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Abstract: Evaluation of images of special functions under operators of fractional calculus has become
a hot topic with hundreds of recently published papers. These are growing daily and we are able
to comment here only on a few of them, including also some of the latest of 2019–2020, just for
the purpose of illustrating our unified approach. Many authors are producing a flood of results
for various operators of fractional order integration and differentiation and their generalizations of
different special (and elementary) functions. This effect is natural because there are great varieties of
special functions, respectively, of operators of (classical and generalized) fractional calculus, and thus,
their combinations amount to a large number. As examples, we mentioned only two such operators
from thousands of results found by a Google search. Most of the mentioned works use the same
formal and standard procedures. Furthermore, in such results, often the originals and the images are
special functions of different kinds, or the images are not recognized as known special functions, and
thus are not easy to use. In this survey we present a unified approach to fulfill the mentioned task at
once in a general setting and in a well visible form: for the operators of generalized fractional calculus
(including also the classical operators of fractional calculus); and for all generalized hypergeometric
functions such as pΨq and pFq, Fox H- and Meijer G-functions, thus incorporating wide classes of
special functions. In this way, a great part of the results in the mentioned publications are well
predicted and appear as very special cases of ours. The proposed general scheme is based on a few
basic classical results (from the Bateman Project and works by Askey, Lavoie–Osler–Tremblay, etc.)
combined with ideas and developments from more than 30 years of author’s research, and reflected in
the cited recent works. The main idea is as follows: From one side, the operators considered by other
authors are cases of generalized fractional calculus and so, are shown to be (m-times) compositions of
weighted Riemann–Lioville, i.e., Erdélyi–Kober operators. On the other side, from each generalized
hypergeometric function pΨq or pFq (p ≤ q or p = q + 1) we can reach, from the final number of
applications of such operators, one of the simplest cases where the classical results are known, for
example: to 0Fq−p (hyper-Bessel functions, in particular trigonometric functions of order (q− p)), 0F0

(exponential function), or 1F0 (beta-distribution of form (1− z)αzβ). The final result, written explicitly,
is that any GFC operator (of multiplicity m ≥ 1) transforms a generalized hypergeometric function
into the same kind of special function with indices p and q increased by m.

Keywords: fractional calculus operators; special functions; generalized hypergeometric functions;
integral transforms of special functions

MSC: 26A33; 33C60; 33E12; 44A20

1. Introduction

Special functions (SF) have always been unavoidable tools for mathematicians, physicists,
astronomers, applied scientists and engineers while looking to express and study (theoretically, in tables
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or by numerical algorithms) the solutions of treated mathematical models. On the other side, recently
there has been an increased interest in fractional calculus (FC) and its applications, as evidence for
which we refer the readers to the data in the survey by Machado–Kiryakova [1]. Fractional calculus is
nowadays a favorite, and even a sort of fashionable research area, although the boom of publications
and attempts to “fractalize” any kinds of integer order models can bring some threats to the prestige
of this discipline, especially in cases of weak or wrong results and not adequate innovations. Let us
mention also the phenomenon of hundreds of papers of the last few years (only a few of them can
be cited here) dealing with “evaluation of FC images of SF”, most of which use the same standard
techniques with changing only the particular special function (SF) and the particular case of the FC
operator. Furthermore, it often happens that in such results the originals and the images are special
functions of different kinds, or the images are not recognized as known special functions, and thus are
not easy to use. In recent papers, such as [2–5], we share our criticism on this practice and show that
all such results can be derived at once by following a general approach, based on ideas from older
author’s works on generalized fractional calculus (GFC), since [6].

Here we try to collect the ideas, results and examples from our recent works on the subject.
The survey starts with Preliminaries (Section 2) providing a short background on the considered SF and
FC operators; followed by Section 3 with results for images of the generalized hypergeometric functions
pFq and pΨq and their simpler cases under the operators the classical FC operators (Riemann–Liouville
and Erdélyi–Kober integrals and derivatives of fractional order). Then, in Section 4 we present our
unified approach for evaluation of GFC operators of arbitrary generalized hypergeometric functions (pFq and
pΨq), resulting in the main Theorems 3 and 4. This allows to handle very wide classes of operators
of generalized (m-tuple, m ≥ 1) fractional integration and differentiation and of considered special
functions. In Sections 5–7 we consider specifications of these results for the Erdélyi–Kober, Saigo
and Marichev–Saigo–Maeda (M-S-M) operators, that appear as cases of our GFC, resp. for m = 1,
m = 2, m = 3, give their images for the Wright generalized hypergeometric functions, and many
illustrative examples for particular results by other authors. Section 8 considers more general cases
of GFC operators with arbitrary multiplicity m ≥ 1, as the multiple Gel’fond–Leontiev operators
related to the multi-index Mittag–Leffler functions, and the hyper-Bessel operators related to the
hyper-Bessel functions of Delerue. In Section 9 we comment on works of other authors on introducing
some “new” special functions and show that these are again Wright generalized hypergeometric
functions pΨq. Therefore, the various FC images they propose come as simple corollaries of our general
results. To show the effectiveness of the proposed unified approach, in this survey we collected some
21 examples for FC images of SF, and referred to a long list of other authors’ works on the subject.
Section 10 summarizes some conclusions.

2. Preliminaries

Here we provide a short and only necessary background on the considered classes of special
functions (SF) and of operators of classical FC and of generalized fractional calculus (GFC), so as
to explain the general ideas. All details on defining the single-valued branches of the considered
functions, functional spaces, and necessary conditions on appearing parameters, can be found in our
previous works, as cited, and for example in ([6], Section 5.5.i). Basically, we consider functions in the
complex plane of the form

{
f (z) = zµ f̃ (z), µ ≥ 0, f̃ (z) analytic and single valued in Ω

}
, where Ω is

a starlike domain with respect to z = 0, usually a disk ∆R : |z| < R. Most of the considered special
functions are entire functions, or analytic ones in disks in C.

The results we consider are for the classes of so-called generalized hypergeometric functions
(g.h.f) with Mellin–Barnes type integral representations, namely the Fox H-function, Meijer G-function
and their most widely used cases of Wright g.h.f. pΨq and g.h.f. pFq. Even if our aim is to incorporate
as large as possible classes of special functions, let us mention that other transcendental functions
as the elliptic integrals, Lambert W-, Mathiew-, Zeta-, etc. functions are outside of our studies.
Also, we emphasize on results for LHS integrals, although for the RHS ones similar techniques and
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results are applied; and consider Riemann–Liouville type fractional derivatives. For the Caputo-type
differentiation operators, similar but different results will be exposed in a separate work.

2.1. Special Functions of Fractional Calculus

Under “classical” Special Functions (SF) we mean these “mathematical functions” and orthogonal
polynomials of which the origin goes back to 18th and 19th centuries and are named after great
mathematicians like Euler, Gauss, Riemann, Bessel, Kummer, Legendre, Laguerre. These “Special
Functions of Mathematical Physics” appeared with the needs of applied sciences and serve as solutions
of integer order (most commonly 2nd order) differential equations from models in mathematical
physics. In the last two centuries it was observed that modeling of many phenomena of the physical
and social world can be reflected much more adequately by means of differential equations of arbitrary
fractional or higher integer orders, and the so-called special functions of fractional calculus (SF of FC)
as providing tools for their explicit solutions became unavoidable tools in the hands of theoretical and
applied scientists recognizing the power of fractional calculus (FC).

Recently, many handbooks and surveys appeared as dedicated not only to classical SF but
also to the SF of FC, to mention some of them: Prudnikov–Brychkov–Marichev [7], Marichev [8],
Srivastava–Gupta–Goyal [9], Kilbas–Srivastava–Trujillo [10], Podlubny [11], Kiryakova [6],
Yakubovich–Luchko [12], Mathai–Haubold [13], Gorenflo–Kilbas–Mainardi-Rogosin [14]. Such a
list cannot be full here, and for more sources see also the survey paper Machado–Kiryakova [1]. In the
papers on the topic and in this survey, we limit ourselves to the Fox H-functions of one complex
variable, as enough of a general level to expose the proposed approach.

Definition 1 (Ch. Fox 1960). see books such as [6,7,9,10], and earlier and latest ones) The Fox H-function is
a generalized hypergeometric function, defined by means of the Mellin–Barnes type contour integral

Hm,n
p,q

[
z

∣∣∣∣∣ (ai, Ai)
p
1

(bj, Bj)
q
1

]
= 1

2πi
∫
L
Hm,n

p,q (s) z−sds, with Hm,n
p,q (s)=

m
∏
j=1

Γ(bj+Bjs)
n
∏

i=1
Γ(1−ai−Ais)

q
∏

j=m+1
Γ(1−bj−Bjs)

p
∏

i=n+1
Γ(ai+Ais)

, (1)

z 6= 0, where L is a suitable contour (of three possible types in C: L−∞, L∞, (γ− i∞, γ + i∞)), the orders
(m, n, p, q) are non negative integers so that 0 ≤ m ≤ q, 0 ≤ n ≤ p, the parameters Ai > 0, Bj > 0 are positive,
and ai, bj, i = 1, . . . , p; j = 1, . . . , q can be arbitrary complex such that Ai(bj+l) 6= Bj(ai−l′−1), l, l′ =
0, 1, 2, . . . ; i = 1, . . . , n; j = 1, . . . , m. Note that the integrandHm,n

p,q (s) with s 7→ −s is the Mellin transform
of the H-function (1).

The details on the properties of the Fox H-function can be found in many contemporary handbooks on SF
such as [7,9,10], where its behavior is described in term of the denotations:

ρ =
p

∏
i=1

A−Ai
i

q
∏
j=1

B
Bj
j ; ∆ =

j
∑

k=1
Bj −

p
∑

i=1
Ai;

µ =
q
∑

j=1
bj −

p
∑

i=1
ai +

p− q
2

; a∗ =
n
∑

i=1
Ai −

p
∑

i=n+1
Ai +

m
∑

j=1
Bj −

q
∑

j=m+1
Bj.

(2)

Note that the H-function is an analytic function of z in circle domains |z| < ρ or outside them (or in
sectors of them, or in the whole C), depending on the above parameters and the contours.
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If all Ai =Bj =1, i = 1, ..., p; j = 1, ..., q, the H-function Hm,n
p,q

[
z

∣∣∣∣∣ (ai, 1)p
1

(bj, 1)q
1

]
reduces to the Meijer’s

G-function (C.S. Meijer (1936), see details in ([15], Vol.1) and all above-mentioned books)

Gm,n
p,q

[
z

∣∣∣∣∣ (ai)
p
1

(bj)
q
1

]
=

1
2πi

∫
L

Gm,n
p,q (s) z−sds =

1
2πi

∫
L

m
∏
j=1

Γ(bj + s)
n
∏
i=1

Γ(1− ai − s)

q
∏

j=m+1
Γ(1− bj − s)

p
∏

i=n+1
Γ(ai + s)

z−sds, z 6= 0. (3)

Although simpler than (1), the G-function is yet enough general as it incorporates the Classical
SF (known also as Named SF) and many elementary functions. See lists of examples, for
example, in ([15], Vol.1), ([6], Appendix C).

Now, we attract the readers’ attention to the most typical examples of SF of FC, which are
Fox H-functions but not reducible to Meijer G-functions in the general case (of irrational Aj, Bk).
These originate from works of Sir Edward Maitland (E.-M.) Wright in a series of his works (1935–1940).

Definition 2 (see, e.g., ([6,7,14], App.E)). The Wright generalized hypergeometric function pΨq(z), called
also Fox–Wright function (F-W g.h.f.) is defined as:

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ z

]
=

∞

∑
k=0

Γ(a1 + kA1) . . . Γ(ap + kAp)

Γ(b1 + kB1) . . . Γ(bq + kBq)

zk

k!
(4)

= H1,p
p,q+1

[
−z

∣∣∣∣∣ (1− a1, A1), . . . , (1− ap, Ap)

(0, 1), (1− b1, B1), . . . , (1− bq, Bq)

]
. (5)

In terms of parameters (2), the pΨq-function is an entire function of z if ∆ > −1, while for ∆ = −1, it is
an absolutely convergent series in the disk {|z|<ρ}, and also for |z|=ρ if Re (µ)>1/2, see, for example, [16].

If all A1 = · · · = Ap = 1, B1 = · · · = Bq = 1, the Wright g.h.f. reduces to the generalized
hypergeometric pFq-function, which is a case of the G-function (3), see details in ([15], Vol.1):

pΨq

[
(a1, 1),. . ., (ap, 1)
(b1, 1),. . ., (bq, 1)

∣∣∣∣∣ z

]
= c pFq(a1,. . ., ap; b1,. . ., bq; z) =

∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k!

= G1,p
p,q+1

[
−z

∣∣∣∣∣ 1− a1, . . . , 1− ap

0, 1− b1, . . . , 1− bq

]
; where c =

[
p

∏
i=1

Γ(ai) /
q

∏
j=1

Γ(bj)

]
, (a)k := Γ(a + k)/Γ(a).

(6)

The Mittag-Leffler (M-L) function, introduced by G. Mittag-Leffler (1902–1905), with extended
2-parameters’ definition by R.P. Agarwal (1953), was presented yet in Bateman Project’s [15], Vol.3
(1954), in a chapter for “Miscellaneous Functions”. However, it was ignored for a long time in
the books on special functions because the applied scientists suffered from a lack of tables for its
Laplace transforms. Although appearing from studies not related to fractional calculus, nowadays
the M-L function has become the most popular and most exploited SF of FC, honored to be the
“Queen”-function of FC. See details, for example, in [14], also in [6,17,18].

Definition 3. The Mittag-Leffler (M-L) functions Eα and Eα,β, are entire functions of order ρ = 1/α and type
1, defined by the power series

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, Eα,β(z) =

∞

∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0. (7)
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As “fractional index” (α > 0) analogs of the exponential and trigonometric functions that satisfy
ODEs of 1st and 2nd order (α = 1, 2), the M-L functions serve as solutions of fractional order differential
equations. A M-L type function with three indices, known as the Prabhakar function (T.R. Prabhakar,
1971) is also often studied and used, for details see [14,17–19], and other contemporary books and
surveys on M-L type functions:

Eγ
α,β(z) =

∞

∑
k=0

(γ)k
Γ(αk + β)

zk

k!
, α, β, γ ∈ C, Re α > 0, (8)

where (γ)0 = 1, (γ)k = Γ(γ + k)/Γ(γ) denotes the Pochhammer symbol. For γ = 1 we get the M-L
function Eα,β, and if additionally β = 1, it is Eα.

These M-L type functions are simple cases of the Wright g.h.f. and of the H-function, namely:

Eα,β(z) = 1Ψ1

[
(1, 1)
(β, α)

∣∣∣∣∣ z

]
= H1,1

1,2

[
−z

∣∣∣∣∣ (0, 1)
(0, 1), (1− β, α)

]
,

Eγ
α,β(z) =

1
Γ(γ) 1Ψ1

[
(γ, 1)
(β, α)

∣∣∣∣∣ z

]
= H1,1

1,2

[
−z

∣∣∣∣∣ (1− γ, 1)
(0, 1), (1− β, α)

]
.

A vector index extension of (7) appeared in the works by Luchko et al. (for example,
Yakubovich-Luchko [12]) on operational calculus’ methods for some fractional order PDE.
Under the name multi-index (multiple) M-L function, it was introduced by Kiryakova [20]
using a different approach, via the Gelfond–Leontiev generalized integration and differentiation
operators (see Section 8). Further, these functions are studied in detail by Kiryakova [21,22],
by Kilbas–Koroleva–Rogosin [23], Paneva–Konovska [19], and many other followers.

Definition 4 (Kiryakova [21,22]). Let m > 1 be an integer, (α1 >0, α2 >0, ..., αm >0) and (β1, β2, ..., βm)

be arbitrary real parameters. By means of these “multi-indices”, the multi-index Mittag-Leffler function
(multi-M-L f.) is the entire function defined as:

E(αi),(βi)
(z) :=E(m)

(αi),(βi)
(z) =

∞

∑
k=0

zk

Γ(α1k + β1) . . . Γ(αmk + βm)
(9)

= 1Ψm

[
(1, 1)

(βi, αi)
m
1

∣∣∣∣∣ z

]
= H1,1

1,m+1

[
−z

∣∣∣∣∣ (0, 1)
(0, 1), (1− βi, αi)

m
1

]
. (10)

Under weakened restrictions on the α’s not obligatory to be all nonnegative, the study was extended by
Kilbas et al; see Kilbas–Koroleva–Rogosin [23].

The basic properties and results for the functions (9) and long lists of their examples, all of them
having wide applications in solutions of integer- and fractional-order models, are provided in our
previous papers like Kiryakova [21,22,24]. Let us shortly mention particular cases like: for m = 1, we
have the classical M-L function Eα,β with all its particulars (error-, incomplete gamma-, Rabotnov, etc.,
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functions); and for m > 1 (many of them treated in the examples in next sections) (see ([15], Vol.2,
Section 7.5.4, Section 7.5.5), [25]):

the Wright function / Bessel-Maitland function φ(κ, ν + 1; z) := Jκ
ν (−z) = E(2)

(κ,1),(ν+1,1)(z)

= 1Ψ1

[
(1, 1)

(ν + 1, κ), (1, 1)

∣∣∣∣∣ z

]
= 0Ψ1

[
−−

(ν + 1, κ)

∣∣∣∣∣ z

]
;

the Mainardi function M(z; β) = φ(−β, 1− β;−z) = E(2)
(−β,1),(1−β,1)(−z);

and its examples, as M(z; 1/2) = 1/
√

π exp(−z2/4), and Airy f. M(z; 1/3) = 32/3 Ai(z/31/3);

Pathak’s gen. Wright-Bessel-Lommel f. Jµ

(ν,λ)(z) = ... = (z/2)ν+2λE(2)
(1/µ,1),(ν+λ+1,λ+1)(−z2/4);

of which, for µ = 1, the Lommel f. appears as s2λ+ν−1,ν(z) = const · J1
ν,λ(z),

and, thus its particular case, the Struve f. Hν(z);
Dzrbashjan’s function with 2× 2 parameters Φ1/α1,1/α1(z; β1, β2) := E(2)

(α1,α2),(β1,β2)
(z);

if all αi = 1, i=1, ..., m: hyper-Bessel f. of Delerue J(m)
ν1,...,νm(z), as multi-index ext. of the Bessel f.; etc.

(11)

Recently, in Kilbas–Koroleva–Rogosin [23] the definition (9) has been extended for arbitrary
values of the α’s parameters. Paneva-Konovska introduced and studied generalizations of the
Prabhakar function (8) by means of three sets of parameters (α1>0, α2>0, ..., αm >0), (β1, β2, ..., βm),
(γ1, γ2, ..., γm), called 3m-parametric M-L functions, see, for example, [19,26] and references therein.
Multivariate and matrix extensions of the M-L and multi-index M-L functions are also explored.

In another survey paper, Kiryakova [27], we are exposing many other details on the theory
of the SF of FC, in the sense of Wright generalized hypergeometric functions pΨq and multi-index
Mittag-Leffler functions, and provide an extensive list of their particular cases, studied in theoretical
and applicable aspects by various authors.

Remark 1. The techniques of the Mellin transform

M { f (z); s} := F∗(s) =
∞∫

0

f (z) zs−1dt

is one of the main tools to evaluate integrals and various integral transforms of special functions, including their
images under operators of FC. After some classical publications of previous centuries, the main contribution
to this approach is due to Marichev [8]. He proposed a natural but wide ranged scheme, based on the contour
integral representations of Mellin–Barnes type for the H- and G-functions, like (1) and (3). Note that the
integrandsHm,n

p,q and Gm,n
p,q are their Mellin transforms (of variable s 7→ −s) are fractions of products of 2× 2

groups of Gamma-functions, and each special function being a special case of the generalized hypergeometric
functions, has a particular representation of that kind. For example ([10], (1.11.24)):

M

{
pΨq

[
(ai, Ai)

p
1

(bj, Bj)
a
1

∣∣∣∣∣− z

]
; s

}
=

Γ(s)
p

∏
i=1

Γ(ai − sAi)

q
∏
j=1

Γ(bj − sBj)

.

For variations of results, one can use in addition the relations (see, e.g., in ([28], (2.6)–(2.8))):

M { f (λz); s} = λ−sF∗(s + γ), λ > 0; M {zγ f (z); s} = F∗(s + γ); M { f (zµ); s} = 1
µ

F∗(
s
µ
), µ > 0.

Examples for the use of the Mellin transform in this respect are given (among many others works) in:
Luchko and Kiryakova ([28], Section 4) (general scheme and examples with the M-L and Wright functions),
Agarwal, Rogosin, and Trujillo [29] and Paneva-Konovska and Kiryakova [30] (images for multi-index M-L
functions and their particular cases).
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2.2. Operators of Generalized Fractional Calculus

In fractional calculus (FC), meant as a theory of the integration and differentiation of arbitrary
(including fractional, not obligatorily integer) order, there are several almost equivalent definitions for
“fractional” integrals and derivatives, applied in various functional spaces. Here we are interested in
evaluating FC operator images of special functions, defined by power series, most of which are entire
functions, or at least analytic ones inside/outside disks in a complex plane. Therefore, we restrict our
statements to such functions, although they hold also for spaces of weighted continuous or Lebesgue
integrable functions on the real half-line.

For the basic background on FC theory and related topics as SF, integral transforms,
generalizations and applications, we can refer to the books (among many others, for a longer
list see, e.g., Machado and Kiryakova [1]), such as those by: Samko, Kilbas, and Marichev [31],
Podlubny [11], Kilbas, Srivastava, and Trujillo [10], Yakubovich and Luchko [12], including the
author’s one, Kiryakova [6] and a recent one, Sandev and Tomovski [32].

We state results for the Riemann-Liouville (R-L) operator for integration Rδ of order δ > 0,
the corresponding R-L fractional derivative Dδ, and its counterpart ∗Dδ in the Caputo sense, that
is only the left-hand sided operators of FC (and skip similar details for the Weyl-type, right-hand
sided operators).

The main operator of fractional integration we consider is the Erdélyi–Kober operator (E-K) of
integration of order δ > 0, depending on two additional parameters γ ∈ R and β > 0,

Iγ,δ
β f (z) =

1
Γ(δ)

1∫
0

σγ (1− σ)δ−1 f (zσ
1
β ) dσ =

z−β(γ+δ)

Γ(δ)

z∫
0

(zβ − ξβ)δ−1 ξβγ f (ξ)d(ξβ), (12)

note it is the identity for δ = 0. Especially for functional spaces of weighted analytic functions
of the form f (z) = zµ f̃ (z), µ ≥ 0 (see beginning of Section 2), to be preserved by this operator,
we require γ > −1 − µ

β , in addition to δ ≥ 0, β > 0. This operator, more general than the R-L
integral, and having many more applications, was introduced in Sneddon’s works, such as [33], and is
considered in books ([6,10,31], Ch.2), and recently in many other works on fractional order models.
The Erdélyi–Kober-type fractional integrals, or briefly Erdélyi–Kober integrals, of the form

I f (z) = zδ0 Iγ,δ
β f (z), with δ0 ≥ 0. (13)

are basic in our studies, and are called classical fractional integrals, and we consider their commutable
compositions that are presented as our generalized fractional integrals, Kiryakova [6,34].

The Erdélyi–Kober operator (13) reduces to the R-L operator of integration for γ=0, β=1, δ0 = δ,

Rδ
0+,z f (z) := Rδ f (z) = zδ I0,δ

1 f (z); and conversely, Iγ,δ
1 f (z) = z−γ−δRδzγ f (z). (14)

Note that some authors often refer to the Erdélyi–Kober integral (12) as Euler integral
transformation, when they are to handle various integral transforms of special functions.

The fractional order derivative of R-L type corresponding to the E-K integral (12), called E-K

fractional derivative Dγ,δ
β , is an extension of the R-L fractional derivative Dδ f (z) :=

(
d
dz

)n
Rn−δ f (z).

Instead of (d/dz)n, a suitably chosen auxiliary differential operator Dn of integer order is used,
a polynomial of the Euler differential operator (z d/dz). It has been introduced and studied in the
works of Kiryakova and Luchko et al., ([6], Ch.2) and ([12], Ch.3) and in the next ones, as [35],

Dγ,δ
β f (z) = Dn Iγ+δ,n−δ

β f (z) =
n

∏
j=1

(
1
β

z
d
dz

+ γ + j
)

Iγ+δ,n−δ
β f (z), n− 1 < δ ≤ n, n ∈ N. (15)
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The more formal representation ([6], Ch.1, Equation (1.6.7))

Dγ,δ
β f (z) =

[
z−γDδzγ+δ f (z1/β)

]
z 7→zβ

(16)

serves to provide a better understanding on the structure and nature of (15).
The Caputo-type analogs of the R-L and E-K fractional derivatives are defined in the same way

but with exchanged order of the nonnegative order integration and the integer order differentiation,
see, for example, [36], also [35], namely,

∗Dγ,δ
β f (z) = Iγ+δ,n−δ

β Dn f (z).

The notion of generalized fractional integration operators was introduced by S. Kalla (1969–1979),
who suggested the common form of such operators (see details and references in [37]),

I f (z) =
1∫

0

Φ(σ) σγ f (zσ)dσ = z−γ−1
z∫

0

Φ(
ξ

z
) ξγ f (ξ)dξ, (17)

where Φ(σ) is an arbitrary continuous (analytical) function for which the integral makes sense, most
commonly a special function as the Bessel, Gauss, G- or H-function. The operators of such generalized
fractional calculus (GFC) are expected to include, in particular, these of the classical FC and should
satisfy the main axioms for the FC theory.

Note that for a rather general or rather narrow choice of the special function Φ, only some formal
operational rules for the generalized fractional integrals (17) can be provided. Therefore, in our
generalized fractional calculus (GFC), Kiryakova [6], the suitable choice of the kernel-functions Φ
as Gm,0

m,m- and Hm,0
m,m-functions was crucial. In that case, the generalized fractional integrals can be

decomposed into commutative products of operators of classical FC (Erdélyi–Kober operators). Thus,
the tools of the special functions and the wide usage of the classical FC are combined into a GFC with
developed detailed theory and many established applications.

Definition 5 (Kiryakova [6]). The multiple E-K integral (of multiplicity m > 1), is defined by means of
the real parameters’ sets (δ1≥0, ..., δm≥0)—multi-order of integration, (γ1, ..., γm)— multi-weight; and
(β1>0, ..., βm >0)—additional multi-parameter, as:

I(γk),(δk)
(βk),m

f (z) :=
1∫

0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk + 1− 1
βk

, 1
βk
)m

1

(γk + 1− 1
βk

, 1
βk
)m

1

]
f (zσ)dσ, (18)

if
m
∑

k=1
δk > 0; and as the identity operator: I(γk),(0,...,0)

(βk),m
f (z) = f (z), if δ1 = δ2 = · · · = δm = 0.

Note that the above kernel Hm,0
m,m-function is an analytic function in the unit disk and Hm,0

m,m(σ) ≡ 0
for |σ| > 1 (Kiryakova, [6]). Specially for functional spaces of weighted analytic functions of the
form f (z) = zµ f̃ (z), µ ≥ 0 (see beginning of Section 2), to be preserved by this operator, we require
γk > −1− µ

βk
, in addition to δk ≥ 0, βk > 0.

If all the β’s are equal: β1 = β2 = ... = βm = β > 0, then (18) has a simpler representation where
the kernel is a Gm,0

m,m-function of Meijer, which is also analytic in unit disk and Gm,0
m,m(σ) ≡ 0 for |σ| > 1,

I(γk),(δk)
(β,...,β),m f (z) := I(γk),(δk)

β,m f (z) =
1∫

0

Gm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk)
m
1

(γk)
m
1

]
f (zσ1/β)dσ =

[
m

∏
k=1

Iγk ,δk
β

]
f (z). (19)
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The operators of the form

Ĩ f (z) = zδ0 I(γk),(δk)
(βk),m

f (z), Ĩ f (z) = zδ0 I(γk),(βk)
β,m f (z), with δ0 ≥ 0, (20)

are both referred to shortly as generalized fractional integrals of multi-order (δ1, ..., δm).
The following decomposition property is proved in [6], etc. (see, e.g., decomposition Th.5.2.1

in [6]). It is important because the GFC integrals (18) and (19) can be represented not only by using
the kernel Fox H- and G-functions, but also by means of the repeated integral representations for the
commutative product of classical E-K operators (12):

I(γk),(δk)
(βk),m

f (z) :=
[

m
∏

k=1
Iγk ,δk
βk

]
f (z) =

1∫
0

· · ·
1∫

0

[
m

∏
k=1

(1− σk)
δk−1σ

γk
k

Γ(δk)

]
f
(

z σ
1/β1
1 . . . σ

1/βm
m

)
dσ1 . . . dσm. (21)

In the book Kiryakova [6] and subsequent papers, we have provided the operational properties of
the operators (18) and (19) as semigroup property, formal inversion formula, reduction to identity or
to the conventional integration operators for special parameters’ choice. This is to justify their names
as operators of GFC.

Following the idea of how the R-L and E-K fractional derivatives are defined, we have proposed
the definition of the corresponding generalized fractional derivatives. To this end, the auxiliary

differential operator Dη , a polynomial of z(
d
dz

) of degree η1 + ... + ηm, is used:

Dη =

[
m

∏
r=1

ηr

∏
j=1

(
1
βr

z
d
dz

+ γr + j
)]

, with ηk :=

{
[δk] + 1, for noninteger δk,

δk, for integer δk,
k = 1, . . . , m. (22)

Definition 6 (Kiryakova ([6], Ch.1,Ch.5), [34,35]). The multiple (m-tuple) Erdélyi-Kober fractional
derivative of R-L type of multi-order δ = (δ1 ≥ 0, . . . , δm ≥ 0) is defined by means of the differ-integral operator:

D(γk),(δk)
(βk),m

f (z) := Dη I(γk+δk),(ηk−δk)
(βk),m

f (z) = Dη

1∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + ηk + 1− 1
βk

, 1
βk
)m

1

(γk + 1− 1
βk

, 1
βk
)m

1

]
f (zσ) dσ. (23)

Analogously, the Caputo-type generalized fractional derivative has been introduced in Kiryakova and
Luchko [35], as

∗D(γk),(δk)
(βk),m

f (z) = I(γk+δk),(ηk−δk)
(βk),m

Dη f (z). (24)

For all equal β’s: β1 = ... = βm = β > 0, the R-L and Caputo-type “derivatives” corresponding to
the generalized fractional integral (19) has a simpler form with Meijer G-function in the kernel:

D(γk),(δk)
β,m f (z) = Dη I(γk+δk),(ηk−δk)

β,m f (z) =

[
m

∏
r=1

ηr

∏
j=1

(
1
β

z
d
dz

+γr+ j
)]

I(γk+δk),(ηk−δk)
β,m f (z),

and ∗D(γk),(δk)
β,m f (z) = I(γk+δk),(ηk−δk)

β,m Dη f (z). (25)

Under generalized (multiple, multi-order) fractional derivatives of the R-L type, resp. of the
Caputo type, we have in mind all the differ-integral/integro-differential operators of the form

D̃ f (z) = D(γk),(δk)
(βk),m

z−δ0 f (z)= z−δ0 D
(γk−

δ0
β ),(δk)

(βk),m
f (z), ∗̃D f (z) = ∗D(γk),(δk)

(βk),m
z−δ0 f (z) with δ0 ≥ 0. (26)

A basic formula for the image of a power function in the general case of (18) and (19) (say from
Kiryakova [6]) reads as

I(γk),(δk)
(βk),m

{zp} = cp zp, with cp =
m

∏
i=1

Γ(γi+1+p/βi)

Γ(γi+δi+1+p/βi)
, δk ≥ 0, p > −βk(γk + 1), k = 1, ..., m, (27)
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and a similar one holds for the generalized fractional derivatives, both analogous to the same formulas
for the classical Erdélyi–Kober operators. These results are in the base of the standard techniques
applied by other authors for the evaluation of FC operators of special functions, in various particular
cases. Using (27), in particular for p = k = 0, 1, 2, ..., n, ..., then interchanging the integration and
summation of the power series for a particular special function, the authors of mentioned papers
obtain a new power series to be recognized as another special function (in the successful cases, or the
result is useless, left just as such series or as some pΨq-function). Our general result states as follows.

Theorem 1 (Kiryakova, since 1988, see, e.g., ([6,38], Ch.5)). Let the conditions βk(γk + 1) > −µ, δk ≥
0, βk > 0, k = 1, ..., m, be satisfied for the parameters of the multiple E-K integral (18). Then, it preserves the
class of weighted analytic functions f (z) in a disk ∆R, denoted byHµ(∆R ={|z|<R}):

f (z) = zµ
∞

∑
k=0

akzk = zµ(a0 + a1z + . . . ) ∈ Hµ(∆R) with R=

{
lim sup

k→∞

k
√
|ak|
}−1

. (28)

Namely, the images of such functions have the same form:

I(γk),(δk)
(βk),m

f (z) = zµ
∞

∑
k=0

ak bk zk ∈ Hµ(∆R), with bk =

 m

∏
i=1

Γ(γi +
k+µ

βi
+ 1)

Γ(γi + δi +
k+µ

βi
+ 1)

 > 0, (29)

with the same radius of convergence R > 0 and the same signs of the coefficients in their series expansions.

2.3. Some Special Cases of GFC Operators

We emphasize here only some operators of FC that are recently exploited very often in publications
on FC operators of SF. In [6] and the author’s other papers as well as in works by other authors, there
many other particular cases of linear integral and differential operators provided and used with
applications in geometric (univalent) function theory, in differential and integral equations of integer
and fractional order, operational calculus, transmutation theory, special functions theory, mathematical
models of phenomena of fractional order, etc.

For m = 1 the kernel-functions of the generalized fractional integrals and derivatives (18) and (23)
can be represented as

H1,0
1,1

[
σ

∣∣∣∣∣ (γ + δ, 1/β)

(γ, 1/β)

]
= β σβ−1 G1,0

1,1

[
σβ

∣∣∣∣∣ γ + δ

γ

]
= β

σβγ+β−1(1− σβ)δ−1

Γ(δ)
,

therefore we have the E-K and R-L (γ=0, β=1) operators of classical FC. Many other integration and
differentiation operators introduced and used by different authors appear as special cases of Iγ,δ

β,1 = Iγ,δ
β ,

Dγ,δ
β,1 = Dγ,δ

β , Rδ and Dδ.

When m = 2, the kernels H2,0
2,2 and G2,0

2,2 reduce to a Gauss hypergeometric lfunction:

H2,0
2,2

[
σ

∣∣∣∣∣ (γ1 + δ1 + 1− 1
β , 1

β ), (γ2 + δ2 + 1− 1
β , 1

β )

(γ1 + 1− 1
β , 1

β ), (γ2 + 1− 1
β , 1

β )

]
= G2,0

2,2

[
σβ

∣∣∣∣∣ γ1 + δ1, γ2 + δ2

γ1, γ2

]

=
σβγ2 (1− σβ)δ1+δ2−1

Γ(δ1 + δ2)
2F1(γ2 + δ2 − γ1, δ1; δ1 + δ2; 1− σβ).

(30)

In this case, the generalized fractional integrals are known as hypergeometric fractional integrals,
and some of them are introduced and studied by Love, Saxena, Kalla, Saigo (see in next Section 6),
Hohlov, etc.
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In the case m = 3, a recently very popular example is with the Marichev–Saigo–Maeda (M-S-M)
operators. These FC integration operators are introduced and studied by Marichev [39] and by
Saigo et al. [40]. Their kernel-function, the Appel F3 function (Horn function)

F3
(
a, a′, b, b′, c, z, ξ

)
=

∞

∑
m,n=0

(a)m(a′)n(b)m(b′)n

(c)m+n

zm ξn

m! n!
, |z| < 1, |ξ| < 1 (see, e.g., [7,15]),

appears as a case of the G3,0
3,3-function and of H3,0

3,3 -function. Indeed, according to [7], p.727, (2); and as
observed in Kiryakova [6], p.21:

(1− σ)c−1

Γ(c)
F3

(
a, a′, b, b′, c, 1− 1

σ , 1− σ
)

= G3,0
3,3

[
σ

∣∣∣∣∣ a + b, c− a′, c− b′

a, b, c− a′ − b′

]
= H3,0

3,3

[
σ

∣∣∣∣∣ (a + b, 1), (c− a′, 1), (c− b′, 1)
(a, 1), (b, 1), (c− a′ − b′, 1)

]
, Re c > 0.

(31)

Therefore, our generalized fractional integrals reduce in this case to the M-S-M integral operators.

Let m ≥ 1 be an arbitrary integer, but all δ’s are integers, say δ1 = ... = δm = 1. Then we have
the Bessel type integral and differential operators of arbitrary (higher) integer order, introduced by
Dimovski [41] (see also [42]) and named as hyper-Bessel operators by Kiryakova ([6], Ch.3), as shown
related to the hyper-Bessel functions of Delerue [43] as their eigenfunctions (see Example 16, in next
Section 8). The studies on these operators gave rise to our GFC, since they appeared as “fractional”
integrals and derivatives of integer multi-orders (1, 1, ..., 1) and for λ > 0 their fractional powers have
multi-orders (λ, λ, ..., λ). In Section 8, we will discuss also the Gelfond–Leontiev operators generated
by the multi-index M-L functions, as more general operators of arbitrary multiplicity m > 1 and
arbitrary fractional multi-order.

As mentioned, here we stress on only a few particular examples of GFC operators I(γk),(δk)
(βk),m

,

D(γk),(δk)
(βk),m

, that are involved in results on to the topic of this survey. This is because many other authors’
works handle the evaluation of images of various elementary or special functions under the classical or
some “generalized operators of FC”—such as the operators of R-L, E-K, Saigo, Marichev–Saigo–Maeda.
Say, one takes first the cosine or Bessel function, later the generalized Bessel (Bessel-Maitland) function,
then an M-L or generalized M-L function, etc., so as to produce new publications by same standard
techniques. Very rarely observed, or mostly is ignored, the fact from relation (21) that these are 2-tuple
(m = 2), respectively 3-tuple (m = 3), or m-tuple (arbitrary m > 1) compositions of Erdélyi–Kober
operators. Therefore, the task can be done at once, if one knows how an E-K operator acts on such
special functions, all being cases of Wright g.h.f. (4), and then applying the procedure a suitable
number of times (2-, 3-, or m). Thus, the result can be predicted in advance, having in mind the general
statements in the next sections.

3. Erdélyi-Kober and Riemann–Liouville Images of pΨq, pFq and Simpler Special Functions

Some basic classical results on the topic exist from the previous century that should not be
forgotten and on which our approach was built. Namely, the image of a generalized hypergeometric
function pFq, with p ≤ q + 1, under the R-L fractional integral/ derivative is shown to be the same special
function with indices p and q increased by 1:

Rδ
{

zν−1
pFq(a1, ..., ap; b1, ..., bq; λz)

}
=

Γ(ν)
Γ(δ+ν)

zδ+ν−1
p+1Fq+1(a1, ..., ap, ν; b1, ..., bq, δ+ν; λz), (32)

with Re δ > 0, Re ν > 0, p ≤ q + 1; λ 6= 0, z ∈ C and if p = q + 1: |λz| < 1 is additionally required.
For this, we can refer to Erdélyi et al. ([44], Vol.2), Ch. XIII, Equations (95)–(97); Askey ([45], p.19),
and emphasize the survey by Lavoie-Osler-Tremblay [46], a table on p.261. Then, to make use of (32),
in our older works on the topic since 1984-1985, we started from the R-L images of the pFq functions
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with the lowest possible indices: 1F0, 1F1 and 0F1, given by three basic elementary functions, see for
example in Kiryakova ([6], Ch.4). Some particular illustrative cases in this direction were mentioned
there, as

I−1,ν+ 1
2

2 {cos z} = Rν+ 1
2

z2

{cos z
z

}
=
√

π 2νz−ν Jν(z) =
√

π 2ν−1z−ν+1
0F1

(
ν+1;− z2

4

)
, ν > − 1

2 , (33)

Rδ
{

zν−1 exp(λz)
}
=

Γ(ν)
Γ(δ+ν)

zδ+ν−1
1F1(ν; δ + ν; λz), Re δ > 0, Re ν > 0, (34)

Rδ
{

zν−1(z− λ)µ
}
=

(−λ)µzδ+ν−1Γ(ν)
Γ(δ+ν) 2F1(−µ, ν; δ+ν, b1, ..., bq; z/λ), Re δ > 0, Re ν > 0. (35)

Note that (33) is an interpretation of the Poisson integral formula for the Bessel function, that
has been generalized in [42] and ([6], Ch.4) to represent the hyper-Bessel functions J(m)

ν1,...,νm with
multi-indices (ν1, ..., νm) (the Bessel function Jν is the case for m=q−p=1 with one index ν), that is,
to represent the 0Fq−p-functions by means of “generalized cosine” cosm.

R-L integrals/ derivatives of the most general G- and H-functions are also well known in the
literature (for example, from [44]), and these are the same type of functions but with increased orders
and additional parameters.

Along with the mentioned old classical results, recently, new articles are published on the
evaluation of classical (R-L, E-K) or generalized FC operators of classical SF or of SF of FC almost
every day (e.g., in 2020: [47,48]), and also of their multivariate or matrix variants. Just as one example on
fractional operators for the matrix Wright hypergeometric functions (5), is a 2020 paper [49].

The classical results (32) and (33)–(35) have been extended in our works (as in ([6], Ch.4), [22,24,50])
in terms of the Erdélyi–Kober operators (12) and (15) and for their counterparts of the GFC: I(γk),(δk)

(βk),m
,

D(γk),(δk)
(βk),m

, not only for pFq but for pΨq as well. To reduce the Wright g.h.f. pΨq in the general case
to three basic simplest functions with lowest indices p and q, we also apply modifications as the
Wright–Erdélyi–Kober multiple operators with a Bessel–Maitland kernel-function and in general, GFC
operators with H-functions like in (20) but with different parameters 1/βk > 0 and 1/λk > 0 in the
upper and low row. Details are in Kiryakova [24].

Now we provide some basic statements necessary for the topic of this survey, repeating in a few
lines the ideas of the proofs, so as to clarify the approach used.

Lemma 1. The image of a Wright g.h.f. pΨq under the Erdélyi–Kober fractional integral (12) is the same type
of function in which the indices p- and q are increased by one, and so, has two additional parameters:

Iγ,δ
β

{
zc

pΨq

[
(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

∣∣∣∣∣ λzµ

]}
= zc

p+1Ψq+1

[
(ai, Ai)

p
1 , (γ+1+c/β, µ/β)

(bj, Bj)
q
1, (γ+δ+1+c/β, µ/β)

∣∣∣∣∣ λzµ

]
.

(36)
It is supposed that Re δ > 0, Re γ > −1, µ > 0, λ 6= 0, c is arbitrary (real), and if p = q + 1, then |λzµ| < 1
is additionally required.

Proof. In a simpler case with c = 0, this is Lemma 1 from Kiryakova [2]. There, a proof is based on the
Formula (44) (Section 4) for the integral (the Mellin transform) of a product of two H-functions, since
both the pΨq-function and the kernel of the E-K operator are cases of H-functions; compare (5) and
Section 2.3. This approach will be discussed later for the more general case of GFC operators.

As a very standard technique, to prove (36), one can use term-by-term integration in series (4),
similarly to that in Kilbas ([16], Th.2) for the particular case of R-L integral, with c := ν−1 there:

Rδ

{
zc

pΨq

[
(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

∣∣∣∣∣ λzµ

]}
= zc+δ

p+1Ψq+1

[
(ai, Ai)

p
1 , (c + 1, µ)

(bj, Bj)
q
1, (c + δ + 1, µ)

∣∣∣∣∣ λzµ

]
. (37)
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Note that the known simpler formula (32), written by means of E-K integrals, appears as a special
case of (36) if all A1 = ... = Ap = B1 = ... = Bq = 1 and β = 1, see Equation (4.2.2

′
) in Kiryakova [6],

for Re δ > 0, Re γ > −1:

Iγ,δ
1
{

pFq(a1, ..., ap; b1, ..., bq; λz)
}
=

Γ(γ + 1)
Γ(γ + δ + 1) p+1Fq+1(a1, ..., ap, γ+ 1; b1, ..., bq, γ+ δ+ 1; λz). (38)

Lemma 2. The image of a Wright g.h.f. pΨq under the E-K fractional derivative (15) is the same kind of function
but with indices p and q increased by 1, and with 2 the additional parameters:

Dγ,δ
β

{
zc

pΨq

[
(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

∣∣∣∣∣ λzµ

]}
= zc

p+1Ψq+1

[
(ai, Ai)

p
1 , (γ + δ + 1 + c/β, µ/β)

(bj, Bj)
q
1, (γ + 1 + c/β, µ/β)

∣∣∣∣∣ λzµ

]
, (39)

provided Re δ > 0, Re γ > −1, µ > 0, λ 6= 0, and if p = q + 1, we require |λzµ| < 1.

Proof. For c = 0 this is Lemma 3 in Kiryakova [2], and for the case of γ = 0, β = 1 we have the
formula for the R-L fractional derivative from Kilbas ([16], Th.4) (where ν−1 := c, Re c > −1, and the
same other conditions):

Dδ

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ λzµ

]}
= zc−δ

p+1Ψq+1

[
(ai, Ai)

p
1 , (c + 1, µ)

(bj, Bj)
q
1, (c + 1− δ, µ)

∣∣∣∣∣ λzµ

]
. (40)

The same standard term-by-term integration/differentiation technique can be used for the
proof of (39).

Consider also the simplest case as an analog of (39), when β = 1, c = 0 and all A1 = ...= Ap =

B1= ...=Bq =1. This is our Lemma 4.3.1 from [6] for the pFq-functions. Namely,

Dγ,δ
1
{

pFq(a1, ..., ap; b1, ..., bq; λz)
}
=

Γ(γ+δ+1)
Γ(γ+1) p+1Fq+1(a1, ..., ap, γ + δ + 1; b1, ..., bq, γ + 1; λz). (41)

In the proof of (41) given in [2], we used the relation (16) between the E-K derivative (15)

and the R-L derivative Dδ f (z) = (
d
dz

)nRn−δ f (z) , n = [δ]+1, combined with the result (32).
Then, employed a formula from ([7], Section 7.2.3, (51)) for differentiation of integer order n of a
generalized hypergeometric function pFq with specific parameters as above.

Here we demonstrate a new proof of Lemma 2 for the more general case of Wright function pΨq. For
simplicity, β=1 and µ=1. Interpreting the E-K derivative (15) as in (16), we have subsequently:

The L.H.S. of (41) =
[
z−γDδzγ+δ

]{
zc

pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λz

]}

=

[
z−γ

(
d
dz

)n
Rn−δ

]{
zγ+δ+c

pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λz

]}

(and due to (37)) = z−γ

(
d
dz

)n
{

zγ+n+c
p+1Ψq+1

[
(ai, Ai)p

1 , (γ + δ + c + 1, 1
(bj, Bj)

q
1, (γ + n + c + 1, 1)

∣∣∣∣∣ λz

]}
.

Now, we use the representation (5) of the Wright g.h.f. as an H-function, and may apply
a formula for differentiation of integer order n of the H-function, say Equation (1.69) from
Mathai-Saxena-Haubold [51], to continue as follows:

... = z−γ

(
d
dz

)n
{

zγ+n+c H1,p+1
p+1,q+2

[
−λz

∣∣∣∣∣ (1− ai, Ai)
p
1 , (−γ− δ− c, 1)

(0, 1), (1− bj, Bj)
q
1, (−γ− n− c, 1)

]}
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= z−γzγ+c H1,p+2
p+2,q+3

[
−λz

∣∣∣∣∣ (−γ− n− c, 1), (1− ai, Ai)
p
1 , (−γ− δ− c, 1)

(0, 1), (1− bj, Bj)
q
1, (−γ− n− c, 1), (−γ− c, 1)

]
and because of the coincidence of the terms (−γ − n − c, 1) in upper and low parameters’ rows,
according to the reduction order formula for the H-function: (1.56) in [51], see also (E.8) in [6],
and [7,9]), we have

... = zc H1,p+1
p+1,q+2

[
−λz

∣∣∣∣∣ (1− ai, Ai)
p
1 , (−γ− δ− c, 1)

(0, 1), (1− bj, Bj)
q
1, (−γ− c, 1)

]
,

which, by using again (5) to go back to a Wright g.h.f., gives the result (39). In case β 6= 1, substitution
z 7→ z1/β is necessary, and same for µ 6= 1.

Yet another approach to check the validity of (39) is to use the identity Dγ,δ
β Iγ,δ

β f (z) = f (z)

for f (z) := zc
pΨq

[
(a1, A1), ..., (ap, Ap)

(b1, B1), ..., (bq, Bq)

∣∣∣∣∣ λzµ

]
, the result from Lemma 1 and reduction of the

intermediate result p+2Ψq+2 to a p+1Ψq+1-function, since the last two equal parameters in the upper
and low rows of its series eliminate each other.

Remark 2. The corresponding result for the Caputo-type E-K derivative ∗Dγ,δ
β for images of the Wright

pΨq-functions, and in particular also for the pFq-functions and for the simpler case of operators with β1 = ... =
βm = β > 0, will be presented in another separate work.

Example 1. The classical result (34) can be extended to an Erdélyi–Kober integral if we use Lemma 1 for

exp(z) = 0F0(−;−; z) = 1F1(0; 0; z) = 1Ψ1

[
(0, 1)
(0, 1)

∣∣∣∣∣ z

]
(which is also a 0Ψ0, G1,0

0,1 , and H1,0
0,1 -function):

Iγ,δ
β

{
zc exp(λz)

}
= Iγ,δ

β

{
zc

1Ψ1

[
(0, 1)
(0, 1)

∣∣∣∣∣ λz

]}
= zc

2Ψ2

[
(0, 1), (γ + 1 + c/β, 1/β)

(0, 1), (γ + δ + 1 + c/β, 1/β)

∣∣∣∣∣ z

]

= 1Ψ1

[
(γ + 1 + c/β, 1/β)

(γ + δ + 1 + c/β, 1/β)

∣∣∣∣∣ λz

]
, reducible to (34) for γ = 0, β = 1, ν = c + 1 > 0. (42)

4. Results for the Generalized Fractional Calculus Operators of Special Functions

Here we present our results on evaluating operators of generalized fractional calculus (in the sense
of [6] and of Riemann–Liouville type) of wide classes of special functions as the Wright generalized
hypergeometric functions pΨq and even of the Fox H-functions (thus incorporating the SF of FC) and
in particular, of the pFq- and Meijer G-functions (thus having general results also for the “classical” SF).

We start with the most general result, presented in Kiryakova ([2], Th.3) and mentioned
in ([3], Th.4.3).

Theorem 2. The generalized (m-tuple) fractional integral I(γk),(δk)
(βk),m

of a H-function is again an H-function:

I(γk),(δk)
(βk),m

{
Hs,t

u,v

[
λz

∣∣∣∣∣ (ci, Ci)
u
1

(dj, Dj)
v
1

]}
= Hs,t+m

u+m,v+m

[
λz

∣∣∣∣∣ (ci, Ci)
t
1, (−γk)

m
1 , (ci, Ci)

u
t+1

(dj, Dj)
s
1, (−γk − δk)

m
1 , (dj, Dj)

v
s+1

]
. (43)

Note that three of the orders of the H-function are increased by the multiplicity m, and additional m+m
parameters appear depending on those of the operator.

Proof. The following known formula for integral (can be seen as a Mellin transform) of product of two Fox
H-functions is very important for evaluating integrals of products of special functions of general nature,
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because almost all of them can be presented as H-functions (([9], Section 5.1, (5.1.1)), ([7], Section 2.25,
(1)), see also (E.21

′
) in ([6], Appendix)):

∞∫
0

σα−1Hs,t
u,v

[
κσ

∣∣∣∣∣ (ci, Ci)
u
1

(dl , Dl)
v
1

]
Hm,n

p,q

[
ωσr

∣∣∣∣∣ (aj, Aj)
p
1

(bk, Bk)
q
1

]
dσ

= κ−α Hm+t,n+s
p+v,q+u

[
ω
κr

∣∣∣∣∣ (aj, Aj)
n
1 , (1− dl − αDl , rDl)

v
1, (aj, Aj)

p
n+1

(bk, Bk)
m
1 , (1− ci − αCi, rCi)

u
1 , (bk, Bk)

q
m+1

]
,

(44)

under the conditions ∆ > −1, a∗ = ∆ + 1 > 0) (in terms of (2)).
To prove (43) we use the definition (18) of I(γk),(δk)

(βk),m
, the fact that the kernel Hm,0

m,m-function vanishes
for |σ| > 1 and so the limits (0, 1) of the integral can be changed into (0, ∞), and the above Formula (44):

I(γk),(δk)
(βk),m

{
Hs,t

u,v

[
λz

∣∣∣∣∣ (ci, Ci)
u
1

(dj, Dj)
v
1

]}
=

1∫
0

... dσ =

∞∫
0

... dσ

=

∞∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk + 1− 1
βk

, 1
βk
)m

1

(γk + 1− 1
βk

, 1
βk
)m

1

]
Hs,t

u,v

[
λz σ

∣∣∣∣∣ (ci, Ci)
u
1

(dj, Dj)
v
1

]
dσ

= Hs+0,t+m
u+m,v+m

[
λz

∣∣∣∣∣ (ci, Ci)
t
1, (1− γk − 1 + 1

βk
− 1

βk
, 1

βk
)m

1 , (ci, Ci)
u
t+1

(dj, Dj)
s
1, (1− γk − δk − 1 + 1

βk
− 1

βk
, 1

βk
)m

1 , (dj, Dj)
v
s+1

]

= Hs,t+m
u+m,v+m

[
λz

∣∣∣∣∣ (ci, Ci)
t
1, (−γk, 1

βk
)m

1 , (ci, Ci)
u
t+1

(dj, Dj)
s
1, (−γk − δk, 1

βk
)m

1 , (dj, Dj)
v
s+1

]
.

For β1 = β2 = ... = βm = β > 0, the image of an arbitrary G-function under the simpler GFC
integrals with Meijer’s Gm,0

m,m-kernels has been provided earlier.

Corollary 1 (Lemma 1.2.2, [6])). The I(γk),(δk)
β,m -image of a G-function is also a G-function in which the three

orders are increased by the multiplicity m and has additional m + m parameters depending on those of the GFC
operator:

I(γk),(δk)
β,m

{
Gs,t

u,v

[
λzβ

∣∣∣∣∣ (ci)
u
1

(dj)
v
1

]}
= Gs,t+m

u+m,v+m

[
λzβ

∣∣∣∣∣ (ci)
t
1, (−γk)

m
1 , (ci)

u
t+1

(dj)
s
1, (−γk − δk)

m
1 , (dj)

v
s+1

]
. (45)

Proof. In this case one can use a formula for the integral of product of two arbitrary G-functions,
simpler than (44) (see for example, ([7], Section 2.24, (1)]) and with a proof in ([6], App., (A.29))), and
be reminded again that the Gm,0

m,m-function vanishes outside the unit disc. Thus the integral (45)

I =
1∫

0

... dσ =

∞∫
0

Gm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk)
m
1

(γk)
m
1

]
Gs,t

u,v

[
λzβ

∣∣∣∣∣ (ci)
u
1

(dj)
v
1

]
dσ,

gives the required image G-function. Because the Gs,t
u,v-function is from the space of an analytic function

in a disk centered at the origin, and has the following asymptotic behavior

Gs,t
u,v

[
λzβ

]
= O

(
zd∗
)

as |z| → 0, with d∗ = β min
j

dj > max
k

[−β(γk + 1)],

the conditions for the used formula to hold on are satisfied.
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Formulas (43) and (45) can be used to evaluate practically all (classical and generalized) operators
of FC of arbitrary SF (which are representable either as a G- or as a more general H-function).

Now we present the main result on the topic of this survey paper, which comes from
Kiryakova [2], Th.1.

Theorem 3. Assume that the conditions δk ≥ 0, γk > −1, βk > 0, k = 1, ..., m and µ > 0, λ 6= 0 hold. The
image of a Wright g.h.f. pΨq(z) by a generalized fractional integral (20) (multiple, m-tuple Erdélyi–Kober
integral) is another Wright g.h.f. with indices p and q increased by the multiplicity m and with additional
parameters coming from those of the GFC integral:

I(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ λzµ

]}

= zc
p+mΨq+m

[
(ai, Ai)

p
1 , (γi + 1 + c

βi
, µ

βi
)m

1

(bj, Bj)
q
1, (γi + δi + 1 + c

βi
, µ

βi
)m

1

∣∣∣∣∣ λzµ

]
.

(46)

Proof. Here we briefly repeat the proof from Kiryakova [2], Th.1, in order to exhibit the main ideas on
which this survey paper is based.

As one approach to prove (46), the general integral formula (44) can be used. This theorem can
be seen also as a consequence of Theorem 2. It is because the kernel-function of the operator is a
Hm,0

m,m-function and the pΨq-function is a H1,p
p,q+1-function, see (5). Then, according to (45) the result will

be a H1,p+m
p+m,q+1+m-function that should be recognized as a p+1Ψq+1-function, because it is reduced to

a H1,p+1
p+1,q+2-function in view of the coincidence of (m−1) parameters in the upper and low row (use

“reduction order” property of the H-function, [7], Section 8.3, 6.; [6], App. (E.8), etc.).
However, to clarify our main idea it is more instructive to refer to the decomposition property (21)

presenting the generalized fractional integral (18) as a product of commuting (classical) Erdélyi–Kober
operators. In the simplest case, we use subsequently m-times (36) from Lemma 1, to get:

I(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m

{
pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λz

]}
= I

(γk)
m−1
1 ,(δk)

m−1
1

(βk)
m−1
1 ,m−1

{
Iγm ,δm
βm pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λz

]}

= I
(γk)

m−2
1 ,(δk)

m−2
1

(βk)
m−2
1 ,m−2

{
Iγm−1,δm−1
βm−1

{
p+1Ψq+1

[
(ai, Ai)

p
1 , (γm + 1, 1/βm)

(bj, Bj)
q
1, (γm + δm + 1, 1/βm)

∣∣∣∣∣ λz

] }}

= · · · = Iγ1,δ1
β1

{
Iγ2,δ2
β2

{
p+m−2Ψq+m−2

[
(ai, Ai)

p
1 , (γr + 1, 1/βr)

m−2
1

(bj, Bj)
q
1, (γr + δr + 1, 1/βr)

m−2
1

∣∣∣∣∣ λz

] }}

= Iγ1,δ1
β1

{
p+m−1Ψq+m−1

[
(ai, Ai)

p
1 , (γr + 1, 1/βr)

m−1
1

(bj, Bj)
q
1, (γr + δr + 1, 1/βr)

m−1
1

∣∣∣∣∣ λz

]}

= p+mΨq+m

[
(ai, Ai)

p
1 , (γr + 1, 1/βr)m

1
(bj, Bj)

q
1, (γr + δr + 1, 1/βr)m

1

∣∣∣∣∣ λz

]
.

(47)

To derive the general relation (46) we apply to the above result the property for “generalized
commutation” from Kiryakova ([6], Ch.5, (5.1.28)), namely:

I(γk),(δk)
(βk),m

zc f (zµ) = zc I
(γk+

c
βk

),(δk)

(
βk
m ),m

f (zµ), with µ > 0. (48)
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Corollary 2. (Lemma 4.2.1., Equations (4.2.2)–(4.2.2’) in Kiryakova ([6], Ch.4)) The image of a pFq g.h.f. (6)

under a generalized (m-tuple) fractional integral I(γk ,δk)
1,m := I(γk ,δk)

(1,...,1),m, (19) with (for simplicity) all βk = β=

1, k=1, ..., m, is another g.h.f. of the same kind with indices increased by the multiplicity m:

I(γk)
m
1 ,(δk)

m
1

1,m
{

pFq
(
a1, ..., ap; b1, ..., bq; λz

)}
= p+mFq+m

(
a1, ..., ap, (γi+1)m

1 ; (b1, ..., bq, (γi+δi+1)m
1 ; λz

)
. (49)

The above results (46) and (49) can be interpreted alternatively as the assertions stated in our
earlier works ([6,50], Ch.4) (in the simpler case of Corollary 2), and later in [24] (in more general case
of Theorem 3). That is, a p+mΨq+m-function (resp. a p+mFq+m-function) of the form below can be
represented by means of a multiple (m-tuple) operator of GFC

Ĩ = I
(ap+i−1)m

i=1,(bq+i−ap+i)
m
i=1

(1/βi)
m
i=1,m

of a pΨq-function (resp. a pFq-function), with orders reduced by m, namely:

p+mΨq+m

[
(ai, Ai)

p
i=1; (ap+i, 1/βi)

m
i=1

(bj, Bj)
q
k=1; (bq+i, 1/βi)

m
i=1

∣∣∣∣∣ λz

]
= Ĩ

{
pΨq

[
(aj, Aj)

p
j=1

(bk, Bk)
q
k=1

∣∣∣∣∣ λz

]}
. (50)

In the case of Wright function with arbitrary parameters Ap+i, Bq+i, i = 1, ..., m:

p+mΨq+m

[
(ai, Ai)

p
i=1; (ap+i, Ap+i)

m
i=1

(bj, Bj)
q
k=1; (bq+i, Bq+i)

m
i=1

∣∣∣∣∣ z

]
, such kind of result is presented in [24] by means of more

general operators Ĩ, the so-called Wright-Erdélyi–Kober operators. This means that using a suitable
number of times of a procedure similar to that in proof of Theorem 3, from any pΨq-function (resp.
pFq-function) we can go down to one of the three basic generalized hypergeometric functions, depending
on if p < q, p = q or p = q+1: 0Ψq−p, 1Ψ1, 2Ψ1; resp. to: 0Fq−p (hyper-Bessel f. and cosm-f.), 1F1

(confluent h.f. and exp-f.), 2F1 (Gauss f. and beta-distribution of form zα(1− z)β). This is the reason
that we classified the g.h.f. to be of three basic types, as: “g.h.f. of Bessel/cosine type”, “g.h.f. of
confluent/exp type” and “g.h.f. of Gauss/beta-distribution type”. Details on this approach and such a
classification of the SF can be found in Kiryakova ([6,22,24,50], Ch.4).

Analogously to Theorem 3, we have also a relation (image) for the generalized fractional
derivatives of g.h.f., presented as Theorem 2 in Kiryakova [2]. The more general formula (as below) is
available in Kiryakova, ([3], Theorem 4.2.).

Theorem 4.

D(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ λzµ

]}

= zc
p+mΨq+m

[
(ai, Ai)

p
1 , (γk + δk + 1 + c

βk
, µ

βk
)m

1

(bj, Bj)
q
1, (γk + 1 + c

βk
, µ

βk
)m

1

∣∣∣∣∣ λzµ

]
.

(51)

Proof. One possible approach to derive this, is to use a decomposition formula for the generalized
(multiple) fractional derivatives (23),

D(γk),(δk)
(βk),m

f (z) = Dγm ,δm
βm

{
Dγm−1,δm−1

βm−1

[
· · ·Dγ1,δ1

β1
f (z)

]}
,

as sequential derivatives. Then, we apply m-times the result (39) of Lemma 2.
We can verify (51) also directly, in the same way as in the end of the proof of Lemma 2, using the

basic relation D(γk),(δ)k
(βk),m

I(γk),(δk)
(β)k ,m f (z) = f (z).

The case of images under the Caputo type generalized fractional derivatives D(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m defined

in (24) will be discussed in a separate work, see also Remark 2.
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5. Examples of Erdélyi–Kober and Riemann–Liuoville Operators of Some Special Functions

In the beginning of Section 3 we already acknowledged the contributions by some classical
authors, such as Erdélyi et al., Askey, Lavoie-Osler-Tremblay, to provide the images of some
special and elementary functions under the Riemann–Liuoville fractional integral/derivative,
see Formulas (32)–(35). We may refer also to works where detailed tables of images under
Riemann–Liuoville operators are provided, for example the book Erdélyi et al. [44], some
recent surveys, including in this Journal, such as by Rogosin [18] (as for M-L type functions),
Garrappa-Kaslik-Popolizio [52] (images of elementary functions expressed by M-L functions).

As mentioned in Section 3, the proof of Lemma 1, a most general result for Riemann–Liuoville
operators of special functions (in sense of g.h.f.) is formula (37) from Kilbas ([16], Th.2):

Rδ

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ λzµ

]}
= zc+δ

p+1Ψq+1

[
(ai, Ai)

p
1 , (c + 1, µ)

(bj, Bj)
q
1, (c + δ + 1, µ)

∣∣∣∣∣ λzµ

]
,

and for the R-L derivative, the corresponding result is as in Equation (40).
It may be instructive to repeat (as from [2]) some very special cases of the images (37) and (40)

under the R-L integral Rδ f (z) = zδ I0,δ
1 f (z), that have been derived by the cited authors by the standard

term-by-term integration/differentiation. Naturally, these come also as specifications of our results
from Lemmas 1 and 2 for the Erdélyi–Kober operators (case m = 1).

Example 2. The R-L fractional integral of the weighted Bessel function, for Re δ>0, Re ν>−1, Re (γ + ν)>0,
is given by Kilbas-Sebastian ([53], Cor.1, (28)), in the form

Rδ
{

zγ−1 Jν(z)
}
=

zγ+ν+δ−1

2ν 1Ψ2

[
(γ + ν, 2)

(γ + ν + δ, 2), (ν + 1, 1)

∣∣∣∣∣− 1
4

z2

]
. (52)

We can use Jν(z) = 0Ψ1

[
−−

(ν + 1, 1)

∣∣∣∣∣− 1
4 z2

]
, so to see (52) as an immediate corollary of (37), and also

of our E-K result (36). Because a 1-tuple fractional calculus operator (R-L, or E-K) is applied, the preliminary
expectation is confirmed to have as a result a 0+1Ψ1+1-function.

Example 3. The R-L fractional integral of the generalized Bessel function Jκ
ν (usually called Bessel–Maitland

function, a name that should correctly be called the Bessel-Wright function) is derived in Kilbas ([16], Th.8,

(26)), and extends the above formula (52): Note the representation Jκ
ν (z) = 0Ψ1

[
−−

(ν + 1, κ)

∣∣∣∣∣− z

]
, then from

our result in Lemma 1, and in particular, from (37), it is expected to have the result as a 1Ψ2-function:

Rδ
{

zγ−1 Jκ
ν (λzµ)

}
= zγ+δ−1

1Ψ2

[
(γ, µ)

(γ + δ, µ), (ν + 1, κ)

∣∣∣∣∣− λzµ

]
, (53)

for Re δ > 0, Re (γ− 1) > −1, κ > −1, µ > 0. The sign “minus” in the argument of RHS was missing
in [16] due to a possible typo.

The same result, in terms of the (classical) Wright function is presented in the same paper, Kilbas ([16],
Th.6, (18)), with the true argument sign (we slightly change the denotations to be similar as in the first row of
our (11)),

Rδ
{

zγ−1 φ(κ, ν + 1; λzµ)
}
= zγ+δ−1

1Ψ2

[
(γ, µ)

(γ + δ, µ), (ν + 1, κ)

∣∣∣∣∣ λzµ

]
. (54)
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A more useful result, in the sense that the R-L integral transforms a generalized Bessel function/resp. Wright
function, into same kind of function but with increased index comes if we put γ− 1 = ν, κ = µ in (53), see, for
example, ([16], Cor.8.1, (28)), wth Re δ > 0, Re ν > −1, µ > 0:

Rδ
{

zν Jµ
ν (λzµ)

}
= zν+δ Jµ

ν+δ+1(λzµ), Rδ {zνφ(µ, ν + 1; λzµ)} = zν+δ φ(µ, ν + δ + 1; λzµ), λ 6= 0. (55)

Next, we mention an example with the so-called generalized M-series. Namely, (M.) Sharma

and Jain [54] introduced the special function p
α,β
Mq (z), as an extension of both g.h.f. pFq(z) and the

(2-parameters) M-L function Eα,β(z):

p
α,β
Mq

(
a1, ..., ap; b1, ...s, bq; z

)
=

∞

∑
k=0

(a1)k...(ap)k

(b1)k...(bq)k

zk

Γ(αk + β)
= κ p+1Ψq+1

[
(a1, 1), ..., (ap, 1), (1, 1)
(b1, 1), ..., (bq, 1), (β, α)

∣∣∣∣∣ z

]
. (56)

Here z, α, β ∈ C, Re α > 0, p ≤ q are the integer orders, and if p = q + 1 we require additionally

that |z| < R = αα, and κ :=
q

∏
j=1

Γ(bj)/
p

∏
i=1

Γ(ai). Usually the following particular cases are always

mentioned: (1) β = 1: this is the (simpler) M-series, introduced by M. Sharma (2008, in same journal
as [54]); (2) p = q = 0 (that is, no upper and no lower parameters): this is the M-L function Eα,β(z);
(3) p = 0, q = 1, b1 = 1: one has the Wright function φ(α, β, z), or the generalized Bessel–Maitland
function; (4) p = q = 1, a1 = γ, b1 = 1: this is the Prabhakar M-L type function (8), (5) α = β = 1: we
have the g.h.f. pFq(a1, ..., ap; b1, ..., bq; z), etc.

Since (56) is a p+1Ψq+1-function, all FC operators of the form (20) (and their particular cases as
R-L, E-K, Saigo, M-S-M) of the M-series can be evaluated using our formulas in Lemmas 1 and 2 and
Theorems 3 and 4.

Example 4. In [54], the images of the generalized M-series are derived in the case of R-L fractional integral and
derivative of order δ > 0:

Rδ

{
p

α,β
Mq

(
a1, . . . , ap; b1, . . . , bq; z

)}
=

zδ

Γ(1 + δ) p+1
α,β
Mq+1

(
a1, . . . , ap, 1; b1, . . . , bq, 1 + δ; z

)
, (57)

Dδ

{
p

α,β
Mq

(
a1, . . . , ap; b1, . . . , bq; z

)}
=

z−δ

Γ(1− δ) p+1
α,β
Mq+1

(
a1, . . . , ap, 1; b1, . . . , bq, 1− δ; z

)
, (58)

using term-by-term integration/differentiation of the series (56). However, having in mind the representations in
both sides as Wright g.h.f., one can get these results directly from the corollaries of Lemmas 1 and 2, the R-L
integral (37) and derivative (40). See also in Lavault [55].

The formulas in Theorems 3 and 4 can easily be reduced to corresponding results for generalized

fractional integrals and derivatives (20) and (23) of the M-series, to appear in terms of p+m
α,β
Mq+m (z),

with additional parameters depending on (γk)
m
1 , (δk)

m
1 . Again in view of (56), evaluation of other

particular FC operators, such as E-K, Saigo, M-S-M, of the M-series can be done. For example,
the M-S-M images were evaluated by Kumar and Saxena [56].

6. Saigo Hypergeometric Operators of Various Special Functions

In a series of papers since 1978, such as [57] (for more references see in [6,58]), Saigo introduced a
linear integral operator with Gauss function in the kernel, and applied it first for studying BVP for PDE
as the Euler-Darboux equation. Later on, this operator was used by him and collaborators in geometric
function theory (classes of univalent functions). It happens that, as a case of the hypergeometric
integral operators, the Saigo operator has also a role as an FC operator and this has recently become a
reason for great interest for researchers in FC, and mainly to authors whose job is to evaluate images
of Saigo operator(s) of various special functions. A search in Google for the phrase “Saigo operator”
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+ “function” returns now more than 1060 results (of course some of them may also concern the more
general Marichev–Saigo–Maeda, discussed in next Section 7).

First, let us remind the definition and two basic properties of the Saigo operators.
For complex α, β, η and Re α > 0, the Saigo fractional integration operator (the LHS version) is

Iα,β,η f (z) =
z−α−β

Γ(α)

z∫
0

(z− ξ)α−1
2F1(α + β,−η; α; 1− ξ

z ) f (ξ)dξ

=
z−β

Γ(α)

1∫
0

s(1− σ)α−1
2F1(α + β,−η; α; 1− σ) f (zσ)dσ,

(59)

and we skip the discussion on the RHS versions of the Saigo integrals, as similar. The Saigo fractional
derivative is used as: Dα,β,η f (z) = (d/dz)n Iα+n,β−n,η−n f (z) with n = [−Re α] + 1. For its explicit
differ-integral expression, see for example in ([6], Ch.1). More details can be found in Kiryakova ([6,58],
Ch.1, Ch.5) and other our papers dealing with these operators in classes of univalent functions (some
of which are joined with Professor Megumi Saigo). A basic formula (known from the original Saigo works)
that all authors use (and sometimes derive again) is for the image of a power function:

Iα,β,η {zp} = [Γ(p+1)Γ(p+η−β+1)/Γ(p−β+1)Γ(p+α+η+1)] zp−β,

for Re α > 0, Re (p + 1) > max[0, Re (β− η)].

As mentioned in Section 2.3, the Saigo operators are cases of the hypergeometric operators of FC,
and of the GFC operators for m = 2, simply because according to (30) the Gauss kernel function is
representable as the kernel of (19) and (18) with m = 2, β = 1, γ1 = η− β, γ2 = 0, δ1 = −η, δ2 = α+ η:

(1− σ)α−1

Γ(α) 2F1(α + β,−η; α; 1− σ) = G2,0
2,2

[
σ

∣∣∣∣∣ −β, α + η

η − β, 0

]
.

Thus, the Saigo operator is a generalized (2-tuple fractional integral) of the form (20) and therefore
in view of (21), it is also a commutable composition of two classical E-K fractional integrals, see for example
([6], Ch.1):

Iα,β,η f (z) = z−β I(η−β,0),(−η,α+η)
(1,1),2 f (z) = z−β Iη−β,−η

1 I0,α+η
1 f (z)

= Iη,−η
1 Iβ,α+η

1 z−β f (z) = I(η,β),(−η,α+η)
(1,1),2 z−β f (z) = R−η z−α−β Rα+η f (z).

(60)

The relation between the first and second lines follows by application of the “generalized commutation”
between (multiple) Erdélyi–Kober operators and power functions (([6], Ch.1, (1.3.3)), ([34], Th.4), etc.).
For particular parameters α, β, η, the Saigo operator can reduce to one E-K operator or an R-L operator,
say for β = −α, η = 0 it is an R-L integral; and for η = −α, an E-K integral: Iα,β,−α = z−β I−α−β,α

1 .
Therefore, the Saigo image of some special function, which can be represented as a Wright function

pΨq, can be written as a particular case of the general formulas (46), resp. (51), or also, as a subsequent
two-times application of classical E-K operators. Therefore, the Saigo image of a pΨq-function can always
be predicted to result into a p+2Ψq+2-function (unless some parameters in upper and lower rows eliminate
each other, and so the indices can be reduced). Our result, as a corollary of Theorem 3 and Corollary 2
states as follows.

Lemma 3. The images of the Wright g.h.f. pΨq, and in particular of the g.h.f. pFq, under the Saigo operator (59)
are the same kind of functions with orders increased by 2:

Iα,β,η

{
zc

pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λzµ

]}
= zc−β

p+2Ψq+2

[
(ai, Ai)

p
1 , (η − β + 1 + c, µ), (1 + c, µ)

(bj, Bj)
q
1, (−β + 1 + c, µ), (α + η + 1 + c, µ)

∣∣∣∣∣ λzµ

]
, (61)
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(for c = 0, µ = 1, this is Cor. 3 in [2]) and

Iα,β,η {
pFq
(
a1, ..., ap; b1, ..., bq; λz

)}
= z−β

p+2Fq+2
(
a1, ..., ap, η − β + 1, 1; b1, ..., bq,−β + 1, α + η + 1; λz

)
, (62)

under the mentioned conditions in the definition of (59).

The following examples for Saigo operators of particular functions from our previous papers [2,3]
are repeated here as an illustration for the general result in Lemma 3.

Example 5. The Saigo fractional integral (59) of a weighted Bessel function was evaluated in
Kilbas-Sebastian ([53], Th.1), for Re α > 0, Re ν > −1, Re (γ + ν) > max [0, Re (β− η)]:

Iα,β,η
{

zγ−1 Jν(z)
}
=

zγ+ν−β−1

2ν 2Ψ3

[
(γ + ν, 2), (γ + η + ν− β, 2)

(γ + ν− β, 2), (γ + ν + α + η, 2), (ν + 1, 1)

∣∣∣∣∣− 1
4

z2

]
. (63)

To apply (61) from Lemma 3, let us remind the reader again that zγ−1 Jν(z)= zγ−1
0Ψ1

[
−−
(ν, 1)

∣∣∣∣∣− 1
4 z2

]
and so, the result should be expected to appear as a 0+2Ψ1+2. Alternatively, to exhibit the use of decomposition
of the Saigo operator in two R-L operators (the last relation in (60)) combined with (52) from Example 2, we may
proceed as follows:

R−ηz−α−βRα+η

{
zγ−1

0Ψ1

[
−−
(ν, 1)

∣∣∣∣∣− 1
4

z2

]}

= R−ηz−α−β

{
2−νzγ+ν+α+η−1

1Ψ2

[
(γ + ν, 2)

(γ + ν + α + η, 2), (ν + 1, 1)

∣∣∣∣∣− 1
4

z2

]}

= 2−νR−η

{
zγ−β+η+ν−1

1Ψ2

[
(γ + ν, 2)

(γ + ν + α + η, 2), (ν + 1, 1)

∣∣∣∣∣− 1
4

z2

]}
= ... 2Ψ3 ..., as in (63).

Example 6. The more special case for Saigo fractional integral of a (weighted) cosine function is the formula
from the same paper of Kilbas-Sebastian ([53], Th.5, (47)), for Re α > 0, Re γ > max [0, Re (β− η)]:

Iα,β,η
{

zγ−1 cos z
}
=
√

π zγ−β−1
2Ψ3

[
(γ, 2), (γ + η − β, 2)

(γ− β, 2), (γ + η + α, 2), ( 1
2 , 1)

∣∣∣∣∣− 1
4

z2

]
. (64)

Note that cos z =
√

πz/2 J−1/2(z), and use the result (63) of Example 4 with ν = −1/2. To use our general
approach, we can present the cos-function as a 0Ψ1-function, and predict the result to be a 0+2Ψ1+2-function
in (64).

Next, we consider a case with a more general special function, called generalized K-series.
In [59] (K.) Sharma introduced an extension of both a g.h.f. pFq(z) and Prabhakar (three-parameter
Mittag-Leffler) function Eγ

α,β(z) (see (8)):

p
α,β;γ

K q
(
a1, . . . , ap; b1, . . . , bq; z

)
:= p

α,β;γ
K q (z) =

∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

(γ)k zk

Γ(αk+β)
, (65)

with z, α, β ∈ C, Re α > 0, integers p ≤ q (and additional requirement |z| < R = αα if p = q+1).
When γ = 1 it reduces to the (generalized) M-series (56) by Sharma-Jain [54], Example 4.
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Example 7. Recently, Lavault [55] represented the above K-series in terms of a Wright g.h.f.:

p
α,β;γ

K q
(
a1, . . . , ap; b1, . . . , bq; z

)
=

q
∏
j=1

Γ(bj)

Γ(γ)
p

∏
i=1

Γ(ai)
p+2Ψq+2

[
(a1, 1), . . . (ap, 1), (γ, 1), (1, 1)
(b1, 1), . . . , (bq, 1), (1, 1), (β, α)

∣∣∣∣∣ z

]
, (66)

and calculated some of its FC operators, as the R-L, Saigo and M-S-M operators. As should be expected, the image

of a p
α,β;γ

K q-function under the R-L integral is a p+1
α,β;γ

K q+1-function (Th. 4.1 there), similarly to Example 4 for
the M-series.

The Saigo operator is also derived by Lavault in [55]: for the M-series—in Th. 4.2, and for the K-series—in
Cor. 4.3. Namely, Equation (4.10), [55] reads as:

Iα,β,γ
{

tσ−1
p

ξ,η;ν
K q (czµ)

}
=

∏
q
1 Γ(bj)

∏
p
1 Γ(ai)

zσ−β−1

Γ(ν) p+3Ψq+3

[
(ai, 1)p

1 , (σ, µ), (−β+γ+σ, µ), (ν, 1)
(bj)

q
1, (β+σ, µ), (α+γ+σ, µ), (η, ξ)

∣∣∣∣∣ czµ

]
. (67)

Let us note that the K-series is a p+2Ψq+2-function (66), and from our Lemma 3 the expected result should
be a p+4Ψq+4-function, with indices increased by two. However, pairs of upper and lower rows’ parameters
appear the same and eliminate each other, therefore the result reduces to a p+3Ψq+3, as above.

7. Marichev–Saigo–Maeda (M-S-M) Operators of Various Special Functions

As mentioned in Section 2.3, there is an interesting particular case of the GFC operators (20) and
(23) for m = 3, often abbreviated as M-S-M (MSM) operators. These operators have also become
very popular in works dedicated to evaluate FC images of special functions. A search in Google for
“Marichev–Saigo–Maeda” returns at least 2430 results, and for “MSM operator”—some 2670 results.

This operator appeared in a paper by Marichev of 1974, [39], see also in the book ([31],
Section 8.4.51); and further was introduced and studied by Saigo, Saigo and Maeda in 1996, see [40],
also by Saigo and Saxena (1996, 1998, 2001), details on references are in ([6,37,58,60], Ch.1), etc.

For complex parameters a, a′, b, b′, c, Re c > 0, the Marichev–Saigo–Maeda (M-S-M) integral operator,
of which the kernel is the Appel function, or Horn’s function F3 (see ([15], Vol.1), also [7])

F3
(
a, a′, b, b′, c, z, ξ

)
=

∞

∑
m,n=0

(a)m(a′)n(b)m(b′)n

(c)m+n

zmξn

m!n!
, |z| < 1, |ξ| < 1,

is defined as the linear integral operator

Ia,a′ ,b,b′ ,c f (z) =
z−a

Γ(c)

z∫
0

(z− ξ)c−1ξ−a′F3(a, a′, b, b′; c; 1− ξ

z
, 1− z

ξ
) f (ξ)dξ

= zc−a−a′
1∫

0

(1− σ)c−1

Γ(c)
σ−a′ F3(a, a′, b, b′; c; 1− σ, 1− 1

σ
) f (zσ)dσ.

(68)

Observing the representation (31) of the kernel F3-function as a kernel of the generalized fractional
integrals (20) (see Section 2.3), it is evident that the M-S-M operator is nothing but their special case
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for m = 3. Then, in view of (21), it is also a composition of three commutable classical E-K integrals (see
Kiryakova [6,37,58]). This fact seems to be unknown to the other authors (or is continuously ignored):

Ia,a′ ,b,b′ ,c f (z) = zc−a−a′
1∫

0
σ−a′ G3,0

3,3

[
σ

∣∣∣∣∣ a + b, c− a′, c− b′

a, b, c− a′ − b′

]
f (zσ)dσ

= zc−a−a′
1∫

0
G3,0

3,3

[
σ

∣∣∣∣∣ a− a′ + b, c− 2a′, c− a′ − b′

a− a′, b− a, c− 2a′ − b′

]
f (zσ)dσ

= zc−a−a′
1∫

0
H3,0

3,3

[
σ

∣∣∣∣∣ (a− a′ + b, 1), (c− 2a′, 1), (c− a′ − b′, 1)
(a− a′, 1), (b− a, 1), (c− 2a′ − b′, 1)

]
f (zσ)dσ

= zc−a−a′ I(a−a′ ,b−a′ ,c−2a′−b′),(b,c−a′−b,a′)
(1,1,1),3 f (z)

= zc−a−a′ Ia−a′ ,b
1 Ib−a′ ,c−a′−b

1 Ic−2a′−b′ ,a′
1 f (z).

(69)

The relations (31) and (69) have been recently denied and argued in the Response of authors [61] to
our critical Commentary [5] to their paper [62]. Then, I needed to support (by my footnote remark to [61])
the truth of (69) as appearing also in the basic FC book by Samko-Kilbas-Marichev [31], see there
Equation (10.38) (for decomposition of Saigo operator) and Equation (10.46), p. 193 (for decomposition
of the M-S-M operator).

For the above reasons, to evaluate M-S-M images of special functions, which are representable as
Wright g.h.f., one can use the general result of Theorem 3. Thus we have:

Lemma 4. The image of a Wright g.h.f. under the M-S-M fractional integral is given by the formula

Ia,a′ ,b,b′ ,c

{
zν

pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣ λzµ

]}

= zc−a−a′
p+3Ψq+3

[
(ai, Ai)

p
1 , (a− a′ + 1 + ν, 1), (b− a′ + 1 + ν, 1), (c− 2a′ − b′ + 1 + ν, 1)

(bj, Bj)
q
1, (a− a′ + b + 1 + ν, 1), (c− 2a′ + 1 + ν, 1), (c− a′ − b′ + 1 + ν, 1)

∣∣∣∣∣ λzµ

]
.

(70)

The corresponding simpler result for ν = 0 is given by Corollary 4 in Kiryakova [2].

The M-S-M fractional derivatives Da,a′ ,b,b′ ,c, denoted also by Ia,a′ ,b,b′ ,c with Re c ≤ 0, are considered
by Saigo and Maeda and by the next authors as originally defined by analogy with the Saigo derivatives
Dα,β,η . In view of (69), they can be considered also as special cases of the generalized fractional

derivatives (23) with m = 3, namely as Da,a′ ,b,b′ ,c = D(a−a′ ,b−a′ ,c−2a′−b′),(b,c−a′−b,a′)
(1,1,1),3 z−c.

The authors after Saigo-Maeda use to derive first a formula for the M-S-M image of a power
function zp, ignoring the fact that it exists in the original paper (1996) (and follows also as a particular
case of our (27) in Section 2). Then, to find the M-S-M fractional integral or derivative of a particular
special function, they use the standard techniques of term-by-term integration/or differentiation of
the corresponding powers series. However, our general approach says that we know in advance the
image of a pΨq-function expected as a p+3Ψq+3, see (70).

We provide a few illustrative examples for other authors’ results, mentioned also in Kiryakova [2].

Example 8. The formula for the M-S-M generalized fractional integral of a weighted Bessel function:

Ia,a′ ,b,b′ ,c{zγ−1 Jν(z)
}
=

zγ+ν−a−a′+c−1

2ν

× 3Ψ4

[
(γ + ν, 2), (γ + ν + c− a− a′ − b, 2), (γ + ν + b′ − a′, 2)

(γ + ν + b′, 2), (γ + ν + c− a− a′, 2), (γ + ν + c− a′ − b, 2), (ν + 1, 1)

∣∣∣∣∣− z2

4

]
,

(71)
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can be found in Purohit-Suthar-Kalla ([60], Th.2.1, (10)). It is supposed that Re c>0, Re ν>−1, Re (γ + ν)>

max [0, Re (a + a′ + b− c), Re (a′ − b′)]. The same result, however, can be obtained in the way as discussed in
Example 5, using the M-S-M operator’s representation (69) and the result from Lemma 4. Then, by analogy with
Example 6, one can derive the particular result from ([60], Cor.3.1, (24)) for the M-S-M image of zγ−1 cos z,
again in terms of 3Ψ4(− z2

4 ).

Example 9. Mondal-Nisar ([63], Th.3, (11)) evaluated the M-S-M integral (68) of the so-called generalized
Bessel function

Wp,β,γ(z) =
∞

∑
k=0

(−1)kγk

Γ(p + β
2 + 1

2 + k) k!

( z
2

)2k+p
.

Evidently, it is a variant (up to variable substitution) of the Bessel–Maitland-Wright function Jκ
ν (z) and of the

Wright function φ(z), representable as 0Ψ1-function of (z2/4). Then as well expected, the result comes as a
3Ψ4-function, since the indices are increased by 3.

Example 10. Next, in Nisar-Mondal-Agrawal ([64], Th.1), the authors derive the M-S-M operator of the
Bessel-Struve function, which is representable as a 2× 2-indices (multi-index, m = 2) Mittag-Leffler function (9),
see Examples (11) mentioned in Section 2.1, as well as a Wright g.h.f. 1Ψ1,

Sν(z) =
Γ(ν)√

π

∞

∑
k=0

Γ( 1
2 + k

2 )

Γ(ν + 1 + k
2 )

zk

k!
=

Γ(ν)√
π

1Ψ1

[
( 1

2 , 1
2 )

(ν + 1, 1
2 )

∣∣∣∣∣ z

]
.

Then, the result for Ia,a′ ,b,b′ ,c {tγ−1Sν(λz)
}

is expected, written in terms of a 1+3Ψ1+3(λz) = 4Ψ4(λz), with
parameters following from the general scheme.

Example 11. The M-S-M operator (68) of a generalized multi-index Mittag-Leffler function

Eγ,κ
(αj ,β j)

m
1
(z) =

∞

∑
k=0

(γ)κk zk

m
∏
j=1

Γ(αjk + β j)
k! =

1
Γ(γ) 1Ψm

[
(γ, κ)

(β j, αj)
m
1

∣∣∣∣∣ z

]
,

is handled in Agarwal-Rogosin-Trujillo [29]. When m = 1 it was studied also by Srivastava-Tomovski [65].
Note that for γ = κ = 1 the above function reduces to the (2m) multi-index Mittag-Leffler function (9).
This appeared also in Saxena-Nishimoto [66] and was studied in Saxena-Pogany-Ram-Daiya [67]. The result
from ([29], Th.3.1, (3.2)) is the following:

Ia,a′ ,b,b′ ,c
{

zρ−1Eγ,κ
(αj ,β j)

m
1
(λzµ)

}
=

zρ+c−a−a′−1

Γ(γ)

× 4Ψm+3

[
(γ, κ), (ρ, µ), (ρ + c− a− a′ − b, µ), (ρ + b′ − a′, µ)

(αj, β j)
m
1 , (ρ + b′, µ), (ρ + c− a− a′, µ), (ρ + c− b− a′, µ)

∣∣∣∣∣ λzµ

]
.

(72)

Using the representations of the M-S-M operator as three-tuple generalized fractional integral (69) and of
this special function as a 1Ψm-function, the same formula can be evaluated by the general result in Theorem 3,
that is the image is again a Wright g.h.f. but its indices are increased by three.

Example 12. We were stuck on a paper by Kumar-Gupta-Rawat [68] (very fast accepted and published with a
lot of typographical problems). The authors there aim to “establish certain generalized fractional differentiation
involving M-L type function with four parameters, recently introduced by Garg et al. (2016)”. Namely, they
have evaluated its image under the Marichev–Saigo–Maeda derivative Da,a′ ,b,b′ ,c, corresponding to the integral
operator (68). Their result, Theorem 1 (p.205), reads as follows:

Da,a′ ,b,b′ ,c
{

tρ−1
ξ,γEµ,ν(λzσ)

}
=

zρ+a+a′−c−1

Γ(ξ)
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× 5Ψ4

[
(ξ, γ), (ρ, σ), (ρ + a + a′ + b′ − c, σ), (ρ + a− b, σ), (1, 1)
(ρ− b, σ), (ρ + a + a′ − c, σ), (ν, µ), (ρ + a + b′ − c, σ)

∣∣∣∣∣ λzσ

]
.

The authors did not observe the fact that the considered M-L type function is a case of the generalized Wright
function (4), the definition of which is also given in the mentioned paper, namely:

ξ,γEµ,ν(z) =
∞

∑
k=0

(ξ)γk

Γ(µk + ν)
zk =

1
Γ(ξ)

∞

∑
k=0

Γ(ξ + γk)Γ(k + 1)
Γ(µk + ν)

zk

k!
=

1
Γ(ξ) 2Ψ1

[
(ξ, γ), (1, 1)

(ν, µ)

∣∣∣∣∣ z

]
.

Then, its image under the M-S-M differentiation, as a three-tuple generalized fractional derivative, is well
expected to be the Wright function 2+3Ψ1+3, in view of our general results as (51) and (70).

Example 13. In [62], Agarwal-Jain-Baleanu considered the M-S-M images of the generalized
Lommel-Wright function

Jϕ,m
ω,θ (z) = (

z
2
)ω+2θ

∞

∑
k=0

(−1)k(
z
2
)2k

(Γ(θ + k + 1))m Γ(ω + kϕ + θ + 1)

= (
z
2
)ω+2θ

1Ψm+1

[
(1, 1); (θ + 1, 1), ..., (θ + 1, 1), (ω + θ + 1, ϕ);−z2/4

]
,

(73)

which is a Wright g.h.f. (see Equation (1.1) there). We can note that it is also example of the multi-index
M-L function (9), namely Jϕ,m

ω,θ (z) = ( z
2 )

ω+2θ( z
2 )

ω+2θE(m+1)
(1,...,1,ϕ),(θ+1,...,θ+1,ω+θ+1)

(
−( z

2 )
2). Then the result,

as calculated by the authors, follows directly from Theorem 3 and especially from Lemma 4 (below, A :=
χ + ω + 2θ, ϕ>0):

Iξ,ξ ′ ,ρ,ρ′ ,κ
0+

[
tχ−1 Jϕ,m

ω,θ (tz)
]
(x) = xA−ξ−ξ ′+κ−1(

z
2
)ω+2θ

× 4Ψ4+m

[
(A, 2), (A +κ − ξ − ξ ′ − ρ, 2), (A + ρ′ − ξ ′, 2), (1, 1)

(A + ρ′, 2), (A +κ − ξ − ξ ′, 2), (A +κ − ξ ′ − ρ, 2), (ω + θ + 1, ϕ), (θ + 1, 1)

∣∣∣∣∣− (tz)2

4

]
,

(74)

to be again a Wright g.h.f. but with indices increased by three, that is, a 4Ψm+4-function. In [62] also many
special cases are derived, such as Beta-transform (that is E-K integral), Saigo operator, path integral, of the
function (73) and of its particular cases. As in the Commentary [5] we discussed the possibilities to use our
unified approach, the authors tried to argue with the facts in their Response [61]. The curious readers are
recommended to read Kiryakova’s footnote comments at the bottom to this Response [61].

8. Multiple Gel’fond-Leontiev Operators of Multi-Index Mittag-Leffler Functions; Hyper-Bessel
Operators and Functions

We consider now GFC images of the multi-index M-L functions (9).

Lemma 5. Taking in general m 6= n (m-tuple operators of GFC and 2n-indexed M-L functions), we have

I(γk),(δk)
(βk),m

{
zc E(n)

(αi),(νi)
(λzµ)

}
= I(γk),(δk)

(βk),m

{
zc

1Ψn

[
(1, 1)

(νi, αi)
n
1 )

∣∣∣∣∣ λzµ

]}

= zc
1+mΨn+m

[
(1, 1), (γk + 1 + c/βk, µ/βk)

m
1

(νi, αi)
n
1 , (γk + δk + 1 + c/βk, µ/βk)

m
1

∣∣∣∣∣ λzm

]
.

(75)

This is an easy corollary of Theorem 3. In particular, for c = 0, µ = 1, m = n, and for
GFC parameters taken to be γk = νk − 1, βk = 1/αk, k = 1, 2, ..., m, it happens that the parameters
(γk + 1, 1/βk)

m
1 in the upper row and (νi, αi)

m
1 in bottom row appear equal and cancel each other,

and then the W. g.h.f. 1+mΨm+m reduces to 1Ψm, again a multi-index M-L function!
Then, as proved (in other direct way) in our previous papers, we have:
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Example 14 (Kiryakova, [21,22]). For each fixed j = 1, ..., m, a (classical) E-K integral of (9) reads as:

I
β j−1,δj
1/αj

E(αi),(βi)
(λz) = E(αi),(β1,...,β j−1,β j+δj ,β j+1,...,βm)(λz). (76)

This is an extension of the result for an E-K integral (12) of an M-L function: Iβ−1,δ
1/α Eα,β(z) = Eα,β+δ(z), where

its second index is increased by the order of fractional integral. After m-times application of the above relation
with respect to each j = 1, ..., m, we obtain that a GFC integral (18) with suitably chosen parameters transforms
a multi-index M-L function into the same kind of multi-index M-L function of which the indices of the second
set are increased by the multi-order of fractional integration:

I(βk−1),(δk)
(1/αk),m

E(αi)
m
1 ,(βi)

m
1
(λz) = E(αi)

m
1 ,(βi+δi)

m
1
(λz), with Re δk > 0, γk > −1, αk > 0, k = 1, ..., m, λ 6= 0. (77)

If we take δk = αk, k = 1, ..., m, formula (77) has the form (Kiryakova, [21,22])

I(βk−1),(αk)
(1/αk),m

E(αi),(βi)
(λz) = E(αi),(βi+αi)

(λz) = (λz)−1
[

E(αi),(βi)
(λz)− 1

m
∏
i=1

Γ(βi)

]
.

According to the operational rules of the GFC (([6], Ch.5)) and rewriting the above relation for the
generalized fractional derivative D(βk−1−αk),(αk)

(1/αk),m
defined as in (23), we have

D(βk−1−αk),(αk)
(1/αk),m

E(αi),(βi)
(λz) = (λz) E(αi),(βi)

(λz) +

[
m

∏
i=1

Γ(βi − αi)

]−1

.

Here one can see an analogy with the results (10.6), (10.9) from Haubold-Mathai-Saxena [17] for the R-L
operators (in the case m = 1).

Next, let us consider the special cases of GFC operators for which the multi-index M-L functions (9)
appear as eigenfunctions, that is, these special functions are transformed into the same kind of functions
with the same multi-indices.

Example 15. The so-called Gelfond–Leontiev (G-L) operators are operators of generalized integration and

differentiation, defined for functions f (z) =
∞
∑

j=0
ajzj analytic in a disk |z| < R, and are generated by the

coefficients of a given entire function ϕ(σ), used as a multipliers’ sequence. They were introduced in a paper
by Gelfond and Leontiev of 1951 (for details and references see our works, such as [6,20,21]). In the case when
ϕ(σ) = E(αi),(βi)

(σ) is the multi-index M-L function (9), these operators were considered by Kiryakova [20],
see also [21], etc., and called (multiple) Dzrbashjan–Gelfond–Leontiev (D-G-L) operators. We defined them
as follows:

D f (z) =
∞

∑
j=1

aj
Γ(β1 + jα1)...Γ(βm + jαm)

Γ(β1 + (j− 1)α1)...Γ(βm + (j− 1)αm)
zj−1,

L f (z) =
∞

∑
j=0

aj
Γ(β1 + jα1)...Γ(βm + jαm)

Γ(β1 + (j + 1)α1)...Γ(βm + (j + 1)αm)
zj+1,

(78)

and noted that the image functions D f (z), L f (z) are also analytic functions in the same disk |z| < R.
We have shown (e.g., in [21,22]) that the operators (78) can be analytically extended (outside a disk,

to holomorphic functions in starlike domain) to operators of GFC, namely to generalized integrals and derivatives
of fractional multi-order (α1, ..., αm) as follows:

L f (z) = z1 I(βk−1),(αk)
(1/αk),m

f (z), D f (z) = z−1D(βk−1−αk),(αk)
(1/αk),m

f (z)− z−1 f (0)

[
m

∏
k=1

Γ(βk)

Γ(βk − αk)

]
.
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Then, as proved in [21,22], etc., and seen also in the end of Example 14, the multi-index M-L function (9)
is a solution of the differential equation of fractional multi-order

DE(αi),(βi)
(λz) = E(αi),(βi)

(λz), that is, E(αi),(βi)
(z) is an eigenfunction of the operator D. (79)

In view of this relation, the multi-index M-L function serves as an eigenfunction of the D-G-L differentiation
generated by its own coefficients!

In the case of the 3m-parametric M-L type functions (multi-index Prabhakar functions, [26])

E(γi), m
(αi), (βi)

(z) =
∞

∑
k=0

(γ1)k . . . (γm)k
Γ(α1k + β1) . . . Γ(αmk + βm)

zk

(k!)m , with Pochhamer symbols (γi)k :=
Γ(γi + k)

Γ(γi)
,

the R-L, classical E-K operators and some multiple E-K operators are evaluated in the works of
Paneva-Konovska, for example, the book [19].

Example 16. In 1966, and his later works, Dimovski [41] introduced a very general class of differential
operators of arbitrary (integer) order generalizing the Bessel operators of second order. His aims were to develop
operational calculus for these operators, both via a Laplace-type integral transform and by the Mikusinski
algebraical approach. These operators have the alternative representations

B f (t) = tα0
d
dt

tα1
d
dt
· · · tαm−1

d
dt

tαm f (t) = t−β Pm

(
t

d
dt

)
f (t) = t−β

m

∏
k=1

(
t

d
dt

+ βγk

)
f (t), t > 0, (80)

with arbitrary parameters α0; αk, γk, k = 1, ..., m; β > 0; Pm a polynomial of degree m, and their different
cases were studied by many authors as appearing in various equations of mathematical physics, problems in
analysis, etc., disciplines. The name “hyper-Bessel differential operator” for (80) was introduced by Kiryakova
in the further studies on the topic, for example ([6], Ch.3), and next ones as [69]. For the linear right inverse
operator denoted by L and called hyper-Bessel integral operator (such that B L f (t) = f (t)), we have found a
representation by an integral operator with Meijer’s Gm,0

m,m-function in the kernel, and later, the same kind of
integral representation also for its fractional powers Lλ, λ > 0. These results were the hint of how to introduce
the operators of GFC: the generalized integration and differentiation (20) and (26) of arbitrary fractional
multi-order (δ1, δ2, ..., δm) instead of the multi-order (λ, λ, ..., λ) for Lλ. The story is explained in [69]. Due to
the representation of the hyper-Bessel operators in the form: B = t−1D(γk−1),(1,1,...,1)

(β,β,...,β),m , L = t I(γk),(1,1,...,1)
(β,β,...,β),m , these

operators are important examples of the generalized “fractional” derivatives and also of the Gelfond–Leontiev

operators (78). Indeed, for simplicity we take β = 1 and γm = 0, then we have that B = t−1D(γk−1)m
1 ,(1)m

1
(1)m

1 ,m is a
particular case of the operator denoted by D in the previous Example 15, with modified denotations.

Consider the m-th order (that is, of multi-order (1, 1, ..., 1)) hyper-Bessel differential equation

B y(t) = λ y(t), λ 6= 0. (81)

In ([6], Ch.3, Th.3.4.3) and the next corollaries (see also [37]), we proved that the functions, j = 1, ..., m:

yj(t) = G1,0
0,m

[
−λt

∣∣∣∣∣ −−
−γj,−γ1, ...,−γj−1,−γj+1, ...,−γm−1, 0

]

= (λt)−γj
m
∏

k=1
Γ(γk+1)

0Fm−1
(
(1 + γi − γj)i 6=j; λt

)
:= J(m−1)

(1+γi−γj)i 6=j
(λt), the hyper-Bessel functions,

(82)
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form a fundamental system of solutions of equation (81) in a neighborhood of origin t = +0. Under the
assumptions of Th.3.4.3 in [6], γ1 < ... < γm < γ1 + 1 and γm = 0, we have that −γj ∈ (0, 1) for all
j = 1, ..., m, and one of these solutions, for j = m, can be written as

ym(t) =
[

m
∏

k=1
(γk + 1)

]−1

0Fm−1

(
(1 + γi)

m−1
1 ; λt

)
=

[
m
∏

k=1
(γk + 1)

]−1

1Fm

(
1; (1 + γi)

m−1
1 , 1; λt

)
= 1Ψm

[
(1, 1)

(1 + γi)
m−1
1 , 1

∣∣∣∣∣ λz

]
= E(1,1,...,1),(1+γi)

m
1
(λz), a case of the multi-index M-L functions.

Therefore, Example 16 appears a special case of Example 15, and shows that the multi-index Mittag-Leffler
functions (9) can be seen also as “fractional indices” analogs, extensions of the hyper-Bessel functions (82),
which themselves are multi-index variants of the classical Bessel function.

9. Some “New” Special Functions and Their FC Images

Recently, some authors claimed to introduce and consider “new” SF. Among these are examples of the
so-called k-analogs of the Bessel and Mittag-Leffler functions, some generalized multi-index Bessel
and Mittag-Leffer functions, and some S-functions. The mentioned k-analogs are based on the use of
the k-Γ-function, which, however, can be rewritten in terms of the “classical” Γ-function:

Γk(s)=
∞∫

0

exp(− tk

k
) ts−1dt = k

s
k−1 Γ(

s
k
), s ∈ C, Re (s) > 0, k > 0; Γ(.) the Gamma-function. (83)

Usually, the denotations include also the k-analogs of the Pochhamer symbol:

(η)ν,κ := Γk(η + νκ)/Γk(λ), η ∈ C \ {0}, ν ∈ C, (84)

and in view of (83) are representable again by means of classical Gamma-functions.
Then, one can easily observe that such “new SF” are just cases of the Wright generalized

hypergeometric function pΨq. Therefore, all the results provided by the mentioned authors to evaluate
FC operators of these special functions follow from our general ones, say from Theorems 3 and 4,
or the special cases as Lemmas 1 and 2 (for E-K operators, incl. R-L ones), Lemma 3 (for Saigo
operators), Lemma 4 (for M-S-M operators), and so on. As an illustration, we repeat some examples
from Kiryakova [4].

Example 17. A generalization of the Bessel function, called generalized k-Bessel function was introduced by
Gehlot [70] and studied by Mondal [71], Shaktawat et al. [72], defined as

Wk
ν,c(z) =

∞

∑
n=0

(−c)n

Γk(nk + ν + k)
· (z/2)2n+ ν

k

n!
, z ∈ C, k > 0, Re (ν) > −1, c ∈ C. (85)

Lets us note that this function is practically a Wright g.h.f. 0Ψ1, and even a simpler g.h.f. 0F1 of the same
type as the classical Bessel function:

Wk
ν,c(z)=(z/2)ν/k

∞
∑

n=0

[−c(z/2)2]n

kn+1+(ν/k)Γ(n+1+(ν/k))Γ(n+1)
=

(z/2)ν/k

k1+(ν/k)

∞
∑

n=0

[−c(z/2)2]n

kn Γ(1+(ν/k)+n.1) Γ(1+n.1)

=
(z/2)ν/k

k1+(ν/k)

∞
∑

n=0

[−(c/k)(z/2)2]n

Γ(1 + (ν/k) + n.1) Γ(1 + n.1)
=

(z/2)ν/k

k1+(ν/k) 1Ψ2

[
(1, 1)

(1 +
ν

k
, 1), (1, 1)

∣∣∣∣∣− c
k

( z
2

)2
]

=
(z/2)ν/k

k1+(ν/k) 0Ψ1

[
−−

(1 +
ν

k
, 1)

∣∣∣∣∣− c
k

( z
2

)2
]
=

(z/2)ν/k

k1+(ν/k)Γ(1 + ν)
0F1

(
−; 1 +

ν

k
;− c

k
z2

4

)
.

(86)
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Naturally, for k = 1, c = 1, (85) becomes the classical Bessel function:

W1
ν,1(z) =

(z/2)ν

Γ(1 + ν) 0F1

(
−; 1+ν;− z2

4

)
.

In the case c = 1, Gehlot [70] considered (85) as a solution of a k-Bessel differential equation. Mondal [71]
studied its properties for complex c ∈ C. Shaktawat et al. [72] evaluated the M-S-M operators of FC of this
function. In view of Lemma 4, the result there (Th.1, (18)) is well expected to appear in terms of the 3Ψ4-function
(because the 3-tuple FC integral increases by three the indices of the initial 0Ψ1-function).

Example 18. The simplest k-analogs of the M-L function are considered by Dorrego-Cerruti [73] and Gupta
and Parihar [74], and very recently (2020/2021) studied also by Ali et al. [47]:

Ek,α,β(z) =
∞

∑
n=0

zn

Γk(αn + β)
, resp. Eδ

k;ν,ρ =
∞

∑
n=0

(δ)η,k zn

Γk(νn + ρ) n!
.

Various further extensions appeared, as the generalized k-Mittag-Leffler function, studied by Gupta and
Parihar [74] and Nisar-Eata-Dhaifalla-Choi [75] in the form (note that the index p was missing in these authors’
original denotation):

Eη,δ,p,q
κ,α,β (z) :=

∞

∑
n=0

(η)qn,κ

Γk(αn + β) (δ)pn,κ
zn, κ, p, q ∈ R+; α, β, η, δ ∈ C, (87)

with min{Re (α), Re (β), Re (η), Re (δ)} > 0; q ≤ Re (α) + p; the k-Pochhammer symbol as in (84).

Again, the function (87) can be rewritten as a Wright g.h.f., now as 2Ψ2. Using the representations for (83)
and (84) we have, respectively:

(η)qn,κ = ... = kqnκ/kΓ(
η + qnκ

k
)/Γ(

η

k
); (δ)pn,κ = ... = kpnκ/kΓ(

δ + pnκ

k
)/Γ(

δ

k
);

and Γk(αn + β) = kαn+β/k · k−1 Γ(
αn + β

k
).

Then,

Eη,δ,p,q
κ,α,β (z) = k1− β

k
Γ(δ/k)
Γ(η/k)

∞

∑
n=0

Γ( η
k + n · qκ

k ) Γ(1 + n.1)

Γ( δ
k + n · pκ

k ) Γ( β
k + n · α

k )
·

[
k

qκ−pκ−α
k z

]n

n!

= k1− β
k

Γ(δ/k)
Γ(η/k) 2Ψ2

[
( η

k , qκ
k ), (1, 1)

( δ
k , pκ

k ), ( β
k , α

k )

∣∣∣∣∣ k
(q−p)κ−α

k z

]
.

By the standard techniques, Nisar-Eata-Dhaifalla-Choi [75] evaluated FC operators of the functions (87).
In view of our general results, as expected, the results are 5Ψ5-functions (for the MSM operators, Ths. 1–2,
3–4) there), and in particular, 4Ψ4-functions (for the Saigo operators, Cor. 3.1–3.2, there). Also, the pathway
integrals (that are related to E-K integrals) are calculated.

Example 19. The so-called multi-index Bessel function:

J
(αj)m ,γ,c
(β j)m ,κ,b (z) =

∞

∑
k=0

ck (γ)κk
m
∏
j=1

Γ(αjk + β j +
b+1

2 )
· zk

k!
, m = 1, 2, 3, ..., (88)

with the Pochhammer symbol (γ)κk, were introduced and studied in a series of papers by Nisar at al., see, for
example, Nisar-Purohit-Parmar [76]. The authors proposed a result for the R-L fractional integral of (88),
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unfortunately written wrongly in their Theorem 1, Equation (2.4) of [76] as a 2Ψ2-function, although it is
evidently a 2Ψm+1-function having (m+1) parameters in the low row. The true result should be

Rλ

{
tδ−1 J

(αj)m ,γ,c
(β j)m ,κ,b(z)

}
=

1
Γ(γ)

zδ+λ−1
2Ψm+1

[
(γ,κ), (δ, 1)

(β j +
b+1

2 , αj)
m
1 , (λ + δ, 1)

; cz

]
. (89)

However, it is easily seen that (88) is: J
(αj)m ,γ,c
(β j)m ,κ,b (z) =

1
Γ(γ 1Ψm

[
(γ,κ)

(β j +
b+1

2 , αj)
m
j=1

; cz

]
, so this result

follows directly from our Lemma 1. Note that the function (88) is also a special case of the generalized multi-index
M-L function in Example 11 with β j 7→ β j + (b + 1)/2, and then the results for its images under FC operators
follow from these in Agarwal-Rogosin-Trujillo [29].

Very recently (published 24 September 2020), in Mubeen etal. [48], the authors considered integral
transforms, including FC operators, of yet more general SF called “extended generalized multi-index Bessel
function" introduced by Kamarujjama-Khan-Khan (2019) with an additional member (δ)k in the denominator
of the series, as:

J
(αj)m ,γ,c
(β j)m ,κ,b,δ(z) =

∞

∑
k=0

(γ)κk (−cz)k

(δ)k
m
∏
j=1

Γ(αjk + β j +
b+1

2 )
. (90)

Following similar manipulations as we did in [4] (Section 5.3, Equation (48)) for the case of (88), one can
show that

J
(αj)m ,γ,c
(β j)m ,κ,b,δ(z) =

Γ(δ)
Γ(γ) 2Ψm+1

[
(γ, κ), (1, 1)

(δ, 1), (β j +
b+1

2 , αj)
m
1

∣∣∣∣∣− cz

]
,

and is evidently reducible to (88) for δ = 1. Therefore, the M-S-M fractional integral will be a
5Ψm+4-function—presented as an explicit SF, instead of the authors’ hardly visible result in form of some
unknown complicated series, compared with Th.5.3, [48] for the extension (1.17) of the function (90).

Example 20. The S-function was introduced in Saxena-Daiya [77] as a “new” special function extending the
M-L function (p = q = 0, k = 1), the Prabhakar function (8), the M-series (56) of Sharma and Jain [54] (γ = 1,
k = 1), etc., by

S[z] := Sα,β,γ,τ,k
(p,q) (a1, ..., ap; b1, ..., bq; z) =

∞

∑
n=0

(a1)n...(ap)n · (γ)nτ,k

(b1)n...(bq)n · Γk(nα + β)
· zn

n!
, (91)

with k ∈ R, ; α, β, γ, τ ∈ C; Re (α) > 0; Re (α) > k, Re (τ), p < q + 1. For p = q = 0 it reduces to the
generalized k-Mittag-Leffler function Eγ,τ

k,α,β(z), see in Example 18, the simplest case by Gupta and Parihar [74].
However, as shown in Kiryakova ([4], Section 5.4), this S-function (91) appears to be a Wright g.h.f. (4) of

the form p+1Ψq+1

(
zkτ− α

k

)
, namely:

S[z] = k1− β
k

Γ(b1)...Γ(bq)

Γ(a1)...Γ(ap) · Γ( γ
k )

p+1Ψq+1

[
(a1, 1), ..., (ap, 1), ( γ

k , τ)

(b1, 1), ..., (bq, 1), ( β
k , α

k )
; zkτ− α

k

]
.

Unfortunately, this fact has not been observed neither by the authors of [77] introducing it, nor by their numerous
followers. Then, all results for images of FC operators, such as R-L, E-K, Saigo, M-S-M, the Euler-transform
(which is in fact E-K operator), Laplace transform, follow as images of the Wright function according to our
general results, say Theorem 4.1. Then, as evaluated in [77], Th. 2.10, (32), the Euler transform is a function
p+2Ψq+2 (zkτ− α

k ), because the indices are increased by one for the E-K operator; the Saigo operators will increase
the indices by two; the M-S-M integral will be in terms of Wright function with indices increased by three,
namely: (p+1)+3Ψ(q+1)+3, etc.

Special cases of (91) are the generalized K-series (65) and M-series (56), see Examples 4 and 7.
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Example 21. The generalized k-Wright function (multi-parametric k-M-L function) is introduced by Purohit
and Badguzer [78] as a k-extension of the Wright g.h.f. (4):

pΨk
q(z) = pΨk

q

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣ z

]
=

∞

∑
n=0

Γk(a1 + nA1) . . . Γk(ap + nAp)

Γk(b1 + nB1) . . . Γk(bq + nBq)

zn

n!
, k > 0. (92)

However, from the representation (83), it is seen that this “new” function is again a Wright generalized
hypergeometric function, namely:

const p+1Ψq+1

[
(ai/k, Ai/k)p

i=1
(bj/k, Bj/k)q

j=1

∣∣∣∣∣ k(A1+...+Ap−B1−...−Bq)/k · z
]

.

Then the M-S-M operators evaluated for (92) by these authors can appear directly from our general results
(say, Lemma 4) in terms of p+4Ψq+4-functions.

10. Conclusions

10.1. The researchers on the topic can be advised to follow a procedure like this:

(1) Check if the considered SF can be presented as a Wright g.h.f. pΨq or as simpler pFq-function; in
more complicated cases, or if it is a Fox H-function or a Meijer G-function;

(2) Check if the operator of FC to be evaluated is some special case of the GFC operators, that is, if it
can be presented as a composition of classical R-L or E-K operators (also in the form (20) and (26));

(3) Then, apply a general result like Theorem 3, Theorem 4 (or more generally, Theorem 2) and their
special cases (Lemmas 1–4) and the examples, provided in this survey.

10.2. In Section 3 we first give the images of the SF (the generalized hypergeometric functions pΨq,
pFq and their simplest cases) for the classical FC operators: E-K and R-L, and show that these are the
same kinds of functions of which the indices p, q are increased by 1. Then, the images under the GFC
operators are obtained by m-times application of these results, in Section 4. Our result states that the
image of a pΨq-function (resp. pFq-function) under any (m-tuple) GFC operator can be predicted by Theorems 3
and 4 to be a p+mΨq+m-function (resp. p+mFq+m-function) with additional parameters depending on
those of the FC operators. Using this general approach, one can avoid application of the standard
term-by-term integration/differentiation of the power series for each particular special function the
authors choose to treat.

10.3. For the proofs of Theorems 3 and 4 and their corollaries, see Kiryakova [2–4], and for their
alternative interpretations—in other our works as ([6,22,24,50], Ch.4), [27]. The basic idea is that by
means of a multiple (m-tuple) operator of GFC each p+mΨq+m-function (resp. a p+mFq+m-function) can
be reduced to a pΨq-function (resp. a pFq-function), see comments and formula (50) before Theorem
4. Thus, by a suitable number of steps, from any pΨq-function (resp. pFq-function) we can reach
to one of the three basic generalized hypergeometric functions, depending on either p < q, p = q or
p=q+1: 0Ψq−p, 1Ψ1, 2Ψ1 (resp. 0Fq−p, 1F1, 2F1). Additionally, by an Erdélyi–Kober operator these are
reducible to one of the three elementary functions: cos z, zα exp(z) or (1− z)αzβ. Details are given
in Kiryakova [27], submitted to this Journal. As a conclusion, we have classified the g.h.f., that is the
SF, in three basic classes: “g.h.f. of Bessel/cosine type”, “g.h.f. of confluent/exp type” and “g.h.f. of
Gauss/beta-distribution type”, each of these classes with own specific properties. Thus, the title of
Kiryakova [50] appeared as: “All the special functions are fractional differintegrals of elementary functions”.

10.4. In some papers, the authors evaluate an operator of FC of a particular special function in
terms of another special function. Or even, the final result is written only as a series not recognized as
some SF. However, for both theoretical reasons and possible applications, the results can be useful
when a GFC operator transforms a special function from some class into a special function of the same
class, although with changed (increased/decreased) indices and additional parameters. Such are
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our Theorems 3 and 4, showing that a pΨq-function (resp. a pFq-function) is transformed into a
p+mΨq+m-function (resp. a p+mFq+m-function). We discussed similar results also for some particular

cases of SF, such as for the (classical) Wright function φ(α, β, z), the M-series p
α,β
Mq (z). Among the

illustrative examples for SF having FC images of the same class, are our formulas: (32), (36), (37), (39), (40),
(41), (46), (49), (51), and their corollaries like (55)–(58),(61), (62), (70), (77).

10.5. Next goal: the most useful results on the topic are when we can specify an operator of GFC
corresponding to the considered special function, so that this function is to be its eigenfunction. In this
survey we give such examples, say for the multi-index Mittag-Leffler functions E(αi),(βi)

(z) and the

hyper-Bessel functions of Delerue 0Fm−1

(
(1 + γi)

m−1
1 ; z

)
. These are the formulas (79), (81) and (82),

etc. Another example, for the eigenfunction of the simplest fractional order differential equation, is the
Rabotnov function zα−1Eα,α(zα) (called also fractional exponent), namely:

Dαyα(z) = λyα(z) , where yα(z) = zα−1Eα,α(λzα), α > 0, λ 6= 0. (93)

10.6. Many authors are publishing results on the images of particular special functions under some
integral transforms like the Laplace transform, Mellin transform, Euler (Beta) transform, Whittaker transform.
Observe that the Euler transform (called so after the Euler integral formula for the Gauss function)
is just a case of the Erdélyi–Kober fractional integral (12), as an extension of the Riemann–Liuoville
fractional integral (14). Therefore, there is no need to separately evaluate these two transforms (Euler
transform and Riemann–Liouville operator), and what is more, to repeat such calculations for each
particular special function. One can just apply the general result, as in Lemma 1. Note that the so-called
pathway-transform is also closely related to the E-K integral. To evaluate a Laplace transform, say for
any special function which is an H-function, one can use the general integral formula (44) and the
representation of the kernel exponential function as a Wright g.h.f. (see (42), Example 1), then also

as a H-function: exp(−z) = H1,0
0,1

[
z

∣∣∣∣∣ −−(0, 1)

]
. As already mentioned in Remark 1, a basic approach

to evaluate integral transforms (also FC operators) of special functions relies on their images under
the Mellin transform in terms of Gamma-functions, to which the fundamental book by Marichev [8]
is devoted.
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