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Abstract: For γ ≥ 0 and α ≥ 0, we introduce the class Bγ
1 (α) of Gamma–Bazilevič functions defined

for z ∈ D by Re

{[
z f ′(z)

f (z)1−αzα
+

z f ′′(z)
f ′(z)

+ (α− 1)
(

z f ′(z)
f (z)

− 1
)]γ [ z f ′(z)

f (z)1−αzα

]1−γ
}

> 0. We shown

that Bγ
1 (α) is a subset of B1(α), the class of B1(α) Bazilevič functions, and is therefore univalent in D.

Various coefficient problems for functions in Bγ
1 (α) are also given.
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1. Introduction and Definitions

Denote by A the class of normalized analytic functions f , defined in the unit disk D, and given by

f (z) = z +
∞

∑
n=2

anzn, (1)

and by S , the subclass of A consisting of functions which are univalent in D.
A function f ∈ S is said to be convex if f maps D onto a convex set, and starlike if f maps D onto

a set star-shaped with respect to the origin. Let C and S∗ denote the classes of convex and starlike
functions in S respectively. Then f ∈ C if and only if Re (1 + (z f ′′(z)/ f ′(z))) > 0 for z ∈ D. Similarly,
f ∈ S∗ if and only if Re (z f ′(z)/ f (z)) > 0 for z ∈ D.

For α ∈ R, the classMα of α-convex functions defined by,

Re
{

α

(
1 +

z f ′′(z)
f ′(z)

)
+ (1− α)

(
z f ′(z)

f (z)

)}
> 0,

for z ∈ D and
f (z)

z
f ′(z) 6= 0 is well known. Introduced by Miller, Mocanu and Reade [1], many

interesting properties for functions inMα have been found (See e.g., [2,3]).
Denote byMγ the analogue ofMα in term of powers, defined for γ ∈ R by

Re

{(
1 +

z f ′′(z)
f ′(z)

)γ ( z f ′(z)
f (z)

)1−γ
}

> 0,

for z ∈ D. The classMγ was introduced in [4], and many interesting properties of functions inMγ

have been found. It was shown in [4] thatMγ is a subset of S∗. Further, sharp bounds for |a2|and|a3|
were obtained, together with the sharp Fekete–Szegö theorem. Other result can be found in [5,6].

The purpose of this paper is to introduce an analogue ofMγ for Bazilevič functions. We first
recall the Bazilevič functions B1(α) introduced by Singh in 1973, which form a natural subset of S as
follows [7].
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Definition 1. Let f ∈ A. Then for α ≥ 0, f ∈ B1(α) if, and only if, for z ∈ D,

Re

[
f ′(z)

(
f (z)

z

)α−1
]
> 0.

We next introduce the Gamma–Bazilevič functions as follows, noting that we restrict our definition
γ ≥ 0 merely for convenience.

Definition 2. Let f ∈ A, with f (z) 6= 0 and f ′(z) 6= 0. For γ ≥ 0 and α ≥ 0, a function f ∈ A is said to be
Gamma–Bazilevič if, for z ∈ D,

Re

{[
z f ′(z)

f (z)1−αzα
+

z f ′′(z)
f ′(z)

+ (α− 1)
(

z f ′(z)
f (z)

− 1
)]γ [ z f ′(z)

f (z)1−αzα

]1−γ
}

> 0.

We denote this class by Bγ
1 (α).

Clearly B0
1(α) = B1(α), and Bγ

1 (0) =Mγ. We also note that when α = 1 and γ = 0, we obtain
the classR of functions whose derivative has a positive real part, and that when α = 0 and γ = 0 we
obtain the starlike functions, and when α = 0 and γ = 1 we obtain the convex functions.

We also note that when γ = 1, we obtain the following new class Bγ
1 (1), which forms a subset

ofR.

Re
{

f ′(z) +
z f ′′(z)
f ′(z)

}
> 0.

2. Preliminaries

We begin by stating two Lemmas which we will use in what follows.

Lemma 1 (Nunokawa, [8]). Let p be analytic in D, with p(z) 6= 0 and p(0) = 1. If there exists z0 ∈ D, such
that |arg p(z0)| <

απ

2
for |z| < |z0|, and |arg p(z0)| =

απ

2
for some α > 0, then

z0 p′(z0)

p(z0)
= ikα,

where

k ≥ 1
2

(
a +

1
a

)
when arg p(z0) = α

π

2
,

and

k ≤ −1
2

(
a +

1
a

)
when arg p(z0) = −α

π

2
,

and where p1/α(z0) = ±ia for a > 0.

Let P be the class of function h satisfying Re h(z) > 0 for z ∈ D, with expansion

h(z) = 1 +
∞

∑
n=1

cnzn. (2)

We shall use the following results concerning the coefficients cn of h ∈ P , which can be found in [9].

Lemma 2. If h ∈ P and be given by (2), then |cn| ≤ 2 for n ≥ 1, and

∣∣∣c2 −
µ

2
c2

1

∣∣∣ ≤ max{2, 2|µ− 1|} =
{

2, 0 ≤ µ ≤ 2,
2|µ− 1|, elsewhere.
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3. Gamma-Bazilevič Functions

We first show Bγ
1 (α) ⊂ B1(α), so that functions in Bγ

1 (α) are univalent in D.

Theorem 1. Let f ∈ A. Then for γ ≥ 0 and α ≥ 0,

Re

{[
z f ′(z)

f (z)1−αzα
+

z f ′′(z)
f ′(z)

+ (α− 1)
(

z f ′(z)
f (z)

− 1
)]γ [ z f ′(z)

f (z)1−αzα

]1−γ
}

> 0

implies

Re
{

z f ′(z)
f (z)1−αzα

}
> 0,

for z ∈ D. Thus Bγ
1 (α) ⊂ B1(α).

Proof. Let p(z) =
z f ′(z)

f (z)1−aza , then

p(z) +
zp′(z)
p(z)

=
z f ′(z)

f (z)1−αzα
+

z f ′′(z)
f ′(z)

+ (α− 1)
(

z f ′(z)
f (z)

− 1
)

.

Now note that p(z) is analytic in D with p(z) 6= 0 and p(0) = 1. Suppose that there exists a point

z0 ∈ D, such that |arg p(z0)| <
π

2
for |z| < |z0| and |arg p(z0)| =

π

2
. Then by Lemma 1,

z0 p′(z0)

p(z0)
= ik,

where

k ≥ 1
2

(
a +

1
a

)
when arg p(z0) =

π

2
,

and

k ≤ −1
2

(
a +

1
a

)
when arg p(z0) = −

π

2
,

and where p(z0) = ±ia for a > 0.
There are two cases.
Case 1. If arg p(z0) =

π

2
, then

arg
{(

p(z0) +
z0 p′(z0)

p(z0)

)γ

p(z0)
1−γ

}
= γ arg

[
p(z0) +

z0 p′(z0)

p(z0)

]
+ (1− γ) arg p(z0)

= γ arg(ia + ik) + (1− γ)
π

2

= γ
π

2
+ (1− γ)

π

2

=
π

2
,

where p(z0) = ia and k ≥ 1
2

(
a +

1
a

)
.

Case 2. If arg p(z0) = −
π

2
, then
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arg
{(

p(z0) +
z0 p′(z0)

p(z0)

)γ

p(z0)
1−γ

}
= γ arg

[
p(z0) +

z0 p′(z0)

p(z0)

]
+ (1− γ) arg p(z0)

= γ arg(−ia + ik)− (1− γ)
π

2

= −γ
π

2
− (1− γ)

π

2

= −π

2
,

where p(z0) = −ia and k ≤ − 1
2

(
a +

1
a

)
. Therefore, we have a contradiction. There is thus no point

z0 ∈ D such that |arg p(z0)| <
π

2
for |z| < |z0|, and |arg p(z0)| =

π

2
.

4. Initial Coefficients

We first find expressions for a2 and a3 in terms of the coefficients of h ∈ P .
It follows from Definition 2 that we can write,[

z f ′(z)
f (z)1−αzα

+
z f ′′(z)
f ′(z)

+ (α− 1)
(

z f ′(z)
f (z)

− 1
)]γ [ z f ′(z)

f (z)1−αzα

]1−γ

= h(z), (3)

where h ∈ P .
Equating coefficients in (3) gives

a2 =
c1

(1 + α)(1 + γ)
,

a3 =
1

(2 + α)(1 + 2γ)

(
c2 −

(α2γ2 − α2γ + α2 + 2αγ2 − 4αγ + α + γ2 − 7γ− 2)
2(1 + α2)(1 + γ)2 c2

1

)
.

(4)

We now extend coefficient results given in [6] for the coefficients ofMγ and the results of Singh [7]
for B1(α), noting that the bounds for |a2| and |a3| hold for all γ ≥ 0 and α ≥ 0.

Theorem 2. If f ∈ Bγ
1 (α) and is given by (1), then

|a2| ≤
2

(1 + α)(1 + γ)
,

|a3| ≤
2

(2 + α)(1 + 2γ)
,

when 0 ≤ γ ≤ 1
2

(
7 +
√

57
)

and α ≥ −1 + 4γ− 2γ2

2 (1− γ + γ2)
+

1
2

√
9 + 12γ− 4γ2 + 16γ3

(1− γ + γ2)
2 ,

and when γ >
1
2

(
7 +
√

57
)

.
Also

|a3| ≤
2(3 + α + 9γ + 8αγ + 3α2γ)

(1 + α)2(2 + α)(1 + γ)2(1 + 2γ)
,

when 0 ≤ γ <
1
2

(
7 +
√

57
)

and 0 ≤ α <
−1 + 4γ− 2γ2

2 (1− γ + γ2)
+

1
2

√
9 + 12γ− 4γ2 + 16γ3

(1− γ + γ2)
2 ,

all the inequalities are sharp.
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Proof. The first inequality in Theorem 2 follows at once from (4) since |c1| ≤ 2.
For |a3|, from (4) we use Lemma 2, and write

|a3| =
1

(2 + α)(1 + 2γ)

∣∣∣∣c2 −
(α2γ2 − α2γ + α2 + 2αγ2 − 4αγ + α + γ2 − 7γ− 2)

2(1 + α2)(1 + γ)2 c2
1

∣∣∣∣ .

Then in Lemma 2, let

µ =
(α2γ2 − α2γ + α2 + 2αγ2 − 4αγ + α + γ2 − 7γ− 2)

(1 + α2)(1 + γ)2 ,

so that applying Lemma 2 gives the inequalities for |a3|.
The inequality for |a2| is sharp when c1 = 2. The first inequality for |a3| is sharp when c1 = 0 and

c2 = 2, and the second inequality for |a3| is sharp when c1 = c2 = 2, which completes the proof of
Theorem 2.

5. Fekete–Szegö Theorem

We next establish sharp Fekete–Szegö inequalities for Bγ
1 (α), which extends those given in [7] for

B1(α), and in [4] forMγ.

Theorem 3. Let f ∈ Bγ
1 (α). Then for ν ∈ R,

|a3 − νa2
2| ≤



2
(
3α2γ + α(−4γ(ν− 2)− 2ν + 1) + γ(9− 8ν)− 4ν + 3

)
(1 + α)2(2 + α)(1 + γ)2(1 + 2γ)

if ν ≤
α2 (−γ2)+ α2γ− α2 − 2αγ2 + 4αγ− α− γ2 + 7γ + 2

4αγ + 2α + 8γ + 4
,

2
(2 + α)(1 + 2γ)

,

if
α2 (−γ2)+ α2γ− α2 − 2αγ2 + 4αγ− α− γ2 + 7γ + 2

4αγ + 2α + 8γ + 4
≤ ν

≤ α2γ2 + 5α2γ + α2 + 2αγ2 + 12αγ + 3α + γ2 + 11γ + 4
4αγ + 2α + 8γ + 4

,

−
2
(
3α2γ + α(−4γ(ν− 2)− 2ν + 1) + γ(9− 8ν)− 4ν + 3

)
(1 + α)2(2 + α)(1 + γ)2(1 + 2γ)

if ν ≥ α2γ2 + 5α2γ + α2 + 2αγ2 + 12αγ + 3α + γ2 + 11γ + 4
4αγ + 2α + 8γ + 4

.

All the inequalities are sharp.

Proof. From (4) we obtain

|a3 − νa2
2| =

2
(2 + α)(1 + 2γ)

∣∣∣c2 −
µ

2
c2

1

∣∣∣ ,

with

µ =
−2 + α + α2 − 7γ− 4αγ− α2γ + γ2 + 2αγ2 + α2γ2 + 4ν + 2αν + 8γν + 4αγν

(1 + α)2(1 + γ)2 .
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Applying Lemma 2, µ ∈ [0, 2] whenever

α2 (−γ2)+ α2γ− α2 − 2αγ2 + 4αγ− α− γ2 + 7γ + 2
4αγ + 2α + 8γ + 4

≤ ν

≤ α2γ2 + 5α2γ + α2 + 2αγ2 + 12αγ + 3α + γ2 + 11γ + 4
4αγ + 2α + 8γ + 4

,

gives the second inequality.
When µ outside [0, 2], Lemma 2 gives the first inequality when

ν ≤
α2 (−γ2)+ α2γ− α2 − 2αγ2 + 4αγ− α− γ2 + 7γ + 2

4αγ + 2α + 8γ + 4
,

and the third inequality when

ν ≥ α2γ2 + 5α2γ + α2 + 2αγ2 + 12αγ + 3α + γ2 + 11γ + 4
4αγ + 2α + 8γ + 4

.

The second inequality is sharp when c1 = 0 and c2 = 2. The first and third inequalities are sharp
when c1 = c2 = 2. This completes the proof of Theorem 3.

6. Logarithmic Coefficients

The logarithmic coefficients gn of f are defined in D by

log
f (z)

z
= 2

∞

∑
n=1

gnzn. (5)

Differentiating (5) and equating coefficients gives

g1 =
1
2

a2,

g2 =
1
2
(a3 −

1
2

a2
2),

g3 =
1
2
(a4 − a2a3 +

1
3

a3
2).

For f ∈ Bγ
1 (α), we give sharp bounds for |gn| when n = 1, 2, which extend those given in [10]

and [6].

Theorem 4. Let f ∈ Bγ
1 (α), then

|g1| ≤
1

(1 + α)(1 + γ)
when γ ≥ 0 and α ≥ 0,

|g2| ≤
1

(2 + α)(1 + 2γ)
, when 0 ≤ γ ≤ 3 and α ≥ −1 +

√
1 + 2γ

1− γ + γ2 ,

and when γ > 3 and α ≥ 0.
Further,

|g2| ≤
1 + (5 + 6α + 3α2)γ

(1 + α)2(2 + α)(1 + γ)2(1 + 2γ)
, when 0 < γ < 3 and 0 ≤ α < −1 +

√
1 + 2γ

1− γ + γ2 .
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All the inequalities are sharp.

Proof. We note first that since |c1| ≤ 2, the inequality |g1| ≤
1

(1 + α)(1 + γ)
is trivial.

The result for |g2| follows at once from the above Fekete–Szegö theorem in the case µ = 1/2. For
the first inequality, we use the second inequality in Theorem 3, and for the second inequality we use
the first inequality in Theorem 3.

We note that the inequality for |g1| is sharp when c1 = 2. The first inequality for |g2| is sharp
when c2 = 2 and c1 = 0, and the second inequality is sharp when choosing c1 = c2 = 2. This completes
the proof of Theorem 4.

Remark 1. Finding sharp upper bounds for |gn| for all n ≥ 3 when f ∈ Bγ
1 (α) remains an open problem. In

the case α = 0, sharp results for n = 1, 2, 3 have been obtained in [6]. For γ = 0, it was shown in [10] that

|gn| ≤
1

n + α
,

for n = 1, 2, 3.

7. Inverse Coefficients

For any univalent function f there exists an inverse function f−1 defined on some disc |ω| < r0( f ),
with Taylor expansion

f−1(ω) = ω + A2ω2 + A3ω3 + A4ω4 + ... (6)

Suppose that Bγ
1 (α)

−1 is the set of inverse functions f−1 of Bγ
1 (α), given by (6). Then f ( f−1(ω)) =

ω, and equating coefficients gives

A2 = −a2,

A3 = 2a2
2 − a3.

We prove the following, noting again that the inequalities for |A2| and |A3| hold for all γ ≥ 0 and
α ≥ 0 thus extending results extend in [10] and [6].

Theorem 5. Let f ∈ Bγ
1 (α) and f−1 be given by (6), then

|A2| ≤
2

(1 + α)(1 + γ)
,

|A3| ≤
2

(2 + α)(1 + 2γ)
,

when 0 ≤ γ ≤ 1
2

(
5 +
√

41
)

and α ≥ 1− 4γ− 2γ2

2 (1 + 5γ + γ2)
+

1
2

√
17 + 92γ + 124γ2 + 16γ3

(1 + 5γ + γ2)
2 ,

and when γ >
1
2

(
5 +
√

41
)

.
Further,

|A3| ≤
10 + 6α + 14γ− 6α2γ

(1 + α)2(2 + α)(1 + γ)2(1 + 2γ)
,

when 0 ≤ γ <
1
2

(
5 +
√

41
)

and 0 ≤ α <
1− 4γ− 2γ2

2 (1 + 5γ + γ2)
+

1
2

√
17 + 92γ + 124γ2 + 16γ3

(1 + 5γ + γ2)
2 .

All the inequalities are sharp.
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Proof. We again use the expressions for the coefficients given in (4).
Since (1 + α)(1 + γ)a2 = c1 and |c1| ≤ 2, the first inequality is trivial.

Next we note that from (4)

|A3| =
1

(2 + α)(1 + 2γ)

∣∣∣c2 −
(α2γ2 − α2γ + α2 + 2αγ2 + 4αγ + 5α + γ2 + 9γ + 6)

2(1 + α)2(1 + γ)2 c2
1

∣∣∣.
Let

µ =
(α2γ2 − α2γ + α2 + 2αγ2 + 4αγ + 5α + γ2 + 9γ + 6)

(1 + α)2(1 + γ)2 ,

and applying Lemma 2 gives the required inequalities.
The inequality for |A2| is sharp when c1 = 2. The first inequality for |A3| is sharp on choosing

c1 = 0 and c2 = 2, and the second inequality is sharp when c1 = c2 = 2. This completes the proof of
Theorem 5.

Remark 2. Clearly finding sharp bounds for |a4| and |A4| appears to be far more difficult, and requires
significantly more analysis. We note that applying the often used lemmas in [9] fails to give sharp results.

We also note that even when γ = 1, the analysis for |a4| and |A4| is far from simple, and appears to require
methods deeper than those used or mentioned in this paper.
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