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Abstract: We study properties of generalized solutions of the Dirichlet–Robin problem for an elasticity
system in the exterior of a compact, as well as the asymptotic behavior of solutions of this mixed
problem at infinity, with the condition that the energy integral with the weight |x|a is finite. Depending
on the value of the parameter a, we have proved uniqueness (or non-uniqueness) theorems for the
mixed Dirichlet–Robin problem, and also given exact formulas for the dimension of the space of
solutions. The main method for studying the problem under consideration is the variational principle,
which assumes the minimization of the corresponding functional in the class of admissible functions.
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1. Introduction

Dedicated to the blessed memory of my parents who went to heaven this year.
Let Ω be an unbounded domain in Rn, n ≥ 2, Ω = Rn \ G with the boundary ∂Ω ∈ C1, where G

is a bounded simply connected domain (or a union of finitely many such domains) in Rn, Ω∪ ∂Ω = Ω

is the closure of Ω, x = (x1, . . . , xn), |x| =
√

x2
1 + · · ·+ x2

n, u = (u1, . . . , un).
In the domain Ω, we consider the linear system of elasticity theory

Lu ≡ (Lu)i =
n

∑
j,k,h=1

∂

∂xk

(
aij

kh
∂uj

∂xh

)
= 0, i = 1, . . . , n. (1)

Here and in what follows, we assume summation from 1 to n over repeated indices. We also
assume that the coefficients are constant and the following conditions hold:

aij
kh = aji

hk = akj
ih, λ1|ξ|2 ≤ aij

khξ i
kξ

j
h ≤ λ2|ξ|2,

where ξ is an arbitrary symmetric matrix, {ξ i
k}, ξ i

k = ξk
i , |ξ|2 = ξ i

kξ i
k, λ1, λ2 are positive constants.

We consider the following boundary-value problem for the system (1): find a vector-valued
function u that satisfies (1) in Ω along with the homogeneous Dirichlet–Robin boundary conditions

u
∣∣
Γ1

= 0, (σ(u) + τu)|Γ2
= 0, (2)
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where Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅, mesn−1Γ1 6= 0, σ(u) = (σ1(u), . . . , σn(u)), σi(u) ≡ aij
kh

∂uj(x)
∂xh

νk,
i = 1, . . . , n, ν = (ν1, . . . , νn) is the unit outward normal vector to ∂Ω, τ is an infinitely differentiable
function on ∂Ω with uniformly bounded derivatives, and τ ≥ 0, τ 6≡ 0.

General boundary value problems for elliptic systems in domains with smooth boundaries
were studied in [1–4]. Boundary value problems for the elasticity system in bounded domains
are quite well studied. A presentation of the basic facts of this theory can be found in Fichera’s
monograph [5]. In [6–8], Kondratiev and Oleinik established generalizations of Korn’s inequality and
Hardy’s inequality for bounded domains and a large class of unbounded domains, and applied these
to investigate the main boundary value problems for the elasticity system, which were also considered
in [9,10]. The paper [10] uses Korn’s inequality and Hardy’s inequality to study the uniqueness and
stability of generalized solutions of mixed boundary value problems for the elasticity system in an
unbounded domain provided that E(u, Ω) is finite.

In [11,12], shells of variable thickness are considered in three-dimensional Euclidean space around
surfaces that have a limited principal curvature. Here the author derives the Korn interpolation
inequality, the inequality also introduced in [13], and the second Korn inequality in domains in which
no boundary or normalization conditions are imposed on the vector function u. The constants in
the estimates are asymptotically optimal in terms of the thickness of the region. Note that this is the
first paper that defines the asymptotic behavior of the optimal constant in the classical Korn second
inequality for shells over the thickness of the domain in almost complete generality, and the inequality
holds for almost all thin domains. In [14], the author extends the L2 Korn interpolation inequality, as
well as the second Korn inequalities, in thin domains, proved in [12], to the space Lp for any 1 < p < ∞.
Note the paper [15], in which the authors prove asymptotically sharp weighted Korn and Korn-type
inequalities in thin domains with singular weights. The choice of weights is based on some factors;
in particular, the spatial case arises when transforming Cartesian variables to polar change of variables
in two dimensions.

In [16], a regularity result is proved for a system of linear elasticity theory with mixed boundary
conditions on a curved polyhedral domain in weighted Sobolev spaces, for which the weight is
determined by the distance to the set of edges. These results are then extended to other strongly elliptic
systems and higher dimensions.

In [17,18] methods are proposed that allow one to construct the asymptotics of solutions of the
Laplace and poly-Laplace equations in a neighborhood of singular points, which are zero and infinity,
as well as the asymptotics of these equations on manifolds with singularities. In [19], asymptotics were
constructed for the solution of the Laplace equation on manifolds with a beak-type singularity in a
neighborhood of the singular point.

We also note the papers [20–22], in which the basic boundary value problems and problems with
mixed boundary conditions for the biharmonic (polyharmonic) equation are studied. In particular,
the existence and uniqueness of solutions in the ball were established, and necessary and sufficient
conditions for the solvability of boundary value problems for the biharmonic (polyharmonic) equation,
including those with a polynomial right-hand side, were obtained.

It is well known that if Ω is unbounded, then one must also characterize the behavior of a solution
at infinity. This is usually done by requiring that the Dirichlet integral D(u, Ω) or the energy integral
E(u, Ω) be finite, or a condition on the nature of the decay of the modulus of a solution as |x| → ∞.

In this paper we study the properties of generalized solutions of the mixed Dirichlet–Robin
problem for the elasticity system in an unbounded domain Ω with a finiteness condition of the
weighted energy integral:

Ea(u, Ω) ≡
∫

Ω
|x|a

n

∑
i,j=1

(
∂ui
∂xj

+
∂uj

∂xi

)2

dx < ∞, a ∈ R.
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Imposing the same constraint on the behavior of the solution at infinity in various classes of
unbounded domains, the author [23–37] studied the uniqueness (non–uniqueness) problem and found
the dimensions of the spaces of solutions of boundary value problems for the elasticity system and the
biharmonic (polyharmonic) equation.

The main research method for constructing solutions to the mixed Dirichlet–Robin problem is the
variational principle, which assumes the minimization of the corresponding functional in the class of
admissible functions. Further, using Korn’s and Hardy’s-type inequalities [6–8], we obtain a criterion
for the uniqueness (or non-uniqueness) of solutions to this problem in weighted spaces.

This article contains proofs of the results announced in [36].
Notation: C∞

0 (Ω) is the space of infinitely differentiable functions in Ω with compact support
in Ω.

We denote by H1(Ω, Γ), Γ ⊂ Ω the Sobolev space of functions in Ω obtained by the completion of
C∞(Ω) vanishing in a neighborhood of Γ with respect to the norm

||u; H1(Ω, Γ)|| =

∫
Ω

∑
|α|≤1
|∂αu|2dx

1/2

,

where ∂αu = ∂|α|u/∂xα1
1 . . . ∂xαn

n , α = (α1, . . . , αn) is a multi–index, αj ≥ 0 are integers, and |α| =
α1 + · · ·+ αn; if Γ = ∅, we denote H1(Ω, Γ) by H1(Ω).

◦
H

1
(Ω) is the space of functions in Ω obtained by the completion of C∞

0 (Ω) with respect to the
norm ||u; H1(Ω)||;

◦
H

1

loc (Ω) is the space of functions in Ω obtained by the completion of C∞
0 (Ω) with respect to the

family of semi-norms

‖u; H1(Ω ∩ B0(R))‖ =

 ∫
Ω∩B0(R)

∑
|α|≤1
|∂αu|2 dx


1/2

for all open balls B0(R) := {x : |x| < R} in Rn for which Ω ∩ B0(R) 6= ∅.
We set ∂αu = ∂|α|u/∂xα1

1 . . . ∂xαn
n , with α = (α1, . . . , αn), where αi ≥ 0 are integers, and |α| =

α1 + · · ·+ αn. Let

D(u, Ω) =
∫

Ω
|∇u|2 dx, E(u, Ω) =

∫
Ω
|ε(u)|2 dx,

Da(u, Ω) =
∫

Ω
|x|a|∇u|2 dx, Ea(u, Ω) =

∫
Ω
|x|a|ε(u)|2 dx,

where

|∇u|2 =
n

∑
i,j=1

(
∂ui
∂xj

)2

, |ε(u)|2 =
n

∑
i,j=1

(
∂ui
∂xj

+
∂uj

∂xi

)2

,

ΩR = Ω ∩ {x : |x| < R}, ∂ΩR = ∂Ω ∪ {x : |x| = R}.

By the cone K in Rn with vertex at x0 we mean a domain such that if x− x0 ∈ K, then λ(x− x0) ∈ K
for all λ > 0. We assume that the origin x0 = 0 lies outside Ω.

Let (n
k) be the (n, k)-binomial coefficient, (n

k) = 0 for k > n.
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2. Definitions and Auxiliary Statements

Definition 1. A solution of the system (1) in Ω is a vector-valued function u ∈ H1
loc(Ω) such that for any

vector-valued function ϕ ∈ C∞
0 (Ω) the following integral identity holds

∫
Ω

aij
kh

∂uj

∂xh

∂ϕi
∂xk

dx = 0.

Before proceeding to the consideration of the boundary value problem (1), (2), we establish two
auxiliary lemmas.

Lemma 1. Let u be a solution of the system (1) in Ω such that Ea(u, Ω) < ∞. Then

u(x) = P(x) + ∑
β0<|α|≤β

∂αΓ(x)Cα + uβ(x), x ∈ Ω, (3)

where P(x) is a polynomial, ord P(x) ≤ m = max{1, 1− n/2− a/2}, Γ(x) is the fundamental solution
of the system (1), Cα = const, β0 = 1− n/2 + a/2, β ≥ 0 is an integer, and the function uβ satisfies
the estimate

|∂γuβ(x)| ≤ Cγβ(a, u)|x|1−n−β−|γ|

for every multi-index γ, Cγβ = const.

Remark 1. It is known [38], that there exists a fundamental solution Γ(x), which for n > 2 has the
following estimate

|∂αΓ(x)| ≤ C(α)|x|2−n−|α|, C(α) = const .

For n = 2 the fundamental solution has a representation Γ(x) = S(x) ln |x|+ T(x), where S(x) and T(x) are
square matrices of order 2 whose entries are homogeneous functions of order zero [39].

Proof of Lemma 1. Consider the vector-valued function v(x) = θN(x)u(x), where θN(x) = θ(|x|/N),
θ ∈ C∞(Rn), 0 ≤ θ ≤ 1, θ(s) = 0 for s ≤ 1, θ(s) = 1 for s ≥ 2, and also N >> 1 and G ⊂ {x : |x| < N}.
We extend v to Rn by setting v = 0 on G = Rn \Ω. Then the vector-valued function v belongs to
C∞(Rn) and satisfies the system

Lv = Fi, i = 1, . . . , n,

where Fi ∈ C∞
0 (Rn), supp Fi ⊂ {x : |x| < 2N}. It is easy to see that Ea(v,Rn) < ∞. If a + n 6= 0,

then Korn’s inequality ([7], § 3, inequality (1)) implies that v(x) = w(x) + Ax, where A is a constant
skew-symmetric matrix and w satisfies Da(w, Ω) < ∞.

We can now use Theorem 1 of [40] since it is based on Lemma 2 of [40], which imposes no
constraints on the sign of σ′. Hence the expansion

w(x) = P0(x) + ∑
β0<|α|≤β

∂αΓ(x)Cα + wβ(x)

holds for each a, where P0(x) is a polynomial, ord P0(x) ≤ max{1, 1 − n/2 − a/2}, Cα = const,
β0 = 1− n/2 + a/2 and

|∂γwβ(x)| ≤ Cγβ|x|1−n−β−|γ|, Cγβ = const .

Hence, by the definition of v, we obtain (3) with P(x) = P0(x) + Ax.
Now let a + n = 0. Then for each δ > 0,

E−n−δ(v,Rn) ≤ E−n(v,Rn) < ∞.
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By Korn’s inequality ([7], § 3, inequality (1)), there exists a constant skew-symmetric matrix A
such that

D−n−δ(v− Ax,Rn) ≤ CE−n−δ(v,Rn) < ∞,

where the constant C is independent of v(x). Hence, using Theorem 1 of [40], we get

v(x)− Ax = P0(x) + ∑
β0<|α|≤β

∂αΓ(x)Cα + vβ(x),

where P0(x) is a polynomial, ord P0(x) ≤ 1, Cα = const, β0 = 1− n/2 + a/2 and

|∂γvβ(x)| ≤ Cγβ|x|1−n−β−|γ|, Cγβ = const .

Thus,
v(x)− Ax = P0(x) + ∑

β0<|α|≤β

∂αΓ(x)Cα + vβ(x),

which proves the Lemma for a = −n.

Lemma 2. Let u be a solution of the system (1) in Ω such that Ea(u, Ω) < ∞ for some a ≥ 0. Then for all
x ∈ Ω equality (3) holds with uβ, satisfying an estimate similar to that in Lemma 1; in addition, P(x) = Ax+ B,
where A is a constant skew-symmetric matrix and B is a constant vector.

Proof. Let u be a solution of the system (1) in Ω. Then by Lemma 1, we have

u(x) = P(x) + R(x),

where P(x) is a polynomial, ord P(x) ≤ 1, and

R(x) = ∑
β0<|α|≤β

∂αΓ(x)Cα + uβ(x), R(x) = O(|x|2−n), n > 2.

Let us prove that P(x) = Ax + B, where A is a constant skew-symmetric matrix and B is a
constant vector. Obviously, if Ea(u, Ω) < ∞ and a ≥ 0, then E(u, Ω) < ∞.

Assume that n > 2. It is easy to verify that E(R(x), Ω) < ∞ for n > 2. Hence E(P(x), Ω) < ∞ by
the triangle inequality.

Let P(x) = Ax + B, that is, Pi(x) = ∑n
j=1 aijxj + bi. Then

E(P(x), Ω) =
∫

Ω

n

∑
i,j=1

(aij + aji)
2dx,

where the aij are the entries of A. The last integral converges if and only if aij = −aji, that is, A is a
constant skew-symmetric matrix.

We consider now the case n = 2. It is known [39] that Γ(x) = S(x) ln |x| + T(x), where S(x)
and T(x) are 2 × 2 matrices whose entries are homogeneous functions of order zero. Then ∇Γ(x) =
O(|x|−1 ln |x|), and therefore, ∇R(x) = O(|x|−1 ln |x|). Assume that there exists k and l such that
akl + alk 6= 0. Then

|εkl(u)| = |akl + alk + O(|x|−1 ln |x|)| ≥ 1
2
|akl + alk| for |x| >> 1.

Hence,

∞ > E(u, Ω) =
∫

Ω

n

∑
i,j=1
|εij(u)|2 dx ≥

∫
Ω
|εkl(u)|2 dx ≥ 1

4

∫
|x|>H

|akl + alk|2 dx = ∞.
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This contradiction demonstrates that akl = −alk for all k and l, which completes the proof.

Definition 2. A solution of the mixed Dirichlet–Robin problem (1), (2) is a vector-valued function

u ∈
◦
H

1

loc(Ω, Γ1), such that for each vector-valued function ϕ ∈
◦
H

1

loc(Ω, Γ1) ∩ C∞
0 (Rn), the following integral

identity holds ∫
Ω

aij
kh

∂uj

∂xh

∂ϕi
∂xk

dx +
∫

Γ2

τ u ϕ ds = 0. (4)

Let Ker0(L) be the space of generalized solutions of the mixed Dirichlet–Robin problem (1), (2),
that have a finite energy integral, that is,

Ker0(L) = {u : Lu = 0, u|Γ1 = 0, (σ(u) + τu)|Γ2
= 0, E(u, Ω) < ∞}.

We set by definition

Kera(L) = {u : Lu = 0, u|Γ1 = 0, (σ(u) + τu)|Γ2
= 0, Ea(u, Ω) < ∞}.

Let dim Ker0(L) and dim Kera(L) be dimensions of Ker0(L) and Kera(L), respectively. We shall
calculate the values of dim Kera(L) in their dependence on the parameter a.

3. Main Results

Theorem 1. The mixed Dirichlet–Robin problem (1), (2) with the condition E(u, Ω) < ∞ has n(n + 1)/2
linearly independent solutions if n ≥ 3, and at least one linearly independent solution if n = 2.

Proof. Step 1. Let n ≥ 3. For any constant skew-symmetric matrix A, we construct a generalized
solution uA of the Dirichlet–Robin problem for the system (1) in Ω with the boundary conditions

uA|Γ1 = Ax, (σ(uA) + τuA)|Γ2
= 0, (5)

satisfying the conditions E(uA, Ω) < ∞, D(uA, Ω) < ∞, and∫
Ω
|uA|2|x|−2 dx < ∞. (6)

Such a solution may be constructed by the variational method, minimizing the functional

Φ(v) ≡
∫

Ω
aij

kh
∂vj

∂xh

∂vi
∂xk

dx

in the class of admissible functions {v : v ∈ H1(Ω), v|Γ1 = Ax, v has compact support in Ω}.
The boundedness of the Dirichlet follows from Korn’s inequality ([7]; §3, inequality (43)). Condition (6)
is a consequence of Hardy’s inequality [7].

Let A1, . . . , Ap, p = (n2−n)/2, be linearly independent constant skew-symmetric n×n –matrices.
We consider the solutions uA1 , . . . , uAp .

Step 2. Now in the same way, for any constant vector~e = ~ek 6= 0,

ek = (e1
k , . . . , en

k ), ej
k =

{
1, k = j,

0, k 6= j,
k, j = 1, . . . , n,

we construct a generalized solution uek of the Dirichlet–Robin problem for the system (1) with the
boundary conditions

uek |Γ1 = ~ek,
(
σ(uek ) + τuek

)∣∣
Γ2

= 0
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and with conditions E(uek , Ω) < ∞, D(uek , Ω) < ∞,∫
Ω
|uek |

2|x|−2 dx < ∞. (7)

Such a solution may be constructed by a variational method, minimizing the corresponding
functional in the class of functions {v ∈ C∞(Ω), ve|Γ1 = ~e, v has compact support in Ω}.
The boundedness of the Dirichlet follows from Korn’s inequality ([7]; §3, inequality (43)). Condition (7)
follows from Hardy’s inequality ([7]; §3, inequality (27)).

Step 3. The solutions uA1 − A1x, . . . , uAp − Apx, ue1 − e1, . . . , uen − en are linearly independent.
Indeed, if

p

∑
i=1

Ci(uAi − Aix) +
n

∑
i=1

ci(uei − ei) = 0,

where Ci and ci are constants, then v ≡
p
∑

i=1
Ci Aix ≡ 0, since

v =
p

∑
i=1

CiuAi +
n

∑
i=1

ci(uei − ei)

has a finite Dirichlet integral D(v, Ω) < ∞. Therefore Ci = 0, i = 1, . . . , p. Hence

n

∑
i=1

ciuei =
n

∑
i=1

ciei = B

where B is a constant vector. Since the uei satisfy (7), we have B = 0. The vectors ei, i = 1, . . . , n are
linearly independent, and therefore ci = 0, i = 1, . . . , n.

Thus, we have proved that the homogenous Dirichlet–Robin problem has at least n(n + 2)/2
linearly independent generalized solutions.

Step 4. Let us now prove that any generalized solution u of the homogenous Dirichlet–Robin
problem with the condition E(u, Ω) < ∞ is a linear combination of the constructed solutions.
According to Korn’s inequality ([7]; §3, inequality (43)), there is skew-symmetric matrix A such that

D(u− Ax, Ω) ≤ CE(u, Ω), C = const .

Let A =
p
∑

i=1
mi Ai, mi = const, i = 1, . . . , p. For the function v = u + (uA − Ax) we have

D(v, Ω) < ∞, since D(uAi , Ω) < ∞. Hardy’s inequality implies that∫
Ω

|v− B|2|x|−2 dx ≤ CD(v, Ω) < ∞, C = const,

where B is a constant vector.
Let B =

n
∑

i=1
Miei. We set w = u + (uA − Ax) + (uB − B), where uB =

n
∑

i=1
Miuei . It is easy to

see that
w|Γ1 = 0, (σ(w) + τw)|Γ2

= 0,

D(w, Ω) < ∞,
∫
Ω

|w|2|x|−2 dx < ∞.
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Let us show that w ≡ 0. We substitute in the integral identity (4) for w the vector-valued function
ϕ = wθN(x), where θN(x) = θ (|x|/N), θ(s) = 1 for s ≤ 1, θ(s) = 0 for s ≥ 2, θ ∈ C∞(R), 0 ≤ θ ≤ 1,
we get ∫

Ω
E(w) θN(x) dx +

∫
Γ2

τ|w|2θN(x) ds = −
∫

Ω
aij

kh
∂wj

∂xh

∂θN(x)
∂xk

w dx, (8)

where E(w) ≡ aij
kh

∂wj
∂xh

∂wi
∂xk

.
We claim that the right-hand side of (8) approaches zero as N → ∞. Indeed, the Cauchy–Schwartz

inequality yields that ∣∣∣∣− ∫Ω
aij

kh
∂wj

∂xh

∂θN(x)
∂xk

w dx
∣∣∣∣ ≤ 2CJ1(w)J2(w),

where

J1(w) ≡
(∫
{x:|x|>N}

|∇w|2 dx
)1/2

, J2(w) ≡
(∫
{x:N<|x|<2N}

|w|2|x|−2 dx
)1/2

.

Since ∫
Ω
|w|2|x|−2 dx < ∞, D(w, Ω) < ∞,

it follows that J2(w)→ 0 and J1(w)→ 0 as N → ∞. Hence,∫
Ω
E(w) θN(x) dx +

∫
Γ2

τ|w|2θN(x) ds→ 0 as N → ∞.

Using the integral identity ∫
Ω
E(w)dx +

∫
Γ2

τ|w|2ds = 0,

we find that if w is a solution of the homogeneous problem (1), (2), then w = A1x + B1. The set of
points where A1x + B1 = 0 is a linear manifold of dimension less than n− 1, since the rank of the
matrix A1 is ≥ 2 if A1 6≡ 0. Consequently, w = 0. This conclusion follows from the fact that∫

Γ2

τ|w|2ds = 0,

and hence w ≡ 0 on a subset of ∂Ω of positive measure. This means that u = −(uA − Ax)− (uB − B).
The theorem is proved for n ≥ 3.

Let now n = 2. For a nontrivial constant skew-symmetric matrix A, we construct
a generalized solution uA of the Dirichlet–Robin problem for the system (1) in Ω with the
boundary conditions (5), minimizing the corresponding functional Φ(v) in the class of functions
{v : v ∈ C∞(Ω), vA|Γ1 = Ax, v has a compact support in Ω}. This solution satisfies E(uA, Ω) < ∞ and
D(uA, Ω) < ∞. By Hardy’s inequality [6] we get∫

|x|>N
|uA|2|x|−2| ln |x||−2 dx < ∞, (9)

where N >> 1 is such that G ⊂ {x : |x| < N}.
We prove further that any generalized solution u of the homogeneous Dirichlet–Robin problem

(1), (2) has the form u = c0(uA − Ax), where c0 = const, A is a skew-symmetric matrix, and A 6= 0.
We observe that uA − Ax 6= 0, since D(uA − Ax) = ∞. By Korn’s inequality ([7]; §3, inequality

(43)), there is a skew-symmetric matrix A0 such that

D(u− A0x, Ω) ≤ CE(u, Ω), C = const . (10)
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We set w = u + (uA0 − A0x), where uA0 = c0uA, if A0 = c0 A. It is easy to see that D(w,Rn) < ∞,
since (10) and D(uA, Ω) < ∞ by construction. Therefore, for w, by Hardy’s inequality, the inequality
of the form (9) holds.

Let us prove that w = 0. Substituting in the integral identity (4) for w the function ϕ = wθN(x),
where θN(x) = θ (ln |x|/ ln N), θ(s) = 1 for s ≤ 1, θ(s) = 0 for s ≥ 2, θ ∈ C∞(Rn), 0 ≤ θ ≤ 1. Further,
as above, we obtain that w ≡ 0. This concludes the proof.

Theorem 2. If −n ≤ a < n− 2, n ≥ 2, then dim Kera(L) = n(n + 1)/2.

Proof. We first consider the case 0 ≤ a < n− 2, n ≥ 3. Obviously, Kera(L) ⊂ Ker0(L) for a ≥ 0.
We claim that Ker0(L) ⊂ Kera(L) if a < n− 2. Indeed, let u ∈ Ker0(L). By Lemma 2 we have

equality (3):
u(x) = P(x) + R(x),

where P(x) = Ax + B, A is a constant skew-symmetric matrix, B is a constant vector,
R(x) = ∑

β0<|α|≤β

∂αΓ(x)Cα + uβ(x).

It is easy to verify that Ea(R(x), Ω) < ∞ and Ea(P(x), Ω) = 0 for 0 ≤ a < n − 2.
Hence Ea(u, Ω) < ∞, that is, u ∈ Kera(L). Therefore Ker0(L) ⊂ Kera(L).

Thus, Kera(L) = Ker0(L) and dim Kera(L) = dim Ker0(L). Using Theorem 1 we have
dim Kera(L) = n(n + 1)/2.

Consider now the case when −n ≤ a < 0 and n > 2.
Let u ∈ Kera(L), where −n ≤ a < 0. By Korn’s inequality ([7]; §3, inequality (43)), there is a

constant skew-symmetric matrix A such that

Da(u− Ax, Ω) ≤ CEa(u, Ω),

where the constant C is independent of u.
For the function v = u− Ax we have Da(v, Ω) < ∞ and Ea(v, Ω) < ∞. Moreover, v is a solution

of (1) in Ω. Hence, by Lemma 1, it has the form (3):

v = P(x) + R(x),

where P(x) is a polynomial, and R(x) = ∑
β0<|α|≤β

∂αΓ(x)Cα + uβ(x).

Let us prove that ord P(x) = 0. First, establish the inequality Da(P(x), Ω) < ∞. We have
Da(v, Ω) < ∞, and it is easy to verify that Da(R(x), Ω) < ∞ for −n ≤ a < 0. Hence Da(P(x), Ω) < ∞
by the triangle inequality..

Let ord P(x) = k, where k 6= 0. Then we have |∇P(x)| ≥ C|x|k−1 in the interior of some cone K.
Hence,

∞ > Da(P(x), Ω) =
∫

Ω
|x|a|∇P(x)|2 dx ≥ C

∫
K∩{x:|x|>H}

|x|a+2k−2+n|x|−1 d|x|.

The last integral converges if and only if a + 2k − 2 + n < 0. Hence k < 1 and, therefore,
ord P(x) = 0 and P(x) = B, where B is a constant vector. Thus, v(x) = B + R(x).

On the other hand, v(x) = u(x) − Ax. Hence we have u = Ax + B + R(x), where A is a
constant skew-symmetric matrix and B is a constant vector. It is easy to verify that E(R(x), Ω) < ∞
and E(Ax + B, Ω) = 0. Hence E(u, Ω) < ∞, that is, u ∈ Ker0(L). We obtain the embedding
Kera(L) ⊂ Ker0(L). In addition, it is obvious that Ker0(L) ⊂ Kera(L) for a < 0.

Thus, Kera(L) = Ker0(L) and dim Kera(L) = dim Ker0(L). By Theorem 1 we obtain
dim Ker0(L) = n(n + 1)/2. Hence dim Kera(L) = n(n + 1)/2.
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Step 1. Now let n = 2. For a non-trivial constant skew-symmetric matrix A, we construct
a generalized solution uA(x) of the mixed Dirichlet–Robin problem for the system (1) in Ω with
boundary conditions

uA|Γ1 = Ax, (σ(uA) + τuA)|Γ2
= 0,

by minimizing the functional Φ(v) in the class of admissible functions
{v : v ∈ C∞(Ω), v|Γ1 = Ax, v has compact support in Ω}. The resulting solution satisfies
E(uA, Ω) < ∞ and D(uA, Ω) < ∞. By Hardy’s inequality [6] we obtain∫

|x|>N
|uA|2|x|−2| ln |x||−2 dx < ∞,

where N >> 1 and G ⊂ {x : |x| < N}.
Step 2. In this same way we obtain generalized solutions of the mixed Dirichlet–Robin for the

system (1) in Ω with the boundary conditions

ui|Γ1 = Γ(x)C̃i, (σ(ui) + τui)|Γ2
= 0, i = 1, 2, C̃1 =

(
1
0

)
, C̃2 =

(
0
1

)
and with the properties E(ui, Ω) < ∞, D(ui, Ω) < ∞, and∫

|x|>N
|ui|2|x|−2| ln |x||−2 dx < ∞, i = 1, 2.

The solutions uA − Ax and ui − Γ(x)C̃i, i = 1, 2, are linearly independent. Indeed, if

(uA − Ax)d0 +
2

∑
i=1

(ui − Γ(x)C̃i)di = 0,

for some constants d0 and di, i = 1, 2, then

v ≡ d0 Ax + Γ(x)(d1C̃1 + d2C̃2) ≡ 0,

because v = d0uA +
2
∑

i=1
diui has a finite Dirichlet integral D(v, Ω) < ∞ and

∫
Ω
|v|2|x|−2| ln |x||−2 dx < ∞.

Thus, Axd0 + Γ(x)~d = 0, where ~d = d1C̃1 + d2C̃2.
Since |Ax| ≥ |x| and |Γ(x)~d| ≤ C ln |x|, it follows that d0 = 0. Hence Γ(x)~d = 0, and applying the

elasticity operator to this equation, we obtain

0 = L(Γ(x)~d) = L(Γ(x))~d = Iδ(x)~d =

(
δ(x) 0

0 δ(x)

)(
d1

d2

)
,

where I is the 2× 2 unit matrix, δ(x) is the Dirac function. Hence it follows that d1 = d2 = 0. It is easy
to verify that Ea(uA − Ax, Ω) < ∞ and Ea(ui − Γ(x)C̃i, Ω) < ∞, i = 1, 2, for −2 ≤ a < 0.

Hence the Dirichlet–Robin problem (1), (2) has at least three linearly independent solutions
satisfying Ea(u, Ω) < ∞.

Step 3. We claim that each generalized solution u of the Dirichlet–Robin problemn (1), (2) with
condition Ea(u, Ω) < ∞ is a linear combination of the solutions constructed above. By Korn’s inequality
([7]; §3, inequality (43)), there is a constant skew-symmetric matrix A1 such that

Da(u− A1x, Ω) ≤ CEa(u, Ω),
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where the constant C is independent of u. For the functionv1 = u− A1x we have Da(v1, Ω) < ∞ and
Ea(v1, Ω) < ∞. Since v1 is a solution of the system (1) in Ω, it follows by Lemma 1 that

v1(x) = P(x) + R(x),

where P(x) is a polynomial and R(x) = ∑
β0<|α|≤β

∂αΓ(x)Cα + uβ(x).

In a similar way to the above we can show that ord P(x) = 0 and P(x) = B1, B1 is a constant
vector. Thus, u = A1x + B1 + Γ(x)C0 + R1(x), where

R1(x) = ∑
0<|α|≤β

∂αΓ(x)Cα + uβ(x), R1(x) = O(|x|−1 ln |x|).

Let A1 = −CA and C0 = −(d1C̃1 + d2C̃2). We set

w = u− [C(uA − Ax) +
2

∑
i=1

di(ui − Γ(x)C̃i)].

Obviously, w is a solution of the system (1) in Ω, w|Γ1 = 0, (σ(w) + τw)|Γ2
= 0 and

w = B1 + R1(x)− CuA −
2

∑
i=1

diui.

It is easy to see that D(w, Ω) < ∞ and
∫

Ω |w|
2|x|−2| ln |x||−2 dx < ∞. Thus, w(x) is a solution of

the following problem (w):
Lw = 0 in Ω,

w|Γ1 = 0, (σ(w) + τw)|Γ2
= 0,

D(w, Ω) < ∞,
∫

Ω
|w|2|x|−2| ln |x||−2 dx < ∞.

Let us prove that the solution w(x) of problem (w) is unique, that is, w(x) ≡ 0, x ∈ Ω. To this
end, we write the integral identity (4) for the vector-valued function ϕ = wθN(x), where θN(x) =

θ (ln |x|/ ln N), θ(s) = 1 for s ≤ 1, θ(s) = 0 for s ≥ 2, θ ∈ C∞(Rn), 0 ≤ θ ≤ 1, we get

∫
Ω
E(w)θN(x) dx +

∫
Γ2

τ|w|2θN(x) ds = −
∫

Ω
aij

kh
∂wj

∂xh

∂θN(x)
∂xk

w dx, (11)

where E(w) ≡ aij
kh

∂wj
∂xh

∂wi
∂xk

.
We claim that the right-hand side of (11) approaches zero as N → ∞. Indeed,

the Cauchy–Schwartz inequality yields that∣∣∣∣− ∫Ω
aij

kh
∂wj

∂xh

∂θN(x)
∂xk

w dx
∣∣∣∣ ≤ C

∫
Ω∩{x:N<|x|<N2}

|∇w| |w||x| ln N
dx ≤

≤ 2CJ1(w)J2(w),

where

J1(w) ≡
(∫
{x:|x|>N}

|∇w|2 dx
)1/2

, J2(w) ≡
(∫
{x:N<|x|<N2}

|w|2
|x|2| ln N|2 dx

)1/2

.
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Since ∫
Ω
|w|2|x|−2| ln |x||−2 dx < ∞, D(w, Ω) < ∞,

it follows that J2(w)→ 0 and J1(w)→ 0 as N → ∞. Hence∫
Ω
E(w) θN(x) dx +

∫
Γ2

τ|w|2θN(x) ds→ 0 as N → ∞.

Using the integral identity ∫
Ω
E(w)dx +

∫
Γ2

τ|w|2 ds = 0,

we find that if w is a solution to the homogeneous problem (1), (2), then w = A2x + B2. The set of all x
such that A2x + B2 = 0 is a linear manifold whose dimension is less than n− 1, since the rank of the
matrix A2 is ≥ 2 if A2 6≡ 0. Therefore, w = 0. The relation∫

Γ2

τ|w|2 ds = 0,

implies that w ≡ 0 on a set of positive measure on ∂Ω, and therefore, w(x) ≡ 0, x ∈ Ω. The theorem is
proved.

Theorem 3. If n− 2 ≤ a < n, n ≥ 2, then dim Kera(L) = n(n− 1)/2.

Proof. Step 1. Assume that n ≥ 3. For each constant vector~e = ~ek 6= 0:

ek = (e1
k , . . . , en

k ), ej
k =

{
1, k = j,

0, k 6= j,
k, j = 1, . . . , n,

we construct a generalized solution ue of the Dirichlet–Robin problem for the system (1) with the
boundary conditions

ue|Γ1 = ~e, (σ(ue) + τue)|Γ2
= 0 (12)

and with the additional conditions E(ue, Ω) < ∞, D(ue, Ω) < ∞, and∫
Ω
|ue|2|x|−2 dx < ∞. (13)

Such a solution is constructed by the variational method. We minimize the corresponding
functional over the class of admissible functions {v ∈ C∞(Ω), ve |Γ1= ~e, v has compact support in
Ω}. The boundedness of the Dirichlet integral follows from Korn’s inequality ([7]; §3, inequality (43)).
Condition (13) follows from Hardy’s inequality ([7]; §3, inequality (27)). By Lemma 2 the solution
ue(x) takes the form

ue(x) = Pe(x) + Re(x), (14)

where Pe(x) is a polynomial, Pe(x) = Ax + B, with A being a constant skew-symmetric matrix and B
being a constant vector, and

Re(x) = ∑
β0<|α|≤β

∂αΓ(x)C′α + uβ
e (x), Re(x)→ 0, |x| → ∞.

We claim that Pe(x) ≡ 0. Assume that Pe(x) 6≡ 0. Then in the interior of a certain cone K we have
|Pe(x)| > C and

∞ >
∫

Ω∩K
|ue|2|x|−2 dx >

C2

2

∫
K∩{x:|x|>H}

|x|−2 dx = ∞.
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This contradiction shows that Pe(x) ≡ 0. Thus,

ue(x) = ∑
β0<|α|≤β

∂αΓ(x)C′α + uβ
e (x). (15)

Let us prove that ∫
Ω

aij
kh

∂uej

∂xh

∂uei
∂xk

dx =
∫

∂Ω
ue aij

kh
∂uej

∂xh
νk ds. (16)

For a proof we consider a ball QR = {x : |x| < R} with centre at the origin suck that G ⊂⊂ QR.
Let ΩR = Ω ∩QR, ∂ΩR = ∂Ω ∪ {x : |x| = R}. Then

∫
ΩR

aij
kh

∂uej

∂xh

∂uei
∂xk

dx =

(∫
∂Ω

+
∫
|x|=R

)
ue aij

kh
∂uej

∂xh
νk ds. (17)

There exists a sequence of domains ΩRk such that ΩRk ⊂ ΩRk+1 ⊂ · · · ⊂ ΩRn ⊂ Rn and
∪kΩRk = Ω.

We claim that the integrals in the right- and left-hand sides of (17) converge. Indeed,
the Cauchy–Schwartz inequality yields that

∣∣∣∣∫ΩR

aij
kh

∂uej

∂xh

∂uei
∂xk

dx
∣∣∣∣ ≤ C

[∫
ΩR

∣∣∣∣∂uej

∂xh

∣∣∣∣2 dx

]1/2 [∫
ΩR

∣∣∣∣∂uei
∂xk

∣∣∣∣2 dx

]1/2

< ∞,

because ΩR ⊂ Ω and
∫

Ω |∇ue|2 dx < ∞.
We now claim that ∫

|x|=R
ue aij

kh
∂uej

∂xh
νk ds→ 0 as |x| → ∞.

In fact, by the Cauchy–Schwartz inequality and the estimates

|ue| ≤ C|x|2−n, |∇ue| ≤ C|x|1−n

we obtain ∣∣∣∣∫|x|=R
ue aij

kh
∂uej

∂xh
νk ds

∣∣∣∣ ≤ const
∫
|x|=R

|ue||∇ue| ds

≤ c
[

C
∫
|x|=R

|x|4−2n ds
]1/2 [

C
∫
|x|=R

|x|2−2n ds
]1/2

= const R2−n → 0

as R→ ∞ for n > 2. The constants c and C are independent of R.
Letting R in (17) tend to infinity, we obtain the required Equation (16):

∫
Ω
E(ue) dx =

(∫
Γ1

+
∫

Γ2

)
ue σ(ue) ds

and bearing in mind that ue |Γ1= ~e, (σ(ue) + τue)|Γ2
= 0, we get

∫
Ω
E(ue) dx +

∫
Γ2

τ|ue|2 ds = ~e
∫

Γ1

σ(ue) ds, (18)

where σ(ue) ≡ aij
kh

∂uej
∂xh

νk.

We claim that the constant C′0 is non-zero in (15). Indeed, if C′0 = 0, then |ue| ≤ C|x|1−n and
σ(ue)| ≤ C|x|−n. Taking the scalar product of the system (1) and 1 and integrating over ΩR, we obtain(∫

∂Ω
+
∫
|x|=R

)
σ(ue) ds = 0.
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Since ∣∣∣∣∫|x|=R
σ(ue) ds

∣∣∣∣ ≤ C
∫
|x|=R

|x|−n ds = const R−1 → 0 as R→ ∞,

it follows that ∫
|x|=R

σ(ue) ds→ 0 as R→ ∞.

Hence, ∫
∂Ω

σ(ue) ds =
(∫

Γ1

+
∫

Γ2

)
σ(ue) ds→ 0 as R→ ∞,

and by (18) we obtain ∫
Ω
E(ue) dx +

∫
Γ2

τ|ue|2 ds = −~e ·
∫

Γ2

σ(ue) ds.

Using the integral identity ∫
Ω
E(ue)dx +

∫
Γ2

τ|ue|2ds = 0,

we get σ(ue) = 0, since~e 6= 0. By [5], it follows that ue = Ax+ B, where A is a constant skew-symmetric
matrix and B is a constant vector.

On the other hand, Formula (15) with α = 0 and β = 0 yields that

ue(x) = C′0Γ(x) + u0
e (x).

Hence,
Ax + B = C′0Γ(x) + u0

e (x)→ 0 as |x| → ∞,

that is, Ax + B→ 0, which is possible only if A = 0 and B = 0, that is, ue ≡ 0.
However, ue |Γ1= ~e 6= 0 and (σ(ue) + τue)|Γ2

= 0. This contradiction shows that if ~e 6= 0,
then C′0 6= 0.

Step 2. Let~e 6= 0 be an arbitrary vector in Rn. We consider the solution ue such that ue |Γ1= ~e,
(σ(ue) + τue)|Γ2

= 0, and ue(x) = C′0Γ(x) + u0
e (x), where ~C′0 6= 0.

We can associate with each vector~e in Rn the corresponding vector ~C′0 in Rn, thus obtaining a
transformation S : Rn → Rn such that S : ~e → ~C′0, where~e 6= 0, ~C′0 6= 0. It is easy to verify that the
transformation S is linear and non-degenerate.

Let e = {e1, . . . , en} be a basis in Rn. For arbitrary linearly independent vectors
C′0 = {C′01, . . . , C′0n} there exists a unique linear transformation (matrix) S such that ~C′0 = S~e. Then

~e = S−1~C′0. (19)

Step 3. Consider now the elasticity system (1) in Ω with boundary conditions

uA(x) |Γ1= Ax, (σ(uA) + τuA)|Γ2
= 0, (20)

where A is a constant skew-symmetric matrix. For every such matrix A we construct a
generalized solution of the system (1) with the boundary conditions (20) and the properties
E(uA, Ω) < ∞, D(uA, Ω) < ∞, ∫

Ω
|uA|2|x|−2 dx < ∞. (21)

Such a solution can be constructed using the variational method and minimizing the
corresponding functional over the set of admissible functions {u : u ∈ H1(Ω), u |Γ1= Ax, u has
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compact support in Ω}. The Dirichlet integral is bounded by Korn’s inequality ([7]; §3, inequality (43)).
Condition (21) follows from Hardy’s inequality [7]. By Lemma 2 we have

uA(x) = PA(x) + ∑
β0<|α|≤β

∂αΓ(x)Cα + uβ
A(x). (22)

As before, we can show that PA(x) ≡ 0. Hence,

uA(x) = ∑
β0<|α|≤β

∂αΓ(x)Cα + uβ
A(x). (23)

Step 4. Consider now the difference

v = (uA − Ax)− (ue −~e), (24)

where~e = S−1~C0, and ue and uA are defined by (15) and (23) respectively. Obviously, v is a solution of
(1) in Ω and v |Γ1= 0, (σ(v) + τv)|Γ2

= 0.
We claim that Ea(v, Ω) < ∞ for n − 2 ≤ a < n. Since ~C′0 = S~e = S(S−1~C0) = SS−1~C0 = ~C0,

it follows by (15) and (23) that

uA − ue = ∑
0<|α|≤β

∂αΓ(x)C
′′
α + uβ

0 (x),

where C′′α = Cα − C′α, uβ
0 = uβ

A − uβ
e .

It is easy to verify that Ea(∂αΓ(x)C
′′
α , Ω) < ∞ and Ea(u

β
0 , Ω) < ∞. Hence Ea(uA − ue, Ω) < ∞.

Note also that Ea(Ax, Ω) = 0, Ea(S−1~C0, Ω) = 0. Therefore Ea(v, Ω) < ∞.
We now claim that v 6≡ 0. For let v ≡ 0, that is, uA − Ax− uS−1~C0

+ S−1~C0 ≡ 0, where uA(x)→ 0
and uS−1~C0

(x)→ 0 as |x| → ∞. Then we obtain

|Ax| = |uA − uS−1~C0
+ S−1~C0| < const .

On the other hand, |Ax| → ∞ as |x| → ∞, Ax 6= 0. This contradiction shows that v 6≡ 0.
Let us prove that if A1, . . . , Ap is a basis in the space of skew-symmetric matrices, then vA1 , . . . , vAp

are linearly independent solutions, i.e., from the equality

p

∑
i=1

civAi = 0, ci = const,

follows that ci = 0, i = 1, . . . , p. Indeed, assume that

p

∑
i=1

ci[uAi − uei − Aix + ei] = 0,

where ci = const, i = 1, . . . , p, that is, let

p

∑
i=1

ci Aix =
p

∑
i=1

ciuAi −
p

∑
i=1

ci(uei − ei).

Then we set W1 ≡
p
∑

i=1
ci Aix, so that

W1 =
p

∑
i=1

ciuAi −
p

∑
i=1

ci(uei − ei) and Da(W1, Ω) < ∞.
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To prove that W1 ≡
p
∑

i=1
ci Aix ≡ 0, we put T =

p
∑

i=1
ci Ai, Tx =

p
∑

i=1
ci Aix,

where T = ||tij||n×n. Then ∫
Ω
|x|a|∇Tx|2 dx < ∞,

because Tx = W1 and
∫

Ω |x|
a|∇W1|2 dx < ∞. On the other hand,

∞ >
∫

Ω
|x|a|∇Tx|2 dx =

∫
Ω
|x|a|tij|2 dx,

and the integral on the right-hand side is finite if and only if tij = 0, that is, T = 0 and
p
∑

i=1
ci Ai = 0,

so that, ci = 0, i = 1, . . . , p.
Thus, the mixed Dirichlet–Robin problem (1), (2) has at least p = (n2− n)/2 linearly independent

generalized solutions.
Step 5. Let us show that each generalized solution u(x) of the homogeneous problem (1), (2) such

that Ea(u, Ω) < ∞ is a linear combination of the solutions vA1 , . . . , vAp , that is,

u =
p

∑
i=1

c′ivAi , c′i = const, i = 1, . . . , p.

By Lemma 2, the solution of the system (1) in Ω has a representation (3). Let us prove that there
are c′i = const, i = 1, . . . , p, such that the following equation holds for all x ∈ Ω:

P(x) + ∑
β0<|α|≤β

∂αΓ(x)Cα + uβ(x) =
p

∑
i=1

c′i(uAi − uei − Aix + ei).

Since A1, . . . , Ap, p = (n2 − n)/2, is a basis in the space of skew-symmetric matrices, there are

c1, . . . , cp, such that A =
p
∑

i=1
ci Ai. We put

u0 ≡
p

∑
i=1

c′i(uAi − uei − Aix + ei),

where c′i = −ci. Obviously, u0 is a solution of (1) in Ω, u0 |Γ1= 0, (σ(u0) + τu0)|Γ2
= 0,

and Ea(u0, Ω) < ∞ for n− 2 ≤ a < n.
Step 6. Consider now the difference W = u − u0. By construction, W |Γ1= 0 and

(σ(W) + τW)|Γ2
= 0. It follows by the triangle inequality that Ea(W, Ω) < ∞ for n− 2 ≤ a < n.

We claim that W ≡ 0 in Ω. Indeed, let A =
p
∑

i=1
ci Ai. Then

W(x) = b + Z(x),

where

b = B−
p

∑
i=1

c′iei, Z(x) = ∑
β0<|α|≤β

∂αΓ(x)Cα + uβ(x)−
p

∑
i=1

c′i[uAi − uei ],

that is, Z = W −~b and Z |Γ1= −~b, (σ(Z) + τZ)|Γ2
= 0.
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It is easy to see that D(Z, Ω) < ∞ and
∫

Ω |Z|
2|x|−2 dx < ∞. Thus, we obtain problem (Zb):

LZ = 0 in Ω,

Z |Γ1= −~b, (σ(Z) + τZ)|Γ2
= 0,

D(Z, Ω) < ∞,
∫

Ω
|Z|2|x|−2 dx < ∞.

By construction, we have problem (e):
Lue = 0 in Ω,

ue |Γ1= ~e, (σ(ue) + τue)|Γ2
= 0,

D(ue, Ω) < ∞,
∫

Ω
|ue|2|x|−2 dx < ∞.

We shall now prove the uniqueness of a solution of problem (e). Let u′e and u
′′
e be solutions

such that
u′e |Γ1= ~e,

(
σ(u′e) + τu′e

)∣∣
Γ2

= 0, u
′′
e |Γ1= ~e,

(
σ(u

′′
e ) + τu

′′
e

)∣∣∣
Γ2

= 0.

Then the function u′0 = u′e − u′′e satisfies

u′0 |Γ1= 0,
(
σ(u′0) + τu′0

)∣∣
Γ2

= 0, E(u′0, Ω) < ∞, D(u′0, Ω) < ∞,

∫
Ω
|u′0|2|x|−2 dx < ∞.

We claim that u′0 ≡ 0 in Ω. Indeed, consider the integral identity (4) for u′0 and put ϕ = u′0θN(x),
where θN(x) = θ(|x|/N), θ(s) = 1 for s ≤ 1, θ(s) = 0 for s ≥ 2, θ ∈ C∞(Rn), 0 ≤ θ ≤ 1. We get

∫
Ω
E(u′0)θN(x) dx +

∫
Γ2

τ|u′0|2θN(x) ds = −
∫

Ω
aij

kh

∂u′0j

∂xh

∂θN(x)
∂xk

u′0 dx, (25)

where E(u′0) ≡ aij
kh

∂u′0j
∂xh

∂u′0i
∂xk

.
In the same way as in (11) (Theorem 2, case n = 2), we can show that the right-hand side of (25)

tends to zero as N → ∞. Hence,∫
Ω
E(u′0) θN(x) dx +

∫
Γ2

τ|u′0|2θN(x) ds→ 0 for N → ∞.

Using the integral identity ∫
Ω
E(u′0) dx +

∫
Γ2

τ|u′0|2ds = 0,

we find that if u′0 is a solution to the homogeneous problem (1), (2), then u′0 = A0x + B0. The set of all
x such that A0x + B0 = 0 is a linear manifold whose dimension is less than n− 1, since the rank of the
matrix A0 is ≥ 2 if A0 6≡ 0. Therefore, u′0 = 0. The relation∫

Γ2

τ|u′0|2ds = 0,

implies that u′0 ≡ 0 on a set of positive measure on ∂Ω, and therefore, u′0 ≡ 0, x ∈ Ω. Thus, the solution
to problem (e) is unique.
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We now claim that

Ea(ue, Ω) =
∫

Ω
|x|a|ε(ue)|2 dx = ∞ for ~e 6= 0. (26)

First of all we show that if C′0 6= 0 in (15), then

Ea(C′0Γ(x), Ω) =
∫

Ω
|x|a|ε(C′0Γ(x))|2 dx = ∞.

By the properties of the fundamental solution of the elasticity system [38], if Γ(x) = |x|2−nU(x),
where U(x) is a homogeneous function of order zero, then |x|a|ε(C′0Γ(x))|2 is a homogeneous function
of order a + 2(1− n), that is,

0 6≡ |x|a|ε(C′0Γ(x))|2 de f
= f (x) = C(C′0)|x|a+2−2n f0(x),

where f0(x) is a homogeneous function of order zero. We fix a point x0 such that f0(x0) 6= 0.
By continuity, f0(x) 6= 0 in a neighborhood Qδ(x0) of x0. We consider a cone K with vertex at
the origin such that Qδ(x0) ⊂ K. Then

Ea(C′0Γ(x), Ω) =
∫

Ω
|x|a|ε(C′0Γ(x))|2 dx ≥ C(C′0)

∫
K∩{x:|x|>H}

|x|a+2−2n dx = ∞

for C′0 6= 0.
Applying the triangle inequality to the Formula (15) of the type C′0Γ(x) = ue − R1e(x), where

R1e(x) = ∑
0<|α|≤β

∂αΓ(x)C′α + uβ
e (x),

we obtain
∞ = Ea(C′0Γ(x), Ω) ≤ Ea(ue, Ω) + Ea(R1e(x), Ω).

It is easy to verify that Ea(R1e(x), Ω) < ∞. Hence Ea(ue, Ω) = ∞ for~e 6= 0, and we obtain the
problem (ea): 

Lue = 0 in Ω,

ue |Γ1= ~e, (σ(ue) + τue)|Γ2
= 0,

D(ue, Ω) < ∞,
∫

Ω
|ue|2|x|−2 dx < ∞,

Ea(ue, Ω) = ∞, for ~e 6= 0.

By Formula (26), ∫
Ω
|x|a|ε(Z)|2 dx = ∞ for ~b 6= 0 (~e 6= 0).

For the function Z = W −~b we have

∞ =
∫

Ω
|x|a|ε(Z)|2 dx =

∫
Ω
|x|a|ε(W)|2 dx < ∞.

This contradiction shows that~b = 0, that is,~e = 0. Hence W = Z is a solution of the following
problem (z0): 

LZ = 0 in Ω,

Z |Γ1= 0, (σ(Z) + τZ)|Γ2
= 0,

D(Z, Ω) < ∞,
∫

Ω
|Z|2|x|−2 dx < ∞.
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By the unique solubility of the problem (e), we have Z ≡ 0 in Ω. Hence W = 0, and since
W |Γ1= 0, (σ(W) + τW)|Γ2

= 0, it follows that W ≡ 0 in Ω. This proves the theorem for n ≥ 3.
The proof in the case n = 2 is carried out in a similar way. For a non-trivial constant

skew-symmetric matrix A, we construct a generalized solution uA(x) of the mixed Dirichlet–Robin
problem for the system (1) in Ω with the boundary conditions (20) by minimizing the corresponding
functional over the class of admissible functions {u : u ∈ H1(Ω), u |Γ1= Ax, u has a compact
support in Ω}. This solution satisfies E(uA, Ω) < ∞ and D(uA, Ω) < ∞. By Hardy’s inequality [6] we
obtain ∫

|x|>N
|uA|2|x|−2| ln |x||−2 dx < ∞,

where N >> 1 and G ⊂ {x : |x| < N}.
Let us prove that each generalized solution u of the problem (1), (2) satisfying the condition

Ea(u, Ω) < ∞ has the following form:
u = uA − Ax,

where A is a constant skew-symmetric matrix. By Lemma 2, the solution of the system (1) has the form
(22) with PA(x) = Ax + B, where A is a constant skew-symmetric matrix and B is a constant vector.

We claim that A = 0. For assuming that A 6= 0, we can write (22) in the following form:

uA(x) = Ax + B + Γ(x)C0 + R1(x), R1(x) = ∑
0<|α|≤β

∂αΓ(x)Cα + uβ(x).

By construction, D(uA, Ω) < ∞, that is,∫
ρ<|x|<R

|∇uA|2 dx < C′1

for each R. It is easy to see that ∫
Ω
|∇R1(x)|2 dx < ∞.

Hence, ∫
ρ<|x|<R

|∇R1(x)|2 dx < C′2

for any R. Since Γ(x) is a fundamental solution of (1), Γ(x) = S(x) ln |x| + T(x), where S(x) and
T(x) are (2× 2)–matrices whose entries are homogeneous functions of order zero (see [39]), and so
|∇(Γ(x)C0)| ≤ C(C0)| ln |x|||x|−1. It follows that∫

ρ<|x|<R
|∇(Γ(x)C0)|2 dx ≤ C′(C0)

∫
ρ<|x|<R

|x|−2| ln |x||2 dx ≤ C′(C0)(ln R)3.

By (22) and the triangle inequality, we have∫
|x|<R

|∇PA(x)|2 dx ≤ C′1 + C′2 + C′(C0)(ln R)3.

On the other hand,

∇PA(x) = A,
∫
|x|<R

|∇PA(x)|2 dx =
∫
|x|<R

|A|2|x|d|x| = C′3R2.

Hence C′3R2 ≤ C′1 + C′2 + C′(C0)(ln R)3 for each R >> 1. This contradiction shows that A = 0
and PA(x) = B. Hence, uA = B + Γ(x)C0 + R1(x).
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We now claim that in (22) the constant C0 = 0. Assume that C0 6= 0. Then by the triangle
inequality we obtain ∫

Ω
|∇(Γ(x)C0)|2 dx < ∞.

On the other hand, Γ(x)C0 = (S(x) ln |x| + T(x))C0. Hence in a certain cone K we have the
inequality |∇(Γ(x)C0)|2 ≥ C(C0)|x|−2(ln |x|)2. Consequently,

∞ >
∫

Ω
|∇(Γ(x)C0)|2dx ≥ C(C0)

∫
K∩{x:|x|>H}

| ln |x||2|x|−2 dx = ∞.

his contradiction shows that C0 = 0. Thus uA = B + R1(x).
It is easy to verify that Ea(uA, Ω) < ∞ for 0 ≤ a < 2. Hence Ea(uA − Ax, Ω) < ∞ and

(uA − Ax) ∈ Kera(L), that is, the problem (1), (2), with condition Ea(u, Ω) < ∞, 0 ≤ a < 2 has
at least one non-zero solution, so that dim Kera(L) ≥ 1.

On the other hand, Kera(L) ⊂ Ker0(L) for a ≥ 0, and therefore, dim Kera(L) ≤ dim Ker0(L).
By Theorem 1, dim Ker0(L) = 1. Thus, we have dim Kera(L) = 1 for 0 ≤ a < 2. The theorem is
proved.

Theorem 4. If n ≤ a < ∞, n ≥ 2, then dim Kera(L) = 0.

Proof. Consider the case n ≥ 3. Let a = n. We shall prove the theorem by contradiction. Assume that
dim Kera(L) > 0. Then there is a u such that u ∈ Kera(L) and u 6≡ 0. Since a = n, we have
u ∈ Kern(L) ⊂ Kern−2(L). Hence by Theorem 3 we obtain

u = uA − Ax− ue +~e, (27)

where ~e = S−1~C0 (see (19)) and ~C0 is defined by Formula (23). Substituting (15) and (23) in (27),
we obtain

u = P(x) + (~C0 − ~C′0)Γ(x) + ∑
0<|α|≤β

∂αΓ(x)C̃α + uβ
0 (x),

where P(x) = −Ax +~e, C̃α = Cα − C′α, uβ
0 (x) = uβ

A(x)− uβ
e (x). Since ~C′0 = S~e = S(S−1~C0) =

SS−1~C0 = ~C0, it follows that ~C0 − ~C′0 = 0. Hence,

u = P(x) + (C̃1∇)Γ(x) + R2(x), (28)

where
R2(x) = ∑

1<|α|≤β

∂αΓ(x)C̃α + uβ(x).

We claim that C̃1 6= 0 in (28). Indeed, we assume that C̃1 = 0. Taking the scalar product of (1)
with u and integrating over ΩR, we obtain

∫
ΩR

E(u) dx =

(∫
∂Ω

+
∫
|x|=R

)
u σ(u) ds. (29)

We claim that ∫
|x|=R

u σ(u) ds→ 0 for R→ ∞.

It is easy to verify that |u| ≤ C|x| and |σ(u)| ≤ C|x|−n−1 for C̃1 = 0. Next, using the
Cauchy–Schwartz inequality we obtain∣∣∣∣∫|x|=R

u σ(u) ds
∣∣∣∣ ≤ c

∫
|x|=R

|u||σ(u)| ds
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≤ c
[∫
|x|=R

|x|2 ds
]1/2 [∫

|x|=R
|x|(−n−1)2 ds

]1/2
= cR−1 → 0 as R→ ∞.

There exists a sequence of domains ΩRk such that ΩRk ⊂ ΩRk+1 ⊂ · · · ⊂ Rn, ∪kΩRk = Ω.
In equality (29) we pass to the limit as R = Rk → ∞. By the Cauchy–Schwartz inequality,

∣∣∣∣∫ΩR

E(u) dx
∣∣∣∣ ≤ c

[∫
ΩR

∣∣∣∣ ∂uj

∂xh

∣∣∣∣2 dx

]1/2 [∫
ΩR

∣∣∣∣ ∂ui
∂xk

∣∣∣∣2 dx

]1/2

< ∞,

because ΩR ⊂ Ω and
∫

Ω |∇u|2 dx < ∞. Thus,

∫
Ω
E(u) dx =

(∫
Γ1

+
∫

Γ2

)
u σ(u) ds.

On the other hand, u = uA − Ax− (ue −~e) and u |Γ1= 0, (σ(u) + τu)|Γ2
= 0. Hence,

∫
Γ1

u σ(u) ds = 0 and
∫

Ω
E(u) dx +

∫
Γ2

τ|u|2 ds = 0.

Using the integral identity ∫
Ω
E(u) dx +

∫
Γ2

τ|u|2 ds = 0,

we find that if u is a solution to the homogeneous problem (1), (2), then u = A0x + B0. The set of all x
such that A0x + B0 = 0 is a linear manifold whose dimension is less than n− 1, since the rank of the
matrix A0 is ≥ 2 if A0 6≡ 0. Therefore, u = 0. The relation∫

Γ2

τ|u|2ds = 0,

implies that u ≡ 0 on a set of positive measure on ∂Ω, and therefore, u ≡ 0.
This is a contradiction, since u ∈ Kera(L) and u 6≡ 0. Thus, C̃1 6= 0 in (28).
By assumption, Ea(u, Ω) < ∞. It is easy to verify that Ea(R2(x), Ω) < ∞ and Ea(P(x), Ω) = 0.

Now, by the triangle inequality we obtain

Ea((C̃1∇)Γ(x), Ω) < ∞ for a = n.

By the properties of the fundamental solution of the system (1) (see [38]) we have
Γ(x) = |x|2−nU(x), where U(x) is a homogeneous function of order zero. Hence |x|n|ε((C̃1∇)Γ(x))|2
is a homogeneous function of order (−n), that is,

0 6≡ |x|n|ε((C̃1∇)Γ(x))|2
de f
≡ f (x) = |x|−n f0(x),

where f0(x) is a homogeneous function of order zero. We fix a point x0 such that f0(x0) 6= 0.
By continuity, f0(x) 6= 0 in a neighborhood Qδ(x0) of x0. We consider a cone K with vertex at
the origin such that Qδ(x0) ⊂ K. Then

∞ >
∫

Ω
|x|n|ε((C̃1∇)Γ(x))|2 dx ≥ C(C̃1)

∫
{x:|x|>H}

|x|−n dx = ∞.

This contradiction shows that u ≡ 0. This completes the proof for n ≥ 3.
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Consider now the case n = 2. It sufficient to show that dim Kera(L) = 0 for a = 2. Assume that
dim Kera(L) > 0, that is, there exists u such that u ∈ Kera(L) and u 6≡ 0. Since a = 2, it follows that
u ∈ Kera(L) ⊂ Ker0(L). Hence by Theorem 3 we obtain

u = uA − Ax

and for uA Lemma 2 yields a representation (22), that is,

uA(x) = PA(x) + R(x),

where PA(x) = Ax + B, A is a constant skew-symmetric matrix and B is a constant vector. Substituting
the expansion of uA(x) in the representation of u(x), we obtain

u = B + Γ(x)C0 + R1(x), R1(x) = ∑
0<|α|≤β

∂αΓ(x)Cα + uβ
A(x).

We prove that C0 = 0 by contradiction. Indeed, assume that C0 6= 0. Then we have
Ea(R(x), Ω)=Ea(u, Ω)<∞.

On the other hand, Γ(x) = S(x) ln |x|+ T(x), where S(x) and T(x) are (2× 2)– matrices whose
entries are homogeneous functions of order zero (see [39]). Hence,

|ε(R(x))|2 ≥ C|x|−2(ln |x|)2

in some cone K, and therefore

∞ > Ea(R(x), Ω) =
∫

Ω
|x|a|ε(R(x))|2 dx

≥ C(C0)
∫

K∩{x:|x|>H}
|x|a−2(ln |x|)2 dx = ∞

for a ≥ 2. This contradiction shows that C0 = 0. Thus,

u = B + R1(x), R1(x) = O(|x|−1 ln |x|).

Taking the scalar product of (1) and u and integrating over ΩR, we obtain

∫
ΩR

E(u) dx =

(∫
∂Ω

+
∫
|x|=R

)
u σ(u) ds.

In view of the boundary conditions u |Γ1= 0, (σ(u) + τu)|Γ2
= 0, and

∫
Γ1

u σ(u) ds = 0,
we have ∫

Ω
E(u) dx +

∫
Γ2

τ|u|2 ds =
∫
|x|=R

u σ(u) ds. (30)

Since |u| ≤ C and |σ(u)| ≤ C|x|−2 ln |x|, it follows that∣∣∣∣∫|x|=R
u σ(u) ds

∣∣∣∣ ≤ ∫|x|=R
|u||σ(u)| ds

≤ C
∫
|x|=R

|x|−2 ln |x| ds = CR−1 ln R→ 0 as R→ ∞.

Passing to the limit as R→ ∞ in equality (30), we obtain∫
Ω
E(u) dx +

∫
Γ2

τ|u|2 ds = 0.
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Using the obtained integral identity, we conclude that if u is a solution to the homogeneous
problem (1), (2), then u = A1x + B1, where A1 is a constant skew-symmetric matrix, B1 is a constant
vector. Hence,

A1x + B1 = B + R1(x),

where R1(x) → 0 as |x| → ∞. Thus, we have A1x + (B1 − B) → 0, which is possible only if A1 = 0
and B1 = B. In view of boundary conditions (2), B = 0 and u ≡ 0, so that dim Kera(L) = 0 for n = 2
and 2 ≤ a < ∞. The theorem is proved.

Theorem 5. The mixed Dirichlet–Robin problem (1), (2) with the condition Ea(u, Ω) < ∞ has k(r, n) linearly
independent solutions for −2r− n ≤ a < −2r− n + 2, that is,

dim Kera(L) = k(r, n),

where r > 0 and

k(r, n) =

n
(
(r+n−1

n−1 ) + (r+n−2
n−1 )

)
, if n ≥ 3,

4r + 2, if n = 2.

Here (r
s) is binomial coefficient from r to s, (r

s) = 0 if s > r.

Proof. Assume that n > 2. To prove the theorem, we need to determine the number of linearly
independent polynomial solutions of a system (1), the degree of which does not exceed the
fixed number.

Let P = (P1, . . . , Pn) be a polynomial solution of the system (1) of degree r. Then the degree of the
polynomial Pi does not exceed r, and P can be represented in the following form:

P =
r

∑
s=0

P(s), (P)

where P(s) = (P(s)
1 , . . . , P(s)

n ) is a homogeneous polynomial of degree s, satisfying the system (1)
(see [38]).

The space of polynomials in Rn of degree at most r has dimension (r + n)!/r!n! (see [41]).
Hence the dimension of the space of vector-valued polynomials in Rn of degree at most r is equal to

n(r + n)!
r!n!

=
(r + n)!

r!(n− 1)!
.

Polynomials of this kind solving the elasticity system form a space of dimension

(r + n)!
r!(n− 1)!

− (r + n− 2)!
(r− 2)!(n− 1)!

= n
(
(r + n)!

r!n!
− (r + n− 2)!

(r− 2)!n!

)
,

because each equation of the elasticity system is equivalent to the vanishing of some polynomial of
degree (r− 2).

We denote by k(r, n) the number of linearly independent polynomial solutions of (1) whose
degree is at most r, and let l(r, n) be the number of linearly independent homogeneous polynomials of
degree r that are solutions of (1). Using representation (P) we obtain

k(r, n) =
r

∑
s=0

l(s, n),

where

l(s, n) = n
((

s + n− 2
n− 2

)
+

(
s + n− 3

n− 2

))
for s ≥ 1, l(0, n) = n.
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We now prove the following statements are true:
(i) The Dirichlet–Robin problem (1), (2) with the condition Ea(u, Ω) < ∞ has k(r, n) linearly

independent solutions for −2r− n ≤ a < −2r− n + 2;
(ii) Each system of k(r, n) + 1 solutions is linearly dependent.
(i) Let w1, . . . , wk be a basis in the space of polynomial solutions of (1) whose degrees do not exceed r.

Since ord wi ≤ r, it follows that Ea(wi, Ω) < ∞ for −2r− n ≤ a < −2r− n + 2. For each wi, i = 1, . . . , k
we consider the solution vi of the system (1) such that vi |Γ1= wi, (σ(vi) + τvi)|Γ2

= 0 and

D(vi, Ω) < ∞,
∫

Ω
|vi|2|x|−2 dx < ∞.

Such a solution we can construct by the variational method, minimizing the corresponding functional
over the class of admissible functions {v : v ∈ H1(Ω), v |Γ1= w, v has compact support in Ω}.

Consider next the difference: zi = wi − vi. We have Lzi = 0 in Ω, zi |Γ1= 0, (σ(zi) + τzi)|Γ2
= 0

and Ea(zi, Ω) < ∞.
Let us prove that zi, i = 1, . . . , k, are linearly independent. Indeed, if

Z ≡
k

∑
i=1

cizi = 0, ci = const, then
k

∑
i=1

ci(wi − vi) = 0,

that is,

W ≡
k

∑
i=1

ciwi =
k

∑
i=1

civi = V.

Hence, |W|2 = |V|2, |∇W|2 = |∇V|2 and

D(W, Ω) = D(V, Ω) < ∞,∫
Ω
|W|2|x|−2 dx =

∫
Ω
|V|2|x|−2 dx < ∞.

(31)

By Lemma 1, the solution V of the system (1) in Ω has the following form:

V(x) = P(x) + R(x),

where P(x) is a polynomial, and

R(x) = ∑
β0<|α|≤β

∂αΓ(x)Cα + Vβ(x), R(x) = O(|x|2−n).

It is easy to verify that

D(R(x), Ω) < ∞,
∫

Ω
|R(x)|2|x|−2 dx < ∞ for n > 2.

By the triangle inequality,

D(P(x), Ω) < ∞,
∫

Ω
|P(x)|2|x|−2 dx < ∞.

We claim that P(x) ≡ 0. Indeed, assume that ord P(x) = r. Then in the interior of a certain cone
K we have |∇P(x)| ≥ C|x|r−1. Hence,

∞ > D(P(x), Ω) ≥ C
∫

K∩{x:|x|>H}
|x|(r−1)2 dx = C

∫
|x|>H

|x|2r−2+n|x|−1 d|x|.

This integral converges only when r < 0. Therefore, P(x) ≡ 0.
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Thus, V(x) = R(x), where R(x)→ 0 as |x| → ∞, that is, V(x)→ 0 as |x| → ∞. Hence,

k

∑
i=1

ciwi ≡W = V → 0 as |x| → ∞,

and by the estimates (31) we obtain
k
∑

i=1
ciwi ≡ 0.

Since wi is a basis in the space of polynomial solutions of (1) whose degrees do not exceed r,
it follows that ci = 0, i = 1, . . . , k. Hence the problem has at least k(r, n) linearly independent
solutions.

(ii) Let us prove that each solution u of the system (1) with boundary conditions u |Γ1= 0,
(σ(u) + τu)|Γ2

= 0 and Ea(u, Ω) < ∞ can be represented as a linear combination of the solutions
zi, i = 1, . . . , k, zi = wi − vi. By Lemma 1, every solution of the system (1) in Ω may be written as

u(x) = P(x) + R(x),

where P(x) is a polynomial of degree ord P(x) ≤ m = [1− n/2− a/2],

R(x) = ∑
β0<|α|≤β

∂αΓ(x)Cα + uβ(x).

Since −2r− n ≤ a < −2r− n + 2, it follows that −n/2− a/2 ≤ r < 1− n/2− a/2 and, therefore,
r = [1− n/2− a/2] = m. Hence ord P(x) ≤ r.

We claim that P(x) is a solution of the system (1). Indeed,

0 = Lu = LP(x) + LR(x), where LR(x)→ 0 as |x| → ∞.

Since LP(x) is a polynomial and LP(x) = −LR(x) → 0 as |x| → ∞, it follows that LP(x) ≡ 0,
that P(x) is a polynomial solution of the system (1). Hence it is represented as a linear combination of
the functions wi, i = 1, . . . , k:

P(x) =
k

∑
i=1

ciwi.

We claim that u =
k
∑

i=1
cizi. We set

u0 = u−
k

∑
i=1

cizi.

By our construction of the solutions, after elementary transformations we obtain

u0 = R(x) +
k

∑
i=1

civi.

Let us prove that u0 ≡ 0. Indeed, u0 is a solution, that is, Lu0 = 0 in Ω, u0 |Γ1= 0,
and (σ(u0) + τu0)|Γ2

= 0. By the construction of the solutions vi we have

D(vi, Ω) < ∞,
∫

Ω
|vi|2|x|−2 dx < ∞, i = 1, . . . , k.

Moreover, it is easy to verify that

D(R(x), Ω) < ∞,
∫

Ω
|R(x)|2|x|−2 dx < ∞.
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Hence,
D(u0, Ω) < ∞,

∫
Ω
|u0|2|x|−2 dx < ∞.

Since ue(x) is a unique solution of problem (e) in Theorem 3, it follows that u0 ≡ 0. This proves
the theorem for n > 2.

The proof for n = 2 is similar. We claim that
(i) The Dirichlet–Robin problem (1), (2) along with the condition Ea(u, Ω) < ∞ has k(r, 2) linearly

independent solutions for −2r− 2 ≤ a < −2r;
(ii) Each system of k(r, 2) + 1 solutions is linearly dependent.
(i) Let w1, . . . , wk be a basis in the space of polynomial solutions of (1) whose degrees do not exceed

r. The vector-valued functions u1 = (const, 0) and u2 = (0, const) are linearly independent polynomial
solutions of (1). Therefore we can assume without loss of generality that w1 ≡ (1, 0), w2 ≡ (0, 1).
The condition ord wi ≤ r shows that |wi| ≤ c|x|r and, therefore, Ea(wi, Ω) < ∞ for −2r− 2 ≤ a < −2r.

For each wi, i = 3, . . . , k we consider a solution vi of the system (1) such that vi |Γ1=

wi, (σ(vi) + τvi)|Γ2
= 0, D(vi, Ω) < ∞ and, by Hardy’s inequality [6], we have

∫
|x|>N

|vi|2|x|−2| ln |x||−2 dx < ∞,

where N >> 1 such that G ⊂ {x : |x| < N}.
Such a solution may be constructed by the variational method, by minimizing the corresponding

functional over the class of admissible functions. In the same way, we can construct solutions of (1)
with boundary conditions vi |Γ1= Γ(x)c̃i, (σ(vi) + τvi)|Γ2

= 0, i = 1, 2, where c̃1 = (1, 0) and
c̃2 = (0, 1) such that E(vi, Ω) < ∞ and D(vi, Ω) < ∞. By Hardy’s inequality [6] we obtain∫

|x|>N
|vi|2|x|−2| ln |x||−2 dx < ∞,

where N >> 1 and G ⊂ {x : |x| < N}.
Let zi = wi − vi, i = 3, . . . , k, k + 1, k + 2, where wk+1 = Γ(x)c̃1 and wk+2 = Γ(x)c̃2. Then Lzi = 0

in Ω, zi |Γ1= 0, (σ(zi) + τzi)|Γ2
= 0, and

Ea(zi, Ω) ≤ CDa(zi, Ω) < ∞.

We claim that zi, i = 3, . . . , k + 2 are linearly independent. Indeed, if

Z ≡
k+2

∑
i=3

c′izi = 0, c′i = const, then
k+2

∑
i=3

c′i(wi − vi) = 0,

that is,

W ≡
k+2

∑
i=3

c′iwi =
k+2

∑
i=3

c′ivi ≡ V.

Hence |W|2 = |V|2, |∇W|2 = |∇V|2, and

D(W, Ω) = D(V, Ω) < ∞,∫
|x|>N

|W|2|x|−2| ln |x||2 dx =
∫
|x|>N

|V|2|x|−2| ln |x||−2 dx < ∞.

By Lemma 1, the solution V of the system (1) in Ω has a representation

V(x) = P(x) + R(x),

where P(x) is a polynomial and R(x) = ∑β0<|α|≤β ∂αΓ(x)Cα + vβ(x).
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We prove that ord P(x) = 0 by contradiction. Indeed, assume that ord P(x) = k, where k 6= 0.
Then in the interior of a certain cone K we have |P(x)| ≥ C|x|k. In addition, R(x) ∼ ln |x|. Hence,

|V(x)| = |P(x) + R(x)| ≥ |P(x)| − |R(x)| ≥ C|x|k − C ln |x| ≥ C
2
|x|k

for |x| >> 1. This yields the inequalities

∞ >
∫
|x|>N

|V|2|x|−2| ln |x||−2 dx ≥ C
2

∫
|x|>N

|x|2k−2| ln |x||−2 dx.

The resulting integral diverges for k ≥ 1. Hence ord P(x) = 0 and P(x) = C = const. Thus,

V = C + Γ(x)C0 + R1(x), R1(x) = ∑
0<|α|≤β

∂αΓ(x)Cα + vβ(x).

We now claim that C0 = 0. Indeed, if C0 6= 0, then

|V| = |C + Γ(x)C0 + R1(x)| ≥ const(C0)| ln |x|| − C− |R1(x)| ≥ const(C0)

2
ln |x|,

because |R1(x)| � 1 for |x| >> 1. By Hardy’s inequality [6],

∞ >
∫
|x|>N

|V|2|x|−2| ln |x||−2 dx

≥ const(C0)

2

∫
|x|>N

| ln |x||2|x|−2| ln |x||−2 dx = ∞.

This contradiction shows that C0 = 0. Hence,

C + R1(x) =
k+2

∑
i=3

c′iwi,

and, therefore,
k+2

∑
i=3

c′iwi − C = R1(x)→ 0 as |x| → ∞. (32)

Let C = −(c′1, c′2), then by our choice of the function w1 and w2, we obtain

−C = c′1w1 + c′2w2.

Hence, by (32),

k+2

∑
i=1

c′iwi = 0, that is,
k

∑
i=1

c′iwi = −c′k+1wk+1 − c′k+2wk+2.

Since wk+1 = Γ(x)c̃1 and wk+2 = Γ(x)c̃2, it follows that

k

∑
i=1

c′iwi = −c′k+1Γ(x)c̃1 − c′k+2Γ(x)c̃2. (33)

The left-hand side of (33) is a polynomial while its right-hand side has logarithmic growth as

|x| → ∞, therefore they both vanish, and
k
∑

i=1
c′iwi = 0.
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Since wi, i = 1, . . . , k, form a basis in the space of polynomial solutions, it follows that
c′i = 0, i = 1, . . . , k, Γ(x)(c′k+1 c̃1 + c′k+2 c̃2) = 0, and in view of the linear independence of the vectors
c̃1 and c̃2, we obtain c′k+1 = c′k+2 = 0.

Hence the zi, i = 3, . . . , k + 2, are linearly independent solutions, that is, the Dirichlet–Robin
problem (1), (2) supplemented with the condition Ea(u, Ω) < ∞ has at least, k(r, 2) linearly
independent solutions.

(ii) Let us prove that each solution u of (1) with the boundary conditions (2) and Ea(u, Ω) < ∞
for −2r − 2 ≤ a < −2r may be represented as a linear combination of the sulutions
zi, i = 3, . . . , k + 2, zi = wi − vi.

By Lemma 1, a sloution u of (1) in Ω has the form

u = P(x) + Γ(x)C0 + R1(x),

where P(x) is a polynomial of degree ord P(x) ≤ m = [−a/2] and R1(x) = ∑
0<|α|≤β

∂αΓ(x)Cα + uβ(x).

Since −2r − 2 ≤ a < −2r, we have −1− a/2 ≤ r < −a/2 and, therefore, r = [−a/2] = m.
Hence ord P(x) ≤ r.

We claim that P(x) is a solution of (1). Indeed, we have

0 = Lu(x) = LP(x) + LR(x),

where LR(x)→ 0 as |x| → ∞.
Since LP(x) is a polynomial and LP(x) = −LR(x) → 0 as |x| → ∞, it follows that LP(x) ≡ 0,

that is, P(x) is a polynomial solution of (1). Hence it is a finite linear combination of the functions
wi, i = 1, . . . , k:

P(x) =
k

∑
i=1

diwi, di = const .

Let C0 = dk+1 c̃1 + dk+2 c̃2. To show that u =
k+2
∑

i=3
dizi, we put

u0 = u−
k+2

∑
i=3

dizi.

After elementary transformations we obtain

u0 = P(x) + Γ(x)C0 + R1(x)−
k+2

∑
i=3

di(wi − vi

= Ψ + R1(x) +
k+2

∑
i=3

divi,

where Ψ =
2
∑

i=1
diwi.

We claim that u0 ≡ 0. Indeed, we have Lu0 = 0 in Ω, u0 |Γ1= 0, (σ(u0) + τu0)|Γ2
= 0. By the

construction of the solutions vi we get

D(vi, Ω) < ∞,
∫
|x|>N

|vi|2|x|−2| ln |x||−2 dx < ∞, i = 3, k + 2.

It is easy to verify that D(R1(x), Ω) < ∞, D(Ψ, Ω) < ∞ and∫
|x|>N

|R1(x)|2|x|−2| ln |x||−2 dx < ∞,
∫
|x|>N

|Ψ|2|x|−2| ln |x||−2 dx < ∞.



Mathematics 2020, 8, 2241 29 of 32

Hence it follows by the triangle inequality that D(u0, Ω) < ∞ and∫
|x|>N

|u0|2|x|−2| ln |x||−2 dx < ∞.

Using the unique solubility of problem (w), we now see from Theorem 3 that u0 ≡ 0. Hence,

u =
k+2

∑
i=3

di(wi − vi).

Thus the problem (1), (2) has (k + 2)− 2 = k = k(r, 2) linearly independent solutions. The proof
is complete.

4. Conclusions

The problem of studying boundary value problems for the system of elasticity theory began to
be dealt with at the beginning of the 20th century. One of the first papers initiating the systematic
investigation of these problems was Fredholm’s classical paper [42], in which the first boundary value
problem for the linear elasticity system in the case of an isotropic homogeneous body was studied by
the method of integral equations. The second boundary value problem for the elasticity system in
the case of a bounded domain was studied by Korn [43], who was the first to establish inequalities
between the Dirichlet integral D(u, Ω) of the solution and the energy E(u, Ω) of the system, which are
now known as Korn’s inequalities. Friedrichs’s paper [44] played a major role in the analysis of the
mathematical aspects of the stationary elasticity theory. In that paper Korn’s inequalities are proved
and the first and the second boundary value problems of the elasticity theory are analyzed in a bounded
domain by the variational method. Here we also note Fichera’s monograph [5], who used Korn’s
inequalities and functional methods to study various boundary value problems for the elasticity system.
For a wide class of unbounded domains Kondratiev and Oleinik [6–8] established generalizations of
Korn’s and Hardy’s inequalities and used them for the analysis of the main boundary value problems
for the elasticity system. In particular, they investigated the existence, uniqueness and stability of
solutions of boundary value problems with a finite energy integral.

This article considers the boundary value problem for the elasticity system in the exterior of a
compact set with the mixed boundary conditions: the Dirichlet condition on one part of the boundary
and the Robin condition on the other; and also with the condition of boundedness of the energy integral
Ea(u, Ω) with the weight |x|a, which characterizes the behavior of the solution of this problem at infinity.
Depending on the value of the parameter a, for each interval, we determine the dimension of the kernel
of the operator of the theory of elasticity. The main research method for constructing solutions to the
mixed Dirichlet–Robin problem is the variational principle, which assumes the minimization of the
corresponding functional in the class of admissible functions. Further, using Korn’s and Hardy’s-type
inequalities, we obtain a criterion for the uniqueness (or non-uniqueness) of solutions to this problem
in weighted spaces. These results find their practical application in the field of shell theory, mechanics
of deformable solids, as well as in the study of some problems in the theory of scattering, optics,
applied and astrophysics.

Note that a new inequality called the Korn’s interpolation inequality (since it interpolates between
the first and second Korn’s inequalities) was applied to study shells. An asymptotically exact version
of the interpolation estimate was proved by Harutyunyan (see [12], and other papers) for practically
any thin domains and any vector field.

Further, this theory has found its development in many papers in the field of mathematical
physics and applied mathematics; some of them are given in the bibliography.
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5. Application

As an application, we note the book [45], in which astronomical optics and the elasticity theory
give a very complete and comprehensive description of what is known in this field. After extensive
introduction to optics and elasticity, this book discusses a multimode deformable mirror of variable
curvature, as well as in-depth active optics, its theory, and fields of application.
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