that of a system that uses a two-stage Kalman filter.
The outputs indicate the fact that the fuzzy system has a high error tolerance and a better return rate.

The development and implementation of this new filtering algorithm can solve the
three-dimensional radar measurements in the proposed case, allowing the direct adjustment of
the parameters for the artificial and mean covariance. The simulation results show that the algorithm
is efficient in the computation of nonlinear measurement, compared to the standard Kalman filter,
having an error value from 0.77% to 1.15%.

The main directions for further research are as follows: the implementation of fuzzy logic in a real
target tracking application under difficult conditions. As an initial approach, a classical alpha-beta
system can be modified in order to determine alpha and beta coefficients by fuzzy logic. Based on the
fuzzy gain filter presented in this article, an automated structure can be developed, which provides the
tracking system with real-time updated values for alpha and beta coefficients.

Author Contributions: Conceptualization, C.D. and I.M.; Methodology, C.D.; Software, C.D.; Validation, C.D.,
I.M. and M.S.R.; Formal Analysis, C.D. and M.S.R.; Investigation, C.D., I.M. and M.S.R.; Resources, C.D.;
Data Curation, C.D.; Writing—Original Draft Preparation, C.D.; Writing—Review and Editing, I.M. and M.S.R.;
Visualization, M.S.R.; Supervision, C.D., I.M. and M.S.R. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by a grant from the Romanian Ministry of Research and Innovation,
CCCDI-UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0776/No. 36 PCCDI/15.03.2018, within PNCDI III.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2020, 8, 207 18 of 20

References

1. Du, J.; Gerdtman, C.; Linden, M. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based
Human Motion Analysis Systems: A systematic review. Sensors 2018, 18, 1123. [CrossRef] [PubMed]

2. Li, Y.; Zhou, H.; Chen, W. Three-Dimensional Impact Time and Angle Control Guidance Based on MPSP.
Int. J. Aerosp. Eng. 2019, 2, 1–16. [CrossRef]

3. Ponte Muller, F. Survey on Ranging Sensors and Cooperative Techniques for Relative Positioning of Vehicles.
Sensors 2017, 17, 271. [CrossRef] [PubMed]

4. Zhou, H.; Huang, H.; Zhao, H.; Zhao, X.; Yin, X. Adaptive Unscented Kalman Filter for Target Tracking in
the Presence of Nonlinear Systems Involving Model Mismatches. Remote Sens. 2017, 9, 657. [CrossRef]

5. Zhang, A.; Bao, S.; Gao, F.; Bi, W. A novel strong tracking cubature Kalman filter and its application in
maneuvering target tracking. Chin. J. Aeronaut. 2019, 32, 2489–2502. [CrossRef]

6. Cao, Y.; Wang, G.; Yan, D.; Zhao, Z. Two algorithms for the detection and Tracking of Moving Vehicle Targets
in Aerial Infrared Image Sequences. Remote Sens. 2016, 8, 28. [CrossRef]

7. Dahmani, M.; Meche, A.; Keche, M.; Abed-Meraim, K. An improved fuzzy alpha-beta filter for tracking a
highly maneuvering target. Aerosp. Sci. Technol. 2016, 58, 298–305. [CrossRef]

8. Li, L.-Q.; Zhan, X.-Y.; Liu, Z.-X.; Xie, W.-X. Fuzzy logic approach to visual multi-object tracking.
Neurocomputing 2018, 281, 139–151.

9. Amirzadeh, A.; Karimpour, A. An interacting Fuzzy-Fading-Memory-based Augmented Kalman Filtering
method for maneuvering target tracking. Digit. Signal Process. 2013, 23, 1678–1685. [CrossRef]

10. Lee, T.E.; Su, J.P.; Hsia, K.H.; Yu, K.W.; Wang, C.C. Design of an alpha-beta filter by combining fuzzy logic
with evolutionary methods. In IEEE Xplore International Symposium on Computer Communication Control and
Automation; IEEE: Tainan, Taiwan, 2010; Volume 2.

11. Park, S.T.; Lee, J.G. Improved Kalman filter design for three-dimensional radar tracking. IEEE Trans. Aerosp.
Electron. Syst. 2001, 37, 727739.

12. Nousheen, F.; Prakash, P.; Pooja, A.; Rachana, R. Estimation of System Parameters Using Kalman Filter and
Extended Kalman Filter. Int. J. Adv. Technol. Eng. Explor. 2015, 2, 84.

13. Apriliani, E.; Yunaini, F.; Hartini, S. Estimation and control design of mobile robot position. Far East J. Math.
Sci. 2013, 77, 115–124.

14. Anderson, B.; Moore, J. Optimal Filtering; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979.
15. Cao, S.; Rees, N.; Feng, G. Analysis and design of fuzzy control systems using dynamic fuzzy global models.

IEEE Trans. Fuzzy Syst. 1995, 75, 47–62. [CrossRef]
16. Cao, S.; Rees, N.; Feng, G. H-infinity control of nonlinear continuous time systems based on dynamical fuzzy

models. Int. J. Syst. Sci. 1996, 27, 821–830. [CrossRef]
17. Cao, S.; Rees, N.; Feng, G. Analysis and design for a class of complex control systems. Part I: Fuzzy modelling

and identification. Automatica 1997, 33, 1017–1028. [CrossRef]
18. Johansen, T. Fuzzy model-based control: Stability, robustness and performance issues. IEEE Trans. Fuzzy

Syst. 1994, 2, 221–234. [CrossRef]
19. Oussalah, M.; DeSchutter, J. Possibilistic Kalman filtering for radar 2D tracking. Inf. Sci. 2000, 130, 85–107.

[CrossRef]
20. Tanaka, K.; Ikeda, T.; Wang, H. Robust stabilization of a class of uncertain nonlinear systems via fuzzy

control: Quadratic stabilizability, H control theory, and linear matrix inequalities. IEEE Trans. Fuzzy Syst.
1996, 4, 1–13. [CrossRef]

21. International Energy Agency (IEA). World Energy Outlook; IEA: Paris, France, 2018.
22. Aust, J.; Post, D. Bowtie Methodology for Risk Analysis of Visual Borescope Inspection during Aircraft

Engine Maintenance. Aerospace 2019, 6, 110. [CrossRef]
23. Layne, J.R.; Passino, K.M. A fuzzy dynamic model-based state estimator. Fuzzy Sets Syst. 2001, 122, 45–72.

[CrossRef]
24. Longo, D.; Muscato, G.; Sacco, V. Localization using fuzzy and Kalman filtering data fusion. In Proceedings

of the 5th International Conference on Climbing and Walking Robots (CLAWAR 2002), Paris, France, 25–27
September 2002.

25. Trakanoski, Z.; Wach, P. Fuzzy filter for state estimation of a glucoregulatory system. Computing Methods
Programs. Biomedicine 1996, 50, 265–273.

http://dx.doi.org/10.3390/s18041123
http://www.ncbi.nlm.nih.gov/pubmed/29642412
http://dx.doi.org/10.1155/2019/5631723
http://dx.doi.org/10.3390/s17020271
http://www.ncbi.nlm.nih.gov/pubmed/28146129
http://dx.doi.org/10.3390/rs9070657
http://dx.doi.org/10.1016/j.cja.2019.07.025
http://dx.doi.org/10.3390/rs8010028
http://dx.doi.org/10.1016/j.ast.2016.08.029
http://dx.doi.org/10.1016/j.dsp.2013.05.002
http://dx.doi.org/10.1016/0165-0114(94)00323-Y
http://dx.doi.org/10.1080/00207729608929282
http://dx.doi.org/10.1016/S0005-1098(97)00010-1
http://dx.doi.org/10.1109/91.298450
http://dx.doi.org/10.1016/S0020-0255(00)00076-1
http://dx.doi.org/10.1109/91.481840
http://dx.doi.org/10.3390/aerospace6100110
http://dx.doi.org/10.1016/S0165-0114(99)00181-5


Mathematics 2020, 8, 207 19 of 20

26. Brown, R.; Hwang, P. Introduction to Random Signals and Applied Kalman Filtering with MATLAB Exercises and
Solutions, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1997.

27. Shibata, T.; Saho, K. Correct Stability Condition and Fundamental Performance Analysis of the α-β-γ-δ Filter.
Appl. Sci. 2018, 8, 2523. [CrossRef]

28. Sao, K.; Masugi, M. Performance Analysis and Design Strategy for a Second-Order, Fixed-Gain,
Position-Velocity-Measured (α-β-η-θ) Tracking Filter settings. Appl. Sci. 2017, 7, 758. [CrossRef]

29. Jamil, F.; Kim, D. Improving Accuracy of the Alpha-Beta Filter Algorithm Using a ANN-Based Learning
Mechanism in Indoor Navigation System. Sensors 2019, 19, 3946. [CrossRef] [PubMed]

30. Zheng, B.; Fu, P.; Li, B.; Yuan, X. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with
Uncertain Noise Covariance. Sensors 2018, 18, 808. [CrossRef] [PubMed]

31. Mamdani, E.H.; Assilian, S. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. J. Man
Mach. Stud. 1975, 7, 1–13. [CrossRef]

32. Roostaee, S.; Mehfuz, S.; Thomas, M.S.; Jamil, M. Traveling-Waves-Based Ground Fault Location Using
Zero-Sequence Detection and Wavelet Transform. J. Electr. Eng. Electron. Control Comput. Sci. 2017, 3, 7–12.

33. Bishop, G.; Welch, G. An introduction to the Kalman filter. In Proceedings of the SIGGRAPH 2001,
Los Angeles, CA, USA, 12–17 August 2001; Volume 8, p. 41.

34. Osugi, T.; Murakami, I. Onset of background dynamic noise attenuates preview benefit in inefficient visual
search. Vis. Res. 2015, 112, 33–44. [CrossRef]

35. Zsiboracs, H.; Baranyai, N.; Vincze, A.; Haber, I.; Weihs, P.; Oswald, S.; Gutzer, C.; Pinter, G. Changes of
Photovoltaic Performance as a Function of Positioning Relative to the Focus Points of a Concentrator PV
Module: Case Study. Appl. Sci. 2019, 9, 3392. [CrossRef]

36. Liu, H.; Xia, L.; Wang, C. Maneuvering Target Tracking Using Simultaneous Optimization and Feedback
Learning Algorithm Based on Elman Neural Network. Sensors 2019, 19, 1596. [CrossRef]

37. Castro, L. Fuzzy Logic controllers are universal approximators. IEEE Trans. Syst. Man Cybern. 1995,
25, 629–635. [CrossRef]

38. Coanda, H.G.; Minca, E.; Ion, C.; Ion, F. Solutions for driving 2DW/1FW mobile robots using sliding-mode
control. J. Electr. Eng. Electron. Control Comput. Sci. 2016, 2, 9–14.

39. Codjevac, J. Introduction a la Logique Floue, Cours de Perfectionnement; Institut Suisse de pedagogie pour la
foundation professionelle, EPFL: Laussane, Switzerland, 1998.

40. Peters, L.; Guo, S. A New Hardware Implementation of the Centre of Gravity Defuzzification Method; Technical
Report; Gesellschaft fur Mathematik und Datenvarbeitung (GMD) and Institut fur Systementwurfstechnik
(SET): Saarbrücken, Germany, 1994.

41. Kettner, T.; Heite, C.; Schumacher, K. Analog CMOS realization of Fuzzy Logic Membership Functions.
IEEE J. Solid State Circuits 1993, 29, 857–861. [CrossRef]

42. Kosko, B. Neural Networks and Fuzzy Systems; Prentice-Hall International, Inc.: Engiewood Cliffs, NJ,
USA, 1992.

43. Landolt, O. Efficient Analog CMOS Implementation of Fuzzy Rules by Direct Synthesis of Multidimensional
Fuzzy Subspaces. IEEE Int. Conf. Fuzzy Syst. 1993, 1, 453–458.

44. Elechi, P.; Edeko, F.; Egwaile, J. Relative Permittivity Based Model for GSM Signal Loss in Buildings. J. Electr.
Eng. Electron. Control Comput. Sci. 2018, 4, 19–26.

45. Bizon, N.; Thounthong, P.; Raducu, M.; Constantinescu, L.M. Designing and modelling of the asymptotic
perturbed extremum seeking control scheme for tracking the global extreme. Int. J. Hydrogen Energy 2017,
42, 17632–17644. [CrossRef]

46. Bizon, N. Global Maximum Power Point Tracking based on new Extremum Seeking Control scheme.
Prog. Photovolt. Res. Appl. 2016, 24, 600–622. [CrossRef]

47. Bizon, N.; Kurt, E. Performance Analysis of Tracking of the Global Extreme on Multimodal Patterns using
the Asymptotic Perturbed Extremum Seeking Control Scheme. Int. J. Hydrogen Energy 2017, 42, 17645–17654.
[CrossRef]

48. Dinu, O. Considerations on several approximate methods for the evaluation of adequate attenuation systems.
J. Electr. Eng. Electron. Control Comput. Sci. 2016, 2, 9–14.

http://dx.doi.org/10.3390/app8122523
http://dx.doi.org/10.3390/app7080758
http://dx.doi.org/10.3390/s19183946
http://www.ncbi.nlm.nih.gov/pubmed/31547395
http://dx.doi.org/10.3390/s18030808
http://www.ncbi.nlm.nih.gov/pubmed/29518960
http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://dx.doi.org/10.1016/j.visres.2015.02.024
http://dx.doi.org/10.3390/app9163392
http://dx.doi.org/10.3390/s19071596
http://dx.doi.org/10.1109/21.370193
http://dx.doi.org/10.1109/4.222189
http://dx.doi.org/10.1016/j.ijhydene.2017.01.086
http://dx.doi.org/10.1002/pip.2700
http://dx.doi.org/10.1016/j.ijhydene.2016.11.173


Mathematics 2020, 8, 207 20 of 20

49. Arif, D.K.; Apriliani, E. Distribution estimation of heat conduction using Kalman filtering which implemented
on reduction model. In Proceedings of the 3rd International Conferences and Workshops on Basic and
Applied Sciences, Surubaya, Indonesia, 25 September 2011; p. M007.

50. Leskiw, D. The Extended Preferred Ordering Theorem for Radar Tracking Using the Extended Kalman Filter.
Ph.D. Thesis, Syracuse University, New York, NY, USA, 2011.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	- Tracking System 
	Fuzzy Gain Filter 
	System Variables 
	Membership Functions 

	Fuzzy Rules 
	Kalman Tracking System 
	Case Study 

	Results 
	Discussion 
	Conclusions 
	References

