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Abstract: We define a generalized lightlike Bertrand curve pair and a generalized non-lightlike
Bertrand curve pair, discuss their properties and prove the necessary and sufficient condition of
a curve which is a generalized lightlike or a generalized non-lightlike Bertrand curve. Moreover,
we study the relationship between slant helices and generalized Bertrand curves.
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1. Introduction

The Bertrand curve is widely studied by many mathematicians in classical differential geometry.
It was first proposed by Bertrand who supported that a curve is a Bertrand curve in R3 if and only if
the curvature κ and the torsion τ satisfy ηκ + µτ = 1, where η 6= 0, µ are constants. Bertrand curves
have been studied by many mathematicians in various spaces. For instance, in [1], J. Huang and D. Pei
studied the singular Bertrand curves in the 3-dimensional space forms. In [2], Takeuchi and Izumiya
studied the general properties of helice and Bertrand curve, and presented the method of constructing
a Bertrand curve from the spherical curve. In [3], Ekmekçi and İlarslan defined a Bertrand curve in
n-dimensional Lorentz space and obtained some properties on this space. In [4], some properties of
the non-lightlike curve in 3-dimensional Lorentz space were given. Then, in [5,6], Balgetir and Honda
studied the lightlike Bertrand curves and gave their geometric properties. For non-flat space, such as
the 3-dimensional sphere S3, Lucas and Yagües defined a new Bertrand curve [7,8]. They considered
the correspondence of the principal normal geodesics by using the tools of connection, and gave the
relationship between (1, 3)-type Bertrand curve in R4 and the Bertrand curve on 3-dimensional sphere
S3. Moreover, in other spaces, such as in Riemann-Otsuki spaces [9], and on 3-dimensional Riemannian
manifolds [10,11], some scholars also studied the theory of Bertrand curves.

The Bertrand curve can be regarded as the generalization of the helix. The helix, as a special
kind of curve, has drawn the attention of scientists as well as mathematicians because of its
various applications, for example, explanation of DNA, carbon nano-tube, nano-springs, a-helices,
the geometrical shaping of linear chained polymers stabilized as helixes and the eigenproblem
translated for alignment of molecules (see [12–15]). Moreover, the Bertrand curves represent particular
examples of offset curves which are used in computer-aided design (CAD) and computer-aided
manufacture (CAM) (see [16,17]). The effective use of road edge information in high-resolution remote
sensing image plays an important role in improving the accuracy of road extraction, and the road
edge in high-resolution remote sensing image has obvious characteristics of the Bertrand curves
(see [18]). Therefore, there are potential implications for their research. In the early 20th century,
the German mathematician Minkowski proposed Minkowski space firstly. Since the theory of relativity
was put forward by Einstein, Minkowski space, as a space-time model, has been widely concerned
by mathematical and physical circles. As a pseudo Euclidean space, the measurement of Minkowski
space is different from Euclidean metric, so the results of many problems in these two spaces are
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also different. The curves in Minkowski space can be divided into two categories: non-lightlike
curves and lightlike curves. The second author, J. Sun and some others introduced the properties of
non-lightlike curves in Minkowski 3-space. Bonner introduced the pseudo arc length parameter in [19]
and proved the existence and uniqueness of the lightlike curve. In this paper, we mainly study the the
generalization of Bertrand curves in Minkowski 3-space.

We suppose here that all manifolds and maps are smooth.

2. Preliminaries

Let R3 = {(p1, p2, p3)|p1, p2, p3 ∈ R} be a 3-dimensional vector space. For p = (p1, p2, p3),
q = (q1, q2, q3) ∈ R3, the pseudo inner product between p and q is

〈p, q〉 = −p1q1 + p2q2 + p3q3,

we call (R3, 〈, 〉) is the Minkowski 3-space R3
1.

For p = (p1, p2, p3), q = (q1, q2, q3) ∈ R3
1, the pseudo vector product between p and q is

p∧ q =

∣∣∣∣∣∣∣
−e1 e2 e3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣ ,

where (e1, e2, e3) is a canonical basis of R3
1.

We call a non-zero vector p ∈ R3
1 spacelike, lightlike or timelike if 〈p, p〉 > 0, 〈p, p〉 = 0 or

〈p, p〉 < 0, respectively.
We call a curve c(t) in R3

1 spacelike, lightlike or timelike if c′(t) is spacelike, lightlike or
timelike, respectively.

The sign function δ(p) of p is 1, 0 or −1 if p is spacelike, lightlike or timelike, respectively.
Let c(s) be a non-lightlike(spacelike or timelike) curve in R3

1, we suppose that it is parametrized
by arc-length s, if

〈c̈(s), c̈(s)〉 6= 0.

Then we have the Frenet frame {t(s) = ċ(s), n(s) = c̈(s)/
√
|〈c̈(s), c̈(s)〉|, b(s) = t(s) ∧ n(s)} and

the Frenet equations (see [20]):
ṫ(s) = κ(s)n(s)
ṅ(s) = −δ(t)δ(n)κ(s)t(s) + δ(t)τ(s)b(s)
ḃ(s) = τ(s)n(s)

,

where
κ(s) = 〈ṫ(s), n(s)〉, τ(s) = 〈n(s), ḃ(s)〉.

We call κ(s), τ(s), t(s), n(s) and b(s) the curvature, torsion, tangent, principal normal and
binormal of c(s), respectively.

The Darboux vector field d(s) along any non-lightlike curve c(s) is d(s) = −δ(t)δ(n)τ(s)t(s) +
δ(t)δ(n)κ(s)b(s).

Let c(t) be a lightlike curve in R3
1. We can get that d2c

dt2 is spacelike, and give a reparametrization
s = s(t) of c such that

〈c̈(s), c̈(s)〉 = 1,

where

c̈ =
d2c
ds2 .
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s is called the pseudo arc length parameter of c. Let

t(s) = ċ(s), n(s) = ṫ(s),

then we can get the unique vector field b(s), such that {t(s), n(s), b(s)} forms a lightlike frame along
c(s), and we have the lightlike Frenet equations (see [21]):

ṫ(s) = n(s)
ṅ(s) = −τ(s)t(s)− b(s)
ḃ(s) = τ(s)n(s)

,

where
τ(s) = 〈ḃ(s), n(s)〉.

The lightlike frame {t(s), n(s), b(s)}, c(s) and τ(s) is called the Cartan frame, the lightlike Cartan
curve and the lightlike curvature of c(s), respectively.

The Darboux vector field d(s) along lightlike Cartan curve c(s) is d(s) = τ(s)t(s) + b(s).
For more details, see [20,21].

3. Generalized Bertrand Curves in Minkowski 3-Space

In [8], Lucas and Ortega-Yagües defined the angle between two vectors in R3
1. Then we have

the following.

3.1. Generalized Non-Lightlike Bertrand Curves in Minkowski 3-Space

Definition 1. Let c(s) and c̄(s̄) be two non-lightlike curves in R3
1. If the principal normal n(s) of c(s) lies in

the normal plane of c̄(s̄) and the angle between n(s) and n̄(s̄) is θ at the corresponding points, then we call c(s)
a generalized Bertrand curve, c̄(s̄) a generalized Bertrand mate of c(s) and (c(s), c̄(s̄) a pair of generalized
Bertrand curves.

Without considering the lightlike case, Frenet frame in R3
1 only has three cases: (1) t(s) and n(s)

are spacelike, b(s) is timelike. (2) t(s) and b(s) are spacelike, n(s) is timetlike. (3) b(s) and n(s) are
spacelike, t(s) is timetlike.

Theorem 1. Let (c(s), c̄(s̄) be a pair of Bertrand curves in R3
1, then we have:

(1) If c(s) is a spacelike curve with n(s) being spacelike and b(s) being timelike, then when |1− ηκ(s)| <
|ητ(s)|, Bertrand mate c̄(s̄) is a timelike curve, when |1− ηκ(s)| > |ητ(s)|, Bertrand mate c̄(s̄) is a
spacelike curve.

(2) If c(s) is a spacelike curve with n(s) being timelike and b(s) being spacelike, then Bertrand mate c̄(s̄) is a
spacelike curve.

(3) If c(s) is a timelike curve with n(s) and b(s) being spacelike, then when |1 + ηκ(s)| > |ητ(s)|,
Bertrand mate c̄(s̄) is a timelike curve, when |1+ ηκ(s)| < |ητ(s)|, Bertrand mate c̄(s̄) is a spacelike curve,
where η is the distance between c(s) and c̄(s̄) at the corresponding points and η is a non-zero constant.

Proof. (1) As c(s) is a Bertrand curve, we can get

c̄(s̄) = c(s) + η(s)n(s),

where s̄ = s̄(s), differentiating it with respect to s, we will have

t̄(s̄)
ds̄
ds

= [(1− ηκ)t + η̇n + ητb)](s).
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Taking the pseudo inner product with n̄(s̄) on both sides it, we have

η̇(s) = 0,

so
〈t̄(s̄), t̄(s̄)〉 = [(1− ηκ(s))2 − η2τ2(s)](

ds
ds̄

)2.

Thus, when |1− λκ(s)| < |ητ(s)|, Bertrand mate c̄(s̄) is a timelike curve, when |1− λκ(s)| >
|ητ(s)|, Bertrand mate c̄(s̄) is a spacelike curve. We can prove (2), (3) in a similar way. This completes
the proof.

Theorem 2. Let c(s) be a spacelike curve with n(s) being spacelike and b(s) being timelike, c̄(s̄) be a timelike
curve with n̄(s̄) and b̄(s̄) are spacelike, then (c(s), c̄(s̄)) is a pair of generalized Bertrand curves if and only if
the curvature κ(s) and torsion τ(s) of c(s) satisfy

[κ − η(κ2 − τ2)](s) = cos θ
{[κ − η(κ2 − τ2)]2[η2τ2 − (1− ηκ)2] + [ητ̇ − η2(κτ̇ − κ̇τ)]2} 1

2

[η2τ2 − (1− ηκ)2]
1
2

(s),

where θ is the angle between n(s) and n̄(s̄), η is a non-zero constant, κ̇ = dκ
ds and τ̇ = dτ

ds .

Proof. As (c(s), c̄(s̄)) is a pair of generalized Bertrand curves, we obtain

c̄(s̄) = c(s) + η(s)n(s), (1)

where s̄ = s̄(s), η(s) is the distance at the corresponding points between c(s) and c̄(s̄).
When c̄(s̄) is timelike curve, its normal plane is spacelike, the angle between n(s) and n̄(s̄) is θ, so

n(s) = cos θn̄(s̄) + sin θb̄(s̄). (2)

Differentiating Equations (1) and (2) with respect to s, we have

t̄
ds̄
ds

(s̄) = (t + η̇n + ηṅ)(s), (3)

ṅ(s) = [cos θ ˙̄n
ds̄
ds

+ sin θ ˙̄b
ds̄
ds

](s̄).

We have known
η̇(s) = 0,

then we can get

t̄
ds̄
ds

(s̄) = [(1− ηκ)t + ητb](s). (4)

Using the Frenet equations, we get

(−κt + τb)(s) = [κ̄ cos θ
ds̄
ds

t̄ + sin θτ̄
ds̄
ds

n̄− τ̄ cos θ
ds̄
ds

b̄](s̄). (5)

[κ − η(κ2 − τ2)](s) = κ̄ cos θ(
ds̄
ds

)2(s̄). (6)

The curvature κ̄(s̄) of curve c̄(s̄) is

κ̄(s̄) =
| ˙̄c∧ ¨̄c|
| ˙̄c|3 (s̄), (7)
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where ˙̄c = dc̄
ds , so

˙̄c(s̄) = t̄ · ds̄
ds

(s̄), (8)

| ˙̄c| = |ds̄
ds
|. (9)

We put Equations (7) and (9) in Equation (6), then

[κ − η(κ2 − τ2)](s̄) = cos θ
| ˙̄c∧ ¨̄c|
| ˙̄c| (s̄), (10)

and by using Equations (4) and (8), we can see

˙̄c(s̄) = [(1− ηκ)t + ητb](s). (11)

Differentiating Equation (11) with respect to s, we obtain

¨̄c(s̄) = {−ηκ̇t + [κ − η(κ2 − τ2)]n + ητ̇b}(s).

˙̄c(s̄) ∧ ¨̄c(s̄) = {−(1− ηκ)[κ − η(κ2 − τ2)]b− (ητ̇ − η2κτ̇ + η2κ̇τ)n− ητ[κ − η(κ2 − τ2)]t}(s).

| ˙̄c(s̄)| = [η2τ2 − (1− ηκ)2]
1
2 (s), (12)

| ˙̄c∧ ¨̄c|(s̄) = {[κ − η(κ2 − τ2)]2[η2τ2 − (1− ηκ)2] + [ητ̇ − η2(κτ̇ − κ̇τ)]2}
1
2 (s), (13)

then put Equations (12) and (13) in Equation (10), we get

[κ − η(κ2 − τ2)](s) = cos θ
{[κ − η(κ2 − τ2)]2[η2τ2 − (1− ηκ)2] + [ητ̇ − η2(κτ̇ − κ̇τ)]2} 1

2

[η2τ2 − (1− ηκ)2]
1
2

(s). (14)

Conversely, we will prove that if κ(s) and τ(s) satisfy Equation (14), the principal normal and
binormal of c̄(s̄) generated by the equation

c̄(s̄) = c(s) + η(s)n(s) (15)

are coplanar with the principal normal of c(s), where s̄ = s̄(s). And the angle between n(s) and n̄(s̄) is
θ in Equation (14), we have known η is a constant, then

t̄
ds̄
ds

(s̄) = [(1− ηκ)t + ητb](s). (16)

Then we get

〈n(s), t̄(s̄)〉ds̄
ds

= 0.

Since
ds̄
ds
6= 0,

so
〈n(s), t̄(s̄)〉 = 0,

so n(s) is coplanar with n̄(s̄) and b̄(s̄).
Then we prove

〈n(s), n̄(s̄)〉 = cos θ.

We suppose
n(s) = µ1n̄(s̄) + µ2b̄(s̄), (17)
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so
ṅ(s) = [µ1 ˙̄n

ds̄
ds

+ µ2
˙̄b

ds̄
ds

](s̄),

and by using the Frenet equations, we have

(−κt + τb)(s) = [µ1κ̄
ds̄
ds

t̄ + µ2τ̄
ds̄
ds

n̄− µ1τ̄
ds̄
ds

b̄](s̄). (18)

From Equation (16), we have

[(1− ηκ)t + ητb](s) = t̄
ds̄
ds

(s̄),

[κ − η(κ2 − τ2)](s) = µ1κ̄(
ds̄
ds

)2(s̄). (19)

By the proof of necessity, we can easily obtain Equation (6), then subtract Equations (6) and (19),
so we get,

(µ1 − cos θ)κ̄(
ds̄
ds

)2(s̄) = 0.

Since
(

ds̄
ds

)2 6= 0, κ̄(s̄) 6= 0,

so
µ1 = cos θ.

Then from Equation (17), we can get

〈n(s), n̄(s̄)〉 = µ1 = cos θ.

This completes the proof.

Remark 1. In the above Theorem 2, when θ = 0, we have cos θ = 1, then

[κ − η(κ2 − τ2)](s) =
{[κ − η(κ2 − τ2)]2[η2τ2 − (1− ηκ)2] + [ητ̇ − η2(κτ̇ − κ̇τ)]2} 1

2

[η2τ2 − (1− ηκ)2]
1
2

(s).

Squaring both sides of this equation, we obtain

[ητ̇ − η2(κτ̇ − κ̇τ)](s) = 0,

therefore
[(ηκ − 1)τ̇](s) = (ηκ̇τ)(s),

dτ

τ
=

dηκ − 1
ηκ − 1

.

That is, there is a constant µ, such that ηκ(s) + µτ(s) = 1, this is the necessary and sufficient condition
for a curve to be a spacelike Bertrand curve in [4].

Theorem 3. Let c(s), c̄(s̄) be two timelike curves with n(s), n̄(s̄), b(s) and b̄(s̄) being spacelike,
then (c(s), c̄(s̄)) is a pair of generalized Bertrand curves if and only if the curvature κ(s) and torsion τ(s) of
c(s) satisfy

[κ + η(κ2 − τ2)](s) = cos θ
{[κ + η(κ2 − τ2)]2[(1 + ηκ)2 − η2τ2] + [ητ̇ + η2(κτ̇ − κ̇τ)]2} 1

2

[(1 + ηκ)2 − η2τ2]
1
2

(s),
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where θ is the angle between n(s) and n̄(s̄), η is a non-zero constant, κ̇ = dκ
ds and τ̇ = dτ

ds .

For the other three generalized non-lightlike Bertrand curves in Minkowski 3-space cases,
the results are similar, we will not list them here.

3.2. Generalized Lightlike Bertrand Curves in Minkowski 3-Space

For lightlike Bertrand curves in R3
1, we consider the lightlike Cartan curves here, then the

corresponding Frenet frame of its mate curve is divided into the following three conditions: (1) t̄(s̄)
and b̄(s̄) are lightlike, n̄(s̄) is spacelike, (2) t̄(s̄) and n̄(s̄) are spacelike, b̄(s̄) is timelike, (3) n̄(s̄) and
b̄(s̄) are spacelike, n̄(s̄) is timelike,

Firstly, we consider c̄(s̄) to be a non-lightlike curve, the result is also similar to the generalized
non-lightlike Bertrand curve, so we will not list it here. Next we consider c̄(s̄) as a lightlike Cartan
curve. Then the normal plane of c̄(s̄) is a lightlike plane, hence when we consider the generalized
lightlike Bertrand curves, the angle can not be considered directly by the above method, hence we
define it in another way.

Definition 2. Let c(s) and c̄(s̄) be two lightlike Cartan curves in R3
1, when n(s) and n̄(s̄) span a timelike plane,

and satisfy 〈n(s), n̄(s̄)〉 = − cosh θ, then we call c(s) a generalized lightlike Bertrand curve, c̄(s̄) a generalized
lightlike Bertrand mate and (c(s), c̄(s̄) a pair of generalized lightlike Bertrand curves.

Theorem 4. Let (c(s), c̄(s̄) be a pair of generalized lightlike Bertrand curves, then the angle between n(s) and
n̄(s̄) is θ if and only if

− cosh θ| ¨̄c(s)| = 1− 2ητ + η̈ − η̇
〈 ¨̄c,

...
c̄ 〉

2| ¨̄c|2 (s),

where τ(s) is the lightlike curvature of c(s), η̇ = dη
ds , η̈ = d2η

ds2 , ¨̄c = d2c̄
ds2 and

...
c̄ = d3c̄

ds3 .

Proof. As (c(s), c̄(s̄)) is a pair of generalized lightlike Bertrand curves, then

c̄(s̄) = c(s) + η(s)n(s), (20)

where s̄ = s̄(s), differentiating Equation (20) with respect to s, then

t̄
ds̄
ds

(s̄) = [(1− ητ)t + η̇n− ηb](s), (21)

[n̄(
ds̄
ds

)2 + t̄
d2 s̄
ds2 ](s̄) = [(−2η̇τ − ητ̇)t + (1− 2ητ + η̈)n− 2η̇b](s). (22)

Putting Equation (21) in Equation (22), we can get

n̄(
ds̄
ds

)2(s̄) + [(1− ητ)t + η̇n− ηb]
d2 s̄
ds2

ds̄
ds

(s) = [(−2η̇τ − ητ̇)t + (1− 2ητ + η̈)n− 2η̇b](s). (23)

Taking the pseudo inner product with n(s) on both sides of Equation (23), we have

− cosh θ(
ds̄
ds

)2 + η̇
d2 s̄
ds2

ds̄
ds

(s) = (1− 2ητ + η̈)(s). (24)

Let ˙̄c = dc̄
ds = t̄ ds̄

ds , so

¨̄c(s̄) = [n̄(
ds̄
ds

)2 + t̄
d2 s̄
ds2 ](s̄),
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then
〈 ¨̄c(s), ¨̄c(s)〉 = (

ds̄
ds

)4, (25)

hence
(

ds̄
ds

)2 = | ¨̄c(s)|. (26)

Differentiating Equation (25) with respect to s, we get

2〈 ¨̄c(s̄),
...
c̄ (s̄)〉 = 4(

ds̄
ds

)3 · d2 s̄
ds2 ,

therefore
d2 s̄
ds2 =

〈 ¨̄c(s̄),
...
c̄ (s̄)〉

2| ¨̄c(s̄)| 32
, (27)

putting Equations (26) and (27) in Equation (24), we can obtain

− cosh θ| ¨̄c(s̄)| = 1− 2ητ + η̈ − η̇
〈 ¨̄c,

...
c̄ 〉

2| ¨̄c|2 (s). (28)

Conversely, we will prove that if the lightlike curvature τ(s) of the curve c(s) satisfies
Equation (28), then the curve generated by the equation

c̄(s̄) = c(s) + η(s)n(s) (29)

is a generalized lightlike Bertrand mate, where s̄ = s̄(s). And the angle between n(s) and n̄(s̄) is θ in
Equation (28). Differentiating Equation (29) with respect to s, we obtain

t̄
ds̄
ds

(s̄) = [(1− ητ)t + η̇n− ηb](s), (30)

[n̄(
ds̄
ds

)2 + t̄
d2 s̄
ds2 ](s̄) = [(−2η̇τ − ητ̇)t + (1− 2ητ + η̈)n− 2η̇b](s), (31)

putting Equation (30) in Equation (31), we have

n̄(
ds̄
ds

)2(s̄) + [(1− ητ)t + η̇n− ηb]
d2 s̄
ds2

ds̄
ds

(s) = [(−2η̇τ − ητ̇)t + (1− 2ητ + η̈)n− 2η̇b](s). (32)

so

〈n̄(s̄), n(s)〉(ds̄
ds

)2 + η̇(s)
d2 s̄
ds2

ds̄
ds

= (1− 2ητ + η̈)(s). (33)

By the proof of necessity, we can easily obtain Equation (24), then subtract Equations (24) and (33),
and we have

(cosh θ + 〈n̄(s̄), n(s)〉)(ds̄
ds

)2 = 0.

Since
(

ds̄
ds

)2 6= 0,

so
〈n(s), n̄(s̄)〉 = − cosh θ.

This completes the proof.

In [6], Honda and Inoguchi gave the necessary and sufficient condition for a curve to be a lightlike
Bertrand curve.



Mathematics 2020, 8, 2199 9 of 11

Theorem 5. Let c(s) be a lightlike Cartan curve, then c(s) is a lightlike Bertrand curve if and only if its lightlike
curvature τ = 1

η , where η is a non-zero constant (see [6]).

Remark 2. In the Theorem 4, when θ = 0, we have cosh θ = 1. In this case, (c(s), c̄(s̄)) is a pair of lightlike
Bertrand curves, so τ = 1

η is a constant, then the left side of Equation (28) is −1. When (c(s), c̄(s̄)) is a pair of
lightlike Bertrand curves, we have

(
ds̄
ds

)2 = 1,

so
| ¨̄c(s̄)| = 1,

then the right side of Equation (28) is −1. Hence the left is equal to the right of Equation (28), that is when
(c(s), c̄(s̄)) is a pair of lightlike Bertrand curves, the Theorem 4 still holds.

4. The Relationship between a Slant Helix and a Generalized Bertrand Curve in Minkowski 3-Space

Proposition 1. Let c = c(s) : I → R3
1 be a non-lightlike curve, then it is a non-lightlike slant helix if and

only if

ϕ(s) =
−δ(t)δ(d)κ2(δ(n)( τ

κ ))
·

[δ(t)δ(d)(τ2−δ(n)κ2)]
3
2
(s)

is a constant function, where τ2 − δ(n)κ2 6= 0 .

Proposition 2. Let c = c(s) : I → R3
1 be a lightlike Cartan curve, then it is a Cartan slant helix if and only if

ψ(s) = −τ̇

2
√

2|τ|
3
2
(s)

is a constant function (see [21]).

Theorem 6. Let c(s) be a spacelike slant helix with n(s) being spacelike and b(s) being timelike in R3
1, then c(s)

is a generalized Bertrand curve if and only if there exist constants η, µ such that its curvature κ(s) and torsion
τ(s) satisfy

δ(d)ητ̇(s) + η2µM3(s) = [δ(d)κ(s) + ηM2(s)][η2τ2(s)− (1− ηκ(s))2]
1
2 tan θ, (34)

where M2(s) = δ(d)[τ2(s) − κ2(s)], θ is the angle between the prinpical normal lines of the generalized
Bertrand curve and its generalized timelike Bertrand mate.

Proof. As c(s) is a spacelike slant helix in R3
1, by Proposition 1, we obtain c(s) to be a spacelike slant

helix if and only if

ϕ(s) = −δ(d)κ2

[δ(d)(τ2−κ2)]
3
2
( τ

κ )
·(s)

is a constant function.
Let ϕ(s) = µ, µ is a constant, M2(s) = δ(d)[τ2(s)− κ2(s)], then

κ̇(s)τ(s)− κ(s)τ̇(s) =
µM3(s)

δ(d)
, (35)

by Theorem 2, c(s) is a generalized Bertrand curve if and only if

[κ − η(κ2 − τ2)](s) = cos θ
{[κ − η(κ2 − τ2)]2[η2τ2 − (1− ηκ)2] + [ητ̇ − η2(κτ̇ − κ̇τ)]2} 1

2

[η2τ2 − (1− ηκ)2]
1
2

(s),
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Then we can easily obtain that

1 +
[ητ̇ − η2(κτ̇ − κ̇τ)]2

[κ − η(κ2 − τ2)]2[η2τ2 − (1− ηκ)2]
(s) = 1 + tan2 θ. (36)

Since the slant helix is a generalized Bertrand curve, we put Equation (35) in Equation (36),
and we get

δ(d)ητ̇(s) + η2µM3(s) = [δ(d)κ(s) + ηM2(s)][η2τ2(s)− (1− ηκ(s))2]
1
2 tan θ.

Conversely, let c(s) be a spacelike slant helix, its κ(s) and τ(s) satisfy Equation (34),
where M2(s) = δ(d)[τ2(s)− κ2(s)]. Let µ = ϕ(s), then Equation (34) can be write

[κ − η(κ2 − τ2)](s) = cos θ
{[κ − η(κ2 − τ2)]2[η2τ2 − (1− ηκ)2] + [ητ̇ − η2(κτ̇ − κ̇τ)]2} 1

2

[η2τ2 − (1− ηκ)2]
1
2

(s),

hence this slant helix is a generalized Bertrand curve. This completes the proof.

Theorem 7. Let c(s) be a timelike slant helix with n(s) and b(s) being spacelike in R3
1, then c(s) is a generalized

Bertrand curve if and only if there exist constants η, µ such that its curvature κ(s) and torsion τ(s) satisfy

δ(d)ητ̇(s)− η2µM3(s) = [δ(d)κ(s)− ηM2(s)][(1 + ηκ(s))2 − η2τ2(s)]
1
2 tan θ,

where M2(s) = δ(d)[κ2(s) − τ2(s)], θ is the angle between the principal normal lines of the generalized
Bertrand curve and its generalized timelike Bertrand mate.

Theorem 8. Let c(s) be a lightlike slant helix with n(s) being spacelike and b(s) being lightlike, then c(s) is
a generalized lightlike Bertrand curve if and only if there exist constants η, µ such that its lightlike curvature
τ(s) satisfies

4η3µ2|τ|3(s) = (1− ητ(s))(1− 2ητ(s))2 tan2 θ,

where θ is the angle between the principal normal lines of the generalized lightlike Bertrand curve and its
generalized timelike Bertrand mate.

5. Conclusions

In conclusion, we define the generalized Bertrand curve by considering that the principal normal
of one curve falls on the normal plane of another curve, and there is a certain angle between the
principal normal lines of two curves. We obtain sufficient and necessary condition for a curve to
be a generalized Bertrand curve, and a slant helix can become a generalized Bertrand curve when
its curvature and torsion satisfy some conditions. Because of the existence of this angle, our results
are more generalized. Hence, the generalized Bertrand curve defined by us will be widely used in
mathematics and other fields, such as in the field of biochemistry, road edge information extraction
from high-resolution remote sensing images, the method of curve generation in computer aided
geometric design (see [12–18]). With the rapid development of computer technology, this has very
important theoretical and practical significance.
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