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1. Introduction

Ocean tides have been investigated by many authors, starting from [1,2]. The last decades
have been marked by rapid progress in both theoretical and experimental studies of ocean tidal
phenomena. Today, experimental and theoretical knowledge of ocean tides are used in order to address
important problems in Oceanography, Atmospheric Sciences, Geophysics, as well as in Electronics and
Telecommunications. It is important to point out that Laplace [3] was the first author to make the first
major input in the theoretical formulation for tides of water on a rotating globe. Indeed, he formulated
a system of partial differential equations that relate the horizontal flow to the surface height of the
ocean. The existence and uniqueness of solutions of the deterministic tidal equation while using the
classical compactness method have been proven in [2,4]. In our work, we consider the deterministic
counterpart of a model of tidal dynamics that was studied by Manna et al. [5] and originally proposed
by Marchuk and Kagan [2], where they considered the model of tidal dynamics derived by taking
the shallow water model on a rotating sphere, with the latter being a slight generalization of the one
considered earlier by Laplace.

Our objective is to carry out the homogenization of (2)–(5) under a suitable structural assumption
on the coefficients of the operator that is involved in (2). These assumptions cover several physical
behaviors, such as the periodicity, the almost periodicity, and much more. In order to achieve our goal,
we shall use the concept of sigma-convergence [6], which is roughly a formulation of the well-known
two-scale convergence method [7–13] in the context of algebras with mean value [6,14–16]. Therefore,
our study falls within the framework of homogenization beyond the periodic setting, but including
the periodic study as a special case.

The outline of the paper is as follows. The statement of the model problem, together with the
derivation of appropriate uniform estimates, are the objectives of Section 2. Section 3 deals with
the fundamentals of the sigma-convergence method. The homogenization process is performed in
Section 4, while, in Section 5, we provide some applications of the main homogenization result.
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2. Setting of the Problem and Uniform Estimates

2.1. Statement of the Problem

The tidal dynamics system that was developed by Manna et al. [5] for suitably normalized velocity
u and tide height z reads as

∂u
∂t

+ A(u) + B(u) + g∇z = f in Q = Ω× (0, T)
∂z
∂t

+ div(hu) = 0 in Q

u = 0 on ∂Ω× (0, T)
u(x, 0) = u0(x) and z(x, 0) = z0(x) in Ω,

(1)

where Ω is an open bounded subset, where A and B are defined by

A =

(
−α M −η

η −α M

)
and B (u) = γ

∣∣∣u + ω0
∣∣∣ (u + ω0

)
,

α and η (the Coriolis parameter) being positive constants, ω0 a given function and γ(x) = r/h(x).
In our work, we ignore the Coriolis parameter (η = 0), so that A(u) = −α∆u. However, instead of

the Laplace operator, we rather consider a general linear elliptic operator of order 2 in divergence form,
leading to the investigation of the limiting behavior (when 0 < ε → 0) of the generalized sequence
(uε, zε)ε of solution to the system (2)–(5), below

∂uε

∂t
− div (Aε

0∇uε) + B (uε) + g∇zε = f in Q (2)

∂zε

∂t
+ div (huε) = 0 in Q (3)

uε = 0 on ∂Ω× (0, T) (4)

uε (x, 0) = u0 (x) and zε (x, 0) = z0 (x) in Ω, (5)

where Ω is a Lipschitz bounded domain of R2 and T is a positive real number. Here, uε and zε stand,
respectively, for the total transport 2-D vector (the vertical integral of the velocity) and the deviation of
the free surface with respect to the ocean bottom. We have chosen the Dirichlet boundary condition
in order to simplify the presentation. It is worth noticing that other boundary conditions can be
considered, such as the Robin one: the difficulties may be only of technical types, with the method
being the same.

In (2)–(5), ∇ (resp. div) is the gradient (resp. divergence) operator in Ω and the functions Aε
0, h,

u0, z0, and B are constrained, as follows:

(A1) The function Aε
0 is defined by Aε

0 (x) = A0(x, x/ε) (x ∈ Ω), where A0 ∈ C(Ω, L∞(R2
y))

2×2 is a
symmetric matrix with

A0(x, y)ξ · ξ ≥ α |ξ|2 for all ξ ∈ R2, x ∈ Ω and a.e. y ∈ R2, (6)

where α > 0 is a given constant independent of x, y and ξ.
(A2) The operator B is defined on L4(Ω)2 by B (v) = γ

∣∣v + ω0
∣∣ (v + ω0) (v ∈ L4 (Ω)2), where

ω0 ∈ L2(0, T; H1
0(Ω)2) is a given function and γ(x) = r/h(x) (for a fixed real number r > 0),

h being a continuously differentiable function satisfying

min
x∈Ω

h(x) = β > 0, max
x∈Ω

h(x) = µ and max
x∈Ω
|∇h(x)| ≤ M,
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where M > 0 is a given constant, which is equal to zero at a constant ocean depth. The functions
u0, z0 and f are such that u0 ∈ L2 (Ω)2, z0 ∈ L2 (Ω), f ∈ L2(0, T; H−1(Ω)2), and g is the
gravitational constant.

(A3) We assume further that, for all x ∈ Ω, the matrix-function A0 (x, ·) has its entries in B2
A(R

2),
where A is an algebra with mean value on in R2, while B2

A(R
2) stands for the generalized

Besicovitch space that is associated to A.

Remark 1. The operator B continuously sends L4 (Ω)2 into L2 (Ω)2 with the following properties
(see ([5], Lemma 3.3)): for u, v ∈ L4 (Ω)2, we have

(B (u)− B (v) , u− v) ≥ 0; (7)

‖B (u)‖L2(Ω)2 ≤ ‖γ‖∞ ‖u‖L4(Ω)2 ; (8)

‖B (u)− B (v)‖L2(Ω)2 ≤ ‖γ‖∞

(
‖u‖L4(Ω)2 + ‖v‖L4(Ω)2

)
‖u− v‖L4(Ω)2 . (9)

The assumption (A3), which depends on the algebra with a mean value A, is crucial in the
homogenization process. It shows how the microstructures are distributed in the medium Ω
and, therefore, allows for us to pass to the limit.

Before dealing with the well-posedness of (2)–(5), we first need to define the concept of solutions
that we will deal with.

Definition 1. Let u0 ∈ L2 (Ω)2, z0 ∈ L2 (Ω), f ∈ L2 (0, T; H−1(Ω)2), ω0 ∈ L2 (0, T; H1
0(Ω)2) and

0 < T < ∞. The couple (uε, zε)ε>0 is a weak solution to the problem (2)–(5) if

uε ∈ C
(

0, T; L2 (Ω)2
)
∩ L2

(
0, T; H1

0(Ω)2
)

;

∂uε

∂t
∈ L2

(
0, T; H−1(Ω)2

)
;

zε ∈ L∞
(

0, T; L2 (Ω)
)

,
∂zε

∂t
∈ L2

(
0, T; L2 (Ω)

)
;

and for all ϕ ∈ L2 (0, T; H1
0(Ω)2) and ψ ∈ L2 (0, T; L2 (Ω)

)
, we have

∫ T

0

(
∂uε

∂t
, ϕ

)
dt +

∫
Q

Aε
0∇uε · ∇ϕdxdt +

∫
Q

B(uε)ϕdxdt +
∫

Q
g∇zε ϕdxdt

=
∫ T

0
(f(t), ϕ(t))dt (10)

and ∫ T

0

(
∂zε

∂t
, ψ

)
dt +

∫ T

0
(div(huε), ψ) dt = 0. (11)

In the above definition, (·, ·) stands for the duality pairings between any Hilbert space X and its
topological dual X′. We also recall that the operator div

(
Aε

0∇uε

)
acts in a diagonal way, which is,

for v = (v1, v2) ∈ H1
0(Ω)2, we have

(div (Aε
0∇uε) , v) = −

∫
Ω

Aε
0∇uε · ∇vdx

≡ −
2

∑
i=1

∫
Ω

Aε
0∇ui

ε · ∇vidx

where uε = (ui
ε)1≤i≤2. This being so, the following existence and uniqueness result holds.
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Theorem 1. Assume that (A1)–(A2) are satisfied. Subsequently, there exists (for each ε > 0) a unique weak
solution (uε, zε) to the problem (2)–(5) in the sense of Definition 1.

Proof. We note that, in the problem stated in [5], if we replace the Laplace operator by −div(Aε
0∇uε)

and we neglect therein the Coriolis parameter, then the proof follows exactly the lines of that
of ([5], Propositions 3.6 and 3.7).

2.2. A Priori Estimates

The following result will be useful in deriving the uniform estimates for (uε, zε)

Lemma 1 ([5], Lemma 3.1). For any real-valued smooth function ϕ compactly supported in R2, we have

‖ϕ‖4
L4(Ω) ≤ 2 ‖ϕ‖2

L2(Ω) ‖∇ϕ‖2
L2(Ω) . (12)

The following lemma provides us with the a priori estimates.

Lemma 2. Under assumptions (A1)–(A2), the weak solution (uε, zε) of problem (2)–(5) in the sense that
Definition 1 satisfies the following estimates

sup
0≤t≤T

‖uε (t)‖L2(Ω)2 ≤ C; (13)

∫ T

0
‖uε (t)‖2

H1
0 (Ω)2 dt ≤ C; (14)∥∥∥∥∂uε

∂t

∥∥∥∥
L2(0,T;H−1(Ω)2)

≤ C; (15)

sup
0≤t≤T

‖zε (t)‖L2(Ω) ≤ C; (16)

∥∥∥∥∂zε

∂t

∥∥∥∥
L2(0,T;L2(Ω))

≤ C (17)

where the positive constant C is independent of ε.

Proof. We first deal with Equation (2). In the variational form of (2), we choose the test function uε(t)
associated to (4) to obtain

1
2

d
dt ‖uε (t)‖2

L2(Ω) +
(

Aε
0∇uε (t) ,∇uε (t)

)
+ (B (uε (t)) , uε (t))

+ (g∇zε (t) , uε (t)) = (f (t) , uε (t)) .
(18)

By the divergence theorem, we have

(g∇zε (t) , uε (t)) = − (gzε (t) , div (uε (t))) . (19)

Applying Young’s inequality in the form

ab ≤ δ

2
a2 +

1
2δ

b2 (20)
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to (19) (with δ = 2g
α ), we obtain

|g (∇zε (t) , uε (t))| = |−g (zε (t) , div (uε (t)))|

≤ g
2

(
2g
α
‖zε (t)‖2

L2(Ω) +
α

2g
‖div (uε (t))‖2

L2(Ω)

)
≤ g

2

(
2g
α
‖zε (t)‖2

L2(Ω) +
α

2g
‖uε (t)‖2

H1
0 (Ω)2

)
. (21)

In (7) if we take u = uε and v = 0 to get
(

B (uε (t))− γ
∣∣ω0
∣∣2 , uε (t)

)
≥ 0, which yields

(B (uε (t)) , uε (t)) =
(

B (uε (t))− γ
∣∣∣ω0
∣∣∣2 , uε (t)

)
+

(
γ
∣∣∣ω0 (t)

∣∣∣2 , uε (t)
)

(22)

≥
(

γ
∣∣∣ω0 (t)

∣∣∣2 , uε (t)
)

≥ − r
β

∥∥∥ω0 (t)
∥∥∥2

L4(Ω)2 ‖uε (t)‖L2(Ω)2

≥ − r
2β

(∥∥∥ω0 (t)
∥∥∥4

L4(Ω)2 + ‖uε (t)‖2
L2(Ω)2

)
.

Using again (20), but this time with δ = 1, we get

(f(t), uε (t)) ≤
1
2

(
‖f (t)‖2

L2(Ω)2 + ‖uε (t)‖2
L2(Ω)2

)
. (23)

Putting together (6), (21)–(23), we derive, from (18), the following

d
dt
‖uε (t)‖2

L2(Ω)2 + 2α ‖uε (t)‖2
H1

0 (Ω)2

≤ ‖f (t)‖2
L2(Ω) +

r
β

(∥∥∥ω0 (t)
∥∥∥4

L4(Ω)2 + ‖uε (t)‖2
L2(Ω)2

)
+ g

(
2g
α
‖zε (t)‖2

L2(Ω) +
α

2g
‖uε (t)‖2

H1
0 (Ω)2

)
+ ‖uε (t)‖2

L2(Ω)2

=

(
1 +

r
β

)
‖uε (t)‖2

L2(Ω)2 +
2g2

α
‖zε (t)‖2

L2(Ω) +
r
β

∥∥∥ω0 (t)
∥∥∥4

L4(Ω)2

+
α

2
‖uε (t)‖2

H1
0 (Ω)2 + ‖f (t)‖2

L2(Ω)2 . (24)

Integrating (24) with respect to t, we obtain

‖uε (t)‖2
L2(Ω)2 + 2α

∫ t

0
‖uε (s)‖2

H1
0 (Ω)2 ds

≤
(

1 +
r
β

) ∫ t

0
‖uε (s)‖2

L2(Ω)2 ds +
2g2

α

∫ t

0
‖zε (s)‖2

L2(Ω) ds +
r
β

∫ t

0

∥∥∥ω0 (s)
∥∥∥4

L4(Ω)2 ds

+
α

2

∫ t

0
‖uε (s)‖2

H1
0 (Ω)2 ds +

∫ t

0
‖f (s)‖2

L2(Ω)2 ds +
∥∥∥u0 (t)

∥∥∥
L2(Ω)2

. (25)

Next. dealing with (3), which we multiply by zε(t) and then integrate the resulting equality over Ω,
we get

1
2

d
dt
‖zε (t)‖2

L2(Ω) + (div (huε (t)) , zε (t)) = 0. (26)
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However,

|(div (huε (t)) , zε (t))| = |(h div uε (t) , zε (t)) + (uε (t) · ∇h, zε (t))|
≤ |(h div uε (t) , zε (t))|+ |(uε (t) · ∇h, zε (t))|
≤ ‖h‖∞ ‖uε (t)‖H1

0 (Ω)2 ‖zε (t)‖L2(Ω) + M ‖uε (t)‖L2(Ω)2 ‖zε (t)‖L2(Ω)

≤ µ

2

(
α

2µ
‖uε (t)‖2

H1
0 (Ω)2 +

2µ

α
‖zε (t)‖2

L2(Ω)

)
+

M
2

(
‖uε (t)‖2

L2(Ω)2 + ‖zε (t)‖2
L2(Ω)

)
. (27)

Taking (27) into account and integrating (26) in t gives

‖zε (t)‖2
L2(Ω) ≤ M

∫ t

0
‖uε (s)‖2

L2(Ω)2 ds +
(

2µ2

α
+ M

) ∫ t

0
‖zε (s)‖2

L2(Ω) ds

+
α

2

∫ t

0
‖uε (s)‖2

H1
0 (Ω)2 ds +

∥∥∥z0
∥∥∥

L2(Ω)
. (28)

Summing up inequalities (25) and (28), gives readily

‖uε (t)‖2
L2(Ω)2 + ‖zε (t)‖2

L2(Ω) + α
∫ t

0
‖uε (s)‖2

H1
0 (Ω)2 ds

≤ λ1

∫ t

0

(
‖uε (s)‖2

L2(Ω)2 + ‖zε (s)‖2
L2(Ω)

)
ds +

r
β

∫ t

0

∥∥∥ω0 (s)
∥∥∥4

L4(Ω)2 ds + λ2,

where

λ1 = max
(

1 + M +
r
β

,
2µ2

α
+ M +

2g2

α

)
and

λ2 =
∫ T

0
‖f (s)‖2

L2(Ω)2 ds +
∥∥∥u0

∥∥∥2

L2(Ω)2
+
∥∥∥z0
∥∥∥2

L2(Ω)
.

Now, appealing to inequality (12) (in Lemma 1) and owing to the fact that ω0 ∈ L2(0, T; H1
0(Ω)2),

we have ∥∥∥ω0(s)
∥∥∥4

L4(Ω)
≤ C

∥∥∥ω0(s)
∥∥∥2

L4(Ω)

∥∥∥∇ω0(s)
∥∥∥2

L2(Ω)

≤ C
∥∥∥ω0(s)

∥∥∥4

H1
0 (Ω)

for a.e. s ∈ (0, T),

so that ∥∥∥ω0(s)
∥∥∥

L2(0,T;L4(Ω)2)
≤ C

∥∥∥ω0(s)
∥∥∥

L2(0,T;H1
0 (Ω)2)

≤ C.

We are, therefore, led to

‖uε(t)‖2
L2(Ω)2 + ‖zε(t)‖2

L2(Ω) + α
∫ t

0
‖uε (s)‖2

H1
0 (Ω)2 ds

≤ C + λ1

∫ t

0
(‖uε(s)‖2

L2(Ω)2 + ‖zε(s)‖2
L2(Ω))ds.

Applying the Gronwall inequality leads to

sup
0≤t≤T

‖uε (t)‖L2(Ω)2 ≤ C, sup
0≤t≤T

‖zε (t)‖L2(Ω) ≤ C,
∫ T

0
‖uε (t)‖2

H1
0 (Ω)2 dt ≤ C. (29)
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From (10), we obtain, for all ϕ ∈ L2(0, T; H1
0 (Ω)2),∣∣∣∣(∂uε

∂t
, ϕ

)∣∣∣∣ ≤ C ‖uε‖L2(0,T;H1
0 (Ω)2)

‖ϕ‖L2(0,T;H1
0 (Ω)2)

+ ‖B (uε)‖L2(Q)2 ‖ϕ‖L2(Q)2

+ C ‖zε‖L2(Q) ‖ϕ‖L2(0,T;H1
0 (Ω)2)

+ ‖f‖L2(0,T;H−1(Ω)2)
‖ϕ‖L2(0,T;H1

0 (Ω)2)
.

Next, while using the embedding H1
0(Ω) ↪→ L4(Ω), we have

‖B(uε)‖L2(Q) ≤ C ‖uε‖L2(0,T;L4(Ω)2)
≤ C ‖uε‖L2(0,T;H1

0 (Ω)2)
.

Therefore, we infer, from (29), that∣∣∣∣(∂uε

∂t
, ϕ

)∣∣∣∣ ≤ C ‖ϕ‖L2(0,T;H1
0 (Ω)2) ,

from which ∥∥∥∥∂uε

∂t

∥∥∥∥
L2(0,T;H−1(Ω)2)

≤ C.

We follow the same way of reasoning to see that∥∥∥∥∂zε

∂t

∥∥∥∥
L2(0,T;L2(Ω))

≤ C.

This concludes the proof.

3. Fundamentals of the Sigma-Convergence Method

Here, we are concerned with the main features of the sigma-convergence method, which we
define. The reader may find more details in [14,15].

We first recall that by an algebra with mean valueA on Rd is meant any Banach algebra consisting
of bounded uniformly contiuous functions on Rd, satisfying

(i) A contains the constants;
(ii) u(·+ a) ∈ A for any u ∈ A and a ∈ Rd; and,
(iii) for any u ∈ A, the limit M(u) = limR→∞ −

∫
BR

u(y)dy exists and is called the mean value of u.

In (iii), above, −
∫

BR
is the integral mean over the open ball BR centered at 0 and of radius R:

−
∫

BR
= |BR|−1 ∫

BR
.

For obvious purposes, we define the generalized Besicovitch space Bp
A(R

d) (1 ≤ p < ∞) associated
to a given algebra with mean value A, as the completion with respect to the seminorm ‖·‖p defined on

A by ‖u‖p = (M(|u|p))1/p (u ∈ A). It is worth noticing that ‖·‖p is well defined, since |u|p ∈ A for

any p > 0 and u ∈ A. We may also define the Banach counterpart Bp
A(R

d) of Bp
A(R

d) by cutting with
the kernel of the seminorm ‖·‖p: Bp

A(R
d) = Bp

A(R
d)/N with N = {u ∈ Bp

A(R
d) : ‖u‖p = 0}.

In the current work, we assume that all of the algebras with a mean value are ergodic (see [6,17]
for the definition). We also need a further space, say B1,p

#A(R
d), which is defined, as follows:

B1,p
#A(R

d) = {u ∈W1,p
loc (R

d) : ∇yu ∈ Bp
A(R

d)d and M(∇yu) = 0}.
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We identify two elements of B1,p
#A(R

d) by their gradients, which is, u = v in B1,p
#A(R

d) if
∥∥∇y(u− v)

∥∥
p =

0. Equipped with the gradient norm ‖u‖#,p =
∥∥∇yu

∥∥
p, B1,p

#A(R
d) is a Banach space ([18], Theorem

3.12).
We are now able to define the concept of sigma-convergence.

Definition 2. A sequence (uε)ε>0 ⊂ Lp(Q)) (1 ≤ p < ∞) is said to:

(i) weakly Σ-converge in Lp(Q) to u0 ∈ Lp(Q;Bp
A(R

d)) as if ε→ 0, we have∫
Q

uε (x, t) f
(

x, t,
x
ε

)
dxdt→

∫
Q

M(u0(x, t, ·) f (x, t, ·))dxdt (30)

for every f ∈ Lp′(Q;A), 1
p + 1

p′ = 1. We express this by writing uε → u0 in Lp(Q)-weak Σ;

(ii) strongly Σ-converge in Lp(Q) to u0 ∈ Lp(Q;Bp
A(R

d)) if (30) holds and further

‖uε‖Lp(Q) → ‖u0‖Lp(Q;Bp
A(Rd)) . (31)

We express this by writing uε → u0 in Lp(Q)-strong Σ.

Remark 2. (1) We can prove that the weak Σ-convergence in Lp (Q) implies the weak convergence in Lp (Q). (2)
The convergence (30) still holds true for f ∈ C(Q; Bp′ ,∞

A

(
Rd
)
), where Bp′ ,∞

A

(
Rd
)
= Bp′

A

(
Rd
)
∩ L∞

(
Rd
)

,
1
p + 1

p′ = 1.

The following results are the main properties of sigma-convergence and they can be found
in [6,14,17]. Before we can state them, we need to define what we call a fundamental sequence. By a
fundamental sequence, we term any ordinary sequence (εn)n≥1 (denoted here, below, by E) of real
numbers satisfying 0 < εn ≤ 1 and εn → 0 when n→ ∞.

(SC)1 For 1 < p < ∞, any sequence that is bounded in Lp (Q) possesses a weakly
Σ-convergent subsequence.

(SC)2 Let (uε)ε∈E ⊂ Lp(0, T; W1,p
0 (Ω)) (1 < p < ∞) be a bounded sequence in Lp(0, T; W1,p

0 (Ω)).
Afterwards, up to a subsequence E′ from E, there exists a couple (u0, u1) with u0 ∈
Lp(0, T; W1,p

0 (Ω)) and u1 ∈ Lp(Q; B1,p
#A(R

d)), such that, as E′ 3 ε→ 0,

uε → u0 in Lp (Q) -weak Σ

and
∂uε

∂xi
→ ∂u0

∂xi
+

∂u1

∂yi
in Lp(Q)-weak Σ, 1 ≤ i ≤ d. (32)

(SC)3 Let 1 < p, q < ∞ and r ≥ 1 be such that 1
r = 1

p + 1
q ≤ 1. Assume that (uε)ε>0 ⊂ Lq(Q) is

weakly Σ-convergent in Lq(Q) to some u0 ∈ Lq(Q;Bq
A(R

d)) and (vε)ε>0 ⊂ Lp(Q) is strongly
Σ-convergent in Lp(Q) to some v0 ∈ Lp(Q;Bp

A(R
d)). Subsequently, the sequence (uεvε)ε>0 is

weakly Σ-convergent in Lr(Q) to u0v0.
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4. Homogenization Result

4.1. Passage to the Limit

First, we set

V=
{

u ∈ L2(0, T; H1
0(Ω)2) : u′ =

∂u
∂t
∈ L2(0, T; H−1(Ω)2)

}
;

H = H1(0, T; L2(Ω)).

The spaces V and H are Hilbert spaces with obvious norms. Moreover, the imbedding
V ↪→ L2(0, T; L2(Ω)2) is compact.

Now, in view of a priori estimates in Lemma 2, the sequences (uε)ε and (zε)ε are bounded in V
and in H, respectively. Thus, given a fundamental sequence E, there exist a subsequence E′ of E and a
couple (u0, z0) ∈ V×H, such that, as E′ 3 ε→ 0,

uε → u0 in V-weak; (33)

uε → u0 in L2(0, T; L2(Ω)2)-strong; (34)

zε → z0 in H-weak; (35)

Using the estimates (13)–(17), it follows that there exist a subsequence of E′ (not relabeled) and a
function u1 ∈ L2(Q; B1,2

#A(R
2)2), such that, as E′ 3 ε→ 0,

∂uε

∂xi
→ ∂u0

∂xi
+

∂u1

∂yi
in L2(Q)2-weak Σ, i = 1, 2. (36)

It follows that (u0, u1) ∈ F1
0 = V× L2(Q; B1,2

#A(R
2)2).

Now, for an element v = (v0, v1) ∈ F1
0, we set

Dv = ∇v0 +∇yv1 = (Div)1≤i≤2 where Div =
∂v0

∂xi
+

∂v1

∂yi
, i = 1, 2

with ∂v0
∂xi

+ ∂v1
∂yi

=

(
∂vj

0
∂xi

+
∂vj

1
∂yi

)
1≤j≤2

. The smooth counterpart of F1
0 is defined by F∞

0 = C∞
0 (Q)2 ⊗

C∞
0 (Q; (A∞/R)2).

Proposition 1. Let u = (u0, u1) ∈ F1
0 and z0 ∈ H. Afterwards, u and z0 solve the following variational

problem:

−
∫

Q
u0

∂ϕ0

∂t
dxdt +

∫
Q

M (A0Du ·Dϕ) dxdt +
∫

Q
B (u0) ϕ0dxdt +

∫
Q

g∇z0 ϕ0dxdt

=
∫ T

0
(f(t), ϕ0(t)) dt (37)

−
∫

Q
z0

∂ψ0

∂t
dxdt−

∫
Q

hu0 · ∇ψ0dxdt = 0 (38)

for all ϕ = (ϕ0, ϕ1) ∈ F∞
0 and ψ0 ∈ C∞

0 (Q).

Proof. Let ϕ = (ϕ0, ϕ1) and ψ0 be, as above, and define

ϕε(x, t) = ϕ0(x, t) + ϕ1

(
x, t,

x
ε

)
for (x, t) ∈ Q.
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Taking (ϕε, ψ0) as a test function in the variational form of (2)–(5), we obtain

−
∫

Q
uε

∂ϕε

∂t
dxdt +

∫
Q

Aε
0∇uε · ∇ϕεdxdt +

∫
Q

B(uε)ϕεdxdt +
∫

Q
g∇zε ϕεdxdt

=
∫ T

0
(f(t), ϕε(t)) dt (39)

and
−
∫

Q
zε

∂ψ0

∂t
dxdt−

∫
Q

huε · ∇ψ0dxdt = 0. (40)

While using the identities

∂ϕε

∂t
=

∂ϕ0

∂t
+ ε

(
∂ϕ1

∂t

)ε

and ∇ϕε = ∇ϕ0 + (∇y ϕ1)
ε + ε(∇ϕ1)

ε,

we infer that, as ε→ 0,

∂ϕε

∂t
→ ∂ϕ0

∂t
in L2

(
0, T; H−1(Ω)2

)
-weak (41)

∇ϕε → ∇ϕ0 +∇y ϕ1 in L2(Q)2×2-strong Σ (42)

ϕε → ϕ0 in L2(Q)2-strong. (43)

Let us consider each of the Equations (39) and (40) separately. We first consider (39) and, using the
convergence results (34) and (41), we obtain∫

Q
uε

∂ϕε

∂t
dxdt→

∫
Q

u0
∂ϕ0

∂t
dxdt. (44)

Because A0 ∈ C(Q; B2,∞
A
(
R2)2×2

), we use it as test function together with property (SC)3 (recall that
we have (36) and (42)) to obtain∫

Q
Aε

0∇uε · ∇ϕεdxdt→
∫

Q
M (A0Du ·Dϕ) dxdt. (45)

Let us show that ∫
Q

B(uε)ϕεdxdt→
∫

Q
B(u0)ϕ0dxdt. (46)

First, we have, from (34), that, up to a subsequence of E′ not relabeled, uε → u0 a.e. in Q. Hence, from
the continuity of B, we entail

B(uε)→ B(u0) a.e. in Q.

we infer, from the boundedness of the sequence (B(uε))ε>0, that B(uε) → B(u0) in L2(Q)2-weak.
Putting this together with (43), we obtain (46). We also easily obtain

∫ T

0
(f(t), ϕε(t)) dt→

∫ T

0
(f(t), ϕ0(t))dt. (47)

Next, the convergence results (35) and (43) yield∫
Q

g∇zε ϕεdxdt→
∫

Q
g∇z0 ϕ0dxdt. (48)

As for Equation (40), we use the weak convergence (35) that is associated to (43) to obtain∫
Q

zε
∂ψ0

∂t
dxdt→

∫
Q

z0
∂ψ0

∂t
dxdt.
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Concerning the second term in (40), we infer, from (34), that∫
Q

huε · ∇ψ0dxdt→
∫

Q
hu0 · ∇ψ0dxdt,

thereby completing the proof of the proposition.

4.2. Homogenized Problem

Here, we intend to derive the problem whose the couple (u0, z0) is solution. In order to achieve
this, we first uncouple Equation (37), which is equivalent to the system consisting of (49) and (50),
below:

−
∫

Q
u0

∂ϕ0

∂t
dxdt +

∫
Q

M (A0Du · ∇ϕ0) dxdt +
∫

Q
B (u0) ϕ0dxdt +

∫
Q

g∇z0 · ϕ0dxdt

=
∫ T

0
(f(t), ϕ0(t)) dt; (49)

∫
Q

M
(

A0Du · ∇y ϕ1
)

dxdt = 0. (50)

Choosing in (50)
’1(x, t, y) = θ(x, t)v(y) where θ ∈ C∞

0 (Q) , v ∈ (A∞)2, (51)

we obtain
M (A0Du · ∇v) = 0 for all v ∈ (A∞)2. (52)

Let us deal with (52). To this end, fix ξ ∈ R2×2 and consider the corrector problem:{
Find ß (ξ) ∈ C(Ω; B1,2

#A(R
2)2) such that :

−divy[A0(x, ·)(ξ +∇yß(ξ))] = 0 in R2.
(53)

Subsequently, in view of the properties of the matrix A0(x, ·), we infer, from [19,20], that (53) possesses
a unique solution in C(Ω; B1,2

#A(R
2)2). Coming back to (53) and taking there ξ = ∇u0(x, t), testing

the resulting equation with ϕ1 as in (51), we get, by the uniqueness of the solution of (53), that
u1(x, t, y) = ß(∇u0(x, t)(x, y). This shows that ß(∇u0) belongs to L2(0, T; C(Ω; B1,2

#A(R
2)2)). Clearly,

if χ`
j is the solution of (53) corresponding to ξ = ξ`j = (δijδk`)1≤i,k≤2 (that is all of the entries of ξ are

zero, except the entry occupying the jth row and the `th column, which is equal to 1), then

u1 =
2

∑
j,`=1

∂u`
0

∂xj
χ`

j where u0 = (u`
0)1≤`≤2. (54)

We recall again that χ`
j depends on x, as it is the case for A0. In the variational form of (49), we insert

the value of u1 that was obtained in (54) to obtain the equation

∂u0

∂t
− div(Â0(x)∇u0) + B (u0) + g∇z0 = f in Q. (55)

where Â0(x) = (âk`
ij (x))1≤i,j,k,`≤2, âk`

ij (x) = ahom(χ`
j + P`

j , χk
i + Pk

i ) with P`
j = yje` (e` the `th vector of

the canonical basis of R2) and

ahom(u, v) =
2

∑
i,j,k=1

M

(
aij

∂uk

∂yj

∂vk

∂yi

)
where A0 = (aij)1≤i,j≤2.
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Additionally, Equation (38) is equivalent to

∂z0

∂t
+ div(hu0) = 0 in Q. (56)

Finally, putting together the Equations (55) and (56) associated to the boundary and initial conditions,
we are led to the homogenized problem, viz.

∂u0

∂t
− div(Â0(x)∇u0) + B (u0) + g∇z0 = f in Q

∂z0

∂t
+ div(hu0) = 0 in Q

u0 = 0 on ∂Ω× (0, T)
u0(x, 0) = u0(x), z0(x, 0) = z0(x) in Ω.

(57)

It can be easily shown that the matrix Â0 of homogenized coefficients has entries in C(Ω), and it
is uniformly elliptic, so that, under the conditions (A1)–(A2), the problem (57) possesses a unique
solution (u0, z0) with u0 ∈ L2 (0, T; H1

0(Ω)2) and z0 ∈ L2 (0, T; L2(Ω)
)
. Because the solution of (57)

is unique, we infer that the whole sequence (uε, zε) converges in a suitable space towards (u0, z0),
as stated in the following result, which is the main result of the work.

Theorem 2. Assume that (A1) to (A3) hold. For any ε > 0, let (uε, zε) be the unique solution of problem (2)
to (5). Subsequently, uε → u0 in L2(Q)2-strong and zε → z0 in L2(Q)-weak, where (u0, z0) is the unique
solution of problem (57).

Proof. The proof is a consequence of the previous steps.

5. Some Concrete Applications of Theorem 2

The homogenization of problem has been made possible under the fundamental assumption (A3).
Some of the physical situations that lead to (A3) are listed below.

Problem 1 (Periodic Homogenization). The homogenization of (2)–(5) holds under the periodicity
assumption that the matrix-function A0 (x, ·) is periodic with period 1 in each coordinate, for any x ∈ Ω. In that
case, we have A = Cper(Y), where Y = (0, 1)2 and Cper(Y) is the algebra of continuous Y-periodic functions
defined in R2. It is easy to see that B2

A(R
2) = L2

per(Y) ≡ {u ∈ L2
loc(R

2) : u is Y-periodic}, and the mean value
expresses as M(u) =

∫
Y u(y)dy. Hence, the homogenized matrix is defined by Â0(x) = (âk`

ij (x))1≤i,j,k,`≤2,

âk`
ij (x) = ahom(χ`

j + P`
j , χk

i + Pk
i ) with P`

j = yje` (e` the `th vector of the canonical basis of R2) and

ahom(u, v) =
2

∑
i,j,k=1

∫
Y

aij
∂uk

∂yj

∂vk

∂yi
dy where A0 = (aij)1≤i,j≤2.

where, here, χ`
j is the solution of the cell problem

χ`
j (x, ·) ∈ H1

#(Y)
2 : −divy(A0(x, ·)(ξ`j +∇yχ`

j (x, ·))) = 0 in Y

with H1
#(Y) = {v ∈ H1

per(Y) :
∫

Y vdy = 0}, H1
per(Y) = {v ∈ L2

per(Y) : ∇yv ∈ L2
per(Y)2} and ξ`j =

(δijδk`)1≤i,k≤2.

Problem 2 (Almost periodic Homogenization). We may consider the homogenization problem for (2)–(5)
under the assumption that the coefficients of the matrix A0 (x, ·) are Besicovitch almost periodic functions [21].
In that case, hypothesis (A3) holds true, with A = AP(R2), where AP

(
R2) is the algebra of Bohr almost
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periodic functions on R2 [22]. The mean value of a function u ∈ AP
(
R2) is the unique constant that belongs to

the close convex hull of the family of the translates (u (·+ a))a∈R2 .

Problem 3 (Weakly almost periodic Homogenization). We may solve the homogenization problem for
(2)–(5) under the assumption: the function A0 (x, ·) is weakly almost periodic, which is, the matrix A0 (x, ·)
has its entries in the algebra with mean value A = WAP

(
R2) (where WAP

(
R2) is the algebra of continuous

weakly almost periodic functions on R2; see, e.g., [23]).
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