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Abstract: In this paper, we give an estimate of the first eigenvalue of the Laplace operator on
minimally immersed Legendrian submanifold Nn in Sasakian space forms Ñ2n+1(ε). We prove that a
minimal Legendrian submanifolds in a Sasakian space form is isometric to a standard sphere Sn if the
Ricci curvature satisfies an extrinsic condition which includes a gradient of a function, the constant
holomorphic sectional curvature of the ambient space and a dimension of Nn. We also obtain a
Simons-type inequality for the same ambient space forms Ñ2n+1(ε).
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1. Introduction and Motivations

In 1959, Yano and Nagano [1] proved that if a complete Einstein space of dimension strictly greater
than 2 admits a 1-parameter group of non-homothetic conformal transformations, then it is isometric
to a sphere. Later, Obata [2] gave a simplified proof of the result of Yano and Nagano by analyzing a
differential equation, nowadays known as Obata equation. Recall that a complete manifold (Nn, g)
admits a non-constant function ψ satisfying the Obata differential equation

Hess(ψ) + ψg = 0, (1)

if and only if (Nn, g) is isometric to the standard sphere Sn. Such characterizations of complete
spaces are of great interest and they were investigated by many geometers (see [3–12]). For example,
Tashiro [13] has shown that the Euclidean spaces Rn are characterized by a differential equation
∇2ψ = cg, where c is a positive constant. Utilizing Obata Equation (1), Barros et al. [14] have shown
that a compact gradient almost Ricci soliton (Nn, g,∇ψ, λ) with the Codazzi Ricci tensor and constant
sectional curvature is isometric to the Euclidean sphere, and then ψ is a height function in this case.
For more terminologies related to the Obata equation, see [8]. In [15], Lichnerowicz proved that, if
the first non-zero eigenvalue µ1 of the Laplacian on a compact manifold (Mn, g) with Ric ≥ n− 1, is
not less than n, while µ1 = n, then (Mn, g) is isometric to the sphere Sn. This means that the Obata’s
rigidity theorem could be used to analyze the equality case of Lichnerowicz’s eigenvalue estimates
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in [15]. In the sequel, inspired by ideas developed in [16–18], we derive some rigidity theorems in the
present paper.

On the other hand, by considering Nn as a compact submanifold immersed in Euclidean space
Rn+p or the standard Euclidean sphere Sn+p, Jiancheng Zhang [17] derived the Simons-type [18]
inequalities of the first eigenvalue µ1 and the squared norm of the second fundamental form S without
need of minimallty. In addition, a lower bound of S can be provided if it is constant. Similar results
can be found in [14,16]. As a generalization in the case of an odd-dimensional sphere, a minimally
immersed Legendrian submanifold into a Sasakian space form of constant holomorphic sectional
curvature ε should be considered in order to obtain Simon’s-like inequality theorem.

2. Preliminaries and Notations

An odd-dimensional C∞-manifold (Ñ, g) is said to be an almost contact metric manifold if it is
equipped with almost contact structure (φ, η, ζ) satisfying following properties:

φ2 = −I + ζ ⊗ η, η(ζ) = 1, φ(ζ) = 0, η ◦ φ = 0, (2)

g(φV1, φV2) = g(V1, V2)− η(V1)η(V2), & η(V1) = g(V1, ζ), (3)

∀ V1, V2 ∈ Γ(TÑ), where φ, ζ and η are a tensor field of type (1, 1), a structure vector field and a dual
1-form, respectively. Moreover, an almost contact metric manifold Ñ2m+1 is referred to as a Sasakian
manifold if it fulfills the following relation

(∇̃V1 φ)V2 = g(V1, V2)ζ − η(V2)V1. (4)

It follows that

∇̃V1 ζ = −φV1, (5)

for any V1, V2 ∈ Γ(TÑ), where ∇̃ stands for the Riemannian connection in regard to g. A Sasakian
manifold Ñ2m+1 equipped with constant φ-sectional curvature ε is referred to as Sasakian space form
and denoted by Ñ2m+1(ε). Then, the following formula for the curvature tensor R̃ of Ñ2m+1(ε) can be
expressed as:

R̃(V1, V2, V3, V4) =
ε + 3

4

{
g(V2, V3)g(V1, V4)− g(V1, V3)g(V2, V4)

}

+
ε− 1

4

{
η(V1)η(V3)g(V2, V4) + η(V4)η(V2)g(V1, V3)

− η(V2)η(V3)g(V1, V4)− η(V1)g(V2, V3)η(V4)

+ g(φV2, V3)g(φV1, V4)− g(φV1, V3)g(φV2, V4)

+ 2g(V1, φV2)g(φV3, V4)

}
, (6)

∀ V1, V2, V3, V4 ∈ Γ(TÑ). Moreover, R2m+1 and S2m+1 with standard Sasakian structures can be given
as typical examples of Sasakian space forms. An n-dimensional Riemannian submanifold Nn of
Ñ2m+1(ε) is referred to as totally real if the standard almost contact structure φ of Ñ2m+1(ε) maps
any tangent space of Nn into its corresponding normal space (see [4,19–21]). Now, let Nn be an
isometric immersed submanifold of dimension n in Ñ2m+1(ε). Then Nn is referred to as a Legendrian
submanifold if ζ is a normal vector field on Nn, i.e., Nn is a C- totally real submanifold, and m =

n [22]. Legendrian submanifolds play a substantial role in contact geometry. From Riemannian
geometric perspective, studying Legendrian submanifolds of Sasakian manifolds was initiated in
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1970’s. Many geometers have drawn significant attention to minimal Legendrian submanifolds in
particular. In order to proceed let us recall the definition of the curvature tensor R̃ for Legendrian
submanifold in Ñ2n+1(ε) which is given by

R̃(V1, V2, V3, V4) =
( ε + 3

4

){
g(V2, V3)g(V1, V4)− g(V1, V3)g(V2, V4)

}
. (7)

Let {e1, · · · , en} be an adapted orthogonal frame to Nn. Then, the second fundamental from h
associated to Nn is defined as

h(ei, ej) =
n

∑
γ=1

σ
γ
ij eγ,

where σ
γ
ij = 〈Aγei, ej〉 and Aγ is the shape operator in the direction of eγ. Hence, the Gauss formula

for Legendrian submanifold Nn in Ñ2n+1(ε) in the local coordinates has the form

Ri
jkl =

(
δiiδjj − δijδji

)( ε + 3
4

)
+

n

∑
γ=1

(σγ
ikσ

γ
jl − σ

γ
il σ

γ
jk).

Therefore, we have

Ri
jij =

(
δiiδjj − δijδji

)( ε + 3
4

)
+

n

∑
γ=1

(σγ
ii σ

γ
jj − σ

γ
ij σ

γ
ji ). (8)

We should note that Ψ is a C-totally real minimal immersion. Then, (8) yields

Ric(ei, ej) = (n− 1)
( ε + 3

4

)
δij −

n

∑
γ=1

σ
γ
irσ

γ
jr. (9)

Now, we recall that Bochner formula [4] as follows: if ψ : Nn → R is a function defined on a
Riemannian manifold Nn, then we have

1
2

∆|∇ψ|2 = |Hess(ψ)|2 + RicNn(∇ψ,∇ψ) + g
(
∇ψ,∇(∆ψ)

)
, (10)

where, Ric denotes the Ricci tensor of Nn and |A| stands for the norm of an operator A which is given
by |A|2 = tr(AA∗);A∗ is the transpose of A.

3. The Main Results

Now, we give a proof of the following essential proposition that we need later to prove our main
Theorems 1 and 2.

Proposition 1. Let Ψ : Nn → Ñ2n+1(ε) be a minimal immersion of a compact Legendrian submanifold into
the Sasakian space form Ñ2n+1(ε) and ψ be a first eigenfunction associated to the Laplacian of Nn. Then if
{e1, · · · , en} is an orthonormal tangent basis on Nn, we have{

(n− 1)
( ε + 3

4

)
− µ1

} ∫
N
|∇ψ|2dV +

∫
N
|Hess(ψ)|2dV =

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV, (11)
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and particularly, we get

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV =

∫
N

∣∣∣Hess(ψ) +
µ1

n
ψI
∣∣∣2 dV

+

{
(n− 1)

( ε + 3
4

)
− µ1

n

} ∫
N
|∇ψ|2dV, (12)

where I denotes the identity operator on TN, µ1 is an eigenvalue of the eigenfunction ψ such that ∆ψ+ µ1ψ = 0,
and Hess(ψ) is the squared norm of the Hessian of ψ

Proof. Let I be the identity operator on TN. Then we have∣∣∣Hess(ψ)− tψI
∣∣∣2 = |Hess(ψ)|2 − 2tψg(I, Hess(ψ)) + |I|2t2ψ2. (13)

It should be noted that |I|2 = trace(I I∗) = n, and

g(Hess(ψ), I) = trace(Hess(ψ)I∗) = trace(Hess(ψ)) = ∆ψ.

Therefore, if ∆ψ + µ1ψ = 0, we derive it for any t ∈ R. Integrating Equation (13), and using the
above equation and Stokes theorem, we get

∫
N

∣∣∣Hess(ψ)− tψI
∣∣∣2dV =

∫
N
|Hess(ψ)|2dV +

(
2t +

n
µ1

t2
) ∫

N
|∇ψ|2dV. (14)

Setting t = − µ1
n in (14), we get

∫
N
|Hess(ψ)|2dV =

∫
N

∣∣∣Hess(ψ) +
µ1

n
ψI
∣∣∣2 dV +

µ1

n

∫
N
|∇ψ|2dV. (15)

On other hand, Equation (9) yields

Ric(ψiei, ψjej) = (n− 1)
( ε + 3

4

)
δijψiψj −

2n+1

∑
γ=1

n

∑
r=1

σ
γ
irσ

γ
jrψiψj.

Tracing the above equation, we obtain

Ric(∇ψ,∇ψ) =
( ε + 3

4

)
(n− 1)|∇ψ|2 −

n

∑
i=1
|h(∇ψ, ei)|2. (16)

As we consider that ∆ψ = −µ1ψ, combining the integration of Bochner formula with utilizing
Stokes theorem, one arrives∫

N
|Hess(ψ)|2dV +

∫
N

RicNn(∇ψ,∇ψ)dV = µ1

∫
N
|∇ψ|2dV. (17)

From (16) and (17), we conclude{( ε + 3
4

)
n− µ1

} ∫
N
|∇ψ|2dV =

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV

+
( ε + 3

4

) ∫
N
|∇ψ|2 −

∫
N
|Hess(ψ)|2dV.
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This is the first result (11) of proposition. On the other hand, using (15) in the last equality,
we obtain{( ε + 3

4

)
n− µ1

} ∫
N
|∇ψ|2dV =

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV +

( ε + 3
4

) ∫
N
|∇ψ|2dV

−
∫

N

∣∣∣Hess(ψ) +
µ1

n
ψI
∣∣∣2 dV − µ1

n

∫
N
|∇ψ|2dV.

The above formula can written as{( ε + 3
4

)
n−

( ε + 3
4

)
− µ1 +

µ1

n

} ∫
N
|∇ψ|2dV =

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV

−
∫

N

∣∣∣Hess(ψ) +
µ1

n
ψI
∣∣∣2 dV

After some computation, we get

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV =

∫
N

∣∣∣Hess(ψ) +
µ1

n
ψI
∣∣∣2 dV

+

{
(n− 1)

n

(( ε + 3
4

)
n− µ1

)} ∫
N
|∇ψ|2dV,

which completes the proof of the proposition.

The first result of our study can be given as follows.

Theorem 1. Suppose that Ψ : Nn → Ñ2n+1(ε) is a minimal immersion of a compact Legedrian submanifold
into Sasakian space form Ñ2n+1(ε) and ψ is a first eigenfunction of the Laplacian of Nn associated to the first
eigenvalue µ1. Then, we have

(i) The second fundamental form satisfies the following

∫
N
|Hess(ψ)|2dV ≤

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV +

( ε + 3
4

) ∫
N
|∇ψ|2dV, (18)

provided that the inequality n
(

ε+3
4

)
≥ µ1 holds, where Hess(ψ) denotes the squared norm of the Hessian

of ψ and {e1, · · · , en} is an orthonormal frame tangent to Nn. Moreover, the equality holds if and only if

µ1 =
( ε + 3

4

)
n. (19)

(ii) Furthermore, if the inequality

∫
N
|Hess(ψ)|2dV ≥

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV (20)

holds, then we have lower bound for eigenvalue µ1, that is,

µ1 ≥
( ε + 3

4

)
(n− 1).

(iii) In particular, if the following inequality

µ1

n

∫
N
|∇ψ|2dV ≥

( ε + 3
4

) ∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV (21)
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holds, then the eigenvalue µ1 satisfies the following inequality

µ1 ≥
( ε + 3

4

)
(n− 1).

Proof. We proceed as follows. Let

n
( ε + 3

4

)
≥ µ1.

We point out that (11) of Proposition 1 is non-negative. Therefore, we can write

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV +

( ε + 3
4

) ∫
N
|∇ψ|2dV ≥

∫
N
|Hess(ψ)|2dV.

Furthermore, the equality sign of the above inequality holds if and only if

µ1 = n
( ε + 3

4

)
.

Moreover, the first equation of Proposition 1 can take the form

∫
N
|Hess(ψ)|2dV =

∫
N

n

∑
i=1
|h(∇ψ, li)|2dV

+

{
µ1 −

( ε + 3
4

)
(n− 1)

} ∫
N
|∇ψ|2dV. (22)

Now, if we consider the following inequality

∫
N
|Hess(ψ)|2dV ≥

∫
N

n

∑
i=1
|h(∇ψ, li)|2dV,

then Equation (22) yields that {
µ1 −

( ε + 3
4

)
(n− 1)

}
≥ 0.

Finally, we note that

∫
N
|∇ψ|2dV ≥ n

µ1

( ε + 3
4

) ∫
N

n

∑
i=1
|h(∇ψ, li)|2dV.

This implies that

∫
N
|Hess(ψ)|2dV ≥

∫
N

n

∑
i=1
|h(∇ψ, li)|2dV,

which completes the proof of the theorem.

Now, we recall the following lemma which would help us to prove the next Theorem.
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Lemma 1 ([16]). Let T : U → U be a trace-less non-null symmetric linear operator defined over a finite
dimensional vector space U. Let {e1, · · · , en} be an orthonormal frame diagonalizing T, i.e., Tei = µiei.
If dim KerT = q, then we get

µ2
j ≤

(n− q− 1)|T|2
(n− q)

, ∀j.

Now, we give the second result of the study as follows.

Theorem 2. Let Ψ : Nn → Ñ2n+1(ε) be a minimal immersion of a compact Legendrian submanifold into a
Sasakian space form Ñ2n+1(ε)), µ1 be the first eigenvalue of the Laplacian of Nn and dim Ker(h) = q. Then,
we have

∫
N

S|Hess(ψ)|2dV ≥
{
(n− q)(nβ− 1)(nβ− µ1)

(n− q− 1)nβ

} ∫
N
|∇ψ|2dV,

where β = ε+3
4 and S is the squared norm of the second fundamental form h. Moreover, if S is constant, we get

S ≥ (n− q)(nβ− 1)
nβ(n− q− 1))(nβ− µ1)

,

where ∆ψ + µ1ψ = 0.

Proof. Let {e1, · · · , en} be an orthogonal referential diagonalizing T, i.e., Tei = kiei and let θi be the
angle between ∇ψ and ei. Then, we have

|h(∇ψ, ei)|2 = g(T∇ψ, ei)
2 = g(∇ψ, Tei〉2 = k2

i cos2 θi|∇ψ|2.

By virtue of (11) in Proposition 1, we obtain

∫
N

(
n

∑
i=1

k2
i cos2 θi

)
|∇ψ|2dV =

∫
N
|Hess(ψ)|2dV

+

{( ε + 3
4

)
(n− 1)− µ1

} ∫
N
|∇ψ|2dV.

Utilizing Lemma 1, the above equation gives(
n− q− 1

n− q

) ∫
N

S|∇ψ|2dV ≥
∫

N
|Hess(ψ)|2dV

+

{( ε + 3
4

)
(n− 1)− µ1

} ∫
N
|∇ψ|2dV. (23)

Let us assume the following inequality

∫
N
|Hess(ψ)|2dV ≥

(
4µ1

ε + 3

) ∫
N
|∇ψ|2dV,

holds. Using this assumption with fixing β = ε+3
4 , then (23) becomes(

n− q− 1
n− q

) ∫
N

S|∇ψ|2dV ≥
(

n2β2 − nβµ1 − nβ2 + µ1

nβ

) ∫
N
|∇ψ|2dV.
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After some computations, we get

∫
N

S|Hess(ψ)|2dV ≥
{
(n− q)(nβ− 1)(nβ− µ1)

(n− q− 1)nβ

} ∫
N
|∇ψ|2dV.

This completes the proof.

The following theorem gives the characterization Theorem as follows.

Theorem 3. Let Ψ : Nn → Ñ2n+1(ε) be a minimal immersion of a compact Legendrian submanifold into
Sasakian space form Ñ2n+1(ε) and ψ be a first eigenfunction associated to the Laplacian of Nn. Then, we have

(i) If ∇ψ ∈ Ker(h), then Ψ(Nn) is isometric to the standard sphere Sn with µ1 > 0 and n = 1.
(ii) If following Ricci inequality holds

RicNn(∇ψ,∇ψ) ≥ (n− 1)
( ε + 3

4

)
|∇ψ|2,

then Ψ(Nn) is isometric to a sphere Sn with ε > −3 and n ≥ 2.

Proof. At first, we provide the state of Obata Theorem [2] as follows: a Riemannian manifold Mn is
isometric to a unit sphere Sn if and only if it is equipped with a differentiable function ψ such that
Hess(ψ) = −ψ, where Hess(ψ) is the Hessian form. Now, we assume that ∇ψ ∈ ker(h), i.e.,

h(∇ψ, ei) = 0, ∀ei.

Then by using Equation (12), we attain

∫
N

∣∣∣Hess(ψ) +
µ1

n
ψ
∣∣∣2 dV =

(n− 1)(µ1 − nβ)

n

∫
N
|∇ψ|2dV.

Using the fact that the right-hand side of the above equation is non-positive leads to

0 < µ1 = n
( ε + 3

4

)
.

Therefore, Hess(ψ) = −µ1ψ, as µ1 > 0 and n = 1. Now, utilizing Obata Theorem [2], we conclude
that Φ(Nn) is isometric to Sn with µ1 = n. Thus, we have gotten the first part of Theorem 3. To prove
the second statement of the theorem, let us consider that

RicNn(∇ψ,∇ψ) ≥
( ε + 3

4

)
(n− 1)|∇ψ|2.

According to Equation (16), we find that

∫
N
(n− 1)

( ε + 3
4

)
|∇ψ|2dV ≥

n

∑
i=1
|h(∇ψ, ei)|2dV +

( ε + 3
4

)
(n− 1)

∫
N
|∇ψ|2dV.

This leads to

n

∑
i=1
|h(∇ψ, ei)|2dV ≤ 0. (24)

Hence, we conclude that h(∇ψ, ei) = 0, i.e., ∇ψ ∈ ker(h). The proof is now complete.

Tashiro [13] has proved more general results than of Obata and Kanai. The following theorem is
of interest in characterizing the Euclidean space in terms of a certain differential equation. Therefore,
we are able to prove the following result.
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Theorem 4. Let Ψ : Nn → Ñ2n+1(ε) be a minimal immersion of a compact Legendrian submanifold into
Sasakian space form Ñ2n+1(ε). Then Nn is isometric to Eculidean space Rn if and only if the following equation
is satisfied

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV +

∫
N

µ2
1

n
dV =

{
µ1 −

( ε + 3
4

)
(n− 1)

} ∫
N
|∇ψ|2dV, (25)

where ψ is a first eigenfunction associated to the Laplacian of Nn with first non-zero eigenvalue µ1.

Proof. Let us consider the equation∣∣Hess(ψ) + tI
∣∣2 = |Hess(ψ)|2 + t2|I|2 + 2tg(Hess(ψ), I),

which implies that ∣∣Hess(ψ) + tI
∣∣2 = |Hess(ψ)|2 + t2n− 2t∆ψ.

Putting t = − µ1
n and integrating the above equation along volume element dV, we obtain

∫
N

∣∣∣Hess(ψ)− µ1

n
I
∣∣∣2dV =

∫
N

(
|Hess(ψ)|2 +

µ2
1

n

)
dV.

Using (16) and (17), we get

∫
N

∣∣∣Hess(ψ)− µ1

n
I
∣∣∣2dV =

∫
N

n

∑
i=1
|h(∇ψ, ei)|2dV −

{
µ1 −

( ε + 3
4

)
(n− 1)

} ∫
N
|∇ψ|2dV

+
∫

N

µ2
1

n
dV. (26)

If (25) is satisfied, then (26) implies that∣∣∣Hess(ψ)− µ1

n
I
∣∣∣2 = 0.

Hence, we get

Hess(ψ)(X, X) =
µ1

n
g(X, X), (27)

for any X ∈ Γ(N). Therefore, by applying Tashiro Theorem [13], we conclude that Nn is isometric
to the Euclidean space Rn. The converse part can be proved easily from (26) if Nn is isometric to
Euclidean space Rn.

We provide an interesting application of Theorem 3 in the following corollary by choosing ε = 1
(see [19]).

Corollary 1. Let Ψ : Nn → S2n+1 be a minimal immersion of a compact Legendrian submanifold into the
sphere S2n+1 and ψ be a first eigenfunction associated to the Laplacian of Nn. Then, we get the following

(i) If ∇ψ ∈ Ker(h), then Ψ(Nn) is isometric to standard sphere Sn.
(ii) If RicNn(∇ψ,∇ψ) ≥ (n− 1)|∇ψ|2, then Ψ(Nn) is isometric to the sphere Sn.
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