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Abstract: Based on the comparison with first-order delay equations, we establish a new oscillation
criterion for a class of even-order neutral differential equations. Our new criterion improves a number
of existing ones. An illustrative example is provided.
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1. Introduction

In the last decade, many studies have been carried out on the oscillatory behavior of various
types of functional differential equations, see [1–24] and the references cited therein. As a result of
numerous applications in technology and natural science, the issue of oscillation of nonlinear neutral
delay differential equation has caught the attention of many researchers, see [1,3–5,8,12,17,19,22–24].
For instance, they are frequently used for the study of distributed networks containing lossless
transmission lines, see [11].

In this paper, we are concerned with improving the oscillation criteria for the even-order neutral
differential equation of the form(

r (t)
(

z(n−1) (t)
)α)′

+ q (t) xα (σ (t)) = 0, (1)

where t ≥ t0, n ≥ 4 is an even natural number and z (t) := x (t) + p (t) x (τ (t)). In this work,
we assume that α is a quotient of odd positive integers, r ∈ C[t0, ∞), r (t) > 0, r′ (t) ≥ 0,∫ ∞

t0
r−1/α (s)ds = ∞, p, q ∈ C[t0, ∞), q (t) > 0, 0 ≤ p (t) < p0 < ∞, q (t) is not identically zero

for large t, τ ∈ C1[t0, ∞), σ ∈ C[t0, ∞), τ′ (t) > 0, τ (t) ≤ t and limt→∞ τ (t) = limt→∞ σ (t) = ∞.
By a solution of (1) we mean a function x ∈ C3[ty, ∞), ty ≥ t0, which has the property

r (t)
(

z(n−1) (t)
)α
∈ C1[ty, ∞), and satisfies (1) on [ty, ∞). We consider only those solutions x of (1)

which satisfy sup{|x (t)| : t ≥ T} > 0, for all T ≥ ty. A solution x of (1) is said to be non-oscillatory if
it is positive or negative, ultimately; otherwise, it is said to be oscillatory.

A neutral delay differential equation is a differential equation in which the highest-order
derivative of the unknown function appears both with and without delay.

In the following, we briefly review some important oscillation criteria obtained for higher-order
neutral equations which can be seen as a motivation for this paper.
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In 1998, based on establishing comparison theorems that compare the nth-order equation with only
one first-order delay differential equations, Zafer [23] proved that the even-order differential equation

z(n) (t) + q (t) x (σ (t)) = 0 (2)

is oscillatory if

lim inf
t→∞

∫ t

σ(t)
Q (s)ds >

(n− 1) 2(n−1)(n−2)

e
, (3)

or

lim sup
t→∞

∫ t

σ(t)
Q (s)ds > (n− 1) 2(n−1)(n−2), σ′ (t) ≥ 0.

where Q (t) := σn−1 (t) (1− p (σ (t))) q (t). In a similar approach, Zhang and Yan [24] proved that (2)
is oscillatory if either

lim inf
t→∞

∫ t

σ(t)
Q (s)ds >

(n− 1)!
e

, (4)

or

lim sup
t→∞

∫ t

σ(t)
Q (s)ds > (n− 1)!, σ (t) ≥ 0.

It’s easy to note that (n− 1)! < (n− 1) 2(n−1)(n−2) for n > 3, and hence results in [24] improved results
of Zafer in [23].

For nonlinear equation, Xing et al. [22] proved that (1) is oscillatory if(
σ−1 (t)

)′
≥ σ0 > 0, τ′ (t) ≥ τ0 > 0, τ−1 (σ (t)) < t

and

lim inf
t→∞

∫ t

τ−1(σ(t))

q̂ (s)
r (s)

(
sn−1

)α
ds >

(
1
σ0

+
pα

0
σ0τ0

)
((n− 1)!)α

e
, (5)

where q̂ (t) := min
{

q
(
σ−1 (t)

)
, q
(
σ−1 (τ (t))

)}
.

If we apply the previous results to the equation(
x (t) +

7
8

x
(

1
e

t
))(4)

+
q0

t4 x
(

1
e2 t
)
= 0, t ≥ 1, (6)

then we get that (6) is oscillatory if

The condition (3) (4) (5)
The criterion q0 > 113, 981.3 q0 > 3561.9 q0 > 3008.5

Hence, Xing et al. [22] improved the results in [23,24].
By establishing a new comparison theorem that compare the higher-order Equation (1) with a

couple of first-order delay differential equations, we improve the results in [22–24]. An example is
presented to illustrate our main results.

In order to discuss our main results, we need the following lemmas:

Lemma 1 ([13]). If the function x satisfies x(i) (t) > 0, i = 0, 1, ..., n, and x(n+1) (t) < 0, then

x (t)
tn/n!

≥ x′ (t)
tn−1/ (n− 1)!

.
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Lemma 2 ([2] Lemma 2.2.3). Let x ∈ Cn ([t0, ∞) , (0, ∞)) . Assume that x(n) (t) is of fixed sign and not
identically zero on [t0, ∞) and that there exists a t1 ≥ t0 such that x(n−1) (t) x(n) (t) ≤ 0 for all t ≥ t1.
If limt→∞ x (t) 6= 0, then for every µ ∈ (0, 1) there exists tµ ≥ t1 such that

x (t) ≥ µ

(n− 1)!
tn−1

∣∣∣x(n−1) (t)
∣∣∣ for t ≥ tµ.

Lemma 3 ([3] Lemmas 1 and 2). Assume that u, v ≥ 0 and β is a positive real number. Then

(u + v)β ≤ 2β−1
(

uβ + vβ
)

, for β ≥ 1

and
(u + v)β ≤ uβ + vβ, for β ≤ 1.

2. Main Results

Here, we define the next notation:

Pk (t) =
1

p (τ−1 (t))

(
1−

(
τ−1 (τ−1 (t)

))k−1

(τ−1 (t))k−1 p (τ−1 (τ−1 (t)))

)
, for k = 2, n,

R0 (t) =
(

1
r (t)

∫ ∞

t
q (s) Pα

2 (σ (s))ds
)1/α

and
Rm (t) =

∫ ∞

t
Rm−1 (s)ds, m = 1, 2, ..., n− 3.

Lemma 4 ([20] Lemma 1.2). Assume that x is an eventually positive solution of (1). Then, there exist two
possible cases:

(I1) z (t) > 0, z′ (t) > 0, z′′ (t) > 0, z(n−1) (t) > 0, z(n) (t) < 0,
(I2) z (t) > 0, z(j)(t) > 0, z(j+1)(t) < 0 for all odd integer

j ∈ {1, 3, ..., n− 3}, z(n−1)(t) > 0, z(n)(t) < 0,

for t ≥ t1, where t1 ≥ t0 is sufficiently large.

Theorem 1. Let (
τ−1 (τ−1 (t)

))n−1

(τ−1 (t))n−1 p (τ−1 (τ−1 (t)))
≤ 1. (7)

Assume that there exist positive functions η, ζ ∈ C1 ([t0, ∞) ,R) satisfying

η (t) ≤ σ (t) , η (t) < τ (t) , ζ (t) ≤ σ (t) , ζ (t) < τ (t) , ζ ′ (t) ≥ 0 and lim
t→∞

η (t) = lim
t→∞

ζ (t) = ∞. (8)

If there exists a µ ∈ (0, 1) such that the differential equations

ψ′(t) +

(
µ
(
τ−1 (η (t))

)n−1

(n− 1)!r1/α (τ−1 (η (t)))

)α

q (t) Pα
n (σ (t))ψ

(
τ−1 (η (t))

)
= 0 (9)

and
φ′ (t) + τ−1 (ζ (t)) Rn−3 (t) φ

(
τ−1 (ζ (t))

)
= 0 (10)

are oscillatory, then Equation (1) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1) on [t0, ∞). Without loss of generality, we can assume
that x is eventually positive. It follows from Lemma 4 that there exist two possible cases (I1) and (I2).
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Assume that Case (I1) holds. From the definition of z (t), we see that

x (t) =
1

p (τ−1 (t))

(
z
(

τ−1 (t)
)
− x

(
τ−1 (t)

))
.

By repeating the same process, we find that

x (t) =
z
(
τ−1 (t)

)
p (τ−1 (t))

− 1
p (τ−1 (t))

(
z
(
τ−1 (τ−1 (t)

))
p (τ−1 (τ−1 (t)))

−
x
(
τ−1 (τ−1 (t)

))
p (τ−1 (τ−1 (t)))

)

≥
z
(
τ−1 (t)

)
p (τ−1 (t))

− 1
p (τ−1 (t))

z
(
τ−1 (τ−1 (t)

))
p (τ−1 (τ−1 (t)))

. (11)

Using Lemma 1, we get z (t) ≥ 1
(n−1) tz′ (t) and hence the function t1−nz (t) is nonincreasing,

which with the fact that τ (t) ≤ t gives(
τ−1 (t)

)n−1
z
(

τ−1
(

τ−1 (t)
))
≤
(

τ−1
(

τ−1 (t)
))n−1

z
(

τ−1 (t)
)

. (12)

Combining Equations (11) and (12), we conclude that

x (t) ≥ 1
p (τ−1 (t))

(
1−

(
τ−1 (τ−1 (t)

))n−1

(τ−1 (t))n−1 p (τ−1 (τ−1 (t)))

)
z
(

τ−1 (t)
)

= Pn (t) z
(

τ−1 (t)
)

. (13)

From Equations (1) and (13), we obtain(
r (t)

(
z(n−1) (t)

)α)′
+ q (t) Pα

n (σ (t)) zα
(

τ−1 (σ (t))
)
≤ 0.

Since η (t) ≤ σ (t) and z′ (t) > 0, we get(
r (t)

(
z(n−1) (t)

)α)′
≤ −q (t) Pα

n (σ (t)) zα
(

τ−1 (η (t))
)

. (14)

Now, by using Lemma 2, we have

z (t) ≥ µ

(n− 1)!
tn−1z(n−1) (t) . (15)

for some µ ∈ (0, 1). It follows from (14) and (15) that, for all µ ∈ (0, 1) ,

(
r (t)

(
z(n−1) (t)

)α)′
+

(
µ
(
τ−1 (η (t))

)n−1

(n− 1)!

)α

q (t) Pα
n (σ (t))

(
z(n−1)

(
τ−1 (η (t))

))α
≤ 0.

Thus, if we set ψ (t) = r (t)
(

z(n−1) (t)
)α

, then we see that ψ is a positive solution of the first-order
delay differential inequality

ψ′(t) +

(
µ
(
τ−1 (η (t))

)n−1

(n− 1)!r1/α (τ−1 (η (t)))

)α

q (t) Pα
n (σ (t))ψ

(
τ−1 (η (t))

)
≤ 0.

It is well known (see [21] (Theorem 1)) that the corresponding Equation (9) also has a positive solution,
which is a contradiction.
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Assume that Case (I2) holds. Using Lemma 1, we get that

z (t) ≥ tz′ (t) (16)

and thus the function t−1z (t) is nonincreasing, eventually. Since τ−1 (t) ≤ τ−1 (τ−1 (t)
)
, we obtain

τ−1 (t) z
(

τ−1
(

τ−1 (t)
))
≤ τ−1

(
τ−1 (t)

)
z
(

τ−1 (t)
)

. (17)

Combining (11) and (17), we find

x (t) ≥ 1
p (τ−1 (t))

(
1−

(
τ−1 (τ−1 (t)

))
(τ−1 (t)) p (τ−1 (τ−1 (t)))

)
z
(

τ−1 (t)
)

= P2 (t) z
(

τ−1 (t)
)

,

which with (1) yields(
r (t)

(
z(n−1) (t)

)α)′
+ q (t) Pα

2 (σ (t)) zα
(

τ−1 (σ (t))
)
≤ 0.

Since ζ (t) ≤ σ (t) and z′ (t) > 0, we have that(
r (t)

(
z(n−1) (t)

)α)′
≤ −q (t) Pα

2 (σ (t)) zα
(

τ−1 (ζ (t))
)

. (18)

Integrating the (18) from t to ∞, we obtain

z(n−1) (t) ≥ R0 (t) z
(

τ−1 (ζ (t))
)

.

Integrating this inequality from t to ∞ a total of n− 3 times, we obtain

z′′ (t) + Rn−3 (t) z
(

τ−1 (ζ (t))
)
≤ 0. (19)

Thus, if we set φ (t) := z′ (t) and using (16), then we conclude that φ is a positive solution of

φ′ (t) + τ−1 (ζ (t)) Rn−3 (t) φ
(

τ−1 (ζ (t))
)
≤ 0. (20)

It is well known (see [21] (Theorem 1)) that the corresponding Equation (10) also has a positive solution,
which is a contradiction. The proof is complete.

Corollary 1. Assume that (7) holds and there exist positive functions η, ζ such that (8) holds. If

lim inf
t→∞

∫ t

τ−1(η(t))

( (
τ−1 (η (s))

)n−1

r1/α (τ−1 (η (s)))

)α

q (s) Pα
n (σ (s))ds >

((n− 1)!)α

e
(21)

and

lim inf
t→∞

∫ t

τ−1(ζ(t))
τ−1 (ζ (s)) Rn−3 (s)ds >

1
e

, (22)

then (1) is oscillatory.

Proof. It is well-known (see, e.g., [14] (Theorem 2)) that Condition (21) and (22) imply oscillation of (9)
and (10), respectively.
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Example 1. Consider the equation

(x (t) + p0x (δt))(n) +
q0

tn x (λt) = 0, (23)

where t ≥ 1, q0 > 0, δ ∈
(

p−1/(n−1)
0 , 1

)
and λ ∈ (0, δ) . We note that r (t) = 1, p (t) = p0, τ (t) =

δt, σ (t) = λt and q (t) = q0/tn. Thus, if we choose η (t) = ζ (t) = λt, then it’s easy to see that (7) and (8)
are satisfied. Moreover, we have

Pk (t) =
1
p0

(
1− δ1−k

p0

)
, for k = 2, n,

R0 (t) =
q0

p0

(
1− 1

δp0

)
t1−n

(n− 1)
,

and

Rn−3 (t) =
1

(n− 3)!
q0

p0

(
1− 1

δp0

)
1

(n− 2) (n− 1) t2 .

Hence, Condition (21) and (22) become

q0
1
p0

(
λ

δ

)n−1 (
1− δ1−n

p0

)
ln

δ

λ
>

(n− 1)!
e

(24)

and

q0
1
p0

λ

δ

(
1− 1

δp0

)
ln

δ

λ
>

(n− 1)!
e

, (25)

respectively. It’s easy to see that (24) implies (25).
Therefore, by Corollary 1, we conclude that (23) is oscillatory if (24) holds.

Remark 1. For Equation (23), in particular case that n = 4, p0 = 16, δ = 1/2 and λ = 1/3, Condition (24)
yields q0 > 587.93. Whereas, the criterion obtained from the results of [22] is q0 > 4850.4. Hence, our results
improve the results in [22].

3. Conclusions

In this paper, our method is based on presenting a new comparison theorem that compare the
higher-order Equation (1) with a couple of first-order equations. There are numerous results concerning
the oscillation criteria of first order Equations (9) and (10) (see, e.g., [14,25–27]), which include various
forms of criteria as Hille/Nehari, Philos, etc. This allows us to obtain also various criteria for the
oscillation of (1). Further, we can try to obtain oscillation criteria of (1) if z (t) := x (t)− p (t) x (τ (t))
in the future work.
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