
mathematics

Article

pth Moment Stability of a Stationary Solution for a
Reaction Diffusion System with Distributed Delays

Xiongrui Wang 1, Ruofeng Rao 2,* and Shouming Zhong 3

1 College of Mathematics, Yibin University, Yibin 644000, China; wxr888x@163.com
2 Department of Mathematics, Chengdu Normal University, Chengdu 611130, China
3 College of mathematics, University of Electronic Science and Technology of China, Chengdu 611731, China;

zhongsm@uestc.edu.cn
* Correspondence: ruofengrao@163.com

Received: 1 December 2019; Accepted: 30 January 2020; Published: 6 February 2020
����������
�������

Abstract: In this paper, the Sobolev embedding theorem, Holder inequality, the Lebesgue contrl
convergence theorem, the operator norm estimation technique, and critical point theory are employed
to prove the existence of nontrivial stationary solution for p-Laplacian diffusion system with
distributed delays. Furthermore, by giving the definition of pth moment stability, the authors use
the Lyapunovfunctional method and Kamke function to derive the stability of nontrivialstationary
solution. Moreover, a numerical example illuminates the effectiveness of the proposed methods.
Finally, an interesting further thought is put forward, which is conducive to the in-depth study of
the problem.
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1. Introduction

It is well known that, in practical engineering, electrons inevitably diffuse in the inhomogeneous
electromagnetic field. In addition, hence, the stability analysis of the reaction–diffusion system has
become a hot topic [1–14]. In recent decades, many authors, such as Linshan Wang, Qiankun Song and
Jinde Cao, have studied the stability of Laplacian reaction–diffusion neural networks with time delay,
and achieved fruitful results in Laplacian diffusion systems [7–14]. On the other hand, p-Laplacian
diffusion systems have also been widely studied.

In 2018, the asymptotic behavior of a p-Laplacian reaction–diffusion dynamic system is studied
in [15]:

∂u
∂t
− a(lu)∆pu = f (u) + h(t). (1)

However, in practical engineering, the time delay is unavoidable, which may lead to chaos
and instability of the system [16–24]. Thus, in this paper, we are to investigate the delayed
p-Laplacian reaction–diffusion dynamic system. In addition, similar research has already begun. In [24],
the p-Laplacian diffusion was firstly introduced in a time-delay dynamical system. Inspired by some
methods of [24], the authors in [25] employed an impulsive differential inequality lemma to further
study the time-delay neural networks with pulse perturbation. In [16], Ruofeng Rao and Shouming
Zhong employed the Ekeland variational principle and Lyapunov stability theory to derive a globally
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exponential pth moment stability criterion for a Markovian jumping T–S fuzzy diffusion system with
time-delays:

dui(t, x)
dt

=Didiv
(
|∇ui|p−2∇ui

)
− bi(ui) +

J

∑
j=1

ρj(ω(t))
(

cij(r(t)) fi(ui(t, x))

+ dij(r(t))gi(ui(t− τi(t), x))
)
+ Ii, i ∈ N , t > 0, x ∈ Ω,

ui(t, x) =0, i ∈ N , t > 0, x ∈ ∂Ω.

(2)

On the other hand, fuzzy logic theory has shown to be an appealing and efficient approach to
deal with the analysis and synthesis problems for complex nonlinear systems. Among various kinds
of fuzzy methods, Takagi–Sugeno (T–S) fuzzy models provide a successful method to describe certain
complex nonlinear systems using some local linear subsystems [26–31].

Motivated by some ideas and methods in [16,32–40,46], we are to investigate the stability of a
class of p-Laplacian diffusion T–S fuzzy system via variational methods that are different from those
of existing literature related to reaction–diffusion fuzzy systems.

2. Preliminaries

Consider the following p-Laplacian system with time delays:
Fuzzy rule j: IF ω1(t) is µj1 and · · · ωm(t) is µjm THEN

∂ui(t, x)
∂t

= ai(t, u1, · · · , un)∆pui(t, x)− bi(ui(t, x)) + cij fi(ui(t, x))

+ dij

∫ t

t−τ(t)
fi(ui(s, x))ds + Ji, i ∈ N , t > 0, x ∈ Ω,

ui(θ, x) = φi(θ, x), (θ, x) ∈ [−τ, 0]×Ω, i ∈ N ,

ui(t, x) = 0, (t, x) ∈ [−τ,+∞)× ∂Ω, i ∈ N ,

(3)

where N , {1, 2, · · · , n} is a finite index set, and Ω ∈ Rn is a bounded set with a smooth boundary
∂Ω. {µjk(j = 1, 2, · · · , N; k = 1, 2, · · · , m)} is a fuzzy set, ωk(t) represents a premise variable, m is the
number of premise variables, and N is the number of IF-THEN rules. ai(t, x, u1, · · · , un) represents a
diffusion operator. Time delay τ(t) satisfies τ(t) ∈ (0, τ], where τ > 0 is a constant. bi represents the
behavior function, dependent on t and x. cij and dij denote the strength of state links between neurons,
fi denotes the activation function of the neurons at i, and Ji denotes the external input of the neurons
at i. Assume in this paper that Ji is a bounded quantity.

In view of a standard fuzzy inference method, the system (3) can be inferred as follows:

∂ui
∂t

=ai(t, u1, · · · , un)∆pui − bi(ui) +
N

∑
j=1

ρj(ω(t))
(

cij fi(ui)

+ dij

∫ t

t−τ(t)
fi(ui(s, x))ds

)
+ Ji, t > 0, x ∈ Ω, i ∈ N ,

ui(θ, x) =φi(θ, x), (θ, x) ∈ [−τ, 0]×Ω, i ∈ N ,

ui(t, x) =0, (t, x) ∈ [−τ,+∞)× ∂Ω, i ∈ N ,

(4)

where ω(t) = (ω1(t), · · · , ωm(t)), and Υj(ω(t)) is the membership function corresponding to rule j.

In addition, ρj(ω(t)) =
Υj(ω(t))

N
∑

i=1
Υi(ω(t))

with
N
∑

j=1
ρj(ω(t)) = 1 and ρj(ω(t)) > 0.

In this paper, we assume
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(H1) for any given q ∈ (1, p),

lim
|r|→∞

bi(r)
rq−1 = 0 = lim

|r|→∞

fi(r)
rq−1 ;

(H2) for any given i ∈ N , there is the corresponding positive number ai such that

ai = inf
t,x,u

ai(t, x, u1, u2, · · · , un) > 0,

where u = (u1, u2, · · · , un);
(H3) for any given i ∈ N , there is the corresponding positive number Fi such that

| fi(s)− fi(r)| 6 Fi|s− r|, ∀ s, r ∈ R;

(H4) for any given i ∈ N , there is the corresponding positive number b̄i such that

inf
r∈R

b′i(r) > b̄i > 0.

Definition 1. The nontrivial solution ξ∗(x) = (ξ∗1(x), · · · , ξ∗n(x))T of the system (4) is said to be pth moment
stable if, for any given ε > 0 and any given initial value φ = (φ1, · · · , φn)T , there exists δ(ε, φ) > 0 for φ with

n
∑

i=1
‖φi − ξ∗i ‖τ < δ(ε, φ) such that

n

∑
i=1

( ∫
Ω
|ui(t, φ, x)− ξ∗i (x)|pdx

) 1
p

< ε, ∀ t > t0,

where ‖φi − ξ∗i ‖τ = sup
−τ6θ60

( ∫
Ω |φi(t, x)− ξ∗i (x)|pdx

) 1
p

.

Here, the above definition mainly imitates the Definition 7.1 of [41] (Chapter 1).

3. Main Result

Theorem 1. If the conditions (H1) and (H2) hold, there is a nontrivialstationary solution for fuzzy system (4).
If, in addition, the conditions (H3) and (H4) and the following condition hold:

b̄i > Fi

N

∑
j=1

(|cij|+ τ|dij|), ∀ i ∈ N , (5)

then, for any given p > 1, the nontrivialstationary solution is pth moment stable.

Proof. Denote ai(t) = ai(t, u1, · · · , un). We shall complete the proof after two steps.

Step 1. We claim that there is a nontrivialstationary solution for fuzzy system (4).
Indeed, for any given i ∈ N , we consider the following functional:

Ii(ξi(x)) =
∫

Ω

[
1
p

ai(t)|∇ξi(x)|p + Bi(ξi(x))−
N

∑
j=1

ρj(ω(t))
(

cij + dijτ(t)
)

Fi(ξi(x))− Jiξi(x)
]

dx,

where Bi(ξi) =
∫ ξi

0 bi(r)dr, and Fi(ξi) =
∫ ξi

0 f (r)dr.

Below, we prove Ii ∈ C1(W1,p
0 (Ω), R).

Indeed, let
Ii(ξi(x)) = Λi(ξi(x)) + Γi(ξi(x))
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with

Γi(ξi(x)) =
∫

Ω

[
Bi(ξi(x))−

N

∑
j=1

ρj(ω(t))
(

cij + dijτ(t)
)

Fi(ξi(x))− Jiξi(x)
]

dx

and
Λi(ξi(x)) =

∫
Ω

1
p

ai(t)|∇ξi(x)|pdx.

For convenience, we denote

g(x, ξi) = bi(ξi(x))−
N

∑
j=1

ρj(ω(t))
(

cij + dijτ(t)
)

fi(ξi(x))− Ji

and G(x, ξi) =
∫ ξi

0 g(x, t)dt = Bi(ξi(x))−
N
∑

j=1
ρj(ω(t))

(
cij + dijτ(t)

)
Fi(ξi(x))− Jiξi(x).

Combining the continuity hypothesis and (H1) results in

|g(x, ξi)| 6 C0 + M0|ξi|q−1,

where both C0 > 0 and M0 > 0 are constants.
Let v ∈ W1,p

0 (Ω) with ‖v‖ < r, for the functional Γi(ξi) =
∫

Ω G(x, ξi(x))dx, we can see it from
the differential mean value theorem that the Gateaux differential of Γi(ξi) is

DΓi(ξi, v) = lim
s→0

∫
Ω

g(x, ξi + θsv)vdx,

where θ ∈ [0, 1]. Now, we try to employ the Lebesgue control convergence theorem to deal with the
limit. For |s| 6 1, the Young inequality derives

|g(x, ξi + θsv)v|

6
(

C0 + M0|ξi + θsv|q−1
)
|v|

6
q− 1

q

(
C0 + M0|ξi + θsv|q−1

) q
q−1

+
1
q
|v|q

62
1

q−1
q− 1

q

(
C

q
q−1
0 + M

q
q−1
0 |ξi + θsv|q

)
+

1
q
|v|q

62
1

q−1
q− 1

q

(
C

q
q−1
0 + M

q
q−1
0 2q−1(|ξi|q + |v|q)

)
+

1
q
|v|q,

in which the function 2
1

q−1 q−1
q

(
C

q
q−1
0 + M

q
q−1
0 2q−1(|ξi|q + |v|q)

)
+ 1

q |v|q is a Lebesgue Integrable

function due to Sobolev embedding theorem [42]. In addition, then the Lebesgue control convergence
theorem yields

DΓi(ξi, v) =
∫

Ω
lim
s→0

g(x, ξi + θsv)vdx =
∫

Ω
g(x, ξi)vdx.

It is not difficult to prove that DΓi(ξi, v) is linear on v. In fact,

DΓi(ξi, k1u + k2v) =
∫

Ω
g(x, ξi)(k1u + k2v)dx = k1DΓi(ξi, u) + k2DΓi(ξi, v).

On the other hand, it follows from |g(x, ξi)| 6 C0 + M0|ξi|q−1 that the operator S : ξi → g(x, ξi)

is the bounded continuous operator of Lq(Ω) → L
q

q−1 (Ω). In addition, the Sobolev embedding
theorem yields

|DΓi(ξi, v)| 6‖g(x, ξi)‖
L

q
q−1
‖v‖Lq 6 C‖g(x, ξi)‖

L
q

q−1
‖v‖,
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where ‖v‖ =
( ∫

Ω |∇v|pdx
) 1

p

. Hence, ‖DΓi(ξi)‖ 6 C‖g(x, ξi)‖
L

q
q−1

, which implies that

DΓi(ξi, v) = 〈DΓi(ξi), v〉, ∀ ξi, v ∈W1,p
0 (Ω).

Below, we shall show that the Gateaux derivative DΓi(ξi) is continuous on ξi. In fact,

|〈DΓi(ξi)− DΓ(u), v〉| 6 C‖g(x, ξi)− g(x, u)‖
L

q
q−1
‖v‖,

which implies the norm of the operator

‖DΓi(ξi)− DΓ(u)‖ 6 C‖g(x, ξi)− g(x, u)‖
L

q
q−1

.

This means the operator T : g(x, ξi) → DΓi(ξi) is continuous on L
q

q−1 → (W1,p
0 )∗. In addition,

the Sobolev embedding theorem yields that the operator I : ξi → ξi is continuous on W1,p
0 → Lq(Ω).

In addition, hence, DΓi = T ◦S ◦ I : ξi → DΓi(ξi) is the continuous operator of W1,p
0 → (W1,p

0 )∗.
Thereby, Γi is Frechet differentiable at any ξi ∈W1,p

0 (Ω). In addition, Γi ∈ C1(W1,p
0 (Ω), R).

In addition, it follows from [43,44] and the condition of ai(t) that Λi ∈ C1(W1,p
0 (Ω), R). Therefore,

we have proved Ii ∈ C1(W1,p
0 (Ω), R).

If, for any given i ∈ N , the critical point of Ii exists, say ξ∗ = (ξ∗1 , ξ∗2 , · · · , ξ∗n), a nontrivial
stationary solution for the fuzzy system, where ξ∗i = ξ∗i (x). Below, we shall prove the existence of the
critical point. In fact, the condition (H1) yields

|bi(r)|+ | fi(r)| 6 C1 + |r|q−1, ∀ r ∈ R, (6)

where C1 > 0. By the arbitrariness of q, we select a suitable constant q ∈ (1, p) such that

|Fi(r)| 6 C1|r|+
1
q
|r|q, ∀ r ∈ R. (7)

Letting C1 be big enough, we can prove

|Bi(r)| 6 C1|r|+
1
q
|r|q, ∀ r ∈ R. (8)

In fact, combining the continuity of bi and the hypothesis (H1) yields that there exists C̃1 > 0
such that

|Bi(r)| 6 C̃1|r|+
1
q
|r|q, ∀ r ∈ R,

which deduces the inequality (8) due to the big C1.
From the Sobolev embedding theorem, we know that there are C2, C3 > 0 such that

Ii(ξi) >
1
p

ai‖ξi‖p − C2‖ξi‖q − C3‖ξi‖, (9)

where ‖ξi‖ =
( ∫

Ω |∇ξi|pdx
) 1

p

. In addition, (3.5) and 1 < q < p yield that the lower bound of Ii

exists. We shall prove that Ii is coercive on W1,p
0 (Ω). Due to ‖ηk‖ → ∞ and Ii(ηk) 6 C, (9) leads to a

contradiction. Hence, Ii must be coercive on W1,p
0 (Ω). In addition, hence, there exists the constant

ci = inf
v∈W1,p

0 (Ω)

Ii(v),
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from which there exists a minimization sequence {ηk} ⊂W1,p
0 (Ω) such that Ii(ηk)→ ci whenever k→

∞. In addition, we know from the coercivity and the lower bound of the functional Ii that ci is the global
minimum of Ii on the Sobolev space W1,p

0 (Ω). Moreover, if ηk → ξ∗i ∈W1,p
0 (Ω), then Ii(ξ

∗
i ) = ci with

I′i (ξ
∗
i ) = 0, and ξ∗i must be in the bounded subset of W1,p

0 (Ω). Thus, the minimization sequence
{ηk} ⊂W1,p

0 (Ω) satisfies Ii(ηk)→ ci and I′i (ηk)→ 0. In the inequality (9), let ξi = ηk. Then, (9) yields
that {ηk}∞

k=1 is bounded on W1,p
0 (Ω). Now, we claim that there exists ξ∗i ∈ W1,p

0 (Ω) with ηk → ξ∗i .

Indeed, we define the operators Ai,Bi : W1,p
0 (Ω)→ (W1,p

0 (Ω))∗ as follows:

< Ai(v), w >= ai(t)
∫

Ω
|∇v|p−2∇v∇wdx, ∀ v, w ∈W1,p

0 (Ω) (10)

and

< Bi(v), w >=
∫

Ω

[
bi(v)−

N

∑
j=1

ρj(ω(t))
(

cij fi(v) + dijτ(t) fi(v)
)
− Ji

]
wdx, ∀ v, w ∈W1,p

0 (Ω). (11)

It follows from (H1) that there are positive numbers C4, C5 such that∣∣∣∣bi(r)−
N

∑
j=1

ρj(ω(t))
(

cij fi(r) + dijτ(t) fi(r)
)
− Ji

∣∣∣∣ 6 C4 + C5|r|q−1, ∀ r ∈ R.

From [4,5], the operators Ai and A−1
i are continuous, and Bi is compact operator. On one hand,

< Ii(ηk), v >=< Ai(ηk), v > + < Bi(ηk), v >, ∀ v ∈W1,p
0 (Ω), (12)

and
Ai(ηk) +Bi(ηk)→ 0, k→ ∞. (13)

On the other hand, {ηk}∞
k=1 is bounded on the space W1,p

0 (Ω). Thus, it follows by the reflexivity

of W1,p
0 (Ω) that there is a subsequence of {ηk}∞

k=1 that is weak convergent, say, {ηk}∞
k=1. Since B is

compact operator, there is a subsequence of {ηk}∞
k=1 such that {Bi(ηk)}∞

k=1 is convergent. In addition,
{Ai(ηk)}∞

k=1 owns a convergent subsequence. Moreover, the continuity of A−1 yields that {ηk}∞
k=1

owns a convergent subsequence, say, ηk → ξ∗i ∈ W1,p
0 (Ω). Hence, we have proved Ii(ξ

∗
i ) = ci and

I′i (ξ
∗
i ) = 0. By the arbitrariness of i, we have also proved that there is a nontrivial stationary solution

ξ∗ = (ξ∗1 , ξ∗2 , · · · , ξ∗n) for the system (4).
Step 2. To prove that ξ∗ is pth moment stable.
Consider the Lyapunov–Krasovskii functional Vi = Vi1 +Vi2, where

Vi1 =
∫

Ω
|ui(t, x)− ξ∗i (x)|pdx, (14)

Vi2 = pFi

N

∑
j=1
|dij|

∫
Ω

( ∫ 0

−τ
dz
∫ t

t+z
|ui(t, x)− ξ∗i (x)|p−1|ui(s, x)− ξ∗i (x)|ds

)
dx, (15)

then the conditions (H2)–(H4), boundary value condition, variational method, and Young
inequality deduce
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dVi1

dt
=p

∫
Ω
|ui(t, x)− ξ∗i (x)|p−2

(
ui(t, x)− ξ∗i (x)

)[
ai(t)

n

∑
j=1

∂

∂xj

(
(|∇ui |p−2 ∂ui

∂xj
)− (|∇ξ∗i |p−2 ∂ξ∗i

∂xj
)

)

−
(

bi(ui)− bi(ξ
∗
i )

)
+

N

∑
j=1

ρj(ω(t))
(

cij( fi(ui)− fi(ξ
∗
i )) + dij

∫ t

t−τ(t)
( fi(ui(s, x))− fi(ξ

∗
i (x)))ds

)]
dx

6− b̄i p
∫

Ω
|ui(t, x)− ξ∗i (x)|pdx + pFi

∫
Ω
|ui(t, x)− ξ∗i (x)|p−2|ui(t, x)− ξ∗i (x)|

[ N

∑
j=1

(
|cij||ui − ξ∗i |

+ |dij|
∫ t

t−τ
|ui(s, x)− ξ∗i (x)|ds

)]
dx

=−
(

b̄i p− pFi

N

∑
j=1
|cij|

) ∫
Ω
|ui(t, x)− ξ∗i (x)|pdx

+ pFi

N

∑
j=1
|dij|

∫
Ω

(
|ui(t, x)− ξ∗i (x)|p−1

∫ t

t−τ
|ui(s, x)− ξ∗i (x)|ds

)
dx.

(16)

(15) yields

dVi2
dt

=pFi

N

∑
j=1
|dij|

∫
Ω

( ∫ 0

−τ
|ui(t, x)− ξ∗i (x)|pds−

∫ 0

−τ
|ui(t, x)− ξ∗i (x)|p−1|ui(t + s, x)− ξ∗i (x)|ds

)
dx

=pFi

N

∑
j=1
|dij|

∫
Ω

(
τ|ui(t, x)− ξ∗i (x)|p −

∫ 0

−τ
|ui(t, x)− ξ∗i (x)|p−1|ui(t + s, x)− ξ∗i (x)|ds

)
dx

=pFi

N

∑
j=1
|dij|

∫
Ω

(
τ|ui(t, x)− ξ∗i (x)|p −

∫ t

t−τ
|ui(t, x)− ξ∗i (x)|p−1|ui(s, x)− ξ∗i (x)|ds

)
dx

(17)

Therefore,

dVi
dt

6 −
(

b̄i p− pFi

N

∑
j=1

(|cij|+ τ|dij|)
) ∫

Ω
|ui(t, x)− ξ∗i (x)|pdx 6 0, ∀ t > 0, i ∈ N .

Thus, ξ∗ is pth moment stable due to the definition of Vi and [41] (Theorem 2.1).

4. Numerical Example

In fuzzy system (2.2), the number of IF-THEN rules is N = 2. Let n = 2, and for i = 1, 2,
fi(r) = i sin r, bi(r) = 5ir, then (H1) holds for ai(t, x1, x2, u1, u2) = i+3

10 [2 + sin(x1x2 + u1 + u2)].
In addition, then ai = i+3

10 > 0, i.e., the condition (H2) is fulfilled. Hence, Theorem 1 yields that
there exists a nontrivial solution ξ∗ = (ξ∗1(x1, x2), ξ∗2(x1, x2)). In addition, letting Fi = i, the condition
(H3) holds for b̄i = 5i > 0, and so the condition (H4) holds too. Let τ(t) = 2 + cos t, then τ = 3.
Letting cij =

i+j
30 , dij =

ij
30 , the direct computation leads to

b̄i = 5i > i
2

∑
j=1

i + j + 3ij
30

= Fi

N

∑
j=1

(|cij|+ τ|dij|), ∀ i ∈ {1, 2},

i.e.,

b̄1 = 5 >
14
30

=
2

∑
j=1

1 + j + 3j
30

= F1

N

∑
j=1

(|c1j|+ τ|d1j|)

and

b̄2 = 10 >
5
3
= 2

2

∑
j=1

2 + j + 6j
30

= F2

N

∑
j=1

(|c2j|+ τ|d2j|),

and so condition (5) is fulfilled. It follows from Theorem 1 that, for any given p > 1,
the nontrivialstationary solution ξ∗ = (ξ∗1(x1, x2), ξ∗2(x1, x2)) is pth moment stable.
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Remark 1. In this numerical example, τ = 3 is the bigger upper bound of time delays, which shows the
effectiveness of the proposed methods.

5. Conclusions and Further Considerations

Mainly inspired by some methods and ideas of literature [16,27,40] related to p-Laplace,
we employed the critical point theory, variational technique, and Lyapunov functional method to derive
the existence theorem of pth moment stable non-trivial stationary solutions for a class of p-Laplacian
reaction–diffusion delay systems. The theorem holds for all p > 1, and the methods used in this
paper are different from those in previous related literature to some extent. For example, we proved
Ii ∈ C1(W1,p

0 (Ω), R) while it was not proved in related literature. A numerical example illustrates the
effectiveness of the proposed methods. In [45] (Theorem 4.3), Ruofeng Rao and Shouming Zhong
proposed a stability criterion for the delayed feedback financial system, in which the pulse effect occurs
at a long time (see [45] (Remark 7) for details). How can the impulse control method be used to derive
the stability criterion for the p-Laplacian diffusion system (4)? This is an interesting problem.
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