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Abstract: In this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with
a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner
product are eigenfunctions of a certain differential operator, we are interested in the corresponding
eigenvalues, more exactly, in their asymptotic behavior. Thus, we can determine a limit value which
links this asymptotic behavior and the uniform norm of the orthonormal polynomials in a logarithmic
scale. This value appears in the theory of reproducing kernel Hilbert spaces. On the other hand,
we tackle a more general case than the one considered in the literature previously.
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1. Introduction

The study of Sobolev inner products and the properties of the corresponding orthogonal
polynomials is a relevant topic within the theory of orthogonal polynomials. Indeed, Sobolev
orthogonality is a recent topic in the theory of orthogonal polynomials. In fact, it has been developed
throughout the last 30 years, although the first seminal paper was written by Lewis in 1947 (see [1]) in
the framework of the simultaneous approximation to a function and its derivatives in the corresponding
Sobolev space. The relevance of Sobolev orthogonal polynomials (SOP) is given by the fact that they
are not orthogonal in a standard way. Thus, if we consider a typical Sobolev inner product in the
appropriate Sobolev space, then some nice properties of standard orthogonal polynomials (such as
the three-term recurrence relation and the interlacing properties of zeros) are lost. Furthermore,
some powerful methods and techniques developed for standard orthogonal polynomials have not
found their equivalence in SOP and many questions remain unanswered. Therefore, we need to
construct new techniques to obtain algebraic, differential, and asymptotic properties of the SOP.
This fact was already noticed on the first papers by German mathematicians such as in [2,3], or [4].

Concretely, given a Sobolev inner product (SIP)

( f , g) =
∫
R

f (x)g(x)dµ0 +
m

∑
k=1

∫
R

f (k)(x)g(k)(x)dµk,
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in the Sobolev space

W2,m(µ0, µ1, . . . , µm) :=

{
f :
∫
R
| f |2dµ0 +

m

∑
k=1

∫
R
| f (k)|2dµk < +∞

}
,

where µi with i = 0, . . . , m are positive Borel measures supported on the real line, we usually classify
this inner product as follows (see, for example, [5]):

• Continuous SIP. All the measures µi, with i = 0, . . . , m, have continuous support.
• Discrete SIP. The measure µ0 has continuous support and the measures µ1, . . . , µm are discrete,

i.e., they are supported on finite subsets.
• Discrete-Continuous SIP. The measure µm has continuous support and the measures µ0, . . . , µm−1

are discrete.

Obviously, when m ≥ 1, we have (x f , g) 6= ( f , xg). As it is well known, the identity (x f , g) =
( f , xg) is the key to obtain many properties of standard orthogonal polynomials, therefore the study of
Sobolev orthogonal polynomials needs a different approach as we have mentioned previously.

In the first few years, the most exhaustively studied case in the literature corresponded to m = 1.
Thus, in the continuous case, a breaking paper was given in [6] where the concept of a pair of coherent
measures was introduced. This concept was originally useful for minimizing the Gibbs phenomenon
that occurs when approximating a function by the partial sum of a Fourier series (see [7]). Later,
it has been very fruitful in the study of algebraic and asymptotic properties of Sobolev orthogonal
polynomials. In fact, the original concept was generalized on several occasions (for example, in [8]
or [9]), being the most general the one introduced in 2014 with the (M, N)–coherent pairs of order
(m, k) (see [10]).

On the other hand, the discrete-continuous case attracted interest when it was discovered that this
type of inner product provides Sobolev orthogonality to families of classical orthogonal polynomials
with nonstandard parameters (Gegenabauer, Jacobi, and Laguerre polynomials), see details in the
papers [11–15] or in a more general framework [16].

The discrete case has been studied extensively since the 1990s, with very general papers being [17]
some of the most relevant. Along these years, algebraic, asymptotic, and differential properties of
the corresponding orthogonal polynomials have been studied. The motivation of this paper is to
tackle one aspect less studied in the literature. Concretely, it is known from some papers by Bavinck
in the 1980s that certain families of discrete Sobolev orthogonal polynomials are eigenfunctions of
a differential operator. In this way, we are interested in knowing the asymptotic behavior of the
corresponding eigenvalues, which allows us to get a limit value of interest in the theory of reproducing
kernel Hilbert spaces.

The chronology of the advances in the theory of the Sobolev orthogonality has been collected in
several surveys: [5,18–22]. Even a very brief outreach paper has been published—see [23]. About the
applications of SOP, we have already mentioned the usefulness of these nonstandard polynomials
in the simultaneous approximation of a function and their derivatives as well as to tackle the Gibbs
phenomenon, together with the fact that standard polynomials with nonstandard parameters are
orthogonal with respect to a SIP. More recently, other different applications have been obtained among
others in [24–26] or [27] related to use SOP for solving some type of Cauchy problem for ordinary
differential equations.

In this paper, we focus our attention on a special case of the discrete SIP

( f , g)S =
∫

f (x)g(x)dµ +
p

∑
i=0

Mi f (i)(c)g(i)(c), Mi ≥ 0, i = 0, . . . , p− 1, Mp > 0,

where µ is a positive Borel measure. The study of the orthogonal polynomials with respect to
the above inner product has attracted the attention of researchers in recent decades (see [5] and
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the aforementioned surveys). If we treat these polynomials as eigenfunctions of a differential
operator, the study of the corresponding eigenvalues arises as a topic of interest. Thus, very recently,
the asymptotic behavior of the eigenvalues has been studied in [28] when µ is a classical continuous
measure (Jacobi, Laguerre, or Hermite) and c is a point located on the real axis adequately.

Here, we consider a discrete Sobolev inner product involving the Jacobi weight and including
two derivatives of different order located at −1 and 1. Concretely,

( f , g)S =
∫ 1

−1
f (x)g(x)(1− x)α(1 + x)βdx + M f (j1)(1)g(j1)(1) + N f (j2)(−1)g(j2)(−1), (1)

where M, N > 0, α, β > −1, and j1, j2 ∈ N ∪ {0}. Let {q(M,N)
n }n≥0 be the sequence of orthonormal

polynomials with respect to (1). It is well known that these polynomials are eigenfunctions of a
differential operator T (see [29]). Thus, our first goal is to establish the asymptotic behavior of
the corresponding eigenvalues which we denote by $n and as an application of this result and the
properties of the corresponding Sobolev orthonormal polynomials, we can compute the value

r0 = lim sup
n→+∞

log
(

n maxx∈[−1,1] |q
(M,N)
n (x)|2

)
log ($n)

.

This value is relevant for the work that one of the authors of this article is developing in the
framework of reproducing kernel Hilbert spaces and their interactions with the applied machine
learning [30].

We will prove that in our case it is enough to compute the value

s0 = lim
n→+∞

log
(

maxx∈[−1,1] |q
(M,N)
n (x)|

)
log ($n)

,

to obtain the value r0. This value s0 was already computed in the particular case of the symmetric
case in [31], that is, when we consider α = β, M = N, and j1 = j2 (Gegenbauer case). The symmetry
provides us with relations (see e.g., ([31], Proposition 5)) that we have not been able to derive for this
nonsymmetric case.

The structure of the paper is the following: in Section 2, basic properties of Jacobi polynomials are
introduced; in Section 3, the asymptotic behavior of the eigenvalues $n is obtained. Section 4 is devoted
to obtaining algebraic, differential, and asymptotic properties of these discrete Sobolev orthogonal
polynomials, which, together with the results in Section 3, allow us to get the value r0 in Section 5.
Finally, we have included Section 6 with the conclusions and some open problems.

2. Background on Jacobi Orthogonal Polynomials

We denote by P(α,β)
n (x) the classical Jacobi orthogonal polynomials with respect to the weight

function (1− x)α(1 + x)β, on (−1, 1) with α, β > −1 and taking the standardization given in ([32],
f. (4.1.1)):

P(α,β)
n (1) =

(
n + α

n

)
=

Γ(n + α + 1)
Γ(n + 1)Γ(α + 1)

. (2)

Using ([32], f. (4.1.4)), we have

P(α,β)
n (−1) = (−1)nP(β,α)

n (1) = (−1)n
(

n + β

n

)
= (−1)n Γ(n + β + 1)

Γ(n + 1)Γ(β + 1)
. (3)
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Their derivatives satisfy (see, ([33], f. (4)) and ([32], f. (4.21.7)))(
P(α,β)

n

)(k)
(x) =

1
2k

Γ(n + α + β + k + 1)
Γ(n + α + β + 1)

P(α+k,β+k)
n−k (x), k ≥ 0. (4)

Using (2) and (4), we deduce(
P(α,β)

n

)(k)
(1) =

1
2k

Γ(n + α + β + k + 1)
Γ(n + α + β + 1)

Γ(n + α + 1)
Γ(n− k + 1)Γ(α + k + 1)

, (5)

where
(

P(α,β)
n

)(k)
(1) denotes the k-th derivative of P(α,β)

n (x) evaluated at x = 1. Thus, using (3) and (4)
we have: (

P(α,β)
n

)(k)
(−1) = (−1)n−k 1

2k
Γ(n + α + β + k + 1)

Γ(n + α + β + 1)
Γ(n + β + 1)

Γ(n− k + 1)Γ(β + k + 1)
. (6)

The norm of these polynomials is given by (see, ([32], f. (4.3.3))):

||P(α,β)
n ||2 =

2α+β+1

2n + α + β + 1
Γ(n + α + 1)Γ(n + β + 1)
Γ(n + 1)Γ(n + α + β + 1)

. (7)

Finally, they satisfy the second-order differential equation (see ([32], f. (4.2.1))):

(x2 − 1)y′′(x) + (α− β + (α + β + 2)x)y′(x) = n(n + α + β + 1)y(x),

i.e., P(α,β)
n are the eigenfunctions of the differential operator

J : (x2 − 1)D2 + (α− β + (α + β + 2)x)D,

where D denotes the derivative operator. Thus, we can write down

J P(α,β)
n (x) = n(n + α + β + 1)P(α,β)

n (x),

so
λn = n(n + α + β + 1) (8)

are the corresponding eigenvalues.
Along the paper, we use the well-known Stirling’s formula (see, for example, ([34], f. (5.11.13))):

lim
n→+∞

nb−aΓ(n + a)
Γ(n + b)

= 1. (9)

Next, we give some asymptotic behaviors which will be useful in the next section.

Lemma 1. Letting k be a nonnegative integer, we have:

lim
n→+∞

(
P(α,β)

n

)(k)
(1)

nα+2k =
1

2kΓ(α + k + 1)
, (10)

lim
n→+∞

(−1)n
(

P(α,β)
n

)(k)
(−1)

nβ+2k =
(−1)k

2kΓ(β + k + 1)
. (11)

In addition,
lim

n→+∞
n||P(α,β)

n ||2 = 2α+β. (12)
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Proof. We can deduce them straightforwardly using (5)–(7) and (9).

The kernel polynomials and their derivatives are given by

K(j,k)
n (x, y) =

n

∑
i=0

(
P(α,β)

i

)(j)
(x)
(

P(α,β)
i

)(k)
(y)

||P(α,β)
i ||2

, j, k ∈ N∪ {0}.

For our purposes, we need to know some asymptotic behaviors of these kernel polynomials
evaluated at the points 1 and −1. Next, we introduce a result which generalizes some particular cases
obtained in ([33], Lemma 1) or ([35], Pag. 147).

Proposition 1. Let j, k be nonnegative integers. Then, we have

lim
n→+∞

K(j,k)
n−1(1, 1)

n2α+2j+2k+2 =
1

2α+β+j+k+1(α + j + k + 1)Γ(α + j + 1)Γ(α + k + 1)
. (13a)

lim
n→+∞

K(j,k)
n−1(−1,−1)

n2β+2j+2k+2 =
(−1)j+k

2α+β+j+k+1(β + j + k + 1)Γ(β + j + 1)Γ(β + k + 1)
. (13b)

lim
n→+∞

(−1)n K(j,k)
n (1,−1)

nα+β+2j+2k+1 =
(−1)k

2α+β+j+k+1Γ(α + j + 1)Γ(β + k + 1)
. (13c)

Proof. To prove these results, we use (2)–(7), (9), the Stolz–Cesàro criterion, and the following limit

lim
n→+∞

nα+β+2j+2k+2 − (n− 1)α+β+2j+2k+2

(α + β + 2j + 2k + 2)nα+β+2j+2k+1 = 1.

(13a) This case has been proved in ([33], Lemma 1).
(13b) We use the same technique as in ([33], Lemma 1), getting

lim
n→+∞

K(j,k)
n−1(−1,−1)

n2β+2j+2k+2 = lim
n→+∞

K(j,k)
n−1(−1,−1)− K(j,k)

n−2(−1,−1)

n2β+2j+2k+2 − (n− 1)2β+2j+2k+2

= lim
n→+∞

(
P(α,β)

n−1

)(j)
(−1)

(
P(α,β)

n−1

)(k)
(−1)

(2β + 2j + 2k + 2)||P(α,β)
n−1 ||2n2β+2j+2k+1

=
1

2α+β(2β + 2j + 2k + 2)
(−1)j

2jΓ(β + j + 1)
(−1)k

2kΓ(β + k + 1)
.

(13c) In this case, we cannot use the Stolz–Cesàro criterion in the previous straightforward way. Then,
we use a different approach based on the Christoffel–Darboux formula (see ([32], f. (4.5.2))):

K(0,0)
n (x, y) = an

P(α,β)
n+1 (x)P(α,β)

n (y)− P(α,β)
n (x)P(α,β)

n+1 (y)
x− y

,

with an = 2−α−β

2n+α+β+2
Γ(n+2)Γ(n+α+β+2)
Γ(n+α+1)Γ(n+β+1) .

First, it is enough to apply (9) to get

lim
n→+∞

an

n
=

1
2α+β+1 . (14)
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Now, using a Leibniz rule, we obtain (see also [36])

K(0,k)
n (x, y) = an

P(α,β)
n+1 (x)

∂k

∂yk

(
P(α,β)

n (y)
x− y

)
− P(α,β)

n (x)
∂k

∂yk

P(α,β)
n+1 (y)
x− y


= an

P(α,β)
n+1 (x)

 k

∑
i=0

k!
(

P(α,β)
n

)(i)
(y)

i!(x− y)k−i+1

− P(α,β)
n (x)

 k

∑
i=0

k!
(

P(α,β)
n+1

)(i)
(y)

i!(x− y)k−i+1


 .

Taking derivatives again, we deduce

K(j,k)
n (x, y) = an

 k

∑
i=0

(
P(α,β)

n

)(i)
(y)

k!
i!

∂j

∂xj

 P(α,β)
n+1 (x)

(x− y)k−i+1


−

k

∑
i=0

(
P(α,β)

n+1

)(i)
(y)

k!
i!

∂j

∂xj

(
P(α,β)

n (x)
(x− y)k−i+1

)]

= an

 k

∑
i=0

j

∑
`=0

k!
i!

(
P(α,β)

n+1

)(`)
(x)
(

P(α,β)
n

)(i)
(y)

(x− y)k−i+j−`+1

(
j
`

) j−`−1

∏
q=0

(−k + i− 1− q)

−
k

∑
i=0

j

∑
`=0

k!
i!

(
P(α,β)

n

)(`)
(x)
(

P(α,β)
n+1

)(i)
(y)

(x− y)k−i+j−`+1

(
j
`

) j−`−1

∏
q=0

(−k + i− 1− q)

 .

Dividing the previous expression by (−1)nnα+β+2j+2k+1 and evaluating at x = 1 and y = −1,
we get

(−1)nK(j,k)
n (1,−1)

nα+β+2j+2k+1

=
an

n

 k

∑
i=0

j

∑
`=0

k!
i!

(
P(α,β)

n+1

)(`)
(1)
(

P(α,β)
n

)(i)
(−1)

(−1)nnα+β+2j+2k 2k−i+j−`+1

(
j
`

) j−`−1

∏
q=0

(−k + i− 1− q)

−
k

∑
i=0

j

∑
`=0

k!
i!

(
P(α,β)

n

)(`)
(1)
(

P(α,β)
n+1

)(i)
(−1)

(−1)nnα+β+2j+2k 2k−i+j−`+1

(
j
`

) j−`−1

∏
q=0

(−k + i− 1− q)

 . (15)

Finally, taking limits in (15) and considering (10), (11), and (14), all terms tend to zero except
when i = k and ` = j, so

lim
n→+∞

(−1)nK(j,k)
n (1,−1)

nα+β+2j+2k+1

= lim
n→+∞

an

n


(

P(α,β)
n+1

)(j)
(1) (−1)n

(
P(α,β)

n

)(k)
(−1)

2nα+β+2j+2k +

(
P(α,β)

n

)(j)
(1) (−1)n+1

(
P(α,β)

n+1

)(k)
(−1)

2nα+β+2j+2k


=

1
2α+β+1

1
2

(
1

2jΓ(α + j + 1)
(−1)k

2kΓ(β + k + 1)
+

1
2jΓ(α + j + 1)

(−1)k

2kΓ(β + k + 1)

)

=
(−1)k

2α+β+j+k+1Γ(α + j + 1)Γ(β + k + 1)
.
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3. Asymptotic Behavior of the Eigenvalues $n

In [29], it was established that the discrete Sobolev orthonormal polynomials q(M,N)
n are

eigenfunctions of a certain differential operator T , i.e., T q(M,N)
n = $nq(M,N)

n . In the same paper,
see ([29], f. (5)), and, under certain conditions that we will expose later, the author claims

$n = λn + Mαn + Nβn + MNγn, n ≥ max {j1, j2} , (16)

where λn is defined in (8) and

αn = αj1 +
n

∑
i=j1+1

(λi − λi−1)K
(j1,j1)
i−1 (1, 1),

βn = β j2 +
n

∑
i=j2+1

(λi − λi−1)K
(j2,j2)
i−1 (−1,−1),

γn = γmax{j1,j2} +
n

∑
i=max{j1,j2}+1

(λi − λi−1)

[
K(j1,j1)

i−1 (1, 1) K(j2,j2)
i−1 (−1,−1)−

(
K(j1,j2)

i−1 (1,−1)
)2
]

.

Moreover, the author proved that there are two ways to construct the differential operator T .
These two ways depend on the relation between j1, j2 (either j1 ≤ j2 or j2 ≤ j1), but in both cases the
differential operator obtained is the same, so the expression (16) for the eigenvalues holds in both cases
(for more details, see [29]).

However, when the inner product (1) is symmetric, i.e., when α = β, M = N, and j1 = j2, then

$n = λn + Mµn, (17)

and the process to establish the asymptotic behavior of $n is technically easier. Thus, through this paper,
we assume that the inner product (1) is nonsymmetric. The results corresponding to the symmetric
case can be found in [31].

For convenience, we assume j1 ≤ j2. Denote by s(M)
n (x) the orthogonal polynomials with respect

to the inner product

( f , g) =
∫ 1

−1
f (x)g(x)(1− x)α(1 + x)βdx + M f (j1)(1)g(j1)(1).

In this case, the condition to obtain (16) is
(

s(M)
n

)(j2)
(−1) 6= 0 while j2 < n. Using ([33], Prop. 2),

we can assure that s(M)
n (x) has n real and simple zeros, and they are located in (−1, 1 + ε] with ε ≥ 0.

On the other hand, using Rolle’s Theorem, between two zeros of s(M)
n (x), one zero of

(
s(M)

n

)′
(x) exists,

so we can assure that there are n− 1 real and simple zeros of
(

s(M)
n

)′
(x) in (−1, 1 + ε). However,(

s(M)
n

)′
(x) is a polynomial of degree n− 1, so it has n− 1 zeros, thus

(
s(M)

n

)′
(−1) 6= 0. We can repeat

this process and we can assure that
(

s(M)
n

)(j2)
(−1) 6= 0, with j2 < n. For the case j1 ≥ j2, we can

proceed in a similar way (see also [36]).
Following [29], α0 = 0 and {αi}

j1
i=1 can be chosen arbitrarily. Thus, we take α1 = α2 = · · · =

αj1 = 0. Similarly for the values βn and γn, it is necessary that β0 = γ0 = 0 and the quantities

{βi}
j2
i=1 and {γi}

max{j1,j2}
i=1 can be chosen arbitrarily. Again, we choose β1 = β2 = · · · = β j2 = 0 and

γ1 = γ2 = · · · = γmax{j1,j2} = 0. Therefore, taking into account

λn − λn−1 = 2n + α + β,

and substituting in (16), the expressions αn, βn and γn can be simplified to
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αn =
n

∑
i=j1+1

(2i + α + β)K(j1,j1)
i−1 (1, 1), (18)

βn =
n

∑
i=j2+1

(2i + α + β)K(j2,j2)
i−1 (−1,−1), (19)

γn =
n

∑
i=max{j1,j2}+1

(2i + α + β)

[
K(j1,j1)

i−1 (1, 1) K(j2,j2)
i−1 (−1,−1)−

(
K(j1,j2)

i−1 (1,−1)
)2
]

. (20)

Now, we are ready to compute the asymptotic behavior of the above sequences of real numbers
and, via (16), we obtain the wanted asymptotic behavior of the eigenvalues $n.

Proposition 2. Let αn, βn and γn be defined in (18)–(20), respectively. Then,

lim
n→+∞

αn

n2α+4j1+4 =
1

2α+β+2j1+1(α + 2j1 + 2)(α + 2j1 + 1)Γ2(α + j1 + 1)
, (21)

lim
n→+∞

βn

n2β+4j2+4 =
1

2α+β+2j2+1(β + 2j2 + 2)(β + 2j2 + 1)Γ2(β + j2 + 1)
, (22)

lim
n→+∞

γn

n2α+2β+4j1+4j2+6 = Cα,β,j1,j2 , (23)

where Cα,β,j1,j2 = 1
22(α+β+j1+j2+1)(α+β+2j1+2j2+3)(α+2j1+1)(β+2j2+1)Γ2(α+j1+1)Γ2(β+j2+1)

.

Proof. To prove (21), we use (13a), the Stolz–Cesàro criterion and

lim
n→+∞

n2α+4j1+4 − (n− 1)2α+4j1+4

(2α + 4j1 + 4)n2α+4j1+3 = 1.

Then,

lim
n→+∞

αn

n2α+4j1+4 = lim
n→+∞

αn − αn−1

n2α+4j1+4 − (n− 1)2α+4j1+4

= lim
n→+∞

(2n + α + β)K(j1,j1)
n−1 (1, 1)

(2α + 4j1 + 4)n2α+4j1+3

=
1

2α+β+2j1+1(α + 2j1 + 2)(α + 2j1 + 1)Γ(α + j1 + 1)Γ(α + j1 + 1)
.

Formula (22) is proved in the same way now using (13b). Finally, to establish (23), we use
Proposition 1 getting

lim
n→+∞

γn

n2α+2β+4j1+4j2+6 = lim
n→+∞

γn − γn−1

n2α+2β+4j1+4j2+6 − (n− 1)2α+2β+4j1+4j2+6

= lim
n→+∞

(2n + α + β)

[
K(j1,j1)

n−1 (1, 1)K(j2,j2)
n−1 (−1,−1)−

(
K(j1,j2)

n−1 (1,−1)
)2
]

(2α + 2β + 4j1 + 4j2 + 6)n2α+2β+4j1+4j2+5

= Cα,β,j1,j2 .

Theorem 1. Let $n be the eigenvalues of the differential operator T . Then,

lim
n→+∞

$n

n2α+2β+4j1+4j2+6 = MNCα,β,j1,j2 ,

where the quantity Cα,β,j1,j2 is defined in Proposition 2.
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Proof. It is enough to apply Proposition 2 in (16).

Remark 1. Notice that, for a symmetric inner product of type (1), we cannot derive the asymptotic behavior of
the corresponding eigenvalues $n from Theorem 1 in a straightforward way. This is because the expressions for $n

are essentially different in each case (see (16) and (17)). Thus, as we have commented previously, the symmetric
case is technically easier to analyze and it was done in [31].

4. Some Properties of Discrete Jacobi–Sobolev Orthogonal Polynomials

The aim of this section is to get useful algebraic and asymptotic properties of these discrete
Sobolev orthogonal polynomials with the target of computing the asymptotic value r0 in the next
section. For convenience, now we use the orthogonal polynomials with respect to (1) with the same
leading coefficient as the polynomials P(α,β)

n (x) and we denote them by Q(M,N)
n (x). First, we get the

following connection formula:

Lemma 2. We have

Q(M,N)
n (x) = P(α,β)

n (x)−MΦ(n, j1, j2)K
(j1,0)
n−1 (1, x)− NΨ(n, j1, j2)K

(j2,0)
n−1 (−1, x), (24)

where

Φ(n, j1, j2) =

(
P(α,β)

n

)(j1)
(1)
(

1+NK(j2,j2)
n−1 (−1,−1)

)
−N

(
P(α,β)

n

)(j2)
(−1) K

(j1,j2)
n−1 (1,−1)

1+MK
(j1,j1)
n−1 (1,1)+NK(j2,j2)

n−1 (−1,−1)+MN
(

K
(j1,j1)
n−1 (1,1)K(j2,j2)

n−1 (−1,−1)−
(

K
(j1,j2)
n−1 (1,−1)

)2) , (25)

Ψ(n, j1, j2) =

(
P(α,β)

n

)(j2)
(−1)

(
1+MK

(j1,j1)
n−1 (1,1)

)
−M

(
P(α,β)

n

)(j1)
(1) K

(j1,j2)
n−1 (1,−1)

1+MK
(j1,j1)
n−1 (1,1)+NK(j2,j2)

n−1 (−1,−1)+MN
(

K
(j1,j1)
n−1 (1,1)K(j2,j2)

n−1 (−1,−1)−
(

K
(j1,j2)
n−1 (1,−1)

)2) . (26)

Proof. We use a standard technique (see, for example, [37]). We have

Q(M,N)
n (x) = P(α,β)

n (x) +
n−1

∑
k=0

an,kP(α,β)
k (x). (27)

Now, using the orthogonality of Q(M,N)
n (x), we get for 0 ≤ i < n,

0 =
(

Q(M,N)
n (x), P(α,β)

i (x)
)

S
=

(
P(α,β)

n (x) +
n−1

∑
k=0

an,kP(α,β)
k (x), P(α,β)

i (x)

)
S

=
∫ 1

−1
P(α,β)

n (x)P(α,β)
i (x)(1− x)α(1 + x)βdx

+
n−1

∑
k=0

an,k

∫ 1

−1
P(α,β)

k (x)P(α,β)
i (x)(1− x)α(1 + x)βdx

+ M
[(

Q(M,N)
n

)(j1)
(1)
(

P(α,β)
i

)(j1)
(1)
]
+ N

[(
Q(M,N)

n

)(j2)
(−1)

(
P(α,β)

i

)(j2)
(−1)

]
= an,i||P

(α,β)
i ||2α + M

(
Q(M,N)

n

)(j1)
(1)
(

P(α,β)
i

)(j1)
(1) + N

(
Q(M,N)

n

)(j2)
(−1)

(
P(α,β)

i

)(j2)
(−1).

Then,

an,i = −
M
(

Q(M,N)
n

)(j1)
(1)
(

P(α,β)
i

)(j1)
(1) + N

(
Q(M,N)

n

)(j2)
(−1)

(
P(α,β)

i

)(j2)
(−1)

||P(α,β)
i ||2

.
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Next, using the definition of kernel polynomials and the expression (27), we obtain:

Q(M,N)
n (x) = P(α,β)

n (x)−M
(

Q(M,N)
n

)(j1)
(1)K(j1,0)

n−1 (1, x)

−N
(

Q(M,N)
n

)(j2)
(−1)K(j2,0)

n−1 (−1, x).
(28)

We need to calculate
(

Q(M,N)
n

)(j1)
(1) and

(
Q(M,N)

n

)(j2)
(−1). To do this, we build a system of

two equations and two unknowns as it follows. We derive the expression (28) j1 times and evaluate
at x = 1, then we repeat the process, but now deriving it j2 times and evaluating at x = −1. Thus,
using the fact that

K(j,k)
n−1(a, b) = K(k,j)

n−1(b, a),

for all a, b ∈ R and j, k ∈ N∪ {0}, we can build the linear system(
Q(M,N)

n

)(j1)
(1) =

(
P(α,β)

n

)(j1)
(1)−M

(
Q(M,N)

n

)(j1)
(1)K(j1,j1)

n−1 (1, 1)

−N
(

Q(M,N)
n

)(j2)
(−1)K(j2,j1)

n−1 (−1, 1),(
Q(M,N)

n

)(j2)
(−1) =

(
P(α,β)

n

)(j2)
(−1)−M

(
Q(M,N)

n

)(j1)
(1)K(j2,j1)

n−1 (−1, 1)

−N
(

Q(M,N)
n

)(j2)
(−1)K(j2,j2)

n−1 (−1,−1).

Solving the system, we get the result.

The asymptotic behavior of the coefficients in the connection Formula (24) is given by the
following result.

Lemma 3. Let Φ(n, j1, j2) and Ψ(n, j1, j2) be defined in (25) and (26), respectively. Then,

lim
n→+∞

Φ(n, j1, j2)nα+2j1+2 =
2α+β+j1+1(α + 2j1 + 1)Γ(α + j1 + 1)

M
, (29)

lim
n→+∞

(−1)nΨ(n, j1, j2)nβ+2j2+2 =
(−1)j22α+β+j2+1(β + 2j2 + 1)Γ(β + j2 + 1)

N
. (30)
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Proof. To establish the results, we need (10), (11), and (13). We have only proved (29) because the
proof of (30) is totally similar. Thus,

lim
n→+∞

Φ(n, j1, j2)nα+2j1+2

=

(
P(α,β)

n

)(j1)
(1) nα+2j1+2

1 + MK(j1,j1)
n−1 (1, 1) + NK(j2,j2)

n−1 (−1,−1) + MN
(

K(j1,j1)
n−1 (1, 1)K(j2,j2)

n−1 (−1,−1)−
(

K(j1,j2)
n−1 (1,−1)

)2
)

+
N
(

P(α,β)
n

)(j1)
(1)K(j2,j2)

n−1 (−1,−1) nα+2j1+2

1 + MK(j1,j1)
n−1 (1, 1) + NK(j2,j2)

n−1 (−1,−1) + MN
(

K(j1,j1)
n−1 (1, 1)K(j2,j2)

n−1 (−1,−1)−
(

K(j1,j2)
n−1 (1,−1)

)2
)

−
N
(

P(α,β)
n

)(j2)
(−1) K(j1,j2)

n−1 (1,−1) nα+2j1+2

1 + MK(j1,j1)
n−1 (1, 1) + NK(j2,j2)

n−1 (−1,−1) + MN
(

K(j1,j1)
n−1 (1, 1)K(j2,j2)

n−1 (−1,−1)−
(

K(j1,j2)
n−1 (1,−1)

)2
)

= lim
n→+∞

N
(

P(α,β)
n

)(j1)
(1)K(j2,j2)

n−1 (−1,−1)
nα+2j1+2

n2α+2β+4j1+4j2+4

MNK(j1,j1)
n−1 (1, 1)K(j2,j2)

n−1 (−1,−1)

n2α+2β+4j1+4j2+4

=
2α+β+j1+1(α + 2j1 + 1)Γ(α + j1 + 1)

M
.

The following result compares asymptotically
(

Q(M,N)
n

)(k)
(x) and

(
P(α,β)

n

)(k)
(x) at the end

points of the interval [−1, 1].

Lemma 4. Let k be a nonnegative integer; then,

lim
n→+∞

(
Q(M,N)

n

)(k)
(1)(

P(α,β)
n

)(k)
(1)

=
k− j1

α + j1 + k + 1
, (31)

lim
n→+∞

(
Q(M,N)

n

)(k)
(−1)(

P(α,β)
n

)(k)
(−1)

=
k− j2

β + j2 + k + 1
. (32)
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Proof. We only prove (31) because (32) is obtained in the same way. We derive the Formula (24) k
times and evaluate at x = 1, then we take limits and apply Propositon 1 and Lemmas 1 and 3 getting

lim
n→+∞

(
Q(M,N)

n

)(k)
(1)(

P(α,β)
n

)(k)
(1)

= lim
n→+∞

(
P(α,β)

n

)(k)
(1)−MΦ(n, j1, j2)K

(j1,k)
n−1 (1, 1)− NΨ(n, j1, j2)K

(j2,k)
n−1 (−1, 1)(

P(α,β)
n

)(k)
(1)

= 1−M

2α+β+j1+1(α+2j1+1)Γ(α+j1+1)
M

1
2α+β+j1+k+1(α+j1+k+1)Γ(α+j1+1)Γ(α+k+1)

1
2kΓ(α+k+1)

= 1− α + 2j1 + 1
α + j1 + k + 1

=
k− j1

α + j1 + k + 1
.

Remark 2. From Lemmas 1 and 4, we deduce that

Q(M,N)
n (1) ≈ −j1

α + j1 + 1
P(α,β)

n (1) ≈ −j1
(α + j1 + 1)Γ(α + 1)

nα, if j1 > 0,

Q(M,N)
n (−1) ≈ −j2

β + j2 + 1
P(α,β)

n (−1) ≈ (−1)n+1 j2
(β + j2 + 1)Γ(β + 1)

nβ, if j2 > 0,

where the symbol ≈ means the following: if an ≈ bn, then limn→+∞
an
bn

= 1.

We claim that the Euclidean norm of the Sobolev polynomials behaves asymptotically like the
one of classical Jacobi polynomials.

Proposition 3.

lim
n→+∞

||Q(M,N)
n ||S
||P(α,β)

n ||
= 1.

Proof. We have(
Q(M,N)

n (x), Q(M,N)
n (x)

)
S

=
(

Q(M,N)
n (x), P(α,β)

n (x)
)

S

= ||P(α,β)
n ||2 + M

(
Q(M,N)

n

)(j1)
(1)
(

P(α,β)
n

)(j1)
(1)

+ N
(

Q(M,N)
n

)(j2)
(−1)

(
P(α,β)

n

)(j2)
(−1).

Then,

||Q(M,N)
n ||2S

||P(α,β)
n ||2

= 1 + M

(
Q(M,N)

n

)(j1)
(1)
(

P(α,β)
n

)(j1)
(1)

||P(α)
n ||2

+ N

(
Q(M,N)

n

)(j2)
(−1)

(
P(α,β)

n

)(j2)
(−1)

||P(α)
n ||2

= 1 + M
Φ(n, j1, j2)

(
P(α,β)

n

)(j1)
(1)

||P(α)
n ||2

+ N
Ψ(n, j1, j2)

(
P(α,β)

n

)(j2)
(−1)

||P(α)
n ||2

.
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Finally, taking limits and using the relations (10)–(12), (29) and (30), we get

lim
n→+∞

Φ(n, j1, j2)
(

P(α,β)
n

)(j1)
(1)

||P(α)
n ||2

= lim
n→+∞

Ψ(n, j1, j2)
(

P(α,β)
n

)(j2)
(−1)

||P(α)
n ||2

= 0,

and the result is proved.

A useful estimate of the uniform norm is given in the next result.

Theorem 2. Let q = max{α, β} be. If q ≥ −1/2, then we have

||Q(M,N)
n ||∞ = max

x∈[−1,1]

∣∣∣Q(M,N)
n (x)

∣∣∣ ≤ Cnq,

where C is a constant independent of n.

Proof. We have forwardly from (24)

max
x∈[−1,1]

∣∣∣Q(M,N)
n (x)

∣∣∣ ≤ max
x∈[−1,1]

∣∣∣P(α,β)
n (x)

∣∣∣+ M |Φ(n, j1, j2)| max
x∈[−1,1]

∣∣∣K(j1,0)
n−1 (1, x)

∣∣∣
+ N |Ψ(n, j1, j2)| max

x∈[−1,1]

∣∣∣K(j2,0)
n−1 (−1, x)

∣∣∣ . (33)

First, let us find asymptotic upper bounds of the quantities maxx∈[−1,1]

∣∣∣K(j1,0)
n−1 (1, x)

∣∣∣ and

maxx∈[−1,1]

∣∣∣K(j2,0)
n−1 (−1, x)

∣∣∣, to find an upper bound of maxx∈[−1,1]

∣∣∣Q(M,N)
n (x)

∣∣∣ . To reach this, we use
the well-known upper bound for the classical Jacobi polynomials (see ([32], f. (7.32.2))):

max
x∈[−1,1]

∣∣∣P(α,β)
n (x)

∣∣∣ = (n + q
n

)
≈ nq

Γ(q + 1)
, if q ≥ −1/2.

Thus,

max
x∈[−1,1]

∣∣∣K(j1,0)
n−1 (1, x)

∣∣∣ = max
x∈[−1,1]

∣∣∣∣∣∣∣
n−1

∑
i=0

(
P(α,β)

i

)(j1)
(1)P(α,β)

i (x)

||P(α,β)
i (x)||2

∣∣∣∣∣∣∣
≤

n−1

∑
i=0

(
P(α,β)

i

)(j1)
(1) maxx∈[−1,1]

∣∣∣P(α,β)
i (x)

∣∣∣
||P(α,β)

i (x)||2

=
n−1

∑
i=0

(i+q
i )
(

P(α,β)
i

)(j1)
(1)

||P(α,β)
i (x)||2

=
1

Γ(q + 1)

n−1

∑
i=0

Γ(i + q + 1)
(

P(α,β)
i

)(j1)
(1)

Γ(i + 1)||P(α,β)
i (x)||2

≈ nα+2j1+q+2

2α+β+j1(α + 2j1 + q + 2)Γ(α + j1 + 1)Γ(q + 1)
,
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where we have used the Stolz–Cesàro criterion, and formulas (9), (10), and (12) to prove

lim
n→+∞

n−1

∑
i=0

Γ(i + q + 1)
(

P(α,β)
i

)(j1)
(1)

Γ(i + 1)||P(α,β)
i (x)||2

nα+q+2j1+2 = lim
n→+∞

(
P(α,β)

n−1

)(j1)
(1) Γ(n + q)

(α + q + 2j1 + 2)Γ(n)||P(α,β)
n−1 (x)||2nα+q+2j1+1

=
1

2α+β+j1(α + q + 2j1 + 2)Γ(α + j1 + 1)
.

In an analogous way,

max
x∈[−1,1]

∣∣∣K(j2,0)
n−1 (−1, x)

∣∣∣ ≤ 1
Γ(q + 1)

n−1

∑
i=0

Γ(i + q + 1)
∣∣∣∣(P(α,β)

i

)(j2)
(−1)

∣∣∣∣
Γ(i + 1)||P(α,β)

i (x)||2

≈ nβ+2j2+q+2

2α+β+j2(β + 2j2 + q + 2)Γ(β + j2 + 1)Γ(q + 1)
,

where now we have used the Stolz–Cesàro criterion again, and formulas (9), (11) and (12) to prove

lim
n→+∞

n−1

∑
i=0

Γ(i + q + 1)
∣∣∣∣(P(α,β)

i

)(j2)
(−1)

∣∣∣∣
Γ(i + 1)||P(α,β)

i (x)||2

nβ+q+2j2+2 = lim
n→+∞

Γ(n + q)
∣∣∣∣(P(α,β)

n−1

)(j2)
(−1)

∣∣∣∣
(β + q + 2j2 + 2)Γ(n)||P(α,β)

n−1 (x)||2nβ+q+2j2+1

=
1

2α+β+j2(β + q + 2j2 + 2)Γ(β + j2 + 1)
.

Finally, it is enough to apply these results together with (29) and (30) in (33) to deduce the result.

Remark 3. For the case q < −1/2, we have not obtained any result. When the inner product (1) is symmetric,
we can obtain an upper bound for this uniform norm (see [31]). The key in that case is that the Sobolev
polynomials can be expressed in terms of a finite combination of classical Gegenbauer polynomials where the
coefficients of this expansion are convergent when n tends to ∞. Unfortunately, we have not been able to get such
type of expansion for the nonsymmetric case that we are tackling in this paper. Thus, this case remains open.

5. Asymptotics of the Value r0

As we have commented in the introduction, in our case, if we compute the value of s0, then we
can guarantee the existence of r0 and obtain its explicit value.

Theorem 3. Let q = max{α, β} ≥ −1/2 be. If q = α and j1 > 0 or q = β and j2 > 0, then

s0 := lim
n→+∞

log
(

maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣)
log ($n)

=
q + 1/2

2(α + β + 2j1 + 2j2 + 3)
< 1,

where q(M,N)
n (x) denotes the orthonormal polynomials with respect to (1).

Proof. Taking into account Theorem 2, Remark 2 and the hypothesis of this theorem, we can assure
readers that there are two positive constants C1 and C2 independent of n, so that

C1nq ≤ max
x∈[−1,1]

∣∣∣Q(M,N)
n (x)

∣∣∣ ≤ C2nq. (34)
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In this way, simple algebraic manipulations lead to

log
(

maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣)
log ($n)

=
log
(

maxx∈[−1,1]

∣∣∣Q(M,N)
n (x)

∣∣∣)− log
(
||Q(M,N)

n ||S
)

log ($n)

=

log

(
maxx∈[−1,1]

∣∣∣Q(M,N)
n (x)

∣∣∣
nq

)
+ log (nq)−

(
log
(
||Q(M,N)

n ||Sn1/2
)
− log

(
n1/2

))
log
(

$n

n2(α+β+2j1+2j2+3)

)
+ log

(
n2(α+β+2j1+2j2+3)

)

=

log

(
maxx∈[−1,1]

∣∣∣Q(M,N)
n (x)

∣∣∣
nq

)
+ q log (n)−

(
log
(
||Q(M,N)

n ||Sn1/2
)
− 1/2 log (n)

)
log
(

$n

n2(α+β+2j1+2j2+3)

)
+ 2(α + β + 2j1 + 2j2 + 3) log (n)

.

Now, applying (34), the first term in the numerator of the above fraction is bounded, so taking
limits we get the result.

Corollary 1. Let q = max{α, β} ≥ −1/2 be. If q = α and j1 > 0 or q = β and j2 > 0, then

r0 = limn→+∞

log
(

n maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣2)
log($n)

= 2s0 +
1

2(α+β+2j1+2j2+3) =
2(q+1)

2(α+β+2j1+2j2+3) . (35)

Proof. We can observe

log
(

n maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣2)
log ($n)

=
log(n)

log
(

$n

n2(α+β+2j1+2j2+3)

)
+ 2(α + β + 2j1 + 2j2 + 3) log(n)

+

log
(

maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣2)
log
(

$n

n2(α+β+2j1+2j2+3)

)
+ 2(α + β + 2j1 + 2j2 + 3) log(n)

.

We claim that the limits when n tends to infinite of the two terms in the previous expression exist,
and therefore we have proven the first equality in (35). Using Theorem 1, the limit of the first term
exists and its value is

lim
n→+∞

log(n)

log
(

$n

n2(α+β+2j1+2j2+3)

)
+ 2(α + β + 2j1 + 2j2 + 3) log(n)

=
1

2(α + β + 2j1 + 2j2 + 3)
. (36)

To establish the existence of the other limit, it is enough to proceed in the same way as the proof

of Theorem 3 but taking into account that now we have maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣2 . The square modifies
the previous proof slightly. Anyway, we can prove that the limit exists and we get

lim
n→+∞

log
(

maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣2)
log
(

$n

n2(α+β+2j1+2j2+3)

)
+ 2(α + β + 2j1 + 2j2 + 3) log(n)

= 2s0. (37)

Gathering (36) and (37), we obtain the result.

Remark 4. Notice that, under the hypothesis of Theorem 3, s0 ∈ [0, 1), but r0 is strictly positive, i.e., r0 ∈ (0, 1).
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Remark 5. To establish Theorem 3, it is essential to have an upper and lower bound of the uniform norm of
Q(M,N)

n . Moreover, these bounds must be of the same order. That occurs when j1 or j2 are positive integers
although when both j1 and j2 are zero (Krall case), we cannot guarantee it. In this case, all the zeros of the
Sobolev polynomials are within the interval (−1, 1) and both limits in Lemma 4 are zero when k = 0. However,
to establish the bounds that permit proving Theorem 3, it is necessary that these limits do not vanish. We have
not found the adequate techniques to tackle this problem, so the existence of r0 in the Krall case is posed as an
open question.

Remark 6. As we have commented in Remark 1, in the symmetric case, the limit value r0 was obtained in [31].

Remark 7. We have made numerical experiments with the objective of computing experimentally the values r0

and s0. All the computations have been done with the software Mathematicar 12 (Wolfram Research Europe
Ltd, Long Hanborough Oxfordshire, United Kingdom). We have checked the convergence, but we have observed
that it is slow, for example, taking α = 3, β = 1/2, j1 = 1, j2 = 2, M = 4, and N = 5, we get

log
(

maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣)
log($n)

log
(

n maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣2)
log($n)

n = 100 0.125076 0.29941
n = 400 0.128414 0.303729
n = 1600 0.130748 0.306954

Limit s0 = 7/50 = 0.14 r0 = 8/25 = 0.32

Another example taking α = 2, β = −1/2, j1 = 3, j2 = 1, M = 2, and N = 5, we obtain

log
(

maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣)
log($n)

log
(

n maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣2)
log($n)

n = 100 0.104015 0.257152
n = 400 0.102267 0.251277
n = 1600 0.101653 0.248629

Limit s0 = 1/10 = 0.10 r0 = 6/25 = 0.24

Finally, we have checked numerically that, when the hypothesis of Theorem 3 is not satisfied, then the thesis
of the theorem will not necessarily be fullfilled. For example, with α = 3, β = 1/2, j1 = 0, j2 = 1, M = 4,
and N = 7, we have the following results:

log
(

maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣)
log($n)

log
(

n maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣2)
log($n)

n = 100 0.114743 0.299861
n = 400 0.0708432 0.209214
n = 1600 0.0494866 0.164716

Limit s0 = 7/34 ≈ 0.20588235 r0 = 8/17 ≈ 0.470588235

6. Conclusions

We have considered the nonsymmetric discrete SIP

( f , g)S =
∫ 1

−1
f (x)g(x)(1− x)α(1 + x)βdx + M f (j1)(1)g(j1)(1) + N f (j2)(−1)g(j2)(−1),

where M, N > 0, α, β > −1, and j1, j2 ∈ N ∪ {0}, which can be seen as a differential perturbation
located at the end points of the support of the Jacobi measure of the standard inner product
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( f , g) =
∫ 1

−1
f (x)g(x)(1− x)α(1 + x)βdx.

It is known that these Sobolev polynomials are eigenfunctions of a differential operator. We have
established the asymptotic behavior of the corresponding eigenvalues in Theorem 1, and we claim
that the growth of these eigenvalues is faster than the one of the eigenvalues related to the Jacobi
polynomials, concretely

Classical Jacobi Discrete Jacobi–Sobolev

Asymptotic behavior of the eigenvalues n2 n2α+2β+4j1+4j2+6

The study of the Jacobi–Sobolev orthogonal polynomials allows us to prove in Theorem 2 an
upper bound for the uniform norm of these polynomials when max{α, β} ≥ −1/2. This fact together
with Theorem 1 are the essential keys to establish in Theorem 3, under some hypothesis, the value of
the limit

lim
n→+∞

log
(

maxx∈[−1,1]

∣∣∣q(M,N)
n (x)

∣∣∣)
log ($n)

,

where q(M,N)
n (x) are the discrete Jacobi–Sobolev orthonormal polynomials and $n the corresponding

eigenvalues. Furthermore, three open problems are posed:

• Theorem 3 holds for max{α, β} ≥ −1/2, and the case when max{α, β} ∈ (−1,−1/2) remains
open.

• Theorem 3 has not been established for the Krall case, that is, when j1 = j2 = 0. Therefore, it is
another open problem.

• Numerical experiments lead us to think that Theorem 3 does not hold if we relax the hypothesis.
Thus, the question is: what is the value of the limit, if it exists, when either max{α, β} = α and
j1 = 0 or max{α, β} = β and j2 = 0?

Finally, we recall that the symmetric case was tackled in [31].
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