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Abstract: This paper is devoted to the study of the stability of finite-dimensional distribution of
time-inhomogeneous, discrete-time Markov chains on a general state space. The main result of the
paper provides an estimate for the absolute difference of finite-dimensional distributions of a given
time-inhomogeneous Markov chain and its perturbed version. By perturbation, we mean here small
changes in the transition probabilities. Stability estimates are obtained using the coupling method.
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1. Introduction

The stability of Markov chains is an important topic that has attracted the interest of researchers
for multiple recent decades. A noticeable contribution to the stability theory of Markov chains has
been done by Tuominen, Thorisson, Tweedie (see [1,2]), and others.

There are many various problems related to the stability of Markov chains and many various
methods of investigation, respectively. We can refer the reader to the book [3] that is devoted to the
stability of time-homogeneous Markov chains. Its results are established using the tools of functional
analysis and extending methods introduced by D. Revuz, one of the founders of the modern Markov
chains theory (see [4]). It turns out, however, that such methods can not be easily extended to the
time-inhomogeneous case and also they do not always allow a clear probabilistic interpretation.
Other approaches that are used nowadays are splitting and coupling methods. The splitting method
was used in the classical book [5], in order to derive the whole modern theory of Markov chains.
The coupling method, which has some similarities to the splitting, but different in nature, was first
introduced by Doeblin in [6] in 1938 and later described in the famous monographs [7,8]. This method
is purely probabilistic and can be used to study both time-homogeneous and time-inhomogeneous
Markov chains, and allows to get various stability results (see [9,10]).

For example, in the papers [11–13], the coupling method is used to obtain the ergodic properties
of a Markov chain and the stability estimate of the form ||λPn(x, ·) − µPn(x, ·)|| for the transition
probabilities of the same chain that starts from various initial distributions. In the paper [14],
the coupling method is used to get the results in the time-inhomogeneous situation.

In this paper, we study the stability of the discrete-time, perturbed Markov chain on a general
state space. Original and perturbed chains could be time-inhomogeneous. The main result of this
paper is to obtain a stability estimate for finite-dimensional distributions of the form

|Px{X(1)
1 ∈ B1, X(1)

2 ∈ B2, . . . , X(1)
n ∈ Bn} − Px{X(2)

1 ∈ B1, X(2)
2 ∈ B2, . . . , X(2)

n ∈ Bn}|.
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We construct a special coupling process for two different time-inhomogeneous Markov chains. Similar
coupling processes are used in papers [15–17] to get various stability estimates under different
conditions for time-homogeneous and time-inhomogeneous Markov chains.

Stability properties of Markov chains, including finite-dimensional stability for discrete-space
chains, is also studied in papers [18–20] using another variation of the coupling method called
“maximal coupling”. Those stability results are applied to the analysis of the impact of the stress
factor in the “widow pension” actuarial model in papers [21,22].

This paper is organized as follows. Section 2 includes the main notations and assumptions, such
as minorization and uniform proximity conditions. Section 3 has a description of the coupling space
specially constructed for the coupling of two different time-inhomogeneous Markov chains. Section 4
includes auxiliary lemmas that serve as the tools for the main results. Section 5 has the main theorem
of the paper. Section 6 is devoted to the case when the uniform proximity condition does not hold.
Section 7 includes a summary of the main results, comparison with other classical results in a similar
area, and possible directions of the research.

2. Notation and Main Assumptions

Consider a pair of time-inhomogeneous, independent, discrete-time Markov chains X(1)
n and X(2)

n ,
defined on the probability space (Ω,F,P), with the values in the general state space (E,E), where E is
some set and E is a -σ-field.

For a given transition kernel K : E× E→ [0, ∞) and probability measure µ(dx), we will define a
measure µK(dx) as follows:

µK(A) =
∫

E
µ(dx)K(x, A).

The one step transition probabilities will be denoted as follows:

Pit(x, A) = P{X(i)
t+1 ∈ A|X(i)

t = x},

where t ∈ N0, and N0 is the set of non-negative integers, i ∈ {1, 2}.
Throughout the paper, it will be assumed that the transition probabilities of the chains X(1) and

X(2) can be represented in the following way:

Pit(x, A) = Qt(x, A) + (1−Qt(x, E))Rit(x, A). (1)

Here, Qt is a substochastic kernel, such that 0 ≤ Qt(x, E) ≤ 1 for each x ∈ E, and Rit are
transition kernels. In representation (1), Qt plays a role of a “common part” of two chains and Rit is
the “distinguishing parts”. Note that such representation is always possible for any two transition
probabilities (for example, by setting Qt(x, A) = 0, Rit = Pit). However, later we shall impose a
condition that requires Qt(x, E) to be separated from 0.

Next condition plays a crucial role in the coupling construction used in the present paper.
(M) For every t ≥ 0, there exists a probability measure νt defined on the state space (E,E), and
constant αt ∈ (0, 1) such that, for all x ∈ E, A ∈ E and i ∈ {1, 2}

Pit(x, A) ≥ αtνt(A). (2)

In addition, we assume that α := inft≥0 αt ∈ (0, 1).
Assume that {Bk, k ≥ 0} is some collection of sets from E, and let

B(t)
n = ⊗n

j=1Bt+j.
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Denote O ⊂ N0 as the set of indices such that ν(Bk) = 0 if and only if k ∈ O. Finally, denote a set

O
(t)
n = O∩ {t, . . . , t + n− 1}, n ≥ 1

and let
k(t)n = card(O(t)

n ) (3)

be a number of elements in the set O(t)
n . We need also a notation for the smallest non-zero value

of ν(Bk):
b(t)n = min

k/∈O(t)
n

ν(Bk) > 0.

Our goal is to give the upper bounds for the difference of probabilities for the chains X(i)
n not to

leave sets Bk for t ≤ k ≤ t + n.
In order to do this, we shall impose various conditions on Qt to ensure that chains X(1) and X(2)

are close enough. The most obvious condition that will be used is a uniform proximity condition. It is
formulated as follows:

(U) The following upper bound holds:

ε
(t)
n := sup

x∈E,t≤k≤t+n
(1−Qt(x, Bk)) < 1. (4)

Later, we shall relax condition (4) to allow Qt(x, Bk) to reach 0 for some t.
In addition, we need a condition related to the properties of the sets Bn, n ≥ 0. Thus, we shall

introduce the following domination condition.

(D) There exists a real-valued sequence Sn ≥ 0, n ≥ 0 with a finite sum m = ∑
k≥0

Sk < ∞, such that

∫
Bt

ν(dx)
∫

B(t)
n

Qt(x, dy1)Qt+1(y1, dy2) . . . Qt+n(yn, Bt+n+1) ≤ Sn. (5)

This condition can be referred as a requirement for the expectation of time, spent by a chain in the
sets Bn, to be finite.

3. Coupling of Two Independent Time-Inhomogeneous Markov Chains with Different
Transition Probabilities

Our goal is to construct a coupling for chains X(1) and X(2) using the minorization condition (M).
Let us introduce the following “non-coupling” operator:

Tt(x1, x2; A, B) =
P1t(x1, A)− αtνt(A)

1− αt

P2t(x2, B)− αtνt(B)
1− αt

. (6)

Please note that Tt is a stochastic operator in the sense that

Tt(x1, x2; E, E) = 1.

In addition, it is obvious that

Tt(x1, x2; A, E) =
P1t(x1, A)− αtνt(A)

1− αt
, Tt(x1, x2; E, A) =

P2t(x2, A)− αtνt(A)

1− αt
.
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To construct a coupling, let us consider the Markov chain Zn = (Z1n, Z2n, dn), n ≥ 0 with the
state space (E× E× {0, 1, 2}). For the chain Zn, we define transition probabilities as follows:

Pt(x, y, 0; A, B, {0}) = (1− αt)Tt(x, y, A, B),
Pt(x, y, 0; A, B, {1}) = αtνt(A ∩ B),
Pt(x, y, 0; A, B, {2}) = 0,
Pt(x, x, 1; A, B, {0}) = (1−Qt(x, E))R1t(x, A)R2t(x, B),
Pt(x, x, 1; A, B, {1}) = 0,
Pt(x, x, 1; A, B, {2}) = Qt(x, A ∩ B),
Pt(x, y, 2; A, B, {i}) = Pt(x, y, 1; A, B, {i}),

(7)

where Qt, R1t, and R2t are defined in (1), and Tt is defined in (6).
We can give the following interpretation of the chain defined by formulas (7). The chain can be

in one of two principal “modes”, coupled mode, when d ∈ {1, 2} or decoupled mode, when d = 0.
If the chain is coupled at the moment t and has a value x ∈ E (in the coupled mode Z(1)

n = Z(2)
n ),

we flip the coin with the probability of success Qt(x, E). In the case of success, the chain remains
coupled, and we render the next state with a probability proportional to Qt(x, ·). Otherwise, with
probability 1−Qt(x, E), the chain is moving to the decoupled mode and is splitting into two values y
and z rendered with probabilities R1t(x, dy) and R2t(x, dz), respectively.

In the decoupled mode, the chain is two-dimensional and is moving according to two independent
trajectories, each governed by (Pit(x, ·)− αtνt(·))/(1− αt). We can interpret this motion as follows.
If the chain is decoupled, we flip a coin with the probability of success αt. In the case of success, the
chain is coupling on the step t + 1, and the next value is rendered with a probability νt(·) so that,
in this case, dt+1 = 1. Otherwise, with probability 1− αt, the chain remains decoupled and renders
values of the next step according to the Tt. Thus, the chain trajectory could be decomposed into cycles
of coupling–decoupling, which is a key idea of proofs of the results in this paper.

Denote by P(t)
xyd a probability on a canonical probability space for the chain Z with transition

probabilities Pt, starting at the moment t from the state Zt = (x, y, d), x, y ∈ E, d ∈ {0, 1, 2}.
Symbol E(t)

xyd denotes corresponding expectation. Let us also define P(t)
ν1 (·) :=

∫
E ν(dx)P(t)

xx1(·) and

corresponding expectation E(t)
ν1 . Introduce a special notation for the first decoupling after the moment t:

τ(t) = inf{n ≥ t : dn = 0},

and, in order to simplify further calculations, we shall introduce a special notation for some of the
probabilities related to the coupling. Namely, for all i ∈ {1, 2}, t ≥ 0, n ≥ 1, x, y ∈ Bt and z, w, v ∈ E,
we put

u(t)
i,n (x) := P(t)

xx1{dt+n = 1, Z(i)
t+k ∈ Bt+k, k = 1, n− 1}, n ≥ 2, (8)

q(t)n (dy) := P(t)
ν1 {dt+k = 2, Z(t)

t = Z(2)
t ∈ Bt, Z(1)

t+k = Z(2)
t+k ∈ Bt+k, Z(1)

t+n = Z(2)
t+n ∈ dy, k = 1, n}, (9)

h(t)i,n (x, y; dz, dw) := P(t)
xy0{dt+k = 0, Z(i)

t+k ∈ Bt+k, Z(1)
t+n ∈ dz, Z(2)

t+n ∈ dw, k = 1, n}, (10)

Rn(z, dw, dv) := R1n(z, dw)R2n(z, dv), (11)

p(t)i,n (x) = P(t)
xx1{Z

(i)
t+k ∈ Bt+k, k = 1, n}. (12)

We put u(t)
i,0 (x) = u(t)

i,1 (x) = 0 and q(t)0 (dy) = 0.

4. Auxiliary Lemmas

In this section, we shall introduce auxiliary lemmas that play an important role in getting the
proofs of the main result.
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Lemma 1. For all i ∈ {1, 2}, x ∈ Bt, t ≥ 0, n ≥ 2, the following inequality holds true:

n

∑
k=0

u(t)
i,k (x)q(t+k)

n−k (E) ≤ p(t)i,n (x) ≤ 1,

where p(t)i,n (x) is defined in (12).

Proof. Using definitions (7), (8) and denoting D := {0, 1, 2}, we can write:

u(t)
1,k(x) = P(t)

xx1{dt+k = 1, Z(1)
t+j ∈ Bt+j, j = 1, k− 1} =

∫
Bt+1×E×D

Pt(x, x, 1; du1, dv1, dz1)×

×
∫

Bt+2×E×D
Pt+1(u1, v1, z1; du2, dv2, dz2) . . .

∫
E×E×{1}

Pt+k−1(ut+k−1, vt+k−1, 0; dut+k, dvt+k, 1) =

=
∫

Bt+1×E×D
Pt(x, x, 1; du1, dv1, dz1) . . .Pt+k−2(ut+k−2, vt+k−2, zt+k−2; Bt+k−1, E, 0)αt+k−1νt+k−1(E).

Thus, we established the equality

u(t)
1,k(x) =

∫
Bt+1×E×D

Pt(x, x, 1; du1, dv1, dz1) . . .Pt+k−2(ut+k−2, vt+k−2, zt+k−2; Bt+k−1, E, 0)αt+k−1. (13)

Obviously, the similar equality holds true for u(t)
2,k. Now, using definitions (7) and (9), we can write:

q(t+k)
n−k (E) =

∫
Bt+k

νt+k−1(dx)
∫

Bt+k+1

Qt+k+1(x, dx1) . . .
∫

Bt+n
Qt+n−1(xn−k−1, dxn−k). (14)

Combining (13) and (14), we get that

u(t)
1,k(x)q(t+k)

n−k (E) =
∫

Bt+1×E×D
Pt(x, x, 1; du1, dv1, dz1) . . .Pt+k−2(ut+k−2, vt+k−2, zt+k−2; Bt+k−1, E, 0)×

×αt+k−1

∫
Bt+k

νt+k−1(dx)
∫

Bt+k+1

Qt+k+1(x, dx1) . . .
∫

Bt+n
Qt+n−1(xn−k−1, dxn−k).

Using (7), we can see that, for any u, v ∈ E,

αt+k−1
∫

Bt+k
νt+k−1(dx)

∫
Bt+k+1

Qt+k+1(x, dx1) . . .
∫

Bt+n
Qt+n−1(xn−k−1, dxn−k) =

=
∫

Bt+k
Pt+k−1(x, y, 0; dut+k, dut+k, 1)×

×
∫

Bt+k+1
Pt+k(ut+k, ut+k, 1; dut+k+1, dut+k+1, 2) . . .Pt+n(ut+n−1, ut+n−1, 2; Bt+n, Bt+n, 2).

(15)

Finally, combining (13)–(15), we obtain the following equality:

u(t)
1,k(x)q(t+k)

n−k (E) =
∫

Bt+1×E×D
Pt(x, x, 1; du1, dv1, dz1) . . .×

∫
Bt+k−1×E×{0}

Pt+k−2(ut+k−2, vt+k−2, zt+k−2; dut+k−1, dvt+k−1, dzt+k−1)×

×
∫

Bt+k×E×{1}
Pt+k−1(ut+k−1, vt+k−1, 0; dut+k, dut+k, dzt+k)×

×
∫

Bt+k+1

Pt+k(ut+k, ut+k, 1; dut+k+1, dut+k+1, 2) . . . Pt+n(ut+n−1, ut+n−1, 2; Bt+n, Bt+n, 2) =

= P(t)
xx1{dt+k = 1, dt+k+l = 2, l = 1, n− k, Z(1)

t+j ∈ Bt+j, j = 1, n}.
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Taking into account the similar equality for u(t)
2,k, we we can state that

u(t)
i,k (x)q(t+k)

n−k (E) = P(t)
xx1{dt+k = 1, dt+k+l = 2, l = 1, n− k, Z(i)

t+j ∈ Bt+j, j = 1, n}. (16)

Furthermore, using (16), we can derive that

n

∑
k=0

u(t)
i,k (x)q(t+k)

n−k (E) =
n

∑
k=0

P(t)
xx1{dt+k = 1, dt+k+l = 2, l = 1, n− k, Z(i)

t+j ∈ Bt+j, j = 1, n} ≤

≤ P(t)
xx1{dt+n = 2, Z(i)

t+j ∈ Bt+j, j = 1, n} ≤ p(t)i,n (x) ≤ 1.

The next lemma gives an upper bound for a probability of a non-coupling during certain period.
Here, k(t)n is a cardinality of the set O(t)

n .

Lemma 2. Assume that b(t)n α < 1. Then, for all i ∈ {1, 2}, x, y ∈ Bt, t ≥ 0 and n ≥ 0, the following
inequality holds true:

h(t)i,n (x, y; E, E) ≤ (1− b(t)n α)−k(t)n (1− b(t)n α)n.

Proof. Taking the notation (7) for the transition probabilities and the notation (10) for h(t)i,n , we can
derive the following relation:

h(t)1,n(x, y; E, E) =
n−1

∏
k=0

(1− αt+k)
∫

Bt+1×E
Tt(x, y; dx1, dy1)×

∫
Bt+2×E

Tt+1(x1, y1; dx2, dy2) . . .
∫

Bt+n×E
Tt+n−1(xn−1, yn−1; dxn, dyn).

A similar formula holds true for h(t)2,n(x, y; E, E). Thus, we can write:

h(t)i,n (x, y; E, E) =
n−1

∏
k=0

(1− αt+k)T̃
t,n
i (x, y; E, E),

where operator T̃1,t(x, y; du, dv) = Tt(x, y; du ∩ Bt+1, dv), T̃2,t = Tt(x, y; du, dv ∩ Bt+1), Tt is defined
in (6) and

T̃t,n
i =

n−1

∏
k=0

T̃i,t+k.

Here, index n stands for the number of terms in the product.
We have:

n−1

∏
k=0

(1− αt+k)T̃
t,n
i (x, y; E× E) =

∫
B(t)

n

(Pit(x, dy1)− αtνt(dy1)) . . . (Pit+n−1(yn−1, Bt+n)− αt+n−1νt+n−1(Bt+n))

Let us consider the value Pit(y, Bt+1)− αtνt(Bt+1). If t + 1 /∈ O, then ν(Bt+1) ≥ b(t)n , for all n ≥ 1, so:

Pit(y, Bt+1)− αtνt(Bt+1) ≤ 1− αtb
(t)
n ≤ 1− αb(t)n .

If t + 1 ∈ O, then

Pit(y, Bt+1)− αtνt(Bt+1) ≤ 1 =
1− αb(t)n

1− αb(t)n

.
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Finally, we can derive

h(t)i,n (x, y; E, E) =
n−1

∏
k=0

(1− αt+k)T̃
t,n
i (x, y; E, E)

≤
n−1

∏
j=0

(
sup
y∈E

Pit+j(y, Bt+j+1)− αt+jνt+j(Bt+j+1)

)
≤

≤ (1− αb(t)n )n

(1− αb(t)n )k(t)n
= (1− αb(t)n )n−k(t)n = (1− b(t)n α)−k(t)n (1− b(t)n α)n.

Next, three lemmas play a key role in the subsequent proof of the main result of the paper.

Lemma 3. Assume that b(t)n α < 1. Then, for all i ∈ {1, 2}, t ≥ 0, n ≥ 1 and x ∈ Bt, the following inequality
holds true:

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, k = 1, n, dt+n = 0} ≤ ε

(t)
n

1− (1− b(t)n α)n−1

b(t)n α(1− b(t)n α)k(t)n
,

where ε
(t)
n is defined in (4).

Proof. In the case n = 1, the statement of the lemma is obvious. Thus, we shall consider the case
n ≥ 2. Using definitions (7)–(11) of the corresponding probabilities and considering the last coupling
time k ≥ 0 and the last decoupling time 1 ≤ j ≤ n− k, we can decompose probability P(t)

xx1{Z
(i)
t+k ∈

Bt+k, dt+n = 0, k = 1, n}, in the following way

P(t)
xx1{Z

(1)
t+k ∈ Bt+k, dt+n = 0, k = 1, n} =

=
n−1

∑
k=0

n−k

∑
j=1

∫
Bt+k

∫
Bt+k+1×E

u(t)
1,k(x)q(t+k)

j−1 (dy)(1−Qt+k+j(y, E))×

×Rt+k+j(y, du, dv)h(t+k+j)
n−k−j (u, v; E, E) ≤

≤ ε
(t)
n (1− b(t)n α)−k(t)n

n−1

∑
k=0

n−k

∑
j=1

u(t)
1,k(x)q(t+k)

j−1 (E)(1− b(t)n α)n−k−j.

In the last inequality, we used definition (4) of ε
(t)
n , Lemma 2, and the fact that Rit(x, E) = 1. Now,

we can change the order of summation in the previous inequality and derive that

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, dt+n = 0, k = 1, n} ≤ ε

(t)
n (1− b(t)n α)−k(t)n

n

∑
j=1

(1− αb(t)n )j−1×

×
n−j

∑
k=0

u(t)
1,k(x)q(t+k)

n−j−k(E),

Using Lemma 1, we get
n−j
∑

k=0
u(t)

1,k(x)q(t+k)
n−j−k(E) ≤ 1 and finally

P(t)
xx1{Z

(1)
t+k ∈ Bt+k, dt+n = 0, k = 1, n} ≤ ε

(t)
n (1− b(t)n α)−k(t)n

n

∑
j=1

(1− αb(t)n )j−1 =
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= ε
(t)
n

1− (1− αb(t)n−1)
n−1

b(t)n α(1− b(t)n α)k(t)n
.

Similarly, we can obtain inequality for i = 2.

Lemma 4. Assume that b(t)n α < 1. Then, for all i ∈ {1, 2}, x ∈ Bt, t ≥ 0 and n ≥ 2 such that t + n /∈ O, the
following inequality holds true:

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, dt+n = 1, k = 1, n} ≤ ε

(t)
n αt+n−1νt+n−1(Bt+n)

1− (1− b(t)n α)n−2

b(t)n α(1− b(t)n α)k(t)n
,

where ε
(t)
n is defined in (4).

Proof. It follows from (7) that the transition into the state {dt+n = 1} is possible only from the state
{dt+n−1 = 0}. Then, using Markov property, we can write:

P(t)
xx1{Z

(1)
t+k ∈ Bt+k, dt+n = 1, k = 1, n} =∫

Bt+n−1×E

P(t)
xx1{Z

(1)
t+k ∈ Bt+k, Zt+n−1 = (du, dv, 0), k = 1, n− 1}×

×P(t+n−1)
uv0 {dt+n = 1, Z(1)

t+n ∈ Bt+n} =

= αt+n−1νt+n−1(Bt+n)P(t)
xx1{Z

(1)
t+k ∈ Bt+k, dt+n−1 = 0, k = 1, n− 1}.

Using Lemma 3, we get that

P(t)
xx1{Z

(1)
t+k ∈ Bt+k, dt+n = 1, k = 1, n} ≤ αt+n−1νt+n−1(Bt+n)ε

(t)
n

1− (1− b(t)n α)n−2

b(t)n α(1− b(t)n α)k(t)n
=

The same reasoning and transformations hold for i = 2.

Lemma 5. Assume domination condition (D) holds true. Then, for all i ∈ {1, 2}, x ∈ Bt, t ≥ 0 and n > 2
such that t + n /∈ O, the following inequality holds true:

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, ∃j dt+j = 0, dt+n = 2, k = 1, n} ≤ ε

(t)
n

m

b(t)n α(1−b(t)n α)k(t)n
,

where m is a constant from the domination condition (5).

Proof. The same ideas are used in the proof of this statement as in the proof of Lemma 4. Namely,

P(t)
xx1{Z

(1)
t+k ∈ Bt+k, ∃j dt+j = 0, dt+n = 2, k = 1, n} =

=
n−1

∑
j=2

∫
Bt+j

P(t)
xx1{Z

(1)
t+k ∈ Bt+k, Zt+j ∈ (dy, dy, 1) k = 1, j− 1}×

×Pyy1{Z
(1)
t+l ∈ Bt+l , dt+l = 2, l = j + 1, n}.

Using Lemma 4 and domination condition (5), we can derive:

P(t)
xx1{Z

(1)
t+k ∈ Bt+k, ∃j dt+j = 0, dt+n = 2, k = 1, n} ≤
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n−1

∑
j=2

ε
(t)
n αt+j−1νt+j−1(Bt+j)

1− (1− b(t)n α)j−2

b(t)n α(1− b(t)n α)k(t)n
q(t+j)

n−j ≤

≤
n−1

∑
j=2

ε
(t)
n αt+j−1νt+j−1(Bt+j)

1− (1− b(t)n α)j−2

b(t)n α(1− b(t)n α)k(t)n
Sn−j ≤

≤ ε
(t)
n

b(t)n α(1− b(t)n α)k(t)n

n−1

∑
j=2

(1− (1− b(t)n α)j−2)Sn−j ≤ ε
(t)
n

n−1
∑

j=2
Sn−j

b(t)n (1− b(t)n α)k(t)n
≤

≤ ε
(t)
n

m

b(t)n α(1− α)k(t)n
.

5. Main Result

Now, we can state the main result of the paper.

Theorem 1. Assume X(1)
n and X(2)

n are two time-inhomogeneous, irreducible, non-periodic Markov chains
defined on a probability space (Ω,F,P), admitting representation (1), together with minorization condition
(M), uniform proximity condition (U), and domination condition (D).

Then, the following inequality holds true for all n ≥ 2:

|P{X(1)
t+k ∈ Bt+k, k = 1, n|X(1)

t = x} − P{X(2)
t+k ∈ Bt+k, k = 1, n|X(2)

t = x}| ≤
ε
(t)
n

b(t)n α(1−b(t)n α)k(t)n

(
1− (1− αb(t)n )n−1 + αt+n−1νt+n−1(Bt+n)(1− (1− αb(t)n )n−2) + m

)
.

(17)

Proof. First, we will note that

P{X(i)
t+k ∈ Bt+k, k = 1, n|X(i)

t = x} = P(t)
xx1{Z

(i)
t=k ∈ Bt+k, k = 1, n} = p(t)i,n (x).

Secondly, we can note that, on the set {τ(t) > n} values, Z(1)
t+k and Z(2)

t+k coincide if Zt = (x, x, 1),
and k = 1, n. Thus, we can write:

|p(t)1,n(x)− p(t)2,n(x)| = |P(t)
xx1{Z

(1)
t+k ∈ Bt+k, k = 1, n, τ(t) ≤ n}−

P(t)
xx1{Z

(2)
t+k ∈ Bt+k, k = 1, n, τ(t) ≤ n}| ≤

max
i∈{1,2}

{
P(t)

xx1{Z
(i)
t+k ∈ Bt+k, k = 1, n, τ(t) ≤ n}

}
.

Next, we can decompose a probability P(t)
xx1{Z

(i)
t+k ∈ Bt+k, k = 1, n, τ(t) ≤ n} by the first after t

decoupling (dk = 0). We note that {∃k ∈ {1, . . . , n}, dt+k = 0} ⊂ {τ(t) ≤ n}.
Now, we will analyze three possibilities: dt+n = 0, dt+n = 1 or dt+n = 2. We can write

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, k = 1, n, τ(t) ≤ n} =

= P(t)
xx1{Z

(i)
t+k ∈ Bt+k, dt+n = 0, k = 1, n}+ P(t)

xx1{Z
(i)
t+k ∈ Bt+k, dt+n = 1, k = 1, n}+

+P(t)
xx1{Z

(i)
t+k ∈ Bt+k, ∃j dt+j = 0, dt+n = 2, k = 1, n}.

Consider all three terms separately. Estimate for the first term is given in Lemma 3, for the second
term in Lemma 4, and for the third term in Lemma 5.

Combining the three estimates from Lemmas 3–5, we obtain inequality (17).
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6. The Case When Uniform Proximity Condition Is Violated

In this section, we will consider a case when uniform proximity condition (4) does not hold.
We assume that there is a set T of non-negative integers, such that we can not expect Qt(x, E) to be
small when t ∈ T. In other words, we expect that proximity condition holds for all t /∈ T. Thus, we
shall introduce another proximity condition:
(U2) Proximity condition:

ε̂ = sup
t/∈T,x∈E

(1−Qt(x, E)) < 1. (18)

We will also denote
ε̂
(t)
n = sup

0≤u≤t,u/∈T,x∈E
(1−Qu(x, E)) ≤ ε̂ < 1, (19)

and
η
(t)
n = max{k ∈ {t, t + 1, . . . , t + n} ∩T} − t, η

(t)
n ∈ {0, . . . , n} ∪ {∞}. (20)

In case {t, t + 1, . . . , t + n} ∩T = ∅, we will put η
(t)
n = ∞. Let us introduce a special definition

κ
(t)
n =

 k(t)
η
(t)
n

, if η
(t)
n < ∞,

0, if η
(t)
n = ∞.

Now, we will derive analogues of Lemmas 3–5 under condition (18).

Lemma 6. Assume that b(t)n α < 1 and η
(t)
n < n. Then, for all i ∈ {1, 2}, t ≥ 0, n ≥ 2 and x ∈ Bt, the

following inequality holds true:

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, k = 1, n, dt+n = 0} ≤

≤ (1− b(t)n α)−k(t)n (1− b(t)n α)n−η
(t)
n + ε̂

(t)
n

(
1−(1−b(t)n α)n−η

(t)
n −1

b(t)n α(1−b(t)n α)k(t)n

)2

,

where ε̂
(t)
n is defined in (19) and η

(t)
n is defined in (20).

Proof. In this proof, we will write η instead of η
(t)
n in order to simplify derivations.

Let us decompose probability P(t)
xx1{Z

(i)
t+k ∈ Bt+k, k = 1, n, dt+n = 0} by the time η:

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, k = 1, n, dt+n = 0} =

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, k = 1, n, dt+η ∈ {0, 1, 2}, dt+n = 0} ≤

≤ P(t)
xx1{Z

(i)
t+k ∈ Bt+k, k = 1, n, dt+η = 0, dt+n = 0} =

=
∫

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, k = 1, η, Zt+η ∈ (du, dv, 0)}×

×P(t+η)
uv0 {Z

(i)
t+k ∈ Bk, k = t + η + 1, t + n, dt+n = 0} ≤

sup
u,v∈Bη×Bη

P(t+η)
uv0 {Z

(i)
k ∈ Bk, k = t + η + 1, t + n, dt+n = 0}.

Let us now define: t0 = t + η, n0 = n− η. Then, we can decompose probability P(t+η)
uv0 {Z

(i)
k ∈

Bk, k = t + η + 1, t + n, dt+n = 0} by the moment of the first coupling (taking into account the case in
which no coupling happens between t0 and t0 + n0):

P(t+η)
uv0 {Z

(i)
k ∈ Bk, k = t + η + 1, t + n, dt+n = 0} ≤ h(t0)

i,n0
(u, v; E, E)+
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αt0+k−1

n0−1

∑
k=1

h(t0)
i,k−1(u, v; E, E) sup

x
P(t0+k)

xx1 {Z(t)
t0+l ∈ Bt0+l , l = k, n0, dt0+n0 = 0}.

Now, using Lemma 3 to estimate P(t0+k)
xx1 {Z(t)

t0+l ∈ Bt0+l , l = k, n0, dt0+n0 = 0} and the fact that:

αt0+k−1

n0−1
∑

k=1
h(t0)

i,k (u, v; E, E) ≤ (1− b(t)n α)−k(t)n 1−(1−b(t)n α)n0−1

b(t)n α
, we get the statement of the lemma.

The same exact decomposition can be used to prove other two lemmas.

Lemma 7. Assume that b(t)n α < 1 and η
(t)
n < n. Then, for all i ∈ {1, 2}, x ∈ Bt, t ≥ 0 and n > 2 such that

t + n /∈ O, the following inequality holds true:

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, dt+n = 1, k = 1, n} ≤

≤ (1− α)−k(t)n (1− b(t)n α)n−η
(t)
n + ε̂

(t)
n αt+n−1νt+n−1(Bt+n)

(
1−(1−b(t)n α)n−η

(t)
n −2

b(t)n α(1−α)k(t)n

)2

,

where ε̂
(t)
n is defined in (18).

Lemma 8. Assume the domination condition holds true and η
(t)
n < n. Then, for all i ∈ {1, 2}, x ∈ Bt, t ≥ 0

and n ≥ 2 such that t + n /∈ O, the following inequality holds true:

P(t)
xx1{Z

(i)
t+k ∈ Bt+k, ∃j dt+j = 0, dt+n = 2, k = 1, n} ≤

≤ (1− α)−k(t)n (1− b(t)n α)n−η
(t)
n + ε̂

(t)
n

m(1−b(t)n α)n−η
(t)
n −1

(b(t)n α(1−α)k(t)n )2
,

where m is a constant from the domination condition (5).

Now, we can state the stability theorem for this case.

Theorem 2. Assume X(1)
n and X(2)

n are two time-inhomogeneous, irreducible, non-periodic Markov chains
defined on a probability space (Ω,F,P), admitting representation (1), together with minorization condition
(M), proximity condition (U2), domination condition (D), and η

(t)
n < n.

Then, the following inequality holds true:

|P{X(1)
t+k ∈ Bt+k, k = 1, n|X(1)

t = x} − P{X(2)
t+k ∈ Bt+k, k = 1, n|X(2)

t = x}| ≤
3(1− α)−k(t)n (1− b(t)n α)n−η

(t)
n + ε̂

(t)
n(

b(t)n α(1−b(t)n α)k(t)n

)2×

×
((

1− (1− αb(t)n )n−η
(t)
n −1

)2
+ αt+n−1νt+n−1(Bt+n)

(
(1− (1− αb(t)n )n−η

(t)
n −2)

)2
+ m(1− αb(t)n )n−η

(t)
n −1

)
.

Proof. The proof replicates the proof of Theorem 1.

7. Conclusions

In this paper, we obtained a stability estimate for finite-dimensional distributions of a perturbed
time-inhomogeneous Markov chain defined on a general state space. The stability estimate has the
order of εm (see definition of ε at (4) and the definition of m at condition (D)). Estimates are obtained
under the uniform proximity condition (4) and relaxed proximity condition (19). The results of the
paper correlate with the similar results in the classical literature.

For example, the book [3] provides a series of stability estimates for time-homogeneous Markov
chains where proximity estimates also have an order of ε, see ([3], Section V).
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The principal example of an application for the results of the paper is a calculation of estimates
for the value Px{τ > t}, where τ is a moment of reaching of the certain critical set C by a perturbed
time-inhomogeneous Markov chain Yt. It is important that the results are obtained under relatively
general conditions, which could be checked for practical applications. Theorems 1 and 2 provide an
important improvement to the similar results of the papers [3] (comparing to this paper, our results
are generalized to time-inhomogeneous case and we propose simpler conditions of stability) and [20]
(unlike this paper, we consider general phase space, simpler and less restrictive conditions, and bounds
that are easier to calculate).

The results of the paper admit the further improvements. For example, Doeblin’s condition
(M) could be relaxed to the assumption Pit(x, A) ≥ αtνt(A), ∀x ∈ C, where C ∈ E is a certain
set. Such condition corresponds to the chains which are not of uniform-ergodic type (i.e., uniform
mixing condition does not hold). Such results, as well as practical applications, are the subjects of a
future study.
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