
mathematics

Article

Integrated Production and Distribution Problem of
Perishable Products with a Minimum Total Order
Weighted Delivery Time

Ling Liu and Sen Liu *

School of Logistics, Yunnan University of Finance and Economics, Kunming 650221, China; lingliu@ynufe.edu.cn
* Correspondence: liusencool@ynufe.edu.cn

Received: 16 December 2019; Accepted: 19 January 2020; Published: 21 January 2020
����������
�������

Abstract: In this paper, an integrated production and distribution problem for perishable products is
presented, which is an NP hard problem where a single machine, multi-customers, and homogenous
vehicles with capacity constraints are considered. The objective is to minimize the total order weighted
delivery time to measure the customer service level, by making two interacted decisions, production
scheduling and vehicle routing, simultaneously. An integrated mathematical model is built, and the
validity is measured by the linear programming software CPLEX by solving the small-size instances.
An improved large neighborhood search algorithm is designed to address the problem. Firstly,
a two-stage algorithm is constructed to generate the initial solution, which determines the order
production sequence according to the given vehicle routing. Secondly, several removal/insertion
heuristics are applied to enlarge the search space of neighbor solutions. Then, a local search algorithm
is designed to improve the neighbor solutions, which further generates more chances to find the
optimal solution. For comparison purposes, a genetic algorithm developed in a related problem is
employed to solve this problem. The computational results show that the proposed improved large
neighborhood search algorithm can provide higher quality solutions than the genetic algorithm.

Keywords: integrated; production scheduling; distribution; large neighborhood search algorithm

1. Introduction

The usage of perishable products has a negative time sensitivity; that is, the usefulness or value
of products decreases with time. The definition of perishable products was proposed by [1]. If at
least one of the following conditions occurs during the planning period, goods that are raw materials,
intermediate products, or final products can be called perishable products: “(1) its physical status
deteriorates obvious, and/or (2) its value decreases in the customer’s perception, and/or (3) some
authorities believe that the future functions may be reduced”. Therefore, perishable products have a
wide range of definitions, including fresh fruits and vegetables, flowers, food, and other products with
a short lifespan, such as blood, drugs, and concrete.

Perishable products should not be delivered long after production, so as to meet customer orders.
In addition, companies with such products have employed make-to-order strategies, aiming to reduce
the production and delivery lead time [2]. Obviously, for perishable products, it is insufficient to
consider the production scheduling or logistics transportation optimization separately. For example,
to reduce the value loss of perishable products in delivery, if we make the production start time of
the orders as late as possible, it may be difficult to achieve a transportation scheduling of products
that is optimal, and the scheduling may be infeasible. In contrast, if only the order transportation
optimization is considered, it may lead to excessive production ahead of schedule, leading to a greater

Mathematics 2020, 8, 146; doi:10.3390/math8020146 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-0571-8316
https://orcid.org/0000-0002-5335-2144
http://dx.doi.org/10.3390/math8020146
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/2/146?type=check_update&version=2

Mathematics 2020, 8, 146 2 of 18

value loss. Thus, production scheduling and distribution scheduling decisions should be made jointly
at the operational level.

The integrated scheduling of production and distribution has received a lot of attention in recent
years [3]. Various problems have been studied for industries such as fashion apparel and toys [4,5],
consumer electronics [6], food catering industry [7,8], newspaper [9–11], home healthcare [12], and
customized furniture [13]. For perishable products, there is less literature on optimizing production
and transportation scheduling simultaneously [2,14–20]. Most of them consider one vehicle to serve
all customers, simplifying routing decisions. Therefore, the integrated production and distribution
problem for perishable products deserves further study.

In this paper, an integrated production and distribution problem for perishable products (IPDPPP)
is presented. As shown in Figure 1, one machine and multi-customer are taken into account. Each
customer has only one order, with a different weight according to the importance of each order. The
produced products are transported by trucks to customers, without warehousing. In order to make full
use of the vehicle capacity, different customers’ orders can be loaded into the same vehicle. Obviously,
the IPDPPP has to make two decisions—production scheduling and vehicle routing. Production
scheduling means to determine the order production sequence. In addition, the orders must be batched
first, and the orders in the same batch are produced in succession. Then, each batch is loaded onto a
same vehicle. Vehicle routing aims to determine the optimized routing for each vehicle. While the
collaborative scheduling problem usually takes customer response time as the first concern, trying
to achieve better customer service with lower logistics costs under limited resource constraints [21],
the objective of the IPDPPP is to minimize the total order weighted delivery time by making two
decisions simultaneously.

Mathematics 2020, 8, 146 2 of 19

leading to a greater value loss. Thus, production scheduling and distribution scheduling decisions
should be made jointly at the operational level.

The integrated scheduling of production and distribution has received a lot of attention in recent
years [3]. Various problems have been studied for industries such as fashion apparel and toys [4,5],
consumer electronics [6], food catering industry [7,8], newspaper [9–11], home healthcare [12], and
customized furniture [13]. For perishable products, there is less literature on optimizing production
and transportation scheduling simultaneously [2,14–20]. Most of them consider one vehicle to serve
all customers, simplifying routing decisions. Therefore, the integrated production and distribution
problem for perishable products deserves further study.

In this paper, an integrated production and distribution problem for perishable products
(IPDPPP) is presented. As shown in Figure 1, one machine and multi-customer are taken into account.
Each customer has only one order, with a different weight according to the importance of each order.
The produced products are transported by trucks to customers, without warehousing. In order to
make full use of the vehicle capacity, different customers’ orders can be loaded into the same vehicle.
Obviously, the IPDPPP has to make two decisions—production scheduling and vehicle routing.
Production scheduling means to determine the order production sequence. In addition, the orders
must be batched first, and the orders in the same batch are produced in succession. Then, each batch
is loaded onto a same vehicle. Vehicle routing aims to determine the optimized routing for each
vehicle. While the collaborative scheduling problem usually takes customer response time as the first
concern, trying to achieve better customer service with lower logistics costs under limited resource
constraints [21], the objective of the IPDPPP is to minimize the total order weighted delivery time by
making two decisions simultaneously.

Figure 1. The integrated production and distribution scheduling procedure.

The main highlights are as follows. Firstly, the vehicle routing decision is considered, except for
production scheduling, which is simplified in the majority of literature, with respect to the complexity
of the problem. Secondly, the objective of this problem is to minimize the total order weighted
delivery time, which is usually applied to measure the customer service level [21]. Thirdly, an
improved large neighborhood search algorithm is proposed to address the problem. An initial
solution is constructed by a two-stage algorithm. Then, the initial solution is improved by exploring
a complex neighborhood, and a local search for improving the neighbor solution is developed.
Finally, the experimental results show that the improved large neighborhood search algorithm is
effective and efficient. Compared with the results of CPLEX and the published genetic algorithm for
the related problem, the optimal or approximate optimal solution can be obtained by the improved
large neighborhood search algorithm.

The paper is organized as follows. In Section 2, the relevant literature of the IPDPPP is reviewed.
In Section 3, a mathematical model for the integrated problem is built. In Section 4, an improved large
neighborhood search algorithm is described to solve the problem, and its performance is analysed in
Section 5. Section 6 draws the main conclusions.

Figure 1. The integrated production and distribution scheduling procedure.

The main highlights are as follows. Firstly, the vehicle routing decision is considered, except for
production scheduling, which is simplified in the majority of literature, with respect to the complexity
of the problem. Secondly, the objective of this problem is to minimize the total order weighted delivery
time, which is usually applied to measure the customer service level [21]. Thirdly, an improved large
neighborhood search algorithm is proposed to address the problem. An initial solution is constructed
by a two-stage algorithm. Then, the initial solution is improved by exploring a complex neighborhood,
and a local search for improving the neighbor solution is developed. Finally, the experimental results
show that the improved large neighborhood search algorithm is effective and efficient. Compared
with the results of CPLEX and the published genetic algorithm for the related problem, the optimal or
approximate optimal solution can be obtained by the improved large neighborhood search algorithm.

The paper is organized as follows. In Section 2, the relevant literature of the IPDPPP is reviewed.
In Section 3, a mathematical model for the integrated problem is built. In Section 4, an improved large
neighborhood search algorithm is described to solve the problem, and its performance is analysed in
Section 5. Section 6 draws the main conclusions.

Mathematics 2020, 8, 146 3 of 18

2. Literature Review

Recently, the IPDPPP has received considerable attention, but there is not much literature about it.
In most of the cases, one customer or infinite vehicles are considered, thus vehicle routing is simplified
or ignored [22].

For the IPDPPP without routing decisions, an integrated production–distribution model for a
deteriorating inventory item was built [23], where one customer was considered. Thus, the routing
of the delivery did not need to be decided. The objective was to minimize the total cost. Although
considering multi-customers in [24–28], the vehicle routing problem was simplified by direct delivery,
which means that each vehicle only served one customer in one trip. The objectives were to minimize
the total cost or total transportation time. The IPDPPP considering items with a short lifetime were
studied in [29–32]. They assumed that transportation is outsourced to third-party-logistics (3PL)
providers, and the products are picked up at regular times. The routing decision was ignored by
the manufactories, and only the order production scheduling was optimized. The objectives were
to minimize the total profit or total cost. A food production and distribution was mentioned in [33],
where infinite vehicles were considered for direct delivery. The objective was to minimize the total cost.
A nuclear medicine production and delivery problem considering infinite vehicles was studied in [34].
The objective was to minimize the total cost. The infinite vehicles were also considered in [35], and
the objective was to minimize the total cost. A chemotherapy production and delivery problem was
addressed in [36]. There was one customer and one vehicle. The vehicle could make more than one
trip between the pharmacy production unit and the patient location. The objective to minimize was the
maximum tardiness of delivery. Different from the above articles, this paper considers multi-customer
and finite vehicles simultaneously; both the order production scheduling and the vehicle routing are
optimized. The objective is to minimize the total order weighted delivery time in this paper, which
differs from these papers.

The IPDPPP becomes more complex when routing decisions are considered. The IPDPPP with
time windows was addressed in [16]. They assumed that the demands of customers are stochastic.
The aim was to maximize the expected total profit of the supplier. The IPDPPP considering the time
windows and parallel production lines were studied in [18,37], the goals were to minimize the total
cost. An integrated supply chain scheduling problem along with the batch delivery consideration
was investigated in a series of multi-factory environments [38], while considering the due date of
each order. The aims were to reduce the total cost of transportation and the total tardiness. The
products with a short lifespan were considered in [2,14,15,17,19,20], as well as the order production
sequence and delivery sequence were fixed. A truck that has enough capacity to deliver all of the
orders in one trip was mentioned in [14,17]. The goal was to maximize the total demand without
violating the production/distribution capacity, the product lifespan, and the delivery time window,
by selecting a subset of customers from a given sequence to receive the deliveries. While one truck
with a limited capacity for transportation was considered in [2,15], which could travel many trips.
The goal was to minimize the maximum delivery time of the orders. Multi-trucks with a limited
capacity for transportation was addressed in [19,20], which could travel many trips. Their objectives
were to minimize the total cost and makespan, respectively. Comparatively, we relaxed the time
windows constraint in this paper, which further increases the complexity of the problem due to an
expansion in search space. The time windows constraint was also relaxed in [22], the scheduling
of production and delivery were considered in a make-to-order environment considering a single
machine, multi-customers, and multi-vehicles. The objective was to minimize the makespan and an
improved genetic algorithm was proposed. In this paper, however, the objective is to minimize the
total order weighted delivery time, which receives relatively less attention in existing literature.

As a result of the complexity in integrated production scheduling and transportation problems,
they were solved, in general, via heuristic algorithms. Such as, the branch-and-bound algorithm [2,14],
the genetic algorithm [15], the Nelder–Mead method with a heuristic algorithm [16], a new heuristic
algorithm [17], the adaptive large neighborhood search [18], a heuristics algorithm based on evolutionary

Mathematics 2020, 8, 146 4 of 18

algorithms [19], a greedy randomized adaptive search procedure with an evolutionary local search [20],
a Benders decomposition-based heuristic [36], a novel three-phase methodology [37], and a Pareto
approach [38]. What is more, in other areas of combinatorial optimization, new algorithms have
emerged, such as multi-criteria optimization [39], and a biased-randomized iterated local search
algorithm [40]. In this paper, an improved large neighborhood search algorithm is considered. By
applying the proposed algorithm, the neighbors could be enlarged by their removal heuristics and
insertion heuristics. Then, the solution space is enlarged, which generates more chances to find the
optimal solution.

3. Problem and Model Definition

In this section, a mathematical model of the IPDPPP is developed. In the production phase, one
machine is considered to produce products from all of the orders at a plant, with a constant production
rate of η. The machine will not be able to produce a new order until the order being processed has been
completed. P = {0, 1, 2, . . . , n} denotes the set of the plant and all of the customers, with 0 representing
the plant and N = {1, 2, . . . , n} representing the customers. A =

{
(i, j); i, j ∈ P

}
denotes the set of edges,

with each edge having a travelling time of bi j (from the plant to a customer or from a customer to
another customer).

Customers are in different geographical locations. Each customer places an order to the plant,
and F =

{
f1, f2, . . . , fn

}
is the set of all orders. wi denotes the weight of the order, fi, which presents the

importance of the order, fi. Each order, fi, has a definite demand, di, then the order processing time, ti,
can be calculated according to the formula ti = di/η.

U = {1, . . . , H} is the set of multiple homogenous vehicles with a capacity of Q. Each vehicle can
be used at the most once, starting and ending at the plant. The loaded order quantity of a vehicle
cannot exceed the vehicle’s capacity. Each customer’s demands must be delivered at one time, not
in batches. Orders belonging to different customers can be delivered by the same vehicle within one
trip. We defined the departure time as the time when the vehicle leaves the plant. The objective is to
minimize the total weighted delivery time of the orders, which is clearly influenced by the departure
time and the transportation time of each vehicle.

The other notations are defined as follows:
Decision variables:

xh
ij =

{
1, if vehicle h visit the edge (i, j)

0, otherwise
yh

i =

{
1, if vehicle h is loaded with order fi

0, otherwise

zi j =

{
1, if order fi is produced prior to order f j

0, otherwise

Variables:

Vi: the production completion time of order fiDh
i : the arrival time of vehicle h at customer i

Objective function:

Min
H∑

h=1

n∑
j=1

w jDh
j (1)

Constraints:
H∑

h=1

n∑
i=0

xh
ij = 1 j = 1, 2, . . . , n (2)

n∑
i=1

xh
i0 = 1 h = 1, 2, . . . , H (3)

Mathematics 2020, 8, 146 5 of 18

n∑
j=1

xh
0 j = 1 h = 1, 2, . . . , H (4)

n∑
i=0

xh
ig −

n∑
j=1

xh
gj = 0 g = 1, 2, . . . , n, h = 1, 2, . . . , H (5)

n∑
i=0

n∑
j=1

xh
ijd j <= Q h = 1, 2, . . . , H (6)

C0 = 0 (7)

Vi + t j −V j ≤ (1− zi j)M i = 0, 1, 2, . . . , n , j = 1, 2, . . . n (8)

n∑
i=0

zi j = 1 j = 1, 2, . . . , n (9)

n+1∑
j=1

zi j = 1 i = 1, 2, . . . , n (10)

Dh
i + bi j −Dh

j ≤ (1− xh
ij)M i = 0, 1, 2, . . . , n, j = 1, 2, . . . , n, h = 1, 2, . . . , H (11)

Dh
i ≥ 0, i = 0, 1, 2, . . . , n, h = 1, 2, . . . , H (12)

Dh
0 ≥ max

j∈N
(V jyh

j), h = 1, 2, . . . , H (13)

yh
j =

n∑
i

xh
ij j = 1, 2, . . . , n, h = 1, 2, . . . , H (14)

xh
ij ∈ {0, 1} yh

j ∈ {0, 1} zi j ∈ {0, 1} i = 0, 1, 2, . . . , n, j = 1, 2, . . . , n, h = 1, 2, . . . , H (15)

Objection Function (1) aims at minimizing the total weighted delivery time of the orders. Constraint
(2) indicates that each customer’s demands must be met at one time. Constraints (3) and (4) ensure
that each vehicle can be used once, starting and ending at the plant. Constraint (5) represents that
the entering vehicle of a customer must eventually leave that customer. Constraint (6) shows that
the vehicle capacity cannot be exceeded. Constraint (7) represents the starting time of a machine.
Constraints (8) to (10) ensure that each order has a single predecessor and a single successor in the
production phase. Constraints (11) to (12) ensure that each customer has a single predecessor and a
single successor in the delivery phase. Constraint (13) ensures that the departure time of each vehicle
is greater than or equal to the latest production completion time among the orders onboard the vehicle.
Constraint (14) indicates that each customer has to be served. Constraint (15) is the integer conditions.

The IPDPPP is an NP-hard problem, optimizing both production scheduling and vehicle
routing [22]. Intelligent algorithms have made great achievements in solving production
scheduling [41,42], and vehicle routing problems [43,44]. For the complexity of the integration
of the production scheduling and distribution problem, metaheuristic can be an appropriate approach
to solve it [38]. Therefore, a heuristic algorithm is developed.

4. An Improved Large Neighborhood Search Algorithm

The specialty of our problem is that production scheduling and vehicle routing are considered
jointly, which interplay with each other. Production scheduling determines the production sequence of
every order; the vehicle routing problem determines the delivery sequence of each order for every
vehicle. It is remarkable that the vehicle routing problem is a weighted traveling repairman problem
(TRP), not a traditional traveling salesman problem (TSP), as the aim of this research is to minimize
the total order weighted delivery time in this research. The difference between them is that the TRP

Mathematics 2020, 8, 146 6 of 18

aims at minimizing the sum of all the customers’ delivery times by taking into account customers’
satisfaction [45,46]; while the TSP aims at minimizing the total distances. For example, for a TRP
problem or a weighted TRP, if the sequence of all of the customers in a route is reversed, the objective
value would be changed; however, for a TSP problem, the objective value is not affected. Therefore,
the heuristics to discuss the integration of production and transportation in the literature, with the
goal of total cost or makespan, is not suitable to solve this problem.

With respect to the above special consideration, an improved large neighborhood search (ILNS)
algorithm is proposed. The large neighborhood search (LNS) algorithm is a meta-heuristic algorithm,
which finds better candidate solutions by exploring complex neighborhoods defined by destroy and
repair methods. A destroy method destructs part of the current solution, while a repair method
rebuilds the destroyed solution. By alternating between an infeasible solution and a feasible solution
through destroy and repair methods, the LNS algorithm has been widely used in various combinatorial
optimization problems, and has been proved effectively, such as for vehicle routing problems [47–49],
machine scheduling problems [50,51], supply chain network design [52], satellites scheduling [53], and
exam scheduling problems [54]. By applying the LNS algorithm to solve our problem, the neighbors
could be enlarged, so as to solve the solution space. Compared with the traditional LNS algorithm, in
addition to the above benefits, the improved large neighborhood search (ILNS) algorithm proposed in
this paper uses a two-stage algorithm to construct the initial solution, and proposes a local search to
improve the neighbor solution, which generates more chances to find the optimal solution. The ILNS
algorithm includes the following five stages, and the major procedure of the ILNS algorithm is shown
in Figure 2. Mathematics 2020, 8, 146 7 of 19

Figure 2. The major procedure of the improved large neighborhood search algorithm.

Stage 1: Initial solution generation. A two-stage algorithm is developed in the generation. The
vehicle routing is determined with the savings algorithm first. Then, the order production sequence
is determined by a certain rule, and the objective value of the solution is computed. The constructed
initial solution is used as the current solution. The best solution is also equal to the initial solution at
this stage.

Stage 2: Neighbor solution generation. A neighborhood is defined implicitly by a destroy and a
repair method. In this paper, the destroy method consists of four removals, and the repair method
consist of two insertion algorithms. Every time a neighbor solution is derived with the current
solution, a certain removal and insertion algorithm is chosen with a certain rule. Each time the vehicle
routing is generated, the order production sequence is determined, and the objective value of the
neighbor solution is computed.

Generate an
 initial feasible solution as

the current solution

Best solution=the current solution

Determine Vehicle Routing with
Saving Algorithm
Determine the Order Production
Sequence

Random Removal /Related Removal/
Worst Removal /Cluster Removal

Choose a method to repair
the current solution

The neighbor
solution is better than the

best solution?

Choose a method to destroy
the current solution

No

Yes

End

Start

The number of iteration has
reached a certain value

Greedy insertion/ Regret insertion

The current solution
=The neighbor solution

The simulated annealing update
mechanism

The neighbor
solution is acceped?

Yes Best solution=the neighbor solution

No

A local search to improve
the neighbor solution

Figure 2. The major procedure of the improved large neighborhood search algorithm.

Mathematics 2020, 8, 146 7 of 18

Stage 1: Initial solution generation. A two-stage algorithm is developed in the generation. The
vehicle routing is determined with the savings algorithm first. Then, the order production sequence is
determined by a certain rule, and the objective value of the solution is computed. The constructed
initial solution is used as the current solution. The best solution is also equal to the initial solution at
this stage.

Stage 2: Neighbor solution generation. A neighborhood is defined implicitly by a destroy and a
repair method. In this paper, the destroy method consists of four removals, and the repair method
consist of two insertion algorithms. Every time a neighbor solution is derived with the current solution,
a certain removal and insertion algorithm is chosen with a certain rule. Each time the vehicle routing
is generated, the order production sequence is determined, and the objective value of the neighbor
solution is computed.

Stage 3: Local search. A local optimization algorithm is employed to improve the quality of the
generated neighbor solutions.

Stage 4: Acceptance rule. If the newly derived neighbor solution is better than the best solution,
we update the best solution and set it to be the new current solution; otherwise, the judgement criterion
of the simulated annealing algorithm will be used to decide whether to accept the neighbor solution as
the new current solution or not.

Stage 5: Stopping criterion. Such an iteration process (Stages 2 and 4) will be repeated until the
defined number is reached.

4.1. Construction of an Initial Solution

A two-stage algorithm is proposed to construct the initial solution. First, the vehicle routing is
determined with a savings algorithm. When the vehicle routing is given, the orders loaded on each
vehicle are called a batch. Second, the production sequence of the orders in each batch is generated
based on the vehicle routing. Finally, the objective value is calculated.

4.1.1. Determine Vehicle Routing with a Saving Algorithm

The saving algorithm for the vehicle routing problem is introduced in [55]. For the initial solution,
each customer is assigned to a separate route. Then, for each customer i in route λ1 and j in route λ2,
the savings are calculated as follows: sij = bi0 + b0j − bij; 0 represents the depot and bij represents the
cost of edge (i, j). Thus, the value of sij contains the savings of combining two routes λ1 and λ2, instead
of serving two separate routes. A pseudo-code for the saving algorithm is presented in Algorithm 1.

Algorithm 1: Saving Algorithm

Set X = 1, C = {1,2, . . . , n}, S = {sij: i,j∈C}
Insert n customers into n empty routes.
Calculate the savings sij between any two customers
Sequence sij in S in non-increasing order
While S is not empty do
Mark the largest savings sij
If the onboard quantity of vehicle X does not exceed its capacity when i and j are loaded, then
Append the arc (i,j) to the end of route X
Remove arc (i,j) and other arcs that contain point i or j from set S
else
X = X + 1
For each customer c in C, do
If customer c is not loaded to any route, then
Load the order of customer c into the route that has the largest remaining capacity
Return to the route of each vehicle

Mathematics 2020, 8, 146 8 of 18

4.1.2. Determine the Order Production Sequence

As the vehicle routing decision has been made, the transportation time and the orders loaded
on each vehicle are determined. The departure time of each vehicle should be reduced, because the
objective is to minimize the total weighted delivery time of the orders. The departure time of a vehicle
depends on the order production sequence, which is determined as follows.

The rule that the orders onboard the vehicle with the maximum sum of order weighted delivery
times are produced first is employed. Assume that the departure times of all of the vehicles are 0. Then,
calculate the sum of order weighted delivery times of each vehicle. Finally, arrange the production
sequence of each vehicle as per the sum of the order delivery times of all vehicles, sorted in descending
order. Assume that the orders that belong to the same order batch are produced successively, and that
the production sequence of each order is the same as its delivery sequence; re-calculate the departure
time of every vehicle and the sum of order weighted delivery times of each vehicle. Then, the total
weighted delivery time of the orders is obtained. The pseudocode to determine the order production
sequence is presented in Algorithm 2.

Algorithm 2: Determine the Order Production Sequence

(1) Set the departure time Lλ of each route λ to 0, λ ⊂ {1, 2, . . . , H};
(2) Calculate the sum of the order weighted delivery times Sλ of each route λ;
(3) Sort all routes in descending order of Sλ;
(4) Produce orders of each route in above turn;
(5) Re-calculate each Lλ and Sλ;
(6) objective = sum(Sλ) ;

Return objective

4.2. Neighborhood Search

Given a current solution, s, several customers are removed and are then reinserted to generate
neighbor solutions at each iteration. This is achieved by applying one of several removal and insertion
heuristics. Each time a neighbor solution is generated, the objective value of the neighbor solution is
calculated as the initial solution.

4.2.1. Four Removal Heuristics

The removal heuristic is to generate destroy neighborhoods by choosing m customers from a
current solution, s, and putting them into a request bank, such as random removal, related removal,
worst removal, and cluster removal, which can be seen in Figure 3. The black circles denote the
removed customers and the dashed lines denote the new generated edges after moving (Figure 3).

(1) Random removal
The simplest removal heuristic randomly selects m customers and deletes them from the current

solution, s, which is propitious to diversify the search.
(2) Related removal
The general idea of the related removal heuristic aims to delete somewhat similar customers, as it

is considered fairly easy to create new and better solutions [47]. The similarity between two customers,
i and j, is calculated by a correlation measure Ri j = di j (the distance between two customers), where
the lower value means the more similar customers. The related removal heuristic repeatedly chooses a
new customer, i, randomly, and the customer ir, having the smallest relatedness with i, removes them
from the current solution, s, until m customers have been removed.

(3) Worst removal
This heuristic approach eliminates the customers with a high-cost in the current solution s. Let

Cost(s, i)− = f (s, i) − f (s, i−); f (s, i) is the cost associated with customer i in the current solution s,

Mathematics 2020, 8, 146 9 of 18

and f (s, i−) is the cost without customer i in s. The worst removal heuristic repeatedly selects a new
customer i, with the highest Cost(s, i)−, until m customers are deleted [56].

(4) Cluster removal
Some instances tested in the computational section contain clusters of customers; it needs to

remove clusters of related customers from some routes. For each route, a modified version of Kruskal’s
algorithm is applied to divide its customers into two groups, it is stopped when two connected
components are left [56]. Then, one of the groups is selected randomly and the customers of the group
are removed so that they can be re-inserted appropriately. If more customers need to be removed, one
of the removed customers is selected, and a customer is picked from a new route λnew that is closer to
the chosen customer. The new route, λnew, is then divided into two clusters, and the process is repeated
until m customers are deleted.

Mathematics 2020, 8, 146 9 of 19

calculate the departure time of every vehicle and the sum of order weighted delivery times of each
vehicle. Then, the total weighted delivery time of the orders is obtained. The pseudocode to
determine the order production sequence is presented in Algorithm 2.

Algorithm 2: Determine the Order Production Sequence
(1) Set the departure time Lλ of each route λ to 0, { }1, 2, ,Hλ ⊂ ;
(2) Calculate the sum of the order weighted delivery times Sλ of each route λ ;
(3) Sort all routes in descending order of Sλ ;
(4) Produce orders of each route in above turn;
(5) Re-calculate each Lλ and Sλ ;
(6) ()objective sum Sλ= ;

Return objective

4.2. Neighborhood Search

Given a current solution, s, several customers are removed and are then reinserted to generate
neighbor solutions at each iteration. This is achieved by applying one of several removal and insertion
heuristics. Each time a neighbor solution is generated, the objective value of the neighbor solution is
calculated as the initial solution.

4.2.1. Four Removal Heuristics

The removal heuristic is to generate destroy neighborhoods by choosing m customers from a
current solution, s, and putting them into a request bank, such as random removal, related removal,
worst removal, and cluster removal, which can be seen in Figure 3. The black circles denote the
removed customers and the dashed lines denote the new generated edges after moving (Figure 3).

Figure 3. Four removal heuristics.

(1) Random removal

Figure 3. Four removal heuristics.

4.2.2. Two Insertion Heuristics

The insertion heuristic is used to rebuild the destroyed solution. When the removal heuristics
remove customers from the existing routes into a request bank, to generate repair neighborhoods, the
insertion heuristic choose m customers from the request bank, inserting them into one or more routes
without violating the capacity constraint.

(1) Greedy insertion
Insert customer i into route k in the position that results in the lowest objective value. This process

continues until m customers have been inserted. If customer i cannot be reinserted for the capacity
constraint, leave it in the request bank. Finally, insert the customers remaining in the request bank into
a route randomly, and let the objective value of the new solution be a very large number.

(2) Regret insertion
For each removed customer in the request bank, calculate its regret value, this is equal to the

difference in cost between two solutions, in which i is inserted in its best route or in its second-best
route [47].

Let ∆ f (i1) denote the change in the objective value by inserting customer i in the route λ1, where
customer i can be inserted at a minimum cost. Let ∆ f (i2) denote the change in the objective value by
inserting customer i in route λ2, where the customer i can be inserted at the second minimum cost. The
regret value of customer i is equal to ∆ f (i2) − ∆ f (i1).

Mathematics 2020, 8, 146 10 of 18

Customer i with the highest regret value is chosen for insertion into the current solution, s, and
customer i is deleted from the request bank. Customer i is inserted in its best route. The process is
repeated until the request bank is empty.

4.3. A Local Search for Improving the Neighbor Solution

A multiple insertion (MI) algorithm was adapted for parallel machines scheduling [57]. The MI
heuristic sorts the jobs in a non-increasing order of the modified processing times, then places each job
in the position on the machine with the lowest makespan. In this paper, the MI algorithm is adopted to
improve the quality of the neighbor solution. The vehicles can be treated as parallel machines, and the
travelling time between customers can be the modified processing times. Thus, sort the customers in a
non-increasing order of the travelling time, insert each customer one by one in every position of every
route, and then place each customer in the position that results in the lowest objective value.

4.4. Acceptance Rule

The current solution update mechanism determines whether to replace the current solution s
by the neighbor solution s′. The acceptance rule of the simulated annealing algorithm is used as the
mechanism to accept neighbor solutions [58].

There are two situations that need to be considered. One is that if neighbor solution s′ is superior
to the current solution s—replace s with s′. Another is that if neighbor solution s′ is inferior to the

current solution s, the acceptance probability exp (v(s′)−v(s))
T needs to be computed, with that, v(s)

and v(s′) are the objective values of the current solution and the neighbor solution, respectively. T is
the current temperature, which starts at 0.005× (the objective value of the initial solution). At every
iteration, similar to [47], T decreases linearly to zero, according to a cooling rate fixed to 0.99975. If the
acceptance probability is larger than a random number between [0, 1], accept the neighbor solution s′

and continue searching in the current neighborhood structure; otherwise, turn to the next neighborhood
structure to search.

4.5. Stopping Criterion

The removal and insertion heuristics are repeated until the number of iterations reaches 50,000 [47].

5. Computational Results

5.1. Instances Generation

There is no benchmark data for the IPDPPP, the test instances for the computational experiments
should be generated according to certain rules. The first set of instances consists of small-sized instances
including 5–10 customers and two vehicles. The vehicles are homogenous with a capacity of 20. The
coordinates of each customer are randomly generated in [0, 50]. The demand of each customer/order is
randomly generated in [1, 10], and the total demands of all of the customers does not exceed 40.

If the order production time is ignored, the problem IPDPPP is simplified to a capacitated vehicle
routing problem (CVRP). Thus, the second set of instances consists of larger-sized instances generated
from the well-known CVRP benchmarks (A, B, and P series), including 71 instances found on the
website http://www.bernabe.dorronsoro.es/vrp/. The instances are composed of 15–100 customers and
2–15 vehicles. The number of customers, customer coordinates, and customers’/orders’ requirements
in the set of data are the same as the CVRP benchmark data. The characteristics of the customer
coordinates of groups A, B, and P are different. Take the instances A-n32-k5, B-n31-k5, and P-n40-k5 as
examples; the customer coordinates of Group A are generated randomly, while that of Group B are
clustered and the customer coordinates of Froup C have an almost equal distance, which can be seen
in Figure 4.

http://www.bernabe.dorronsoro.es/vrp/

Mathematics 2020, 8, 146 11 of 18

Mathematics 2020, 8, 146 12 of 19

is set to 1. In addition, similar to [44], the travel time between two customers or between the plant
and a customer is equal to the distance between them.

(a) The coordinate of instance A-n32-k5

(b) The coordinate of instance B-n31-k5

(c) The coordinate of instance P-n40-k5

Figure 4. Examples of the coordinates of instances in Groups A, B, and P.

5.2. Results for Small-Sized Instances

The mathematical model is validated by CPLEX. It should be noted that Constraint (13) in the
mathematical model is non-linear; therefore, a new variable jhU with jk j jkU C y= is defined to

solve the problem. Then, the following linear Constraints (16) replace Constraint (13).

0

20

40

60

80

100

120

0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Figure 4. Examples of the coordinates of instances in Groups A, B, and P.

For each instance, both in first and second set, the order weight is selected from the discrete
uniform distribution U [1, 5], at random. For ease of calculation, similar to [15], the production rate is
set to 1. In addition, similar to [44], the travel time between two customers or between the plant and a
customer is equal to the distance between them.

Mathematics 2020, 8, 146 12 of 18

5.2. Results for Small-Sized Instances

The mathematical model is validated by CPLEX. It should be noted that Constraint (13) in the
mathematical model is non-linear; therefore, a new variable U jh with U jk = C jy jk is defined to solve
the problem. Then, the following linear Constraints (16) replace Constraint (13).

Dh
0 ≥ max

j∈C
U jh, h = 1, 2, . . . , H

0 ≤ U jh + My jh, j = 1, 2, . . . , n; h = 1, 2, . . . , H
V j ≤ U jh + M(1− y jh), j = 1, 2, . . . , n; h = 1, 2, . . . , H

(16)

Table 1 gives the solutions of CPLEX and the improved large neighborhood search (ILNS)
algorithm for small-sized cases. The column “Instance” denotes the name of the instance, and “n” and
“k” denote the number of customers and the number of vehicles, respectively. The results in Table 1
show that both CPLEX and the ILNS algorithm can get the optimal solution of small-sized test cases,
while the running time of the ILNS algorithm is less than that of CPLEX for all of the test cases.

Table 1. Computational results of CPLEX and the improved large neighborhood search (ILNS) algorithm.

CPLEX ILNS

INSTANCE CPLEX Objective Time (s) Objective Time (s) Optimal?

Small-n5-k2 302 5 302 3 Yes
Small-n6-k2 349 5 349 3 Yes
Small-n7-k2 397 7 397 3 Yes
Small-n8-k2 720 9 720 3 Yes
Small-n9-k2 1116 210 1116 3 Yes

Small-n10-k2 1225 1381 1225 3 Yes

5.3. Results for Larger-Sized Instances

In order to evaluate the effect of the proposed improved ILNS algorithm for larger-sized instances,
we compared it with the initial solution (IS) and a genetic algorithm (GA) [22]. Single machine,
multi-customers, and multi-vehicles were considered in [22], while the objective was to minimize the
makespan, and an improved genetic algorithm was proposed. For a fair comparison, the running time
of GA was set to be equal to the ILNS algorithm for each instance. The ILNS algorithm and GA were
coded in C++.

Tables 2–4 provide the results of the instance of Groups A, B, and P, obtained by algorithms IS,
ILNS, and GA for the proposed problem. Column “Instance” denotes the instance name. Columns
S1, S2, and S3 denote the results obtained by IS, ILNS algorithm, and GA, respectively. Columns T1
and T2 denote the running times of the IS and ILNS algorithms. The running time of GA is equal to
the ILNS algorithm. Columns “Gap1” and “Gap2” denote the percentage gap between the IS and
ILNS algorithm results, and the GA and ILNS algorithm results, respectively. They are calculated by

Gap1 = 100%× (S1−S2)
S1 and Gap2 = 100%× (S3−S2)

S3 .
Figure 5 provides the tendency in the results of IS, the ILNS algorithm, and GA for instances

of Groups A, B and P. It shows that the results of the ILNS algorithm are better than those of IS and
GA. Tables 2–4 show that the results of the ILNS algorithm are substantially improved based on IS.
The average gaps between the IS and ILNS algorithms are 26.20%, 26.04%, and 22.94% for the three
instance groups, respectively. At the same time, the computation time of the ILNS algorithm is short.
The average running time of the IS is within 0.1 s, and the average running time of the ILNS algorithm
is approximately 50 s. This indicates that the performance of the proposed ILNS algorithm is effective
and efficient for not only random instances, but also cluster instances and related instances. It also
suggests that the removal heuristics and insertion heuristics work well.

Mathematics 2020, 8, 146 13 of 18

Table 2. Computational results of four algorithms for group A. IS—initial solution; GA—
genetic algorithm.

IS ILNS GA Gap1 Gap2

INSTANCE S1 T1 (s) S2 T2 (s) S3 (S1-S2)/S1 × 100% (S3-S2)/S3 × 100%

A-n32-k5 39,950 0.1 26,793 21 30,560 32.93% 12.33%
A-n33-k5 36,365 0.1 27,038 27 27,104 25.65% 0.24%
A-n33-k6 38,089 0.1 27,500 25 28,257 27.80% 2.68%
A-n34-k5 39,784 0.1 27,097 26 27,953 31.89% 3.06%
A-n36-k5 41,233 0.1 28,538 30 29,629 30.79% 3.68%
A-n37-k5 49,801 0.1 27,846 30 31,928 44.09% 12.79%
A-n37-k6 45,931 0.1 37,024 33 37,389 19.39% 0.98%
A-n38-k5 51,750 0.1 34,040 33 35,199 34.22% 3.29%
A-n39-k5 48,215 0.1 36,046 35 39,128 25.24% 7.88%
A-n39-k6 47,778 0.1 33,226 36 35,404 30.46% 6.15%
A-n44-k6 63,887 0.1 46,951 40 47,775 26.51% 1.72%
A-n45-k6 67,183 0.1 52,041 40 56,139 22.54% 7.30%
A-n45-k7 60,960 0.1 44,569 41 45,427 26.89% 1.89%
A-n46-k7 65,123 0.1 44,634 51 47,779 31.46% 6.58%
A-n48-k7 72,441 0.1 50,220 52 54,918 30.67% 8.55%
A-n53-k7 79,839 0.1 57,642 52 66,360 27.80% 13.14%
A-n54-k7 81,834 0.1 65,353 53 65,671 20.14% 0.48%
A-n55-k9 88,571 0.1 67,390 56 79,548 23.91% 15.28%
A-n60-k9 105,298 0.1 77,041 56 93,972 26.84% 18.02%
A-n61-k9 107,332 0.1 95,840 58 96,831 10.71% 1.02%
A-n62-k8 112,022 0.1 79,393 58 92,145 29.13% 13.84%
A-n63-k9 126,931 0.1 103,647 58 111,543 18.34% 7.08%
A-n63-k10 109,440 0.1 82,116 60 97,488 24.97% 15.77%
A-n64-k9 106,569 0.1 83,404 60 95,853 21.74% 12.99%
A-n65-k9 115,155 0.1 99,977 65 102,061 13.18% 2.04%
A-n69-k9 112,302 0.1 88,760 68 96,742 20.96% 8.25%
A-n80-k10 177,768 0.1 126,095 70 136,001 29.07% 7.28%
Average 77,465 0.1 58,156 46 63,289 26.20% 7.20%

Table 3. Computational results of four algorithms for Group B.

IS ILNS GA GA Gap2

INSTANCE S1 T1 (s) S2 T2 (s) S3 (S1-S2)/S1 × 100% (S3-S2)/S3 × 100%

B-n31-k5 32,037 0.1 23,086 20 27,400 27.94% 15.74%
B-n34-k5 34,005 0.1 26,357 21 27,840 22.49% 5.33%
B-n35-k5 49,824 0.1 34,661 21 38,894 30.43% 10.88%
B-n38-k6 45,343 0.1 30,791 22 33,623 32.09% 8.42%
B-n39-k5 43,406 0.1 28,290 24 35,428 34.82% 20.15%
B-n41-k6 56,097 0.1 41,899 24 48,512 25.31% 13.63%
B-n43-k6 49,010 0.1 36,450 25 42,848 25.63% 14.93%
B-n44-k7 59,878 0.1 42,445 27 51,955 29.11% 18.30%
B-n45-k5 53,701 0.1 43,150 24 44,859 19.65% 3.81%
B-n45-k6 58,183 0.1 50,010 24 52,044 14.05% 3.91%
B-n50-k7 59,880 0.1 41,784 28 42,563 30.22% 1.83%
B-n50-k8 75,327 0.1 58,666 31 66,615 22.12% 11.93%
B-n51-k7 84,392 0.1 61,684 32 69,275 26.91% 10.96%
B-n52-k7 76,791 0.1 52,150 34 63,476 32.09% 17.84%
B-n56-k7 66,308 0.1 51,942 31 61,185 21.67% 15.11%
B-n57-k7 90,875 0.1 69,093 35 76,394 23.97% 9.56%
B-n57-k9 93,921 0.1 69,093 43 85,416 26.43% 19.11%
B-n63-k10 121,647 0.1 68,553 48 85,632 43.65% 19.94%
B-n64-k9 102,957 0.1 87,335 53 91,611 15.17% 4.67%
B-n66-k9 105,353 0.1 90,749 51 95,558 13.86% 5.03%
B-n67-k10 113,652 0.1 82,307 52 93,042 27.58% 11.54%
B-n68-k9 110,826 0.1 82,378 61 92,653 25.67% 11.09%
B-n78-k10 134,927 0.1 97,012 66 100,653 28.10% 3.62%
AVERAGE 74,710 0.1 55,212 35 62,064 26.04% 11.19%

Mathematics 2020, 8, 146 14 of 18

Table 4. Computational results of four algorithms for Group C.

IS ILNS GA Gap1 Gap2

INSTANCE S1 T1 (s) S1 T2 (s) S3 (S1-S2)/S1 × 100% (S3-S2)/S3 × 100%

P-n16-k8 7375 0.1 5814 2 6673 21.17% 12.87%
P-n19-k2 15,717 0.1 13,190 2 13,679 16.08% 3.57%
P-n20-k2 17,867 0.1 13,616 2 14,814 23.79% 8.09%
P-n21-k2 16,059 0.1 13,420 3 14,113 16.43% 4.91%
P-n22-k2 16,968 0.1 13,272 3 14,427 21.78% 8.01%
P-n40-k5 52,858 0.1 36,417 26 44,662 31.10% 18.46%
P-n45-k5 63,627 0.1 46,808 25 55,816 26.43% 16.14%
P-n50-k7 93,494 0.1 71,981 31 86,726 23.01% 17.00%
P-n50-k8 95,320 0.1 87,236 34 89,506 8.48% 2.54%

P-n50-k10 83,723 0.1 65,187 45 79,185 22.14% 17.68%
P-n51-k10 68,048 0.1 58,944 47 62,206 13.38% 5.24%
P-n55-k7 119,836 0.1 95,366 52 100,486 20.42% 5.10%
P-n55-k8 108,155 0.1 78,880 56 97,682 27.07% 19.25%

P-n55-k10 105,705 0.1 79,318 56 97,313 24.96% 18.49%
P-n60-k10 114,276 0.1 87,847 51 102,735 23.13% 14.49%
P-n60-k15 107,808 0.1 82,345 52 95,938 23.62% 14.17%
P-n65-k10 194,119 0.1 111,145 55 128,938 42.74% 13.80%
P-n70-k10 174,502 0.1 143,062 55 151,189 18.02% 5.38%
P-n76-k4 227,017 0.1 167,543 60 182,731 26.20% 8.31%
P-n76-k5 228,876 0.1 168,409 62 192,277 26.42% 12.41%

P-n101-k4 334,428 0.1 249,633 91 258,090 25.36% 3.28%
AVERAGE 106,942 0.1 80,449 39 89,961 22.94% 10.91%

Mathematics 2020, 8, 146 15 of 19

Table 4. Computational results of four algorithms for Group C.

 IS ILNS GA Gap1 Gap2

INSTANCE S1 T1 (s) S1 T2 (s) S3
(S1-S2)/S1

×100%
(S3-S2)/S3

×100%
P-n16-k8 7375 0.1 5814 2 6673 21.17% 12.87%
P-n19-k2 15,717 0.1 13,190 2 13,679 16.08% 3.57%
P-n20-k2 17,867 0.1 13,616 2 14,814 23.79% 8.09%
P-n21-k2 16,059 0.1 13,420 3 14,113 16.43% 4.91%
P-n22-k2 16,968 0.1 13,272 3 14,427 21.78% 8.01%
P-n40-k5 52,858 0.1 36,417 26 44,662 31.10% 18.46%
P-n45-k5 63,627 0.1 46,808 25 55,816 26.43% 16.14%
P-n50-k7 93,494 0.1 71,981 31 86,726 23.01% 17.00%
P-n50-k8 95,320 0.1 87,236 34 89,506 8.48% 2.54%

P-n50-k10 83,723 0.1 65,187 45 79,185 22.14% 17.68%
P-n51-k10 68,048 0.1 58,944 47 62,206 13.38% 5.24%
P-n55-k7 119,836 0.1 95,366 52 100,486 20.42% 5.10%
P-n55-k8 108,155 0.1 78,880 56 97,682 27.07% 19.25%

P-n55-k10 105,705 0.1 79,318 56 97,313 24.96% 18.49%
P-n60-k10 114,276 0.1 87,847 51 102,735 23.13% 14.49%
P-n60-k15 107,808 0.1 82,345 52 95,938 23.62% 14.17%
P-n65-k10 194,119 0.1 111,145 55 128,938 42.74% 13.80%
P-n70-k10 174,502 0.1 143,062 55 151,189 18.02% 5.38%
P-n76-k4 227,017 0.1 167,543 60 182,731 26.20% 8.31%
P-n76-k5 228,876 0.1 168,409 62 192,277 26.42% 12.41%

P-n101-k4 334,428 0.1 249,633 91 258,090 25.36% 3.28%
AVERAGE 106,942 0.1 80,449 39 89,961 22.94% 10.91%

Figure 5 provides the tendency in the results of IS, the ILNS algorithm, and GA for instances of
Groups A, B and P. It shows that the results of the ILNS algorithm are better than those of IS and GA.
Tables 2–4 show that the results of the ILNS algorithm are substantially improved based on IS. The
average gaps between the IS and ILNS algorithms are 26.20%, 26.04%, and 22.94% for the three
instance groups, respectively. At the same time, the computation time of the ILNS algorithm is short.
The average running time of the IS is within 0.1 s, and the average running time of the ILNS algorithm
is approximately 50 s. This indicates that the performance of the proposed ILNS algorithm is effective
and efficient for not only random instances, but also cluster instances and related instances. It also
suggests that the removal heuristics and insertion heuristics work well.

(a) Group A

Mathematics 2020, 8, 146 16 of 19

(b) Group B

(c) Group C

Figure 5. The tendency in the results of three algorithms (IS, ILNS, and GA).

Moreover, the results of the ILNS algorithm are better than those of the GA. For the three
instance groups, the average gaps between the ILNS algorithm and the GA are 7.20%, 11.19%, and
10.91%, respectively. The efficiency of the ILNS algorithm could be explained as follows. For the GA
in [22], a method “MUS” which adopts some pre-designed rules to change the order of the customers
in a route is defined as a local search algorithm. In their transportation phase, the goal is to minimize
the maximum delivery time of the orders of each vehicle, “MUS” is employed to find more shortened
routing for each vehicle. However, the objective of this paper is to minimize the sum of the order
weighted delivery time. In the transportation phase, the goal is to find a method to minimize the sum
time of all of the customers receiving services. Obviously, the local search “MUS” is not suitable for
solving this goal. For example, reversing all of the points in a TSP route does not affect the solution
of the TSP (traveling salesman problem), but reversing all points in a path of this problem would
change the solution. Thus, the local search “MI” applied in this paper is more effective than the
“MUS” method for minimizing the sum of the order weighted delivery time.

6. Conclusions

This paper explores an integrated production and transportation scheduling problem for
perishable products, which is an NP hard problem, aimed at minimizing the total of the order weight
delivery time to improve customer service. In the production stage, a single machine is considered,
and the order batching and the production sequence of the orders are determined. In the
transportation stage, multiple vehicles and multiple customers are considered, and decisions on
vehicle routing are made. An integrated mathematical model is built, and the validity is measured
by the linear programming software CPLEX, by solving the small-size instances. An improved large
neighborhood search (ILNS) algorithm is proposed to solve the larger-size instances. Firstly, a two-
stage algorithm constructs an initial solution. The saving algorithm is developed to determine the
vehicle routing, and then the optimal production sequence is decided by a certain rule, according to
the given vehicle routing. Secondly, several removal and insertion heuristics are designed to destroy

Figure 5. The tendency in the results of three algorithms (IS, ILNS, and GA).

Moreover, the results of the ILNS algorithm are better than those of the GA. For the three instance
groups, the average gaps between the ILNS algorithm and the GA are 7.20%, 11.19%, and 10.91%,
respectively. The efficiency of the ILNS algorithm could be explained as follows. For the GA in [22],
a method “MUS” which adopts some pre-designed rules to change the order of the customers in a
route is defined as a local search algorithm. In their transportation phase, the goal is to minimize the
maximum delivery time of the orders of each vehicle, “MUS” is employed to find more shortened
routing for each vehicle. However, the objective of this paper is to minimize the sum of the order

Mathematics 2020, 8, 146 15 of 18

weighted delivery time. In the transportation phase, the goal is to find a method to minimize the sum
time of all of the customers receiving services. Obviously, the local search “MUS” is not suitable for
solving this goal. For example, reversing all of the points in a TSP route does not affect the solution
of the TSP (traveling salesman problem), but reversing all points in a path of this problem would
change the solution. Thus, the local search “MI” applied in this paper is more effective than the “MUS”
method for minimizing the sum of the order weighted delivery time.

6. Conclusions

This paper explores an integrated production and transportation scheduling problem for perishable
products, which is an NP hard problem, aimed at minimizing the total of the order weight delivery
time to improve customer service. In the production stage, a single machine is considered, and the
order batching and the production sequence of the orders are determined. In the transportation
stage, multiple vehicles and multiple customers are considered, and decisions on vehicle routing
are made. An integrated mathematical model is built, and the validity is measured by the linear
programming software CPLEX, by solving the small-size instances. An improved large neighborhood
search (ILNS) algorithm is proposed to solve the larger-size instances. Firstly, a two-stage algorithm
constructs an initial solution. The saving algorithm is developed to determine the vehicle routing,
and then the optimal production sequence is decided by a certain rule, according to the given vehicle
routing. Secondly, several removal and insertion heuristics are designed to destroy and repair the
current solution, to generate extensive neighbor solutions to enlarge the solution space. Then, a local
optimization algorithm is used to improve the quality of the generated neighbor solutions, which
generates more chances to find the optimal solution. Finally, the acceptance rule of the simulated
annealing algorithm is used to determine whether to accept the neighbor solution as the new current
solution. To validate and evaluate the effectiveness of the proposed ILNS algorithm, the solutions
are compared with the corresponding results obtained by the initial solution and the existing genetic
algorithm in the literature. The computational results show that the proposed ILNS algorithm
substantially improves the initial solution and is more effective than the genetic algorithm.

In the future, we will explore solving the perishable products’ integrated production and
distribution scheduling problem with exact algorithms, and explore the upper or lower bounds.
Moreover, from a practical perspective, considering parallel machines and heterogeneous vehicles
with time window constraints are also worthy of being addressed as well.

Author Contributions: Formal analysis, L.L.; Methodology, S.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (no. 71862034, no.
71862035, and no. 71502159), the Scientific Research Funding of Yunnan Department of Education (no. 2017ZZX004),
and the Basic Research Foundation of Yunnan Province (no. 2019FB085).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Amorim, P.; Meyr, H.; Almeder, C.; Almada-Lobo, B. Managing perishability in production-distribution
planning: A discussion and review. Flex. Serv. Manuf. J. 2013, 25, 389–413. [CrossRef]

2. Karaoğlan, İ.; Kesen, S.E. The coordinated production and transportation scheduling problem with a
time-sensitive product: A branch-and-cut algorithm. Int. J. Prod. Econ. 2017, 55, 22.

3. Bashiri, M.; Badri, H.; Talebi, J. A new approach to tactical and strategic planning in production–distribution
networks. Appl. Math. Model. 2012, 36, 1703–1717. [CrossRef]

4. Pundoor, G.; Chen, Z.L. Scheduling a production-distribution system to optimize the tradeoff between
delivery tardiness and total distribution cost. Naval Res. Logist. 2005, 52, 571–589. [CrossRef]

5. Chen, Z.L.; Pundoor, G. Order assignment and scheduling in a supply chain. Oper. Res. 2006, 54, 555–572.
[CrossRef]

http://dx.doi.org/10.1007/s10696-011-9122-3
http://dx.doi.org/10.1016/j.apm.2011.09.018
http://dx.doi.org/10.1002/nav.20100
http://dx.doi.org/10.1287/opre.1060.0280

Mathematics 2020, 8, 146 16 of 18

6. Li, K.P.; Sivakumar, A.I.; Ganesan, V.K. Complexities and algorithms for synchronized scheduling of parallel
machine assembly and air transportation in consumer electronics supply chain. Eur. J. Oper. Res. 2008, 187,
442–455. [CrossRef]

7. Chen, Z.L.; Vairaktarakis, G.L. Integrated scheduling of production and distribution operations. Manag. Sci.
2005, 51, 614–628. [CrossRef]

8. Sel, C.; Bilgen, B. Hybrid simulation and mip based heuristic algorithm for the production and distribution
planning in the soft drink industry. J. Manuf. Syst. 2014, 33, 385–399. [CrossRef]

9. Russell, R.; Chiang, W.C.; Zepeda, D. Integrating multi-product production and distribution in newspaper
logistics. Comput. Oper. Res. 2008, 35, 1576–1588. [CrossRef]

10. Chiang, W.C.; Russell, R.; Xu, X.J.; Zepeda, D. A simulation/metaheuristic approach to newspaper production
and distribution supply chain problems. Int. J. Prod. Econ. 2009, 121, 752–767. [CrossRef]

11. Russell, R. A constraint programming approach to designing a newspaper distribution system. Int. J. Prod.
Econ. 2013, 145, 132–138. [CrossRef]

12. Liu, R.; Yuan, B.; Jiang, Z. Mathematical model and exact algorithm for the home care worker scheduling
and routing problem with lunch break requirements. Int. J. Prod. Res. 2017, 55, 558–575. [CrossRef]

13. Mohammadi, S.; Al-e-Hashem, S.M.J.; Rekik, Y. An integrated production scheduling and delivery route
planning with multi-purpose machines: A case study from a furniture manufacturing company. Int. J. Prod.
Econ. 2020, 219, 347–359. [CrossRef]

14. Armstrong, R.; Gao, S.; Lei, L. A zero-inventory production and distribution problem with a fixed customer
sequence. Ann. Oper. Res. 2008, 159, 395–414. [CrossRef]

15. Geismar, H.N.; Laporte, G.; Lei, L.; Sriskandarajah, C. The integrated production and transportation
scheduling problem for a product with a short lifespan. J. Comput. 2008, 20, 21–33. [CrossRef]

16. Chen, H.K.; Hsueh, C.F.; Chang, M.S. Production scheduling and vehicle routing with time windows for
perishable food products. Comput. Oper. Res. 2009, 36, 2311–2319. [CrossRef]

17. Viergutz, C.; Knust, S. Integrated production and distribution scheduling with lifespan constraints. Ann.
Oper. Res. 2014, 213, 293–318. [CrossRef]

18. Belo-Filho, M.A.F.; Amorim, P.; Almada-Lobo, B. An adaptive large neighbourhood search for the operational
integrated production and distribution problem of perishable products. Int. J. Prod. Res. 2015, 53, 1–19.
[CrossRef]

19. Devapriya, P.; Ferrell, W.; Geismar, N. Integrated Production and Distribution Scheduling with a Perishable
Product. Eur. J. Oper. Res. 2017, 259, 906–916. [CrossRef]

20. Lacomme, P.; Moukrim, A.; Quilliot, A.; Vinot, M. Supply chain optimisation with both production and
transportation integration: Multiple vehicles for a single perishable product. Int. J. Prod. Res. 2018, 56,
4313–4336. [CrossRef]

21. Chen, Z.L. Integrated production and outbound distribution scheduling: Review and extensions. Oper. Res.
2010, 58, 130–148. [CrossRef]

22. Zou, X.; Liu, L.; Li, K.; Li, W. A coordinated algorithm for integrated production scheduling and vehicle
routing problem. Int. J. Prod. Res. 2018, 56, 5005–5024. [CrossRef]

23. Yan, C.; Banerjee, A.; Yang, L. An integrated production–distribution model for a deteriorating inventory
item. Int. J. Prod. Econ. 2011, 133, 228–232. [CrossRef]

24. Garcia, J.M.; Lozano, S.; Canca, D. Coordinated scheduling of production and delivery from multiple plants.
Robot. Comput. Integr. Manuf. 2004, 20, 191–198. [CrossRef]

25. Garcia, J.M.; Lozano, S. Production and delivery scheduling problem with time windows. Comput. Ind. Eng.
2005, 48, 733–742. [CrossRef]

26. Asbach, L.; Dorndorf, U.; Pesch, E. Analysis, modeling and solution of the concrete delivery problem. Eur. J.
Oper. Res. 2009, 193, 820–835. [CrossRef]

27. Schmid, V.; Doerner, K.F.; Hartl, R.F.; Stoecher, S.W. A hybrid solution approach for ready-mixed concrete
delivery. Transp. Sci. 2009, 43, 70–85. [CrossRef]

28. Schmid, V.; Doerner, K.F.; Hartl, R.F.; Salazar-González, J.J. Hybridization of very large neighborhood search
for ready-mixed concrete delivery problems. Comput. Oper. Res. 2010, 37, 559–574. [CrossRef]

29. Huo, Y.; Leung, Y.T.; Wang, X. Integrated production and delivery scheduling with disjoint windows.
Discret. Appl. Math. 2009, 158, 921–931. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2007.03.006
http://dx.doi.org/10.1287/mnsc.1040.0325
http://dx.doi.org/10.1016/j.jmsy.2014.01.002
http://dx.doi.org/10.1016/j.cor.2006.09.002
http://dx.doi.org/10.1016/j.ijpe.2009.03.001
http://dx.doi.org/10.1016/j.ijpe.2013.01.018
http://dx.doi.org/10.1080/00207543.2016.1213917
http://dx.doi.org/10.1016/j.ijpe.2019.05.017
http://dx.doi.org/10.1007/s10479-007-0272-3
http://dx.doi.org/10.1287/ijoc.1060.0208
http://dx.doi.org/10.1016/j.cor.2008.09.010
http://dx.doi.org/10.1007/s10479-012-1197-z
http://dx.doi.org/10.1080/00207543.2015.1010744
http://dx.doi.org/10.1016/j.ejor.2016.09.019
http://dx.doi.org/10.1080/00207543.2018.1431416
http://dx.doi.org/10.1287/opre.1080.0688
http://dx.doi.org/10.1080/00207543.2017.1378955
http://dx.doi.org/10.1016/j.ijpe.2010.04.025
http://dx.doi.org/10.1016/j.rcim.2003.10.004
http://dx.doi.org/10.1016/j.cie.2004.12.004
http://dx.doi.org/10.1016/j.ejor.2007.11.011
http://dx.doi.org/10.1287/trsc.1080.0249
http://dx.doi.org/10.1016/j.cor.2008.07.010
http://dx.doi.org/10.1016/j.dam.2009.12.010

Mathematics 2020, 8, 146 17 of 18

30. Geismar, H.N.; Dawande, M.; Sriskandarajah, C. Pool-point distribution of zero-inventory products.
Prod. Oper. Manag. 2011, 20, 737–753. [CrossRef]

31. Amorim, P.; Günther, H.O.; Almada-Lobo, B. Multi-objective integrated production and distribution planning
of perishable products. Int. J. Prod. Econ. 2012, 138, 89–101. [CrossRef]

32. Farahani, P.; Grunow, M.; Günther, H.-O. Integrated production and distribution planning for perishable
food products. Flex. Serv. Manuf. J. 2012, 24, 28–51. [CrossRef]

33. Kopanos, G.M.; Puigjaner, L.; Georgiadis, M.C. Simultaneous production and logistics operations planning
in semicontinuous food industries. Omega 2012, 40, 634–650. [CrossRef]

34. Lee, J.; Kim, B.I.; Johnson, A.L.; Lee, K. The nuclear medicine production and delivery problem. Eur. J. Oper.
Res. 2014, 236, 461–472. [CrossRef]

35. Geismar, H.N.; Murthy, N.M. Balancing Production and Distribution in Paper Manufacturing. Prod. Oper.
Manag. 2015, 24, 1164–1178. [CrossRef]

36. Kergosien, Y.; Gendreau, M.; Billaut, J.C. A Benders decomposition-based heuristic for a production and
outbound distribution scheduling problem with strict delivery constraints. Eur. J. Oper. Res. 2017, 262,
287–298. [CrossRef]

37. Neves-Moreira, F.; Almada-Lobo, B.; Cordeau, J.F.; Guimarães, L. Solving a large multi-product
production-Routing problem with delivery time windows. Omega 2019, 86, 154–172. [CrossRef]

38. Gharaei, A.; Jolai, F. A Pareto approach for the multi-factory supply chain scheduling and distribution
problem. Oper. Res. 2019, 1–32. [CrossRef]

39. Sawik, B.; Faulin, J.; Pérez-Bernabeu, E. Multi-Criteria Optimization for Fleet Size with Environmental
Aspects. Transp. Res. Procedia 2017, 27, 61–68. [CrossRef]

40. Kizys, R.; Juan, A.A.; Sawik, B.; Calvet, L. A Biased-Randomized Iterated Local Search Algorithm for Rich
Portfolio Optimization. Appl. Sci. 2019, 9, 3509. [CrossRef]

41. Jiang, T.H. Cat swarm optimization for solving flexible job shop scheduling problem. Computer Engineering
and Applications. Comput. Eng. Appl. 2018, 54, 259–270.

42. Rossi, F.L.; Nagano, M.S. Heuristics for the mixed no-idle flowshop with sequence-dependent setup times.
J. Oper. Res. Soc. 2019, 1–27. [CrossRef]

43. Caceres-Cruz, J.; Arias, O.; Guimarans, D.; Riera, D.; Angel, A.J. Rich vehicle routing problem: Survey. ACM
Comput. Surv. 2015, 42, 1–28. [CrossRef]

44. Liu, L.; Li, K.; Liu, Z. A capacitated vehicle routing problem with order available time in e-commerce industry.
Eng. Optim. 2017, 49, 449–465. [CrossRef]

45. Salehipour, A.; Sörensen, K.; Goos, P.; Bräysy, O. Efficient GRASP+VND and GRASP+VNS metaheuristics
for the traveling repairman problem. 4OR 2011, 9, 189–209. [CrossRef]

46. Liu, L.; Li, W.L.; Li, K.P.; Zou, X.X. A coordinated production and transportation scheduling problem with
minimum sum of order delivery times. J. Heuristics 2019, 1–26. [CrossRef]

47. Ribeiro, G.M.; Laporte, G. An adaptive large neighborhood search heuristic for the cumulative capacitated
vehicle routing problem. Comput. Oper. Res. 2012, 39, 728–735. [CrossRef]

48. Smith, S.L.; Imeson, F. Glns: An effective large neighborhood search heuristic for the generalized traveling
salesman problem. Comput. Oper. Res. 2017, 87, 1–19. [CrossRef]

49. Grimault, A.; Bostel, N.; Lehuédé, F. An adaptive large neighborhood search for the full truckload pickup
and delivery problem with resource synchronization. Comput. Oper. Res. 2017, 88, 1–14. [CrossRef]

50. Rifai, A.P.; Nguyen, H.T.; Dawal, S.Z.M. Multi-objective adaptive large neighborhood search for distributed
reentrant permutation flow shop scheduling. Appl. Soft Comput. 2016, 40, 42–57. [CrossRef]

51. He, L.; de Weerdt, M.; Yorke-Smith, N. Time/sequence-dependent scheduling: The design and evaluation of
a general purpose tabu-based adaptive large neighbourhood search algorithm. J. Intell. Manuf. 2019, 1–28.
[CrossRef]

52. Eskandarpour, M.; Dejax, P.; Péton, O. A large neighborhood search heuristic for supply chain network
design. Comput. Oper. Res. 2017, 80, 23–37. [CrossRef]

53. He, L.; Liu, X.L.; Laporte, G.; Chen, Y.W.; Chen, Y.G. An improved adaptive large neighborhood search
algorithm for multiple agile satellites scheduling. Comput. Oper. Res. 2018, 100, 12–25. [CrossRef]

54. Haddadi, S.; Cheraitia, M. Iterated local and very-large-scale neighborhood search for a novel uncapacitated
exam scheduling model. Int. J. Manag. Sci. Eng. Manag. 2018, 13, 286–294. [CrossRef]

http://dx.doi.org/10.1111/j.1937-5956.2010.01190.x
http://dx.doi.org/10.1016/j.ijpe.2012.03.005
http://dx.doi.org/10.1007/s10696-011-9125-0
http://dx.doi.org/10.1016/j.omega.2011.12.002
http://dx.doi.org/10.1016/j.ejor.2013.12.024
http://dx.doi.org/10.1111/poms.12314
http://dx.doi.org/10.1016/j.ejor.2017.03.028
http://dx.doi.org/10.1016/j.omega.2018.07.006
http://dx.doi.org/10.1007/s12351-019-00536-7
http://dx.doi.org/10.1016/j.trpro.2017.12.056
http://dx.doi.org/10.3390/app9173509
http://dx.doi.org/10.1080/01605682.2019.1671149
http://dx.doi.org/10.1145/2666003
http://dx.doi.org/10.1080/0305215X.2016.1188092
http://dx.doi.org/10.1007/s10288-011-0153-0
http://dx.doi.org/10.1007/s10732-019-09420-1
http://dx.doi.org/10.1016/j.cor.2011.05.005
http://dx.doi.org/10.1016/j.cor.2017.05.010
http://dx.doi.org/10.1016/j.cor.2017.06.012
http://dx.doi.org/10.1016/j.asoc.2015.11.034
http://dx.doi.org/10.1007/s10845-019-01518-4
http://dx.doi.org/10.1016/j.cor.2016.11.012
http://dx.doi.org/10.1016/j.cor.2018.06.020
http://dx.doi.org/10.1080/17509653.2018.1445045

Mathematics 2020, 8, 146 18 of 18

55. Clarke, G.; Wright, J.W. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res.
1964, 12, 568–581. [CrossRef]

56. Ropke, S.; Pisinger, D. A unified heuristic for a large class of vehicle routing problems with backhauls. Eur. J.
Oper. Res. 2006, 171, 750–775. [CrossRef]

57. Kurz, M.E.; Askin, R.G. Heuristic scheduling of parallel machines with sequence-dependent set-up times.
Int. J. Prod. Res. 2001, 39, 23. [CrossRef]

58. Hemmelmayr, V.C. Sequential and parallel large neighborhood search algorithms for the periodic location
routing problem. Eur. J. Oper. Res. 2015, 243, 52–60. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1287/opre.12.4.568
http://dx.doi.org/10.1016/j.ejor.2004.09.004
http://dx.doi.org/10.1080/00207540110064938
http://dx.doi.org/10.1016/j.ejor.2014.11.024
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Problem and Model Definition
	An Improved Large Neighborhood Search Algorithm
	Construction of an Initial Solution
	Determine Vehicle Routing with a Saving Algorithm
	Determine the Order Production Sequence

	Neighborhood Search
	Four Removal Heuristics
	Two Insertion Heuristics

	A Local Search for Improving the Neighbor Solution
	Acceptance Rule
	Stopping Criterion

	Computational Results
	Instances Generation
	Results for Small-Sized Instances
	Results for Larger-Sized Instances

	Conclusions
	References

