

Article

A New Approach in the Study of Oscillation Criteria of Even-Order Neutral Differential Equations

Osama Moaaz ^{1,†}, Jan Awrejcewicz ^{2,*,†} and Omar Bazighifan ^{3,†}

- ¹ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; o_moaaz@mans.edu.eg
- ² Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924 Lodz, Poland
- ³ Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen; o.bazighifan@gmail.com
- * Correspondence: jan.awrejcewicz@p.lodz.pl
- + These authors contributed equally to this work.

Received: 17 January 2020; Accepted: 31 January 2020; Published: 5 February 2020

Abstract: Based on the comparison with first-order delay equations, we establish a new oscillation criterion for a class of even-order neutral differential equations. Our new criterion improves a number of existing ones. An illustrative example is provided.

Keywords: even-order differential equations; neutral delay; oscillation

1. Introduction

In the last decade, many studies have been carried out on the oscillatory behavior of various types of functional differential equations, see [1–24] and the references cited therein. As a result of numerous applications in technology and natural science, the issue of oscillation of nonlinear neutral delay differential equation has caught the attention of many researchers, see [1,3–5,8,12,17,19,22–24]. For instance, they are frequently used for the study of distributed networks containing lossless transmission lines, see [11].

In this paper, we are concerned with improving the oscillation criteria for the even-order neutral differential equation of the form

$$\left(r\left(t\right)\left(z^{\left(n-1\right)}\left(t\right)\right)^{\alpha}\right)' + q\left(t\right)x^{\alpha}\left(\sigma\left(t\right)\right) = 0,\tag{1}$$

where $t \ge t_0$, $n \ge 4$ is an even natural number and $z(t) := x(t) + p(t)x(\tau(t))$. In this work, we assume that α is a quotient of odd positive integers, $r \in C[t_0,\infty)$, r(t) > 0, $r'(t) \ge 0$, $\int_{t_0}^{\infty} r^{-1/\alpha}(s) ds = \infty$, $p, q \in C[t_0,\infty)$, q(t) > 0, $0 \le p(t) < p_0 < \infty$, q(t) is not identically zero for large $t, \tau \in C^1[t_0,\infty)$, $\sigma \in C[t_0,\infty)$, $\tau'(t) > 0$, $\tau(t) \le t$ and $\lim_{t\to\infty} \tau(t) = \lim_{t\to\infty} \sigma(t) = \infty$.

By a solution of (1) we mean a function $x \in C^3[t_y, \infty)$, $t_y \ge t_0$, which has the property $r(t) (z^{(n-1)}(t))^{\alpha} \in C^1[t_y, \infty)$, and satisfies (1) on $[t_y, \infty)$. We consider only those solutions x of (1) which satisfy $\sup\{|x(t)|: t \ge T\} > 0$, for all $T \ge t_y$. A solution x of (1) is said to be non-oscillatory if it is positive or negative, ultimately; otherwise, it is said to be oscillatory.

A neutral delay differential equation is a differential equation in which the highest-order derivative of the unknown function appears both with and without delay.

In the following, we briefly review some important oscillation criteria obtained for higher-order neutral equations which can be seen as a motivation for this paper.

In 1998, based on establishing comparison theorems that compare the *n*th-order equation with only one first-order delay differential equations, Zafer [23] proved that the even-order differential equation

$$z^{(n)}(t) + q(t) x(\sigma(t)) = 0$$
(2)

is oscillatory if

$$\liminf_{t \to \infty} \int_{\sigma(t)}^{t} Q(s) \, \mathrm{d}s > \frac{(n-1) \, 2^{(n-1)(n-2)}}{\mathrm{e}},\tag{3}$$

or

$$\limsup_{t \to \infty} \int_{\sigma(t)}^{t} Q(s) \, \mathrm{d}s > (n-1) \, 2^{(n-1)(n-2)}, \ \sigma'(t) \ge 0$$

where $Q(t) := \sigma^{n-1}(t) (1 - p(\sigma(t))) q(t)$. In a similar approach, Zhang and Yan [24] proved that (2) is oscillatory if either

$$\lim \inf_{t \to \infty} \int_{\sigma(t)}^{t} Q(s) \, \mathrm{d}s > \frac{(n-1)!}{\mathrm{e}},\tag{4}$$

or

$$\limsup_{t\to\infty}\int_{\sigma(t)}^{t}Q(s)\,\mathrm{d}s>(n-1)!,\ \sigma(t)\geq0.$$

It's easy to note that $(n-1)! < (n-1)2^{(n-1)(n-2)}$ for n > 3, and hence results in [24] improved results of Zafer in [23].

For nonlinear equation, Xing et al. [22] proved that (1) is oscillatory if

$$\left(\sigma^{-1}(t)\right)' \ge \sigma_0 > 0, \ \tau'(t) \ge \tau_0 > 0, \ \tau^{-1}(\sigma(t)) < t$$

and

$$\lim \inf_{t \to \infty} \int_{\tau^{-1}(\sigma(t))}^{t} \frac{\widehat{q}(s)}{r(s)} \left(s^{n-1}\right)^{\alpha} \mathrm{d}s > \left(\frac{1}{\sigma_0} + \frac{p_0^{\alpha}}{\sigma_0 \tau_0}\right) \frac{\left((n-1)!\right)^{\alpha}}{\mathrm{e}},\tag{5}$$

where $\widehat{q}(t) := \min \left\{ q\left(\sigma^{-1}(t)\right), q\left(\sigma^{-1}(\tau(t))\right) \right\}.$

If we apply the previous results to the equation

$$\left(x\left(t\right) + \frac{7}{8}x\left(\frac{1}{e}t\right)\right)^{(4)} + \frac{q_0}{t^4}x\left(\frac{1}{e^2}t\right) = 0, \ t \ge 1,\tag{6}$$

then we get that (6) is oscillatory if

The condition	(3)	(4)	(5)
The criterion	$q_0 > 113,981.3$	$q_0 > 3561.9$	$q_0 > 3008.5$

Hence, Xing et al. [22] improved the results in [23,24].

By establishing a new comparison theorem that compare the higher-order Equation (1) with a couple of first-order delay differential equations, we improve the results in [22–24]. An example is presented to illustrate our main results.

In order to discuss our main results, we need the following lemmas:

Lemma 1 ([13]). *If the function x satisfies* $x^{(i)}(t) > 0$, i = 0, 1, ..., n, and $x^{(n+1)}(t) < 0$, then

$$\frac{x(t)}{t^n/n!} \ge \frac{x'(t)}{t^{n-1}/(n-1)!}.$$

Lemma 2 ([2] Lemma 2.2.3). Let $x \in C^{n}([t_{0},\infty),(0,\infty))$. Assume that $x^{(n)}(t)$ is of fixed sign and not identically zero on $[t_0,\infty)$ and that there exists a $t_1 \ge t_0$ such that $x^{(n-1)}(t) x^{(n)}(t) \le 0$ for all $t \ge t_1$. *If* $\lim_{t\to\infty} x(t) \neq 0$ *, then for every* $\mu \in (0,1)$ *there exists* $t_{\mu} \geq t_1$ *such that*

$$x(t) \ge \frac{\mu}{(n-1)!} t^{n-1} \left| x^{(n-1)}(t) \right|$$
 for $t \ge t_{\mu}$.

Lemma 3 ([3] Lemmas 1 and 2). Assume that $u, v \ge 0$ and β is a positive real number. Then

$$(u+v)^{\beta} \leq 2^{\beta-1} \left(u^{\beta} + v^{\beta} \right)$$
 , for $\beta \geq 1$

and

$$(u+v)^{\beta} \leq u^{\beta} + v^{\beta}$$
, for $\beta \leq 1$.

2. Main Results

Here, we define the next notation:

$$P_{k}(t) = \frac{1}{p(\tau^{-1}(t))} \left(1 - \frac{(\tau^{-1}(\tau^{-1}(t)))^{k-1}}{(\tau^{-1}(t))^{k-1}p(\tau^{-1}(\tau^{-1}(t)))} \right), \text{ for } k = 2, n,$$

$$R_{0}(t) = \left(\frac{1}{r(t)} \int_{t}^{\infty} q(s) P_{2}^{\alpha}(\sigma(s)) ds \right)^{1/\alpha}$$

$$R_{m}(t) = \int_{t}^{\infty} R_{m-1}(s) ds, \ m = 1, 2, ..., n-3.$$

and

$$R_m(t) = \int_t^\infty R_{m-1}(s) \, \mathrm{d}s, \ m = 1, 2, ..., n-3.$$

Lemma 4 ([20] Lemma 1.2). Assume that x is an eventually positive solution of (1). Then, there exist two possible cases:

$$\begin{split} (\mathbf{I}_1) & z\left(t\right) > 0, \, z'\left(t\right) > 0, \, z''\left(t\right) > 0, \, z^{(n-1)}\left(t\right) > 0, \, z^{(n)}\left(t\right) < 0, \\ (\mathbf{I}_2) & z\left(t\right) > 0, z^{(j)}(t) > 0, z^{(j+1)}(t) < 0 \, \textit{for all odd integer} \\ & j \in \{1, 3, ..., n-3\}, \, z^{(n-1)}(t) > 0, \, z^{(n)}(t) < 0, \end{split}$$

for $t \ge t_1$, where $t_1 \ge t_0$ is sufficiently large.

Theorem 1. Let

$$\frac{\left(\tau^{-1}\left(\tau^{-1}\left(t\right)\right)\right)^{n-1}}{\left(\tau^{-1}\left(t\right)\right)^{n-1}p\left(\tau^{-1}\left(\tau^{-1}\left(t\right)\right)\right)} \le 1.$$
(7)

Assume that there exist positive functions η , $\zeta \in C^1([t_0, \infty), \mathbb{R})$ satisfying

$$\eta(t) \leq \sigma(t), \ \eta(t) < \tau(t), \ \zeta(t) \leq \sigma(t), \ \zeta(t) < \tau(t), \ \zeta'(t) \geq 0 \ and \ \lim_{t \to \infty} \eta(t) = \lim_{t \to \infty} \zeta(t) = \infty.$$
(8)

If there exists a $\mu \in (0, 1)$ *such that the differential equations*

$$\psi'(t) + \left(\frac{\mu\left(\tau^{-1}\left(\eta\left(t\right)\right)\right)^{n-1}}{(n-1)!r^{1/\alpha}\left(\tau^{-1}\left(\eta\left(t\right)\right)\right)}\right)^{\alpha}q(t)P_{n}^{\alpha}\left(\sigma\left(t\right)\right)\psi\left(\tau^{-1}\left(\eta\left(t\right)\right)\right) = 0$$
(9)

and

$$\phi'(t) + \tau^{-1}(\zeta(t)) R_{n-3}(t) \phi\left(\tau^{-1}(\zeta(t))\right) = 0$$
(10)

are oscillatory, then Equation (1) is oscillatory.

Proof. Let *x* be a non-oscillatory solution of (1) on $[t_0, \infty)$. Without loss of generality, we can assume that x is eventually positive. It follows from Lemma 4 that there exist two possible cases (I_1) and (I_2) . Assume that Case (I_1) holds. From the definition of z(t), we see that

$$x(t) = \frac{1}{p(\tau^{-1}(t))} \left(z(\tau^{-1}(t)) - x(\tau^{-1}(t)) \right).$$

By repeating the same process, we find that

$$\begin{aligned} x(t) &= \frac{z(\tau^{-1}(t))}{p(\tau^{-1}(t))} - \frac{1}{p(\tau^{-1}(t))} \left(\frac{z(\tau^{-1}(\tau^{-1}(t)))}{p(\tau^{-1}(\tau^{-1}(t)))} - \frac{x(\tau^{-1}(\tau^{-1}(t)))}{p(\tau^{-1}(\tau^{-1}(t)))} \right) \\ &\geq \frac{z(\tau^{-1}(t))}{p(\tau^{-1}(t))} - \frac{1}{p(\tau^{-1}(t))} \frac{z(\tau^{-1}(\tau^{-1}(t)))}{p(\tau^{-1}(\tau^{-1}(t)))}. \end{aligned}$$
(11)

Using Lemma 1, we get $z(t) \ge \frac{1}{(n-1)}tz'(t)$ and hence the function $t^{1-n}z(t)$ is nonincreasing, which with the fact that $\tau(t) \le t$ gives

$$\left(\tau^{-1}(t)\right)^{n-1} z\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right) \le \left(\tau^{-1}\left(\tau^{-1}(t)\right)\right)^{n-1} z\left(\tau^{-1}(t)\right).$$
(12)

Combining Equations (11) and (12), we conclude that

$$\begin{aligned} x(t) &\geq \frac{1}{p(\tau^{-1}(t))} \left(1 - \frac{\left(\tau^{-1}(\tau^{-1}(t))\right)^{n-1}}{\left(\tau^{-1}(t)\right)^{n-1}p(\tau^{-1}(\tau^{-1}(t)))} \right) z\left(\tau^{-1}(t)\right) \\ &= P_n(t) z\left(\tau^{-1}(t)\right). \end{aligned}$$
(13)

From Equations (1) and (13), we obtain

$$\left(r\left(t\right)\left(z^{(n-1)}\left(t\right)\right)^{\alpha}\right)'+q\left(t\right)P_{n}^{\alpha}\left(\sigma\left(t\right)\right)z^{\alpha}\left(\tau^{-1}\left(\sigma\left(t\right)\right)\right)\leq0.$$

Since $\eta(t) \leq \sigma(t)$ and z'(t) > 0, we get

$$\left(r\left(t\right)\left(z^{(n-1)}\left(t\right)\right)^{\alpha}\right)' \leq -q\left(t\right)P_{n}^{\alpha}\left(\sigma\left(t\right)\right)z^{\alpha}\left(\tau^{-1}\left(\eta\left(t\right)\right)\right).$$
(14)

Now, by using Lemma 2, we have

$$z(t) \ge \frac{\mu}{(n-1)!} t^{n-1} z^{(n-1)}(t) \,. \tag{15}$$

for some $\mu \in (0, 1)$. It follows from (14) and (15) that, for all $\mu \in (0, 1)$,

$$\left(r(t)\left(z^{(n-1)}(t)\right)^{\alpha}\right)' + \left(\frac{\mu\left(\tau^{-1}(\eta(t))\right)^{n-1}}{(n-1)!}\right)^{\alpha}q(t)P_{n}^{\alpha}(\sigma(t))\left(z^{(n-1)}\left(\tau^{-1}(\eta(t))\right)\right)^{\alpha} \le 0.$$

Thus, if we set $\psi(t) = r(t) (z^{(n-1)}(t))^{\alpha}$, then we see that ψ is a positive solution of the first-order delay differential inequality

$$\psi'(t) + \left(\frac{\mu\left(\tau^{-1}\left(\eta\left(t\right)\right)\right)^{n-1}}{(n-1)!r^{1/\alpha}\left(\tau^{-1}\left(\eta\left(t\right)\right)\right)}\right)^{\alpha}q\left(t\right)P_{n}^{\alpha}\left(\sigma\left(t\right)\right)\psi\left(\tau^{-1}\left(\eta\left(t\right)\right)\right) \leq 0.$$

It is well known (see [21] (Theorem 1)) that the corresponding Equation (9) also has a positive solution, which is a contradiction.

Assume that Case (I_2) holds. Using Lemma 1, we get that

$$z\left(t\right) \ge tz'\left(t\right) \tag{16}$$

and thus the function $t^{-1}z(t)$ is nonincreasing, eventually. Since $\tau^{-1}(t) \leq \tau^{-1}(\tau^{-1}(t))$, we obtain

$$\tau^{-1}(t) z\left(\tau^{-1}\left(\tau^{-1}(t)\right)\right) \le \tau^{-1}\left(\tau^{-1}(t)\right) z\left(\tau^{-1}(t)\right).$$
(17)

Combining (11) and (17), we find

$$\begin{aligned} x(t) &\geq \frac{1}{p(\tau^{-1}(t))} \left(1 - \frac{(\tau^{-1}(\tau^{-1}(t)))}{(\tau^{-1}(t)) p(\tau^{-1}(\tau^{-1}(t)))} \right) z(\tau^{-1}(t)) \\ &= P_2(t) z(\tau^{-1}(t)), \end{aligned}$$

which with (1) yields

$$\left(r\left(t\right)\left(z^{(n-1)}\left(t\right)\right)^{\alpha}\right)'+q\left(t\right)P_{2}^{\alpha}\left(\sigma\left(t\right)\right)z^{\alpha}\left(\tau^{-1}\left(\sigma\left(t\right)\right)\right)\leq0.$$

Since $\zeta(t) \leq \sigma(t)$ and z'(t) > 0, we have that

$$\left(r\left(t\right)\left(z^{(n-1)}\left(t\right)\right)^{\alpha}\right)' \leq -q\left(t\right)P_{2}^{\alpha}\left(\sigma\left(t\right)\right)z^{\alpha}\left(\tau^{-1}\left(\zeta\left(t\right)\right)\right).$$
(18)

Integrating the (18) from *t* to ∞ , we obtain

$$z^{(n-1)}(t) \ge R_0(t) z\left(\tau^{-1}(\zeta(t))\right).$$

Integrating this inequality from *t* to ∞ a total of n - 3 times, we obtain

$$z''(t) + R_{n-3}(t) z\left(\tau^{-1}(\zeta(t))\right) \le 0.$$
⁽¹⁹⁾

Thus, if we set $\phi(t) := z'(t)$ and using (16), then we conclude that ϕ is a positive solution of

$$\phi'(t) + \tau^{-1}(\zeta(t)) R_{n-3}(t) \phi\left(\tau^{-1}(\zeta(t))\right) \le 0.$$
(20)

It is well known (see [21] (Theorem 1)) that the corresponding Equation (10) also has a positive solution, which is a contradiction. The proof is complete. \Box

Corollary 1. Assume that (7) holds and there exist positive functions η , ζ such that (8) holds. If

$$\liminf_{t \to \infty} \int_{\tau^{-1}(\eta(t))}^{t} \left(\frac{\left(\tau^{-1}\left(\eta\left(s\right)\right)\right)^{n-1}}{r^{1/\alpha}\left(\tau^{-1}\left(\eta\left(s\right)\right)\right)} \right)^{\alpha} q(s) P_{n}^{\alpha}\left(\sigma(s)\right) ds > \frac{\left((n-1)!\right)^{\alpha}}{e}$$
(21)

and

$$\liminf_{t \to \infty} \int_{\tau^{-1}(\zeta(t))}^{t} \tau^{-1}(\zeta(s)) R_{n-3}(s) \, \mathrm{d}s > \frac{1}{\mathrm{e}},\tag{22}$$

then (1) is oscillatory.

Proof. It is well-known (see, e.g., [14] (Theorem 2)) that Condition (21) and (22) imply oscillation of (9) and (10), respectively.

Mathematics 2020, 8, 197

Example 1. Consider the equation

$$(x(t) + p_0 x(\delta t))^{(n)} + \frac{q_0}{t^n} x(\lambda t) = 0,$$
(23)

where $t \ge 1$, $q_0 > 0$, $\delta \in \left(p_0^{-1/(n-1)}, 1\right)$ and $\lambda \in (0, \delta)$. We note that r(t) = 1, $p(t) = p_0$, $\tau(t) = \delta t$, $\sigma(t) = \lambda t$ and $q(t) = q_0/t^n$. Thus, if we choose $\eta(t) = \zeta(t) = \lambda t$, then it's easy to see that (7) and (8) are satisfied. Moreover, we have

$$P_{k}(t) = \frac{1}{p_{0}} \left(1 - \frac{\delta^{1-k}}{p_{0}} \right), \text{ for } k = 2, n,$$

$$R_{0}(t) = \frac{q_{0}}{p_{0}} \left(1 - \frac{1}{\delta p_{0}} \right) \frac{t^{1-n}}{(n-1)},$$

and

$$R_{n-3}(t) = \frac{1}{(n-3)!} \frac{q_0}{p_0} \left(1 - \frac{1}{\delta p_0}\right) \frac{1}{(n-2)(n-1)t^2}$$

Hence, Condition (21) and (22) become

$$q_0 \frac{1}{p_0} \left(\frac{\lambda}{\delta}\right)^{n-1} \left(1 - \frac{\delta^{1-n}}{p_0}\right) \ln \frac{\delta}{\lambda} > \frac{(n-1)!}{e}$$
(24)

and

$$q_0 \frac{1}{p_0} \frac{\lambda}{\delta} \left(1 - \frac{1}{\delta p_0} \right) \ln \frac{\delta}{\lambda} > \frac{(n-1)!}{e}, \tag{25}$$

respectively. It's easy to see that (24) implies (25).

Therefore, by Corollary 1, we conclude that (23) is oscillatory if (24) holds.

Remark 1. For Equation (23), in particular case that n = 4, $p_0 = 16$, $\delta = 1/2$ and $\lambda = 1/3$, Condition (24) yields $q_0 > 587.93$. Whereas, the criterion obtained from the results of [22] is $q_0 > 4850.4$. Hence, our results improve the results in [22].

3. Conclusions

In this paper, our method is based on presenting a new comparison theorem that compare the higher-order Equation (1) with a couple of first-order equations. There are numerous results concerning the oscillation criteria of first order Equations (9) and (10) (see, e.g., [14,25–27]), which include various forms of criteria as Hille/Nehari, Philos, etc. This allows us to obtain also various criteria for the oscillation of (1). Further, we can try to obtain oscillation criteria of (1) if $z(t) := x(t) - p(t) x(\tau(t))$ in the future work.

Author Contributions: The authors claim to have contributed equally and significantly in this paper. All authors read and approved the final manuscript.

Funding: The authors received no direct funding for this work.

Acknowledgments: The authors thank the reviewers for for their useful comments, which led to the improvement of the content of the paper.

Conflicts of Interest: There are no competing interests between the authors.

References

- 1. Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay diferential equations. *Appl. Math. Comput.* **2013**, *225*, 787–794.
- 2. Agarwal, R.; Grace, S.; O'Regan, D. *Oscillation Theory for Difference and Functional Differential Equations*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.

- 3. Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. *Comput. Math. Appl.* **2011**, *62*, 4472–4478. [CrossRef]
- 4. Baculikova, B.; Dzurina, J.; Li, T. Oscillation results for even-order quasi linear neutral functional differential equations. *Electron. J. Differ. Equ.* **2011**, 2011, 1–9.
- 5. Baculikova, B.; Dzurina, J. Oscillation theorems for higher order neutral diferential equations. *Appl. Math. Comput.* **2012**, *219*, 3769–3778.
- 6. Bazighifan, O.; Cesarano, C. Some New Oscillation Criteria for Second-Order Neutral Differential Equations with Delayed Arguments. *Mathematics* **2019**, *7*, 619. [CrossRef]
- 7. Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. *J. Inequal. Appl.* **2019**, *55*, 1–9. [CrossRef]
- 8. Chatzarakis, G.E.; Elabbasy, E.M.; Bazighifan, O. An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. *Adv. Differ. Equ.* **2019**, *336*, 1–9.
- 9. Elabbasy, E.M.; Cesarano, C.; Bazighifan, O.; Moaaz, O. Asymptotic and oscillatory behavior of solutions of a class of higher order differential equation. *Symmetry* **2019**, *11*, 1434. [CrossRef]
- 10. Elabbasy, E.M.; Hassan, T.S.; Moaaz, O. Oscillation behavior of second-order nonlinear neutral differential equations with deviating arguments. *Opusc. Math.* **2012**, *32*, 719–730. [CrossRef]
- 11. Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977.
- Li, T.; Han, Z.; Zhao, P.; Sun, S. Oscillation of even-order neutral delay differential equations. *Adv. Differ. Equ.* 2010, 2010, 1–9. [CrossRef]
- 13. Kiguradze, I.T.; Chanturiya, T.A. *Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993.
- 14. Kitamura, Y.; Kusano, T. Oscillation of first-order nonlinear differential equations with deviating arguments. *Proc. Am. Math. Soc.* **1980**, *78*, 64–68. [CrossRef]
- 15. Moaaz, O. New criteria for oscillation of nonlinear neutral differential equations. *Adv. Differ. Equ.* **2019**, 2019, 484. [CrossRef]
- 16. Moaaz, O.; Elabbasy, E.M.; Bazighifan, O. On the asymptotic behavior of fourth-order functional differential equations. *Adv. Differ. Equ.* **2017**, 2017, 261. [CrossRef]
- 17. Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. *Adv. Differ. Equ.* **2019**, 297, 1–10. [CrossRef]
- 18. Moaaz, O.; Elabbasy, E.M.; Shaaban, E. Oscillation criteria for a class of third order damped differential equations. *Arab. J. Math. Sci.* **2018**, *24*, 16–30. [CrossRef]
- 19. Parhi, N.; Tripathy, A. On oscillatory fourth order linear neutral differential equations—I. *Math. Slovaca* **2004**, 54, 389–410.
- 20. Philos, C.G. A new criterion for the oscillatory and asymptotic behavior of delay differential equations. *Bull. Acad. Pol. Sci. Sér. Sci. Math.* **1981**, *39*, 61–64.
- 21. Philos, C.G. On the existence of non-oscillatory solutions tending to zero at ∞ for differential equations with positive delays. *Arch. Math.* **1981**, *36*, 168–178. [CrossRef]
- 22. Xing, G.; Li, T.; Zhang, C. Oscillation of higher-order quasi linear neutral differential equations. *Adv. Differ. Equ.* **2011**, 2011, 45. [CrossRef]
- 23. Zafer, A. Oscillation criteria for even order neutral differential equations. *Appl. Math. Lett.* **1998**, *11*, 21–25. [CrossRef]
- 24. Zhang, Q.; Yan, J. Oscillation behavior of even order neutral differential equations with variable coefficients. *Appl. Math. Lett.* **2006**, *19*, 1202–1206. [CrossRef]
- 25. Ladas, G.; Lakshmikantham, V.; Papadakis, L.S. Oscillations of Higher-Order Retarded Differential Equations Generated by the Retarded Arguments, Delay and Functional Differential Equations and Their Applications; Academic Press: New York, NY, USA, 1972; pp. 219–231.

- 26. Koplatadze, R.G.; Chanturija, T.A. Oscillating and monotone solutions of first-order differential equations with deviating argument. *Differ. Uravn.* **1982**, *18*, 1463–1465.
- 27. Braverman, E.; Karpuz, B. On oscillation of differential and difference equations with non-monotone delays. *Appl. Math. Comput.* **2011**, *218*, 3880–3887. [CrossRef]

 \odot 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).