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Abstract: The goal of this paper is to extend the modified Hestenes-Stiefel method to solve large-scale
nonlinear monotone equations. The method is presented by combining the hyperplane projection
method (Solodov, M.V.; Svaiter, B.F. A globally convergent inexact Newton method for systems of
monotone equations, in: M. Fukushima, L. Qi (Eds.) Reformulation: Nonsmooth, Piecewise Smooth,
Semismooth and Smoothing Methods, Kluwer Academic Publishers. 1998, 355–369) and the
modified Hestenes-Stiefel method in Dai and Wen (Dai, Z.; Wen, F. Global convergence of a
modified Hestenes-Stiefel nonlinear conjugate gradient method with Armijo line search. Numer Algor.
2012, 59, 79–93). In addition, we propose a new line search for the derivative-free method.
Global convergence of the proposed method is established if the system of nonlinear equations are
Lipschitz continuous and monotone. Preliminary numerical results are given to test the effectiveness
of the proposed method.
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1. Introduction

In this paper, we consider the problem of finding numerical solutions of the following large-scale
nonlinear equations

F(x) = 0, (1)

where the function F : Rn −→ Rn is monotone and continuous. If F(x) is monotone, it implies that the
following inequality holds

〈F(x)− F(y), x− y〉 ≥ 0, ∀x, y ∈ Rn. (2)

Nonlinear monotone equations can be applied in different fields, for example, they are
used as subproblems in the generalized proximal algorithms with Bregman distances [1].
Some monotone variational inequality problems can be converted into nonlinear monotone
equations [2]. Monotone systems of equations can also be applied in L1-norm regularization sparse
optimization problems (see [3,4]) and discrete mathematics such as graph theory (see [5,6]).

Being aware of the important applications of nonlinear monotone equations, in recent
years, many scholars have paid attention to propose efficient algorithms for solving problem (1).
These algorithms are mainly divided into the following categories.

Each of the Newton-type method, Levenberg-Marquardt method, and quasi-Newton method
enjoy fast local convergence property, and are attractive (see [7–13]). However, for large-scale problems,
a drawback of these methods is that at each iteration these algorithms require computing a large-scale
linear system of equations by using approximate systems of equations or a Jacobian matrix. The large
demand of storage for matrix results in improper handling of large-scale nonlinear monotone systems.
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In recent years, gradient-type algorithms have attracted the attention of many scholars. The main
reasons are low storage requirements, easy implementation, and global convergence under mild
conditions. For example, the spectral gradient method [14] only needs to use gradient information
which is easy but effective for an optimization problem. From a different perspective, the spectral
gradient method [14] is extended to solve nonlinear monotone equations by combining it with the
projection method (see [15,16]).

In addition, for large-scale unconstrained optimization problems, the conjugate gradient method
(CG) is another easy but effective method, due to the two attractive features: one is the low memory
requirement, the other is strong global convergence properties. In recent years, the conjugate gradient
method has achieved rich results (see [17–36]) from the perspective of the sufficient descent property,
qausi-Newton direction and conjugacy condition. Inspired by the extension of spectral gradient
method to nonlinear monotone equations, CG methods have been applied in solving the nonlinear
monotone equations problem. For example, PRP-type method ([37–43]); Perry conjugate gradient
method ([44]); Liu-Storey type method [45], among others.

In this paper, we will focus on extending the Hestenes-Stiefel (HS) CG method to solve large-scale
nonlinear monotone equations. To the best of our knowledge, the HS CG method [46] is generally
considered as the most efficient CG method for computing performance. However, the HS CG method
does not enjoy sufficient descent property. Based on the modified secant equation [10], Dai and
Wen [47] propose a modified HS conjugate gradient method that can generate sufficient descent
directions (i.e., c > 0 exists such that gT

k dk < −c‖gk‖2). Global convergence results under the Armijo
line search are obtained in Dai and Wen [47]. Hence, we aim to present a derivative-free method to
solve the nonlinear monotone Equations (1). The proposed method can be seem as a further study of
the modified HS CG method in Dai and Wen [47] for unconstrained optimization problems.

Our paper makes two contributions to large-scale nonlinear monotone equations. Firstly, a new
line search is proposed for the derivative-free method. A significant advantage of this line search is
that it is easier to obtain the search stepsize. Secondly, we propose a derivative-free method for solving
large-scale nonlinear monotone equations which combines the modified Hestenes-Stiefel method in
Dai and Wen [47] for unconstrained optimization problems and the hyperplane projection method [13].
A good property of the proposed method is that it is suitable to solve large-scale nonlinear monotone
equations due to its lower storage requirement.

The rest of the article is organized as follows. In Section 2, we give the algorithm and prove the
sufficient descent property. The global convergence is proved in Section 3. We report the numerical
results In Section 4. The last Section gives the conclusion.

2. Algorithm and the Sufficient Descent Property

In this section, we will present the derivative-free method for solving problem (1), that is a
combination of the modified Hestenes-Stiefel method [47] and the hyperplane projection method [13].
Different from the traditional conjugate gradient method, the iteration sequence {xk+1} is obtained in
two steps at each iteration.

In the first step, the algorithm produces an iterative sequence {zk = xk + αkdk}, where dk is the
search direction, and αk > 0 is the steplength obtained by a suitable line search. For most iterative
algorithms of optimization problems, the line search plays an important role in convergence analysis
and numerical calculation. Zhang and Zhou [15] obtained the steplength αk > 0 by the following
Armijio-type line search: calculating the search steplength αk = max{βρi : i = 0, 1, . . . , } such that

− F(xk + αkdk)
Tdk ≥ σαk‖dk‖2, (3)

where β is some initial attempt for αk, β > 0 and ρ ∈ (0, 1).
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In addition, Li and Li [39] introduced an alternative line search, that is, computing the search
steplength αk = max{βρi : i = 0, 1, . . . , } such that

− F(xk + αkdk)
Tdk ≥ σαk‖F(xk + αkdk)‖ · ‖dk‖2, (4)

From the above introduction, we can see that the steplength αk is obtained by calculating αk =

max{βρi : i = 0, 1, . . . , } such that (3) or (4) is satisfied. If the point xk is far from the solution,
the obtained steplength αk may be very small. Taking this into account, we present the following line
search rule where the steplength αk is obtained by computing αk = max{βρi : i = 0, 1, . . . , } such that

− F(xk + αkdk)
Tdk ≥ σαkmin{‖dk‖2, ‖F(xk + αkdk)‖‖dk‖2,−F(xk)

Tdk}. (5)

In the second step, {xk+1} can be determined by using xk, zk, F(zk) via the hyperplane projection
method [13]. Now, let’s introduce how to generate {xk+1} via the hyperplane projection method [13].
Along the search direction dk > 0, we can generate a point zk = xk + αkdk by a suitable line search
such that

F(zk)
T(xk − zk) > 0. (6)

On the other hand, the monotonicity of F implies that for any solution x∗(F(x∗) = 0), the following
inequality holds

F(zk)
T(x∗ − zk) = −(F(zk)− F(x∗))T(zk − x∗) ≤ 0. (7)

From (6) and (7), we can see that {F(zk)
T(xk − zk) > 0} holds for any xk and {F(zk)

T(x∗ − zk) ≤
0} holds for the solution x∗. Therefore, from (6) and (7), there is a hyperplane

Hk = {x ∈ Rn|F(zk)
T(x− zk) = 0}, (8)

which can strictly separate the current point xk from the x∗ (zero point) of equation in (1).
Following Solodov and Svaiter [13] and Zhang and Zhou [15], taking the projection of xk onto the

hyperplane (8) as the next iterate xk+1 is a reasonable choice. In detail, the next iterate point xk+1 can
be computed by

xk+1 = xk −
F(zk)

T(xk − zk)

‖F(zk)‖2 F(zk). (9)

In what following, we pay our attention to the search direction which plays a crucial role in an
iterative algorithm. Our main starting point is to extend the search direction of Dai and Wen [47] to
nonlinear monotone equations problem (1). Similar to Dai and Wen [47] for unconstrained optimization,
we give the search direction as

dk =

{
−F0, if k = 0,
−Fk + βNHZ

k dk−1, if k ≥ 1,
(10)

where

βNHZ
k =

FT
k yk−1

dT
k−1wk−1

− µ
‖yk−1‖2

(dT
k−1wk−1)2

FT
k dk−1, µ >

1
4

, (11)

wk−1 = yk−1 + γsk−1, γ > 0, yk−1 = F(xk)− F(xk−1), sk−1 = zk−1 − xk−1 = αk−1dk−1. (12)

For simplicity, we refer to (10) and (11) as NHZ method hereafter.
Further, in this paper, the function F is assumed to satisfy the following assumptions witch are

often utilized in convergence analysis for nonlinear monotone equations (see, [37–45,48]).

Assumption 1. (A1) The F is a monotone function:

(F(x)− F(y))T(x− y)〉 ≥ 0, ∀x, y ∈ Rn. (13)



Mathematics 2020, 8, 168 4 of 14

(A2) The F is Lipschitz continuous function, namely, there exists a L > 0 such that

‖F(x)− F(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn. (14)

In what following, we will describe the proposed Algorithm 1.

Algorithm 1: NHZ derivative-free method.
Step 0: Given x0 ∈ Rn as an initial point, and the constants ε > 0, β > 0, σ > 0, ρ ∈ (0, 1). Then
set k := 0.

Step 1: Calculate F(xk). If ‖F(xk)‖ ≤ ε, stop the algorithm. Otherwise, go to step 2.
Step 2: Determine the search direction dk by (10), (11) and (12).
Step 3: Calculate the search steplength αk by (5). Let zk = xk + αkdk.
Step 4: Calculate F(zk). If ‖F(zk)‖ ≤ ε, stop the algorithm. Otherwise, calculate xk+1 by using
the projection (9). Set k := k + 1 and go to Step 1.

In what follow, we will show that the proposed NHZ derivative-free method enjoys the sufficient
descent property which plays an important role in proof of convergence. From now on, we use Fk to
denote F(xk).

Theorem 1. The search direction dk generated by (10), (11) and (12) is sufficient descent direction. That is,
if dT

k wk 6= 0, then we have

FT
k dk ≤ −(1−

1
4µ

)‖Fk‖2, µ >
1
4

. (15)

Proof. When k = 0, we have

FT
0 d0 = −‖F0‖2 ≤ −(1− 1

4µ
)‖F0‖2.

It is obvious that (15) is satisfied for k = 0.

Now we will show that the sufficient descent condition (15) holds for k ≥ 1. We can obtain from
(10) and (11) that

FT
k dk = −‖Fk‖2 + βkFT

k dk−1

= −‖Fk‖2 +
{ FT

k yk−1

dT
k−1wk−1

− µ
‖yk−1‖2

(dT
k−1wk−1)2

FT
k dk−1

}
FT

k dk−1

=
FT

k yk−1(dT
k−1wk−1)(FT

k dk−1)− ‖Fk‖2(dT
k−1wk−1)

2 − µ‖yk−1‖2(FT
k dk−1)

2

(dT
k−1wk−1)2

.

Define
uk =

1√
2µ

(dT
k−1wk−1)Fk, vk =

√
2µ(FT

k dk−1)yk−1. (16)

By using the Equation (16) and the inequality uT
k vk ≤ 1/2(‖uk‖2 + ‖vk‖2), we have

FT
k dk =

uT
k vk − 1/2(‖uk‖2 + ‖vk‖2)

(dT
k−1wk−1)2

− (1− 1
4µ

)
(dT

k−1wk−1)
2

(dT
k−1wk−1)2

‖Fk‖2

≤ −(1− 1
4µ

)‖Fk‖2.

Thus (15) holds for k ≥ 1.
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3. Global Convergence Analysis

Now, we will investigate the global convergence of Algorithm 1. Firstly, we give the following
Lemma which shows the line search strategy (5) is well-defined if the search directions {dk} satisfy the
sufficient descent property.

Lemma 1. If the iterative sequences {xk} and {zk} are generated by the Algorithm 1. Then, there always exists
a steplength αk satisfying the line search (5).

Proof. Assume that, for any nonnegative integer i for βρi, the line search strategy (5) does not hold in
the k0-th iterate, then we have

− F(xk0 + βρidk0)
Tdk0 < σβρimin{‖dk0‖

2, ‖F(xk0 + βρidk0)‖‖dk0‖
2,−F(xk0)

Tdk0}. (17)

Letting i 7→ ∞, we have from the continuity of F and ρ ∈ (0, 1) that

− F(xk0 + βρidk0)
Tdk0 < 0, (18)

which contradicts (15). The proof is completed.

The next Lemma indicates that the line search strategy (5) provides a lower bound for
steplength αk.

Lemma 2. If the iterative sequences {xk} and {zk} are generated by the Algorithm 1. Then, we can obtain that

αk ≥ min
{

β,
δρ

(L + σ)‖
‖Fk‖2

‖dk‖2

}
, (19)

where δ = 1− 1
4µ .

Proof. Tf αk = β, it is obviously that (19) holds. Suppose that αk 6= β, then we can obtain that
α
′
k = ρ−1αk does not satisfy the line search process (5). That is,

− F(z
′
k)

Tdk < σα
′
kmin{‖dk‖2, ‖F(z′k)‖‖dk‖2,−F(x

′
k)

Tdk} ≤ σα
′
k‖dk‖2, (20)

where z
′
k = xk + α

′
kdk.

From the sufficient descent condition (15), we have that

(1− 1
4µ

)‖Fk‖2 .
= δ‖Fk‖2 ≤ −FT

k dk. (21)

From the Lipschitz continuity of F (14), (20) and (21), we can obtain that

−FT
k dk = (F(z

′
k)− F(xk))

Tdk − F(z
′
k)

Tdk

≤ ‖F(z′k)− F(xk)‖‖dk‖+ σα
′
k‖dk‖2

≤ L‖z′k − xk‖‖dk‖+ σα
′
k‖dk‖2

= Lα
′
k‖dk‖2 + σα

′
k‖dk‖2

= ρ−1αk(L + σ)‖dk‖2.

Therefore, the above inequalities and (21) imply

αk ≥
δρ

(L + σ)‖
‖Fk‖2

‖dk‖2 .
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This shows that Lemma about the search steplength αk holds.
The next Lemma is proved by Solodov and Svaiter (see Lemma 2.1 in [13]), which can also hold

for Algorithm 1. Now, we give this lemma without proof, because its proof is similar in Solodov &
Svaiter [13].

Lemma 3. Assume the function F is monotone and the Lipschitz continuous condition (14) holds. If the iterative
sequences {xk} is generated by the Algorithm 1, then for any x∗, such that F(x∗) = 0, we can obtain that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2.

In particular, the iterative sequence {xk} is bounded and

∞

∑
k=0
‖xk+1 − xk‖2 < ∞. (22)

Remark 1. The above Lemma 2 confirms that the sequence {‖xk − x∗‖} decreases with k. In addition, (22)
implies that

lim
k→∞
‖xk+1 − xk‖ = 0. (23)

Theorem 2. If the iterative sequences {xk} is generated by the Algorithm 1, then, we can have that

lim
k→∞

αk‖dk‖ = 0. (24)

Proof. We can obtain from (5) and (9) that, for any k,

‖xk+1 − xk‖ =
|F(zk)

T(xk − zk)|
‖F(zk)‖

=
−αkF(zk)

Tdk
‖F(zk)‖

≥ σα2
k‖dk‖2. (25)

In particular, it follows from (23) and (25) that

lim
k→∞

αk‖dk‖ = 0. (26)

Lemma 4. If the iterative sequences {xk} is generated by the Algorithm 1, and x∗ satisfies F(x∗) = 0, z
′
k =

xk + α
′
kdk, α

′
k = ρ−1αk. Then, {‖F(z′k)‖} and {‖Fk‖} are bounded, i.e, there is a constant M ≥ 0, such that

‖F(z′k)‖ ≤ M, ‖Fk‖ ≤ M. (27)

Proof. By the Lemma 2, we have
‖xk − x∗‖ ≤ ‖x0 − x∗‖.

From (26), we have that there is a constant M1 > 0 such that αk‖dk‖ ≤ M1. Hence

‖z′k − x∗‖ ≤ ‖xk − x∗‖+ α
′
k‖dk‖ ≤ ‖x0 − x∗‖+ ρ−1αk‖dk‖ ≤ ‖x0 − x∗‖+ M1. (28)

Since the function F(x) is Lipschitz continuous, we can easily obtain the following two inequalities

‖F(z′k)‖ ≤ ‖F(z
′
k)− F(x∗)‖ ≤ L‖z′k − x∗‖ ≤ L(‖x0 − x∗‖+ ρ−1M1,

and
‖Fk‖ ≤ ‖F(xk)− F(x∗)‖ ≤ L‖xk − x∗‖ ≤ L‖x0 − x∗‖.

Let M = max{L‖x0 − x∗‖, L(‖x0 − x∗‖+ ρ−1M1}. We can obtain (27).
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In what following, we will give the global convergence theorem for our proposed method.

Theorem 3. If the iterative sequences {xk} is generated by the Algorithm 1. We can obtain that

lim inf
k→∞

‖Fk‖ = 0. (29)

Proof. We will prove this Theorem by contradiction. Assume that (29) is not true. Then it implies
there is a constant ε > 0, s.t. ‖Fk‖ > ε.

Since Fk 6= 0, we have from (15) that dk 6= 0. Hence, the monotonicity of F together with
(10) implies

s̄T
k−1wk−1 = 〈F(zk−1)− F(xk−1), zk−1 − xk−1〉+ γsT

k−1sk−1

≥ γsT
k−1sk−1.

This together with the definition of sk−1 implies

dT
k−1wk−1 ≥ γαk−1‖dk−1‖2. (30)

We have from (11), (12) and (30) that

|βNHZ
k | = |

FT
k yk−1

dT
k−1wk−1

− µ
‖yk−1‖2

(dT
k−1wk−1)2

FT
k dk−1|

≤ Lαk−1‖dk−1‖‖Fk‖
γαk−1‖dk−1‖2 + µ

L2α2
k−1‖dk−1‖2

γ2α2
k−1‖dk−1‖4

‖Fk‖‖dk−1‖

≤ (
L
γ
+ µ

L2

γ2 )
‖Fk‖
‖dk−1‖

.

Therefore, from (10) and (30), we can obtain

‖dk‖ ≤ ‖Fk‖+ |βNHZ
k |‖dk−1‖

≤ ‖Fk‖+ (
L
γ
+ µ

L2

γ
)‖Fk‖

≤ (1 +
L
γ
+ µ

L2

γ2 )M.

Define C = (1 + L
γ + µ L2

γ2 )M. Then, we can have ‖dk‖ ≤ C.

It follows from Lemmas 2, Lemmas 3, ‖Fk‖ ≥ ε and ‖dk‖ ≥ ε that for all k sufficiently large,

αk‖dk‖ ≥ min
{

β,
δρ

(L + σ)‖
‖Fk‖2

‖dk‖2

}
‖dk‖

≥ min
{

βε,
δρε2

(L + σ)‖C

}
> 0.

It is obvious that the above inequality contradicts with (24). That is, (29) holds. And we complete
this proof.

4. Numerical Experiments

Now, we will give some numerical experiments to test the numerical performance of our proposed
method. We try to test the NHZ Algorithm 1 and compare it’s performance with the spectral gradient
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(SG) method [15] and the MPRP method in [39]. In the testing experiments, all codes were written in
Matlab R2018a, and run on a Lenovo PC with 4 GB RAM memory.

To obtain better numerical performance, we select the following initial steplength as in [39]
and [43]

β = | F(xk)
Tdk

dT
k (F(xk + εdk)− F(xk))/ε

| ≈ | F(xk)
Tdk

dT
k∇F(xk)dk

|, ε = 10−8. (31)

We set ρ = 0.5, σ = 2. Further, let β = 1 if β < 10−4.
Following the MPRP method in [39], we terminate the iterative process if the following condition

min{‖F(xk)‖, ‖F(zk)‖} ≤ atol + rtol‖F(x0)‖

is satisfied, and rtol = atol = 10−4.
The numerical performance of SG, MPRP, and NHZ methods are tested by using the following

five nonlinear monotone equations problem with different various sizes and initial points.

Problem 1 ([49]). The specific expression of the function F(x) is defined as

Fi(x) = 2xi − sin(|xi|), i = 1, . . . , n.

Problem 2 ([49]). The specific expression of the function F(x) is defined as

F1(x) = 2x1 + sin(x1)− 1,

Fi(x) = −2xi−1 + 2xi + sin(xi)− 1, i = 2, . . . , n− 1,

Fn(x) = 2xn + sin(xn)− 1.

Problem 3 ([50]). The specific expression of the function F(x) is defined as

Fi(x) = xi − sin(xi), i = 1, . . . , n.

Problem 4 ([50]). The specific expression of the function F(x) is defined as

F(x) = Ax + g(x)

where g(x) = (ex1 − 1, ex2 − 1, . . . , exn − 1)T

A =



2 −1
−1 2 −1

. . . . . . . . .
. . . . . . −1

−1 2


Problem 5. The specific expression of the function F(x) is defined as

F(x) = Ax + |X| − B



Mathematics 2020, 8, 168 9 of 14

where |X| = (|x1|, |x2|, . . . , |xn|)T , B = (1, 1, . . . , 1)T , and

A =



2 −1
−1 2 −1

. . . . . . . . .
. . . . . . −1

−1 2


.

The numerical results for 5 tested problems are reported in Tables 1–5 respectively, where the given
initial points are x1 = (0.1, . . . , 0.1)T , x2 = (1, . . . , 1)T , x3 = (1, 1

2 , . . . , 1
n )

T , x4 = (−10, . . . ,−10)T ,
x5 = (−0.1, . . . ,−0.1)T , x6 = (−1, . . . ,−1)T . Meanwhile, the numerical results are listed in the
Tables 1–5 where (Time) is the CPU time (in seconds), (Iter) is the number of iterations and (Feval) is
the number of function evaluations.

Tables 1–5 report the numerical results of the proposed algorithm, the spectral gradient (SG)
method [15] and the MPRP method in [39] with five tested problems where the test indicators of Time,
Iter and Feval are used to evaluate numerical performance.

Comparing the CPU time within the tested algorithms, we note that our proposed algorithm
needs lower time consuming than both the spectral gradient (SG) method [15] and the MPRP method
in [39] for all tested problems, and the difference is substantial and significant especially for large-scale
problems. In addition, the MPRP method in [39] needs lower CPU time than the spectral gradient (SG)
method [15]. Assessing the number of iterations within the tested algorithms, we find that the NHZ
method requires fewer iterations than the spectral gradient (SG) method [15] and the MPRP method
in [39] for all tested problems. We also note that our proposed algorithm requires fewer number of
function evaluations for all tested problems, and the difference is substantial and significant.

In sum, from the numerical results in Tables 1–5, it isn’t difficult to see that the proposed algorithm
performs better than the spectral gradient (SG) method [15] and the MPRP method in [39] for three
test indicators which implies that the modified Hestenes-Stiefel-based derivative-free method is
computationally efficient for nonlinear monotone equations.

Table 1. Numerical results for the tested Problem 1 with various sizes and given initial points.

Initial Dim. SG MPRP NHZ

Time Iter Feval Time Iter Feval Time Iter Feval

x1 1000 1.16 16 37 0.81 12 39 0.65 10 29
x2 1000 1.16 16 37 0.81 12 39 0.65 10 29
x3 1000 0.77 13 26 0.55 8 27 0.48 7 22
x4 1000 1.24 15 43 0.85 9 42 0.78 7 35
x5 1000 1.15 14 44 0.53 6 28 0.48 5 24
x6 1000 1.15 14 44 0.53 6 28 0.48 5 24

x1 5000 6.96 18 37 5.32 13 42 4.55 11 32
x2 5000 6.96 17 37 5.01 12 39 3.85 11 29
x3 5000 4.16 11 22 3.01 7 24 2.43 6 20
x4 5000 10.45 18 62 7.38 12 60 5.99 11 48
x5 5000 6.88 14 44 3.40 6 28 2.84 5 24
x6 5000 6.96 15 45 3.40 6 28 2.84 5 24

x1 10,000 27.77 18 38 21.15 13 42 15.72 11 32
x2 10,000 27.62 17 36 19.65 12 39 14.36 11 27
x3 10,000 14.90 10 20 11.92 7 24 8.96 6 20
x4 10,000 44.65 20 69 35.15 14 72 30.98 12 68
x5 10,000 29.55 15 45 13.86 6 28 11.22 5 24
x6 10,000 29.55 15 45 13.86 6 28 11.22 5 24
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Table 2. Numerical results for the tested Problem 2 with various sizes and given initial points.

Initial Dim. SG MPRP NHZ

Time Iter Feval Time Iter Feval Time Iter Feval

x1 1000 0.67 326 646 0.17 196 591 0.12 155 568
x2 1000 0.64 364 714 0.11 203 612 0.10 180 584
x3 1000 0.64 343 691 0.19 195 588 0.17 174 555
x4 1000 1.18 468 941 0.15 243 741 0.14 220 709
x5 1000 0.67 479 988 0.17 194 585 0.15 162 549
x6 1000 0.65 431 857 0.16 189 571 0.14 165 529

x1 5000 10.38 723 2047 8.19 487 1465 8.10 468 1448
x2 5000 16.87 753 2622 12.85 769 2310 12.63 744 2205
x3 5000 9.01 824 2849 7.98 469 1411 7.65 442 1324
x4 5000 18.74 1023 3261 15.96 929 2840 15.51 901 2781
x5 5000 10.05 1226 3053 7.59 453 1363 7.50 442 1320
x6 5000 11.32 836 2476 6.32 371 1122 6.20 338 1103

x1 10,000 47.90 960 2002 34.59 539 1622 10.01 460 1508
x2 10,000 82.62 1334 4066 65.06 1023 3072 60.79 1001 3003
x3 10,000 50.99 833 2469 34.30 516 1553 32.32 501 1502
x4 10,000 56.82 2042 6668 39.65 1668 5075 36.31 1602 5003
x5 10,000 49.63 832 2268 31.57 497 1497 30.25 436 1405
x6 10,000 45.70 850 1706 25.36 396 1202 22.24 375 1106

Table 3. Numerical results for the tested Problem 3 with various sizes and given initial points.

Initial Dim. SG MPRP NHZ

Time Iter Feval Time Iter Feval Time Iter Feval

x1 1000 1.16 16 37 0.81 12 39 0.62 10 28
x2 1000 1.17 17 36 0.83 12 39 0.71 11 28
x3 1000 0.77 11 24 0.57 8 27 0.49 7 28
x4 1000 1.25 14 44 0.88 9 42 0.75 7 32
x5 1000 1.16 13 42 0.56 6 28 0.48 5 22
x6 1000 1.16 13 42 0.57 6 28 0.48 5 22

x1 5000 6.98 17 36 5.42 13 42 4.63 11 32
x2 5000 6.98 17 36 5.11 12 39 3.95 11 30
x3 5000 4.29 10 22 3.12 7 24 2.34 6 20
x4 5000 10.57 19 64 7.46 12 60 6.25 11 52
x5 5000 6.99 13 42 3.52 6 28 3.92 5 24
x6 5000 6.99 13 42 3.52 6 28 3.92 5 24

x1 10,000 27.78 17 36 21.35 13 42 15.97 11 32
x2 10,000 27.79 17 36 19.75 12 39 15.86 11 30
x3 10,000 15.65 9 26 11.99 7 24 9.98 6 19
x4 10,000 44.85 20 69 35.36 14 72 29.98 12 60
x5 10,000 29.89 14 45 13.98 6 28 12.56 5 24
x6 10,000 29.89 14 45 13.98 6 28 13.59 6 24
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Table 4. Numerical results for the tested Problem 4 with various sizes and given initial points.

Initial Dim. SG MPRP NHZ

Time Iter Feval Time Iter Feval Time Iter Feval

x1 1000 0.20 219 431 0.06 50 216 0.05 38 168
x2 1000 0.28 261 463 0.06 56 252 0.05 46 185
x3 1000 0.28 224 329 0.05 34 152 0.03 32 137
x4 1000 0.22 263 529 0.07 100 421 0.06 96 399
x5 1000 0.28 183 403 0.06 42 187 0.05 40 177
x6 1000 0.28 212 424 0.06 60 261 0.05 48 218

x1 5000 2.15 263 456 1.11 48 209 1.05 47 183
x2 5000 2.45 225 378 1.19 46 224 0.92 38 169
x3 5000 1.65 122 267 0.62 27 117 0.65 29 128
x4 5000 3.41 265 558 2.59 109 483 2.49 104 455
x5 5000 2.86 290 467 1.21 53 231 1.07 44 189
x6 5000 2.97 231 477 1.20 54 234 1.16 48 213

x1 10,000 5.30 278 502 3.96 45 195 3.83 42 185
x2 10,000 6.26 237 574 4.27 41 210 3.84 38 158
x3 10,000 5.62 275 585 1.93 42 96 2.62 35 142
x4 10,000 18.15 333 596 10.86 117 533 9.45 109 498
x5 10,000 13.52 341 595 4.34 49 212 3.85 44 186
x6 10,000 13.55 336 553 4.89 56 246 3.78 48 195

Table 5. Numerical results for the tested Problem 5 with various sizes and given initial points.

Initial Dim. SG MPRP NHZ

Time Iter Feval Time Iter Feval Time Iter Feval

x1 1000 0.89 119 289 0.66 47 199 0.44 38 168
x2 1000 0.78 122 263 0.45 22 105 0.44 24 98
x3 1000 0.69 130 235 0.35 48 209 0.28 38 120
x4 1000 0.85 190 249 0.47 37 165 0.34 35 98
x5 1000 0.75 194 248 0.55 94 237 0.45 66 192
x6 1000 1.22 225 462 0.79 174 396 0.75 142 372

x1 5000 2.32 113 260 1.22 51 221 0.98 42 172
x2 5000 2.92 128 270 0.56 22 105 0.58 28 96
x3 5000 3.80 228 412 1.11 47 200 0.79 44 144
x4 5000 3.50 216 424 1.20 48 206 0.79 44 142
x5 5000 3.00 226 443 1.17 47 206 0.81 44 122
x6 5000 6.57 461 881 5.06 308 707 4.25 262 628

x1 10,000 5.92 66 209 3.90 44 191 3.42 38 184
x2 10,000 6.86 68 218 51.1 22 105 49.1 21 98
x3 10,000 5.76 60 181 4.24 47 204 3.23 38 132
x4 10,000 11.84 69 227 10.5 48 209 8.52 44 148
x5 10,000 10.55 68 221 4.02 45 196 3.82 42 168
x6 10,000 12.46 89 326 10.1 74 262 7.83 68 232

5. Conclusions

This paper aims to present a modified Hestenes-Stiefel method to solve the nonlinear monotone
equations which combines the hyperplane projection method [13] and the modified Hestenes-Stiefel
method in Dai and Wen [47]. In the proposed method, the search direction satisfies sufficient descent
conditions. A new line search is proposed for the derivative-free method. Under appropriate
conditions, the proposed method converges globally. The given numerical results show the presented
method is more efficient compared to the methods proposed by the spectral gradient method Zhang
and Zhou [15] and the MPRP method in Li and Li [39].
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In addition, we also expect that our proposed method and its further modifications could produce
new applications for problems in relevant areas of symmetric equations [51], image processing [52],
and finance [53–55].
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