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Abstract: A non-autonomous allelopathic phytoplankton model with nonlinear inter-inhibition terms
and feedback controls is studied in this paper. Based on the comparison theorem of differential
equation, some sufficient conditions for the permanence of the system are obtained. We study
the extinction of one of the species by using some suitable Lyapunov type extinction function.
Our analyses extend those of Xie et al. (Extinction of a two species competitive system with nonlinear
inter-inhibition terms and one toxin producing phytoplankton. Advances in Difference Equations,
2016, 2016, 258) and show that the feedback controls and toxic substances have no effect on the
permanence of the system but play a crucial role on the extinction of the system. Some known results
are extended.
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1. Introduction

Recently, competition models with nonlinear inter-inhibition terms have been considered by
many scholars [1–7]. Wang, Liu and Li [1] considered the following competition system:

x′1(t) = x1(t)
(
r1(t)− a1(t)x1(t)−

b1(t)x2(t)
1 + x2(t)

)
,

x′2(t) = x2(t)
(
r2(t)−

b2(t)x1(t)
1 + x1(t)

− a2(t)x2(t)
)
,

(1)

where x1(t), x2(t) indicate the species x1 and x2 densities at time t, respectively; ri(t), i = 1, 2 denote
the net rates of production of two species; ai(t), i = 1, 2 are the rates of intraspecific competition
of the species x1 and x2, respectively; bi(t), i = 1, 2 represent the interspecific competing rates.
The nonlinear inter-inhibition terms b1(t)x2(t)

1+x2(t)
and b2(t)x1(t)

1+x1(t)
implie that for large phytoplankton density,

the interspecific competing rate tends to a certain value. In other words, the interspecific competing
rate will not increase infinitely with the increase of phytoplankton density, which could make us
understand the real ecosystems deeper. For more information about the nonlinear inter-inhibition
terms, see [8]. Based on differential inequality, the module containment theorem and constructing the
Lyapunov function, Wang et al. [1] gave the sufficient conditions for the global asymptotic stability
of system.

As we all know, phytoplankton is the primary producer in ocean and plays an important role in
energy flow and nutrient cycling of marine ecosystems. In addition, phytoplankton can absorb carbon
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dioxide for photosynthesis, which has a significant impact on the climate regulation. The importance
of phytoplankton to marine ecosystem has been widely recognized. Besides, many authors attempted
to explain the bloom phenomenon by different approaches, and find that toxic phytoplankton
certainly play an important role in the bloom phenomenon. Therefore, in recent years, many scholars
have stuied the allelopathic toxic phytoplankton model [4,5,7,9–20]. Rashi Gupta [9] considered
Holling type-II and Holling type-IV functional responses in a model of non-toxic phytoplankton-toxic
phytoplankton-zooplankton. He gave the the condition for diffusive instability of a locally stable
equilibrium of spatial and non-spatial model for one dimensional system. Based on the work of
Yue [4], recently, Xie et al. [5] further considered the effect of toxin on a non-autonomous competitive
phytoplankton system, written in the form as

x′1(t) = x1(t)
(
r1(t)− a1(t)x1(t)−

b1(t)x2(t)
1 + x2(t)

− c1(t)x1(t)x2(t)
)
,

x′2(t) = x2(t)
(
r2(t)−

b2(t)x1(t)
1 + x1(t)

− a2(t)x2(t)
)
,

(2)

where c1(t)denotes the rate of toxic inhibition for the species x1 released by the second species.
The authors obtained the sufficient conditions for the extinction of a species and the global attractivity
of the other one. On the other hand, through experimental data of a experimental study on
two phytoplankton species, namely C. polylepis and H. triquetra, Sole et al. [10] found that the
allelopathic interaction using rx1(t)

2x2
2(t) is more suitable. M. Bandyopadhyay [11] proposed and

studied the following mathematical model of two competing phytoplankton species with allelopathic
interaction term:

x′1(t) = x1(t)
(
r1 − a1x1(t)− b1x2(t)

)
− γx2

1(t)x2
2(t),

x′2(t) = x2(t)
(
r2 − a2x2(t)− b2x1(t)

)
.

(3)

Since the influence of human behavior on the ecosystems is more and more great, a large number
of precious species are facing extinction. It is important to know how to protect endangered species
and maintain the diversity of ecosystems. In ecology, we want to know that whether or not an
ecosystem can withstand those unpredictable disturbances. In the language of control variables, we
use feedback control variables to represent these unpredictable disturbances. In order to describe the
effect of people’s behavior, many researchers focused on the research of the systems with feedback
control variables [7,15,21–26]. Muroya Y. [21] studied a Lotka-Volterra systems with infinite delays
and feedback controls, the authors applied a Lyapunov functional and established that the feedback
controls have no effect on the attractivity of a saturated equilibrium. Recently, Liu et al. [22] proposed
the following system with feedback controls:

x1(n + 1) = x1(n) exp
{

r1(n)− a1(n)x1(t)−
b1(n)x2(n)
1 + x2(n)

− e1(n)u1(n)
}

,

x2(n + 1) = x2(n) exp
{

r2(n)−
b2(n)x1(n)
1 + x1(n)

− a2(n)x2(n)− e2(n)u2(n)
}

,

∆u1(n) = −b1(n)u1(n) + d1(n)x1(n),

∆u2(n) = −b2(n)u2(n) + d2(n)x2(n),

(4)

where ∆ui(n) = ui(n+ 1)− ui(n), i = 1, 2 are the forward difference operators; ui(n), i = 1, 2 denote
the feedback control variables. bi(n), di(n) and ei(n), i = 1, 2 are bounded positive almost periodic
sequences. Liu et al. [22] studied the existence and uniformly asymptotic stability of unique positive
almost periodic solution of system (4). Furthermore, based on a suitable Lyapunov function, Yu [7]
obtained the sufficient conditions for the extinction of one species.

As is well known, if the amount of the species is enough large, the continuous model is more
appropriate. But, to this day, still no scholar propose and study the continuous form of system (4) with
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toxin and feedback controls. Motivated by the above work, in this paper, we consider the following
nonautonomous allelopathic phytoplankton model with nonlinear-inhibition terms and feedback
control variables:

x′1(t) = x1(t)
(
r1(t)− a1(t)x1(t)−

b1(t)x2(t)
1 + x2(t)

− γ(t)x1(t)x2
2(t)− c1(t)u1(t)

)
,

x′2(t) = x2(t)
(
r2(t)−

b2(t)x1(t)
1 + x1(t)

− a2(t)x2(t)− c2(t)u2(t)
)
,

u′1(t) = −e1(t)u1(t) + d1(t)x1(t),

u′2(t) = −e2(t)u2(t) + d2(t)x2(t).

(5)

Recently, a few studies about the effect of feedback controls on allelopathic phytoplankton model
have been carried out, it is worth noting that in this paper. Besides, the allelopathic interaction term is
replaced by γx1(t)

2x2
2(t) instead of γx1(t)

2x2(t). Our main objective is to study the effects of toxicity
and feedback controls on the dynamics of the system.

The paper is organized as follows. In Section 2, we will state some necessary Lemmas and
prove the permanence of the system (5). In Section 3, we will discuss the extinction of one species.
Four examples together with their numeric simulations are present in Section 4, as we will show the
feasibility of the main results. We give a a briefly discussion in the end of this paper.

2. Permanence

Given a continuous and bounded function f (t), let f u and f l denote supt∈R f (t) and inft∈R f (t),
respectively. From the point of view of biology, we assume that xi(0) > 0, ui(0) > 0, i = 1, 2.
We can easily obtain the solution (x1(t), x2(t), u1(t), u2(t)) passing through (x1(0), x2(0), u1(0), u2(0))
is positive.

Definition 1 ([27]).

(1) Population x(t) is said to be permanent if there exist two constant M and m such that m ≤ lim inf
t→+∞

x(t) ≤
lim sup

t→+∞
x(t) ≤ M.

(2) Population x(t) is said to be extinct if lim
t→+∞

x(t) = 0 almost surely.

Lemma 1.

(1) If a > 0, b > 0 and ẋ ≥ b− ax, when t ≥ 0 and x(0) > 0, we have lim inf
t→+∞

x(t) ≥ b
a .

(2) If a > 0, b > 0 and ẋ ≤ b− ax, when t ≥ 0 and x(0) > 0, we have lim sup
t→+∞

x(t) ≤ b
a .

Lemma 2.

(1) If a > 0, b > 0 and ẋ ≥ x(b− ax), when t ≥ 0 and x(0) > 0, we have lim inf
t→+∞

x(t) ≥ b
a .

(2) If a > 0, b > 0 and ẋ ≤ x(b− ax), when t ≥ 0 and x(0) > 0, we have lim sup
t→+∞

x(t) ≤ b
a .

Lemma 3. Every positive solution (x1(t), x2(t), u1(t), u2(t))
T of system (5) satisfies

lim sup
t→+∞

xi(t) ≤
ru

i

al
i

def
= Mi, lim sup

t→+∞
ui(t) ≤

du
i ru

i

el
i a

l
i

def
= Ni, i = 1, 2. (6)

Proof. It follows from the first and second equation of system (5) yields

x′i(t) ≤ xi(t)
(

ri(t)− ai(t)xi(t)
)
≤ xi(t)

(
ru

i − al
i xi(t)

)
, i = 1, 2. (7)
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According to Lemma 2 and differential inequality (7), we have

lim sup
t→+∞

xi(t) ≤
ru

i

al
i

def
= Mi, i = 1, 2. (8)

From (8), there exists a T1 > 0, such that for t > T1 and any small positive constant ε > 0,

xi(t) ≤ Mi + ε. (9)

From the third and fourth equation of system (5) it follows that

u′i(t) = −el
iui(t) + du

i (Mi + ε). (10)

By applying Lemma 1 to differential inequality (10), we have

lim sup
t→+∞

ui(t) ≤
du

i

el
i
(Mi + ε), i = 1, 2.

Setting ε→ 0 in above inequalities leads to

lim sup
t→+∞

ui(t) ≤
du

i

el
i

Mi =
du

i ru
i

el
i a

l
i

def
= Ni, i = 1, 2.

Theorem 1. Assume that

rl
1 > bu

1
ru

2

al
2

, rl
2 > bu

2
ru

1

al
1

(11)

holds. Then, for any positive solution
(

x1(t), x2(t), u1(t), u2(t)
)T of the system (5), we have

mi ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤ Mi,

ni ≤ lim inf
t→+∞

ui(t) ≤ lim sup
t→+∞

ui(t) ≤ Ni,
i = 1, 2.

i.e., system (5) is permanent.

Remark 1. Theorem 1 shows that two kinds of phytoplankton can coexist under certain conditions. Besides,
the conditions of Theorem 1 show that the feedback control variables and toxic substances do not effect on the
permanence of the system.

Proof. From (5), for any small positive constant ε > 0, we may choose ε small enough such that

rl
1 > bu

1

( ru
2

al
2
+ ε
)
= bu

1 (M2 + ε), rl
2 > bu

2

( ru
1

al
1
+ ε
)
= bu

2 (M1 + ε). (12)

For ε > 0 above, from Lemma 3 it follows that there exists T2 > 0 such that for t > T2,

xi(t) ≤ Mi + ε, ui(t) ≤ Ni + ε, i = 1, 2. (13)
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From the first equation of system (5), we have

x′1(t) = x1(t)
(
r1(t)− a1(t)x1(t)− b1(t)x2(t)

1+x2(t)
− γ(t)x1(t)x2

2(t)− c1(t)u1(t)
)

≥ x1(t)
(
r1(t)− a1(t)x1(t)− b1(t)x2(t)− γ(t)x1(t)x2

2(t)− c1(t)u1(t)
)

≥ x1(t)
(
rl

1 − au
1 (M1 + ε)− bu

1 (M2 + ε)− γu(M1 + ε)(M2 + ε)2 − cu
1 (N1 + ε)

)
def
= Iε

1x1(t).

(14)

Integrating the above differential inequality from s to t, we have

x1(s) ≤ x1(t) exp
[
− Iε

1(t− s)
]
. (15)

By the third equation of system (5), it follows

u1
′(t) ≤ −e1

lu1(t) + d1
ux1(t).

According to Lemma 2.3 of [24] and inequality (15), integrateing the above differential inequality from
t1(t1 > T2) to t, we have

u1(t) ≤ u1(t1) exp
[
− el

1(t− t1)
]
+
∫ t

t1
d1

ux1(s) exp
[
el

1(s− t)
]
ds,

≤ u1(t1) exp
[
− el

1(t− t1)
]
+
∫ t

t1
du

1 x1(t) exp
[
− Iε

1(t− s)
]
ds,

= u1(t1) exp
[
− el

1(t− t1)
]
+ du

1 x1(t) 1
Iε
1

(
1− exp

{
− I1

ε(t− t1)
})

,

≤ (N1 + ε) exp
[
− el

1(t− t1)
]
+ du

1 x1(t) 1
Iε
1

(
1− exp

{
− I1

ε(t− t1)
})

.

(16)

There exists a T∗1 such that t− t1 = T1
′ ≥ T1

∗,we have

c1
u(N1 + ε) exp(−el

1T1
∗) <

1
2
(rl

1 − bu
1 (M2 + ε)), (17)

u1(t) ≤ (N1 + ε) exp(−e1
1T1
∗) + du

1 x1(t) 1
Aε

1
(1− exp(−Iε

1T1
∗))

= (N1 + ε) exp(−e1
1T1
∗) + Dε

1x1(t).
(18)

where Dε
1 = du

1
1
Iε
1
(1− exp(−Iε

1T1
∗)).

By the first equation of system (5), we have

x′1(t) ≥ x1(t)
[
rl

1 − au
1 x1(t)− bu

1 (M2 + ε)− γux1(t)(M2 + ε)2

−cu
1 (N1 + ε) exp(−e1

lT1
∗)− cu

1 Dε
1x1(t)

]
= x1(t)

[
rl

1 − bu
1 (M2 + ε)− cu

1 (N1 + ε) exp(−e1
lT1
∗)

−
(
au

1 + γu(M2 + ε)2 + cu
1 Dε

1
)
x1(t)

]
.

(19)

By applying Lemma 2 to the above differential inequality, it follows that

lim inf
t→+∞

x1(t) ≥
rl

1 − bu
1 (M2 + ε)− cu

1 (N1 + ε) exp(−e1
lT1
∗)

au
1 + γu(M2 + ε)2 + cu

1 Dε
1

.
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Setting ε→ 0 in this inequality leads to

lim inf
t→+∞

x1(t) ≥
rl

1 − bu
1 M2 − cu

1 N1 exp(−e1
lT1
∗)

au
1 + γu M2

2 + cu
1 D1

def
= m1, (20)

where
D1 = du

1
1
I1
(1− exp(−I1T1

∗)),

I1 = rl
1 − au

1 M1 − bu
1 M2 − γu M1M2

2 − cu
1 N1.

From the second equation of system (5) it follows that

x′2(t) ≥ x2(t)
(

rl
2 − bu

2 (M1 + ε)− au
2 (M2 + ε)− cu

2 (N2 + ε)
)

def
= Iε

2x2(t). (21)

Integrating this inequality from s to t, we get

x2(s) ≤ x2(t) exp
{
− Iε

2(t− s)
}

. (22)

By the fourth equation of system (5), we have

u2
′(t) ≤ −e2

lu2(t) + d2
ux2(t). (23)

Integrating this inequality from t2 to t, it follows

u2(t) ≤ u2(t2) exp
[
− el

2(t− t2)
]
+
∫ t

t2
d2

ux2(s) exp
[
el

2(s− t)
]
ds,

≤ u2(t2) exp
[
− el

2(t− t2)
]
+ du

2 x2(t) 1
Iε
2

(
1− exp

{
− I2

ε(t− t2)
})

.
(24)

From Lemma 3, we have

u2(t2) ≤ N2 + ε, t2 > T2.

There exists a T∗2 such that t− t2 = T2
′ ≥ T2

∗, we have

c2
u(N2 + ε) exp(−el

2T2
∗) <

1
2
(rl

2 − bu
2 (M1 + ε)),

u2(t) ≤ (N2 + ε) exp(−e1
2T2
∗) + Dε

2x2(t), (25)

where Dε
2 = du

2
1
Iε
2

(
1− exp(−Iε

2T2
∗)
)
.

From the second equation of system (5), we have

x′2(t) ≥ x2(t)
[
rl

2 − bu
2 (M1 + ε)− cu

2 (N2 + ε) exp(−e2
lT2
∗)

−(au
2 + cu

2 Dε
2)x2(t)

]
.

Similarly to the analysis of (19), we can obtain

lim inf
t→+∞

x2(t) ≥
rl

2 − bu
2 M1 − cu

2 N2 exp(−e2
lT2
∗)

au
2 + cu

2 D2

def
= m2, (26)

where
D2 = du

2
1
I2
(1− exp(−I2T2

∗)),



Mathematics 2020, 8, 173 7 of 13

I2 = rl
2 − bu

2 M1 − au
2 M2 − cu

2 N2.

For any small positive constant ε < 1
2 min{m1, m2}, from (20) and (26) it follows that there exists a

T3 > T′i , i = 1, 2. such that for t > T3, we have

xi(t) ≥ mi − ε, i = 1, 2. (27)

From the third and fourth equation of system (5) it follows that

u′i(t) ≥ −eu
i ui(t) + dl

i(mi − ε), i = 1, 2. (28)

From Lemma 1, we obtain

lim inf
t→+∞

ui(t) ≥
dl

i(mi − ε)

eu
i

. (29)

Setting ε→ 0 in this inequality leads to

lim inf
t→+∞

ui(t) ≥
dl

imi

eu
i

def
= ni, i = 1, 2. (30)

3. Extinction

Theorem 2. Assume that

rl
1 > (1 + M1)ru

2
au

1 el
1 + cu

1 du
1

bl
2el

1
, rl

1 > ru
2

bu
1 eu

2

al
2eu

2 + cl
2dl

2
(31)

and

γu < min
1

M1M2
2

{
rl

1 − (1 + M1)ru
2

au
1 el

1 + cu
1 du

1

bl
2el

1
, rl

1 − ru
2

bu
1 eu

2

al
2eu

2 + cl
2dl

2

}
(32)

hold, then the species x1 is permanent and the species x2 will be extinct, that is, for any positve solution
(x1(t), x2(t), u1(t), u2(t))

T of system (5),

lim
t→+∞

x2(t) = 0, lim
t→+∞

u2(t) = 0.

Remark 2. Theorem 2 gives the conditions for the permanence of nontoxic phytoplankton and the extionction
of toxic phytoplankton. From Theorem 2, we known that lower rate of toxic production could not avoid the
extinction of the second species.

Proof. Condition (31) is equivalent to

cu
1

el
1
<

rl
1bl

2
(1 + M1)ru

2 du
1
−

au
1

du
1

,
cl

2
eu

2
>

ru
2

rl
1

bu
1

dl
2
−

al
2

dl
2

. (33)
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From (32) and (33), there exist positive constants α, β, δ1, δ2 and enough small positive ε such that

rl
1

ru
2
>

β

α
,

cu
1

el
1
<

δ1

α
<

βbl
2 − (1 + M1 + ε)αau

1
(1 + M1 + ε)αdu

1
<

rl
1bl

2
(1 + M1 + ε)ru

2 du
1
−

au
1

du
1

,

cl
2

eu
2
>

δ2

β
>

αbu
1 − βal

2

βdl
2

>
bu

2

bl
1

bu
1

dl
2
−

al
2

dl
2

,

(1 + M1 + ε)(au
1 el

1 + cu
1 du

1 )

bl
2el

1
<

β

α
<

rl
1 − γu(M1 + ε)(M2 + ε)2

ru
2

,

bu
1 eu

2

al
2eu

2 + cl
2dl

2
<

β

α
<

rl
1 − γu(M1 + ε)(M2 + ε)2

ru
2

.

That is
αcu

1 − δ1el
1 < 0, δ2eu

2 − βcl
2 < 0,

αau
1 −

βbl
2

1 + M1 + ε
+ δ1du

1 < 0, αbu
1 − βal

2 − δ2dl
2 < 0,

−αrl
1 + βru

2 + αγu(M1 + ε
)
(M2 + ε

)2
=− ξ1 < 0.

(34)

Let (x1(t), x2(t), u1(t), u2(t))
T be a positive solution of system (5). For above ε, from Lemma 2,

there exists a enough large T4, such that

xi(t) < Mi + ε, ui(t) < Ni + ε, t ≥ T4, i = 1, 2. (35)

Let
V1(t) = x−α

1 (t)xβ
2 (t) exp

(
δ1u1(t)− δ2u2(t)

)
. (36)

Calculating the derivative of V1(t) , from (35), for t ≥ T4, we can otain

D+V1(t) = V1(t)
[
(−αr1(t) + βr2(t)) +

(
αa1(t)− βb2(t)

1+x1(t)
+ δ1d1(t)

)
x1(t)

+
(

αb1(t)
1+x2(t)

− βa2(t)− δ2d2(t)
)

x2(t) + (αc1(t)− δ1e1(t))u1(t)

+(−βc2(t) + δ2e2(t))u2(t) + αγ(t)x1(t)x2
2(t)

]
≤ V1(t)

[
(−αrl

1 + βru
2 ) + (αau

1 −
βbl

2
1+(M1+ε)

+ δ1du
1 )x1(t)

+(αbu
1 − βal

2 − δ2dl
2)x2(t) + (αcu

1 − δ1el
1)u1(t)

+(−βcl
2 + δ2eu

2 )u2(t) + αγu(M1 + ε)(M1 + ε)2
]
.

From inequalities (34), we obtain

V′1(t) ≤ −ξ1V1(t). (37)

Integrating the above inequality from T4 to t(≥ T4), we have

V1(t) ≤ V1(T4) exp
(
− ξ1(t− T4)

)
. (38)

It follows from (35) that

V1(T1) = x−α
1 (T4)xβ

2 (T4) exp
(

δ1u1(T4)− δ2u2(T4)
)
< +∞.

V1(t) = x−α
1 (t)xβ

2 (t) exp
(

δ1u1(t)− δ2u2(t)
)

> (M1 + ε)−αxβ
2 (t) exp

(
− δ2(N2 + ε)

)
.

(39)



Mathematics 2020, 8, 173 9 of 13

Combining inequalities (38) and (39), we have

x2(t) ≤ C exp
(
− ξ1

β
(t− T4)

)
,

where
C = (M1 + ε)

α
β exp

( δ2

β
(N2 + ε)

)
V1(T4)

1
β .

Hence we obtain that
lim

t→+∞
x2(t) = 0. (40)

And so, ∀ε > 0, ∃T5 > T4, such that x2(t) < ε for all t > T5. From the fourth equation of system (5),
we have

u′2(t) ≤ −el
2u2(t) + du

2 ε. (41)

From Lemma 1, we obtain

lim
t→+∞

u2(t) ≤ lim sup
t→+∞

u2(t) ≤
du

2 ε

el
2

.

Setting ε→ 0 leads to
lim

t→+∞
u2(t) ≤ lim sup

t→+∞
u2(t) ≤ 0,

thus
lim

t→+∞
u2(t) = 0. (42)

By using the analysis technique of [24], one could show that under the conditions of Theorem 2,
the first species of system (5) is permanent. We omit the detail here. This ends the proof of
Theorem 2.

Theorem 3. Assumes that

ru
1 < rl

2
al

1eu
1 + cl

1dl
1

bu
2 eu

1
, ru

1 <
1

1 + M2
rl

2
bl

1el
2

au
2 el

2 + cu
2 du

2
(43)

hold, then the species x1 will be extinct and the species x2 is permanent, that is, for any positve solution
(x1(t), x2(t), u1(t), u2(t))

T of system (5),

lim
t→+∞

x1(t) = 0, lim
t→+∞

u1(t) = 0.

Proof. The proof of Theorem 3 is similar to Theorem 2, which we omit here.

Remark 3. Theorem 3 gives the conditions for the permanence of toxic phytoplanktonand the extionction of
nontoxic phytoplankton. Besides, when ci = 0, i = 1, 2, Theorem 1 obtained by Xie and Xue et al. [5] are the
corollary of Theorem 3, which extends the results of Xie and Xue et al. [5] and reveal that by choosing suitable
feedback control variables, the extinction property of system still contains.

4. Example

Example 1. Consider the following equations

x′1(t) = x1

(
6− (3.2 + 0.2 sin t)x1 − 0.5x2

1+x2
− 0.005x1x2

2 − 0.3u1

)
,

x′2(t) = x2

(
12.05− 0.05 cos t− 5x1

1+x1
− (3.5 + 0.5 sin t)x2 − 0.3u2

)
,

u′1(t) = −(0.8 + 0.2 sin t)u1 + 0.5x1,
u′2(t) = −(0.8 + 0.2 sin t)u2 + 0.2x2.

(44)
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Corresponding to system (44), one has

rl
1 = 6 > bu

1
ru

2

al
2
≈ 2.02, rl

2 = 12 > bu
2

ru
1

al
1
= 10.

Clearly, condition (11) are satisfied, from Theorem 1, we know that the system (44) is permanent. Figure 1 shows
the dynamic behaviors of system (44) which is consistent with the conclusion obtained above.

time t
0 2 4 6 8 10 12 14 16 18 20

x 1
,x

2
,u

1
,u

2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x
1

x
2

u
1

u
2

Figure 1. Dynamic behaviors of the solution (x1(t), x2(t), u1(t), u2(t))
T of system (44) with the initial

conditions (x1(0), x2(0), u1(0), u2(0))= (0.5, 1, 5, 2)T , (3, 5, 0.3, 0.2)T and (1.7, 3, 2.6, 1.1)T , respectively.

Example 2. Consider the following equations

x′1(t) = x1

(
6− (2.5 + 0.5 sin t)x1 − 0.5x2

1+x2
− 0.00005x1x2

2 − 0.3u1

)
,

x′2(t) = x2

(
0.95− 0.05 cos t− 5x1

1+x1
− 3x2 − 0.3u2

)
,

u′1(t) = −(0.8− 0.2 sin t)u1 + 5x1,
u′2(t) = −(0.8− 0.2 sin t)u2 + 2x2.

(45)

By calculation, one has

M1 =
ru

1
au

1
= 3, M2 =

ru
2

au
2
=

1
3

,

(1 + M1)ru
2

au
1 el

1 + cu
1 du

1

bl
2el

1
= 4.4, ru

2
bu

1 eu
2

al
2eu

2 + cl
2dl

2
=

5
36

,

1
M1M2

2

(
rl

1 − (1 + M1)ru
2

au
1 el

1 + cu
1 du

1

bl
2el

1

)
= 4.8,

1
M1M2

2

(
rl

1 − ru
2

bu
1 eu

2

al
2eu

2 + cl
2dl

2

)
=

211
12

.

We assume that γu = 0.00005, clearly, conditions (31) and (32) are satisfied, from Theorem 2, we know
that the first species is permanent and the rest of species is driven to extinction. Figure 2 shows the dynamic
behaviors of system (45) which is consistent with the conclusion obtained above.
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time t
0 5 10 15 20 25

x 1
,x

2
,u

1
,u

2

0

2

4

6

8

10

12

14

x
1

x
2

u
1

u
2

Figure 2. Dynamic behaviors of the solution (x1(t), x2(t), u1(t), u2(t))
T of system (45) with the initial

conditions (x1(0), x2(0), u1(0), u2(0))= (9, 13, 7, 11.5)T , (0.5, 5, 1.5, 6)T and (3, 7, 4, 9)T , respectively.

Example 3. Consider the following equations

x′1(t) = x1

(
1− (3.2 + 0.2 sin t)x1 − 5x2

1+x2
− 0.00005x1x2

2 − 0.3u1

)
,

x′2(t) = x2

(
1.55− 0.05 cos t− 1.5x1

1+x1
− 0.4x2 − 0.3u2

)
,

u′1(t) = −(0.8− 0.2 sin t)u1 + 5x1,
u′2(t) = −(0.8− 0.2 sin t)u2 + 2x2.

(46)

By calculation, one has

rl
2

al
1eu

1 + cl
1dl

1
bu

2 eu
1

= 4.5,
1

1 + M2
rl

2
bl

1el
2

au
2 el

2 + cu
2 du

2
≈ 1.071.

Clearly, ru
1 < 4.5, ru

1 < 1.071, condition (43) are satisfied, from Theorem 3, we know that the second species
is permanent and the rest of species is driven to extinction.

Figure 3 shows the dynamic behaviors of system (46) is consistent with the conclusion obtained above.

time t
0 5 10 15 20 25 30

x 1
,x

2
,u

1
,u

2

0

1

2

3

4

5

6

7

8

x
1

x
2

u
1

u
2

Figure 3. Dynamic behaviors of the solution (x1(t), x2(t), u1(t), u2(t))
T of system (4.3) with the initial

conditions (x1(0), x2(0), u1(0), u2(0))= (3, 2, 6, 4)T , (1, 0.5, 4, 8)T and (2, 1, 5, 6)T , respectively.

5. Conclusions

(1) In this paper, we consider a non-autonomous allelopathic phytoplankton model with nonlinear
inter-inhibition terms and feedback controls, i.e., Equation (5), The difference from the model in [5] is
that we consider two feedback control variables ui(t), i = 1, 2 and the allelopathic interaction term
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is replaced by γx1(t)
2x2

2(t) instead of γx1(t)
2x2(t). We further investigate the influence of feedback

control variables and toxic substances on the dynamic behaviors of system (5).
(2) Theorem 2 and 3 show that the feedback control variables and toxic substances play an

important role on the extinction of system (5). Despite the second species could produce toxic,
but lower rate of toxic production could not avoid the extinction of the second species. The conditions
of Theorem 1 show that the feedback control variables and toxic substances do not effect on the
permanence of the system.

(3) Moreover, when ci = 0, i = 1, 2, moldel (5) becomes (2), we can easily find that Theorems 2.1
and 2.5 obtained by Xie and Xue et al. [5] are the corollary of Theorem 2 and 3, which extends the
results of Xie and Xue et al. [5]. When ci = 0, i = 1, 2, γ = 0, moldel (5) becomes (1), we can easily
find that Theorem 1 and 2 obtained by Yu [18] are the corollary of Theorem 2 and 3, which extends the
results of Yu [18].
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