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Abstract: Image denoising performs a prominent role in medical image analysis. In many cases,
it can drastically accelerate the diagnostic process by enhancing the perceptual quality of noisy image
samples. However, despite the extensive practicability of medical image denoising, the existing
denoising methods illustrate deficiencies in addressing the diverse range of noise appears in the
multidisciplinary medical images. This study alleviates such challenging denoising task by learning
residual noise from a substantial extent of data samples. Additionally, the proposed method
accelerates the learning process by introducing a novel deep network, where the network architecture
exploits the feature correlation known as the attention mechanism and combines it with spatially
refine residual features. The experimental results illustrate that the proposed method can outperform
the existing works by a substantial margin in both quantitative and qualitative comparisons. Also,
the proposed method can handle real-world image noise and can improve the performance of
different medical image analysis tasks without producing any visually disturbing artefacts.

Keywords: medical image denosing; dynamic residual attention network; dynamic convolution;
noise gate; residual learning; deep learning

1. Introduction

Medical image denoising (MID) perceive as a process of improving the perceptual quality of
degraded noisy images captured with specialized medical image acquisition devices. Regrettably,
such imaging devices are susceptible to capture noise despite the altitude in imaging technologies [1].
However, the presence of noise in the images has a starling impact on medical image analysis as well
as can convolute the decision making maneuver of an expert [1–3]. Hence, denoising has considered a
classical yet strenuous medical image analysis task.

Typically, the MID applications examine image noise in the form of Gaussian distribution [2].
Which essentially depends on capturing conditions as well as the hardware configuration of the
capturing devices [4]. Therefore, such sensor noise in MID remains blind-fold and substantially varies
depending on image retrieval techniques (i.e., images capture with radiological devices employs a
distinct noise factor comparing to microscopic modalities) [5]. In contrast, medical image analysis
has to leverage multidisciplinary modalities in the visualization process of biological molecules for
treatment purposes [6]. As a consequence, a large and diverse scale of MID is a relatively challenging
task than a conventional image denoising method.

In the recent past, a substantial push has obtained in MID by introducing novel approaches
such as non-local self-similarity (NSS) [7], sparse coding [8], filter-based methods [9–11], etc. Also,
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considering the massive success in various vision tasks, many recent studies [12–15] have appropriated
deep learning as a viable alternative to the aforementioned MID methods. However, most of these
recent studies have focused on an inadequate range of noise deviations as well as a narrow range of
data diversity rather than striving to generalize their methods for multidisciplinary modalities. As a
consequence, existing MID methods illustrate deficiencies in large-scale noise removal from medical
images and immensely fail in numerous cases, as shown in Figure 1.

Figure 1. Performance of existing medical image denoising methods in removing image noise.
The existing denoising methods immensely failed in addressing a substantial amount of noise removal
and susceptible to produce artefacts. (a) Noisy input. (b) Result obtained by BM3D [11]. (c) Result
obtained by DnCNN [16]. (d) Result obtained by Residual MID [12]. (e) Result obtained by DRAN
(proposed). (f) Reference sharp image. Source by: (https://www.kaggle.com/mateuszbuda/lgg-mri-
segmentation).

To alleviate the deficiencies of existing works, this study proposes a novel denoising method
to learn the blind-fold residual noise from a convex set of medical images. Additionally, This study
introduces a deep network for MID applications, which utilizes the feature correlation known as
the attention mechanism [17–20] and combines it with refined residual learning [21,22] to illustrate
supremacy over existing methods. Here, the attention mechanism leverage in such a manner that
it can utilize the depth-wise feature correlation to aggregate a dynamic kernel throughout the
convolution operation [23]. Also, this study proposes to refine the residual learning by using a
spatial gating mechanism denoted as noise gate [19,20], which learns to control the low-level features
propagation towards the top layers. To the best concern, this is the first work in the open literature,
which comprehensively combines the feature correlation and refine the residual feature propagation,
particularly for the MID applications. This study denotes the proposed deep model as a dynamic
residual attention network (DRAN) in the rest of the sections. The feasibility of the proposed method
has verified with real-world noisy medical images and fusing it with different medical image analysis
tasks. The main contribution of the proposed method has summarized as follows:

• Large-scale denoising: Introduces a novel method for learning multidisciplinary medical image
denoising through a single deep network. Thus, large-scale noise can be handle without
illustrating any artefacts.

https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
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• Dynamic residual attention network: Proposes a novel deep network that combines feature
correlation and refines the residual feature propagation for MID. The model intended to accelerate
the denoising performance in a diverse dataset by recovering details. Code available: https:
//github.com/sharif-apu/MID-DRAN

• Dense experiments: Conducts dense experiments with a substantial amount of data samples.
Therefore, the feasibility of the proposed method can identify in a diverse range of noisy images.

• Real-world applications: Illustrates the denoising performance on noisy medical images,
which are collected by employing actual hardware. Also, the proposed method has combined
with different medical image analysis tasks to reveal the practicability in real-world applications.

The rest of the paper is structured such that Section 2 reviews the related works, Section 3 details
the proposed method, Section 4 compare and analyse the experimental results, and Section 5 concludes
this work.

2. Related Works

This section briefly reviews the works, which are related to the proposed method.

2.1. Medical Image Denoising

A substantial amount of novel methods have been proposed in the recent past. According to
their optimization strategies, the MID works can be divided into two major categories: (i) Classical
approaches and (ii) Learning-based approaches.

Classical approaches: The filter-based denoising method has dominated the classical medical
image denoising for a long while. Most of the recent filter-based works focused on developing a
low-pass filter, where the filter aims to eliminates precipitate peaks from a noisy image based on the
local estimation [1]. Amongst the numerous variants of filter-based approaches, Gaussian averaging
filters [24], median filters [25], mean filters [26], diffusion filters [27] are used widely for removing noise
from specific types of medical imaging modalities such as ultrasound images , magnetic resonance
images (MRI), computed tomography (CT) images, etc [25–28]. Despite the widespread usage of such
filter-based techniques, such methods tend to smooth the given images while removing the noise.

Many recent works extended the MID by leveraging adaptive filters to address the deficiencies
of previously mentioned static filter-based approaches. In these works, the authors emphasized to
estimate weighted coefficients of an image by employing the statistical properties. The non-local
denoising method, like Block Matching 3D (BM3D) [11], is one of the perfect examples of adaptive filter
based techniques. Similarly, non-local means filters-based methods [29,30] for MR image denoising,
Optimised Bayesian Non Local Mean (OBNLM) [31] and modified non local-based (MNL) [32]
for ultrasound image denoising, bio-inspired bilateral filter [10] for CT image denoising are also
representative of the adaptive filter-based techniques. However, such adaptive filter-based denoising
methods are computationally expensive and unable to accommodate real-time results.

Another well-known classical MID genre is known to be multi-scale analysis based methods [33–35],
where the representative techniques intended to process the noisy images in different image resolutions.
In recent times, a notable amount of work exploited such denoising techniques and utilized the
time-frequency analysis [1]. Nevertheless, in numerous cases, multi-scale medical image denoising
illustrates deficiencies in specifying the distribution of noisy inputs in different scales. The drawbacks
of the multi-scale methods have been addressed with nonlinear estimators [36] by a part. However,
the performance of this classical image denoising category is still far away from the expectations.

Learning Based Methods:The learning-based image denoising method has started to draw
attention in the MID domain very lately. In recent work, a feedforward autoencoder [13] has used to
learn medical image denoising. However, the later study [12] on MID took the inspiration from [16]
and improved the performance of their method by using residual learning. In exception, another study
on MID [14] practiced a distinctive network designing strategy and used a genetic algorithm (GA) to

https://github.com/sharif-apu/MID-DRAN
https://github.com/sharif-apu/MID-DRAN
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search the hyperparameter of their deep network. Despite the satisfactory performance in specific
noise levels as well as on specific datasets, none of the existing works generalize their method for
multidisciplinary modalities.

2.2. Attention Guided Learning

The concept of attention mechanism has been taken from the human visual system. In deep
learning, the attention mechanism has first introduced in the natural language processing domain
for adaptively focuses on salient areas of a given input. By considering that approach of adaptive
feature correlation is a success, many vision works quickly adopted similar concepts in computer
vision applications such as super-resolution [37], in-painting [20], deblurring [38], etc. Among the
recent works, a non-local spatial attention [39] formulated for video classification. Also, utilization
of channel-wise interdependencies to obtain a significant performance gain over existing image
classification methods [17].

In recent time, a few novel works leverage the residual learning along with the attention
mechanisms. In [40], authors stacked attention modules in the feed-forward structure and combined
with residual connections to train very-deep network to outperform their counterparts. Later, Ref. [41]
also exploited similar residual-attention strategy in multi-scale network structure with static
convolution operation to improve the accuracy of a classification task. Apart from being used in
classification tasks, residual attention strategies has also illustrated a substantial push in image
super-resolution. In recent work, Refs. [42,43] utilized feature attention after convolutional layers in
a sequential manner to perform image super-resolution. In a later study, Ref. [44] combined spatial
and temporal feature attention with residual connection after the convolutional operation to accelerate
muli-image super-resolution.

Despite the success of residual-attention strategies in different computer vision tasks,
the contemporary residual-attention approaches are suffering two-fold limitations. Firstly, existing
residual-attention methods utilize the attention mechanism with static convolutional operation in
a sequential manner. However, such stacked architecture tends to make the network designing
relatively deeper and can introduce a tendency of suffering from vanishing gradient along with a
larger number of trainable parameters [23]. Secondly, most of the existing DRAN utilized simple
skip connections to accelerate residual learning. Notably, such straightforward skip connections
can backfire the denoising by propagating unpruned low-level features. This study addresses the
limitation of existing residual-attention strategies by incorporating attention-guided dynamic kernel
convolutional operation known as dynamic convolution. Also, this study proposes to accelerate the
residual learning by utilizing a noise gate. Which essentially aims to prune the low-level features
spatial getting mechanism.

Table 1 shows a concise comparison between different methods. Here, each category has been
reviewed by distinguishing strengths and weaknesses.
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Table 1. A brief comparison between existing works and the proposed work.

Category Methods Strength Weakness

Medical Image
Denoising

Conventional
Approaches

Use static/adaptive filters based
optimization

• Do not require to learn from
training data
• can handle a smaller range of noise

• Produce smooth images (loss details)
• Required complex optimization with higher
complexity

Learning-based
Approaches

Use convex set of training data for
learning denoising

• Illustrate better details recovery
• End-to-end solution

• Failed to generalize divere range of noise
• Do not exploits feature correlation

Attention Guided Learning Spatial/global feature correlation to
focus on important information

• Utilize feature correlation in deep
networks
• Can improve deep network
performance drastically

• Utilize static kernel and attention mechanism
sequentially
• Do not exploits spatial getting to accelerate
residual learning

Learning medical image
denoising exploiting
attention mechanism
(proposed)

Learns from
multidisciplinary
medical image
modalities

• Combine dynamic kernel along with
spatial gating.
• Can handle diverse range of noise.
• Can handle real and synthesized data

Learns from simulated data.
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3. Proposed Method

This study presents a novel denoising method for addressing medical images denoising by
learning from large-scale data samples. This section details the methodology of the proposed work.

3.1. Network Design

The proposed method intended to recover the clean image c from a given noisy medical image v
by learning residual noisy image n through the mapping function F : v→ n. Hence, learning denoising
for medical images can be derived for this study as follows:

c = v− n (1)

As Figure 2 shows, the proposed network is presented as an end-to-end convolutional neural
network (CNN) [45]. Where the network utilized traditional convolutional operation for input and
output as well as a novel dynamic residual attention block (DRAB) as the backbone of the main
network. The input layer takes an normalized noisy image v ∈ [0, 1]M×N×3 and generate a normalized
residual noise [16] extracted from the input as n ∈ [0, 1]M×N×3. Here, M and N represents the height
and width of the input as well as the output of the proposed DRAN.

Figure 2. The overview of proposed network architecture. The proposed network incorporates novel
dynamic residual attention blocks, which utilizes dynamic convolution and a noise gate. Also, the
network leverage the residual learning along with the learning feature correlation.

3.1.1. Dynamic Residual Attention Block

The proposed dynamic residual attention block (DRAB) comprises a l = 5 number of dynamic
convolution [23] layers stacked consecutively. Here, the dynamic convolutional were aims to improve
the performance of traditional convolution by aggregating a d ∈ Z number of dynamic kernels
(each with equal dimensions) by an attention mechanism [17]. Therefore, a static convolution yc =

ψ(WTx + b) comprises of a weight matrix W, a bias term b, and activated with g(.) was replaced with
{W̃T

k x + b̃}. The aggregation of k ∈ Z number of linear function was obtained as:

y = ψ
(
W̃T

k (x)x + b̃(x)
)

(2)

ψ(.) exploited as a ReLU activation and can be expressed as ψ(x) = max(0, x) .

W̃(x) =
K

∑
k=1

πk(x)W̃k, b̃(x) =
K

∑
k=1

πk(x)b̃k (3)

πk(x) presents the attention mechanism, which has aggregated over the linear models {W̃T
k x + b̃} for

a given input x. Where the attention weights of πk(x) has obtained through a global feature descriptor
by applying a global average pooling [17,37]. Where depth-wise squeezed descriptors z ∈ RC of an
input feature map can be calculated as:
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zc =
1

M× N

M

∑
i=1

N

∑
j=1

xc(i, j) (4)

Here, zc, H ×W, and x present the global average pooling, spatial dimension, and input
feature map.

The aggregated global dependencies through the gating mechanism applied as follows:

WA = τ(WE(ψ(WS(z)))) (5)

Here, σ present the sigmoid activation as τ(x) = 1
1+e−x and δ ReLU activation as ψ(x) = max(0, x),

which were applied after WE and WS convolutional operations.
The final depth attention map achieved by rescaling the feature map as follows:

x̂c = WA.x (6)

To perceive a faster convergence, each dynamic convolutional layer used in this paper normalized
with a batch normalization function [46] as follows:

xb = γb
xb − E(xb)√

Var[xb]
+ ηb (7)

where, E(xb) and Var[xb] denote the expectation of input xb and its variance, while γb and ηb denote
the learnable parameters which intended to improve the model performance.

Apart from the dynamic convolution layers, the proposed network also intended to leverage the
residual learning through the skip connection [21]. However, in the denoising, the skip connection can
backfire by delivering the lower-level superfluous features towards the top levels. Therefore, this study
leverage a spatial attention mechanism [19,20] denoted as a noise gate, which controls the propagation
of trivial features by learning spatial feature correlation. The noise gating mechanism has obtained
as follows:

Gm,n =
H

∑
m=1

W

∑
n=1

Wg.I (8)

Fm,n =
H

∑
m=1

W

∑
n=1

W f .I (9)

Om,n = φ(Gm,n)� τ(Fm,n) (10)

φ and τ presents the LeakyReLU and sigmoid activation functions as φ(x) = (0.1x, x) and τ(x) =
1

1+e−x . Wg and W f represents convolutional operations.

3.1.2. Optimization

For a given the training set {vt, nt}P
t=1 consisting of P pairs of images, the proposed DRAN learns

to parameterized weights WR and intended to minimize the objective function as:

W∗ = arg min
W

1
P

P

∑
t=1
L(F(vt), nt) (11)

Here, L denotes a pixel-wise loss, which can be calculated in the euclidean space as a form of L1
or an L2-norm [47]. However, due to the direct relation with PSNR values, the L2-norm is susceptible
to produce smoother images [48]. As a consequence, this study employs an L1 norm as an objective
function, which can be derived as follows:
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L =‖ nr − ng ‖1 (12)

Here, nr and ng represent the output obtain through F(v) and simulated reference noise.

3.2. Data Preparation

Data preparation plays a crucial role in learning-based denoising methods [49]. For training
purposes, it is mandatory to obtain a sufficient amount of data samples. Therefore, this study
has collected a substantial amount of medical images capture through different modalities. Also,
the collected data samples have processed (i.e., adding noise for training purposes) carefully for
further study.

3.2.1. Data Collection

It always remains a challenging task in medical image analysis to collect a diverse range of data
samples [13,50]. Also, none of the existing datasets offers a collection of images accumulated by
different medical imaging technologies. However, to generalize the performance of any deep method
on a spacious data space, a substantial amount of training data samples is mandatory [51]. To address
this contradictory condition, this study collected enormous image samples from different sources and
divided them into three categories. Brief detail about each data category described below:

• Radiology: This category comprises the microscopic images collected from of four different
modalities, including X-ray [52], MRI [53], CT scans [54] , and ultrasound [55] images.

• Microscopy: This category includes microscopic images collected by histopathologic scan [56]
and protein atlas scans [57].

• Dermatology: This category contains dermatoscopic images collected by different image
acquisition methods [58].

A total of 711,223 medical images were collected by this study. Where 585,198 samples were
used for model training and the rest of the 20 percent data used for performance evaluation. Figure 3
illustrates the sample images from each category.
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Figure 3. Image samples from different medical image modalities. This study categorized medical
images into three different categories to generalize the learning process. (a) Image samples of radiology.
Source by: (https://stanfordmlgroup.github.io/competitions/chexpert/, https://www.kaggle.com/
c/covid-segmentation, https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation, https://www.
kaggle.com/c/ultrasound-nerve-segmentation.) (b) Image samples of microscopy. Source by: (https://
www.kaggle.com/c/histopathologic-cancer-detection, https://www.kaggle.com/c/human-protein-
atlas-image-classification). (c) Image samples of dermatology. Source by: (https://www.kaggle.com/
kmader/skin-cancer-mnist-ham10000).

3.2.2. Noise Modeling

Despite having a significant number of sample images, the collected dataset does not provide
a training pair of reference and noise-contaminated input images. Therefore, reference-noisy image
pairs have to be formulated by contaminating artificial noise. Here, a uniform noisy-image ns has
generated from a given noise-free image c as:

ns ∼ N (c|µ, σ2) (13)

µ and σ2 represent the mean and the variance of a Gaussian distribution (N ). This Gaussian noise
added to the given clean-image c. The final noisy-image formed as:

vs = c + ns (14)

Figure 4 illustrate the sample of noisy-clean image pair along with the corresponding
noise (generated).

https://stanfordmlgroup.github.io/competitions/chexpert/
https://www.kaggle.com/c/covid-segmentation
https://www.kaggle.com/c/covid-segmentation
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/histopathologic-cancer-detection
https://www.kaggle.com/c/histopathologic-cancer-detection
https://www.kaggle.com/c/human-protein-atlas-image-classification
https://www.kaggle.com/c/human-protein-atlas-image-classification
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
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Figure 4. Example of the noise modeling process. (a) Input clean image. (b) Generated
noise. (c) Generated noisy image. Source by: (https://www.kaggle.com/mateuszbuda/lgg-mri-
segmentation).

3.3. Implementation Details

The proposed DRAN was designed as an end-to-end convolution network and implemented
using the PyTorch framework [59]. This study utilized three consecutive DRABs for making a trade-off
between performance and trainable parameters. Each layer of DRAB comprises a depth size of 64,
a kernel size of 3, a padding size of 1, and a stride size of 1. Thus, the network can keep the output
dimension identical to the input. Also, the network was optimized with an Adam optimizer [60] with
β1 = 0.9, β2 = 0.99, and learning rate = 1e-4. The network trained on resized images with dimensions
of 128× 128× 3 and contaminated with random noise (σ ∈ [0, 50]). The training process carried for
100,000 steps while keeping a batch size of 24. All experiments conducted on hardware incorporates an
AMD Ryzen 3200G central processing unit (CPU) clocked at 3.60 GHz and a random-access memory
of 16 GB. Also, an Nvidia Geforce GTX 1060 (6GB) graphical processing unit (GPU) was exploited to
accelerate the training process.

4. Result and Analysis

The performance of the proposed method has been studied and compared with state-of-the-art
denoising methods. Also, the feasibility of the proposed method in different medical image analysis
tasks has verified with sophisticated experiments.

4.1. Comparison with State-of-the-Art Methods

In this study, three existing works have been selected for the comparison. These methods are:
(i) BM3D [11], (ii) DnCNN [16], and (iii) Residual MID [12]. DnCNN [16] and Residual MID [12] both
utilized residual learning for image denoising, while BM3D [11] is known to be one of the pioneers of
the image denoising works. It worth noting, none of these works have been developed for addressing
a diverse range of noise removal from medical images as intended in this work. Nevertheless, to make
the comparison as fair as possible, both learning-based methods [12,16] have been trained and tested
with the hyperparameters suggested in the actual implementations. Additionally, each model trained
for 4∼5 days until they converge with the collected dataset mentioned in Section 3.2. Oppositely,
the optimization-based method [11] studied for the comparison does not require any additional
training similar to its counterparts. Subsequently, this study used the official implementation publicly
available for the fair comparison.

4.1.1. Quantitative Comparison

This study incorporates a distinct evaluation strategy to study the feasibility of the compared
denoising method in different noisy environments using two widely-used image assessment
matrices: peak-signal-to-noise ratio (PSNR) [61] and structural-similarity-index metrics (SSIM) [62].

https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
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Such evaluation metrics meant to evaluate the reconstructed image quality by comparing it with
the reference image, similar to the human visual system. Therefore, the higher value of such metric
indicates the better performance of the target method [2,63]. Notably, this work leverage the PSNR
metrics to calculate the noise ratio between reference and denoised image, while SSIM intends to
evaluate the structural similarity, luminance, and contrast distortions. Overall, the performance of MID
methods has summarized with the mean scores obtained from the evaluation metrics over individual
categories as well as different noise deviations. Table 2 shows the quantitative comparison between
different denoising methods for medical images.

Table 2. Quantitative comparison between different medical image denoising methods. Results are
obtained by calculating the mean on two evaluation metrics. In all comparing categories, the proposed
method illustrates the consistency and outperforms the existing denoising methods.

Model σ
Microscopy Radiology Dermetology

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

BM3D

10

28.19 0.6670 30.29 0.8569 27.04 0.8489
Residual MID 36.93 0.8769 36.50 0.9113 36.18 0.8851
DnCNN 35.26 0.8119 35.09 0.8694 35.00 0.8568
DRAN (proposed) 39.36 0.9735 41.20 0.9706 40.79 0.9481

BM3D

25

25.02 0.5042 29.49 0.7321 23.41 0.6865
Residual MID 29.23 0.8518 30.00 0.7850 30.72 0.7888
DnCNN 26.70 0.7976 30.63 0.8332 30.69 0.7829
DRAN (proposed) 29.98 0.8993 36.69 0.9159 34.42 0.8194

BM3D

50

20.14 0.4248 21.88 0.6176 18.92 0.5457
Residual MID 21.65 0.5652 22.74 0.5928 23.72 0.5386
DnCNN 21.49 0.5046 24.20 0.6048 24.49 0.5208
DRAN (proposed) 28.06 0.8198 34.45 0.8864 32.53 0.7451

As the Table 2 depicts, the proposed method outperforms the existing MID methods by a
distinguished margin in all compared combinations. Most notably, depending on the noise deviations,
the proposed method can exceed its counterpart on the dermatology images by up to 13.75 dB
in the PSNR metric and 0.0992 in the SSIM metric. Similarly, it is illustrated the supremacy over
existing denoising methods by up to 10.91 dB in PSNR metric and 0.1137 in the SSIM metric on
radiology images as well as 11.17 dB in PSNR metric and 0.3065 in SSIM metric on microscopy images.
It worth noting the increment of noise in the images can deteriorate the performance of MID methods.
However, the proposed method illustrates it’s consistency in all categories. Overall, the Table 2 reveals
a new dimension of multidisciplinary MID. Also, it demonstrates the practicability of a sophisticated
denoising method for medical image analysis.

4.1.2. Qualitative Comparison

Qualitative evaluation plays an important role in medical image analysis [1,64]. Therefore,
this study focused on qualitative comparison along with quantitative comparisons. Figures 5–7
illustrates the visual comparison between the proposed method and existing MID methods.
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Figure 5. Qualitative comparison of radiology image denoising at σ = 50. The proposed method illustrates
significant improvement over the existing denoising method by improving perceptual image quality.
(a) Noisy input. (b) Result obtained by BM3D [11]. (c) Result obtained by DnCNN [16]. (d) Result obtained
by Residual MID [12]. (e) Result obtained by DRAN (proposed). (f) Reference sharp image. Source by:
(https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation).

Figure 6. Qualitative comparison of microscopy image denoising at σ = 50. The proposed method
illustrates significant improvement over the existing denoising method by improving perceptual image
quality. (a) Noisy input. (b) Result obtained by BM3D [11]. (c) Result obtained by DnCNN [16]. (d) Result
obtained by Residual MID [12]. (e) Result obtained by DRAN (proposed). (f) Reference sharp image.
Source by: (https://www.kaggle.com/c/human-protein-atlas-image-classification).

https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
https://www.kaggle.com/c/human-protein-atlas-image-classification
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Figure 7. Qualitative comparison of dermatology image denoising at σ = 50. The proposed method
illustrates significant improvement over the existing denoising method by improving perceptual image
quality. (a) Noisy input. (b) Result obtained by BM3D [11]. (c) Result obtained by DnCNN [16].
(d) Result obtained by Residual MID [12]. (e) Result obtained by DRAN (proposed). (f) Reference
sharp image. Source by: (https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000).

As can be seen, the proposed method is proficient in improving the perceptual quality of degraded
noisy images dramatically. It can remove a substantial amount of noise while maintaining the details
of a degraded input image. Most notably, the method shows its consistency over the existing MID
techniques in all image categories without producing any visually disturbing artefacts.

4.2. Real-World Noise Removal

In the real-world scenario, the noise that appeared in the medical images can differ from the
synthesized data. Therefore, to push the MID a furthermore, the feasibility of the proposed method
has been studied with real-world noisy medical images. As Figure 8 illustrates, the proposed method
can notoriously handle the real-world noise and substantially improve the perceptual image quality of
noisy medical images by removing blind-fold noise.

4.3. Applications

A sophisticated denoising method can drastically accelerate the performance of computer-aided
detection (CAD) and medical image analysis tasks by improving the perceptual quality of target
images. To study further, the propose DRAN has combined with existing state-of-the-art medical
image analysis methods to investigate the consequences.

4.3.1. Abnormalities Detection

Computer-aided detection has obtained momentum in medical image analysis by observing
the oversights of given images [65,66]. However, the presence of sensor noise in a given image can
misguide the detection system, as shown in Figure 9. Here, the effect of image noise has studied over
tumour detection and localization on brain MRIs using state-of-the-art Mask R-CNN [67]. It can be
apparent that even the well-known learning-based method struggle in localizing the abnormalities
on a noisy image. Contrarily, the addition of proposed DRAN drastically improve the localization
performance of the respective detection method by performing denoising.

https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
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Figure 8. Performance of the proposed method in removing noise from real-world medical images.
The proposed method can handle real-world noise without producing any visually disturbing artefacts.
In each pair, left: Noisy input, Right: Denoised image (obtained by DRAN). Source by: (https://www.
kaggle.com/mateuszbuda/lgg-mri-segmentation).

Figure 9. Tumour detection on brain MRI image. The green box indicates the ground truth region,
while the red box indicates the detected area. The proposed DRAN can improve the localization
performance of the detection method to localize the abnormalities by removing the noise present
in the target image. (a) Noisy image. (b) Noisy image + Mask R-CNN [67]. (c) Denoised image
obtained with DRAN + Mask R-CNN [67]. (d) Reference clean image + Mask R-CNN [67]. Source by:
(https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation).

4.3.2. Medical Image Segmentation

The image noise can also startlingly effect the medical image segmentation process similar to the
detection methods, as shown in Figure 10. Here, segmentation has performed on brain MRIs using
well-known U-Net architecture [68]. It has observed that image noise make the segmentation process
substantially unsatisfactory. However, a sophisticated MID method like the proposed DRAN can assist
the segmentation method by mitigating image noise.

4.4. Network Analysis

Despite being deeper, the proposed network comprises 2,458,944 parameters. It worth noting,
the number of parameters can be altered by substituting the number of DRABs. The reduction of
blocks can also deteriorate the performance of the proposed network while reducing inference time.
However, for any quantity of DRABs, the proposed denoising network can take any dimension of
images for the inference.

https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
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The DRAB also has a significant impact on the learning processes. Expressly, the noise gate
introduced in the DRAB plays a crucial role in the network stability. Figure 11 illustrates the impact of
the noise gate on the training phase. Notably, the noise gate allowed the proposed DRAN to perceive a
faster convergence even with a very complex set of medical images.

Figure 10. Segmentation on brain MRI image. The green and red outline indicate the ground truth
and the segmented area. The proposed DRAN can drastically improve the segmentation performance
by excluding the noise present in the target image. (a) Noisy image. (b) Noisy image + U-Net [68].
(c) Denoised image obtained with DRAN + U-Net [68]. (d) Reference clean image + U-Net [68]. Source
by:( https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation.)

Figure 11. Graph of training loss. It is visible that the noise gate used in DRAB illustrates far more
training stability. Also, it helps the proposed method to encounter faster convergence time.

Apart from the training stability, the noise gate also has a clear impact on the performance gain.
Table 3 demonstrates that the noise gate improves the performance of the proposed DRAN drastically
among all medical image categories. Here, the performance metrics calculated by exploiting random
noise. Both models have evaluated the same noisy images during their training phases. Also, the
evaluation has repeated over every 5000 steps for consistency.

Table 3. Impact of noise gate in network performance. It can be seen that the noise gate drastically
improves the performance of the proposed method compared to its counterpart.

Gating Mechanism
Microscopy Radiology Dermetology

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Without Noise Gate 30.57 0.8048 28.70 0.74295 28.05545 0.6416
With Noise Gate 39.35 0.9614 39.08 0.9482 36.82 0.8911

https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
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4.5. Discussion

Despite the extensive experiments, it is undeniable that the proposed study encounters a few
limitations. Contrastly, the experimental results of this study reveals a dimension of medical image
denoising an apart.

Similar to the existing works, one of the limitations of this study identified as lacking real-world
training data. Although the data samples used in this study are synthesized with artificial noise,
nonetheless, in numerous instances, the simulated data can differ from the real world noise. Also,
due to the lacking of reference images, the quantitative performance of the proposed method remains
underexplored, particularly on real-world noisy medical images.

The limitation and observation perceive through the proposed study reveal an interesting future
dimension of MID methods. Despite the sophisticated preprocessing, it has found that the reference
images can contain noise. Therefore, it would be interesting to extend this work in an unsupervised
manner. Also, for the generalization, the proposed study conducted all testing and training on
three-channel RGB images. However, depending on the application, the proposed DRAN can be
optimized by incorporating a single-channel dataset. In the foreseeable future, it has planned to study
the feasibility of the proposed study in one channel data as well as by exploiting unsupervised learning.

5. Conclusions

This work presented a novel end-to-end learning-based denoising method for medical image
analysis. Additionally, it has illustrated that MID can be generalized by utilizing large-scale
multidisciplinary images rather than learning from a small range of homogeneous data samples.
The proposed method also incorporates a novel deep network, which combines the attention
mechanism and spatially-refine residual learning in a feed-forward manner. Notably, such a
comprehensive learning strategy allowed this study in drastically improving the denoising
performance, particularly for medical images. The experimental results illustrate that the proposed
method can outperform the existing works by a distinguishable margin while maintaining details.
Also, the practicability of the proposed denoising method has explicitly inspected by employing
sophisticated experiments. It has planned to extend the proposed method by exploiting unsupervised
learning in the foreseeable future.
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