
mathematics

Article

Partial Key Attack Given MSBs of CRT-RSA
Private Keys

Amir Hamzah Abd Ghafar 1,2 , Muhammad Rezal Kamel Ariffin 1,2,* , Sharifah Md Yasin 1,3

and Siti Hasana Sapar 1,2

1 Institute for Mathematical Research, Universiti Putra Malaysia (UPM),
Serdang 43400, Selangor Darul Ehsan, Malaysia; amir_hamzah@upm.edu.my (A.H.A.G.);
ifah@upm.edu.my (S.M.Y.); sitihas@upm.edu.my (S.H.S.)

2 Department of Mathematics, Faculty of Science, Universiti Putra Malaysia (UPM),
Serdang 43400, Selangor Darul Ehsan, Malaysia

3 Department of Computer Science, Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia (UPM), Serdang 43400, Selangor Darul Ehsan, Malaysia

* Correspondence: rezal@upm.edu.my

Received: 27 October 2020; Accepted: 22 November 2020; Published: 9 December 2020
����������
�������

Abstract: The CRT-RSA cryptosystem is the most widely adopted RSA variant in digital applications.
It exploits the properties of the Chinese remainder theorem (CRT) to elegantly reduce the size of the
private keys. This significantly increases the efficiency of the RSA decryption algorithm. Nevertheless,
an attack on RSA may also be applied to this RSA variant. One of the attacks is called partially known
private key attack, that relies on the assumption that the adversary has knowledge of partial bits
regarding RSA private keys. In this paper, we mount this type of attack on CRT-RSA. By using partial
most significant bits (MSBs) of one of the RSA primes, p or q and its corresponding private exponent,
d, we obtain an RSA intermediate. The intermediate is derived from p− 1 and RSA public key, e.
The analytical and novel reason on the success of our attack is that once the adversary has obtained
the parameters: approximation of private exponent d̃p, approximation of p, p̃ and the public exponent

e where d̃p, p̃, e = Nα/2 where 0 < α ≤ 1/4 such that |dp − d̃p|, |p− p̃| < N
1−α

2 and has determined

the largest prime of
⌊

p−1
e

⌋
, it will enable the adversary to factor the RSA modulus N = pq. Although

the parameter space to find the prime factor is large, we show that one can adjust its “success appetite”
by applying prime-counting function properties. By comparing our method with contemporary
partial key attacks on CRT-RSA, upon determining a suitable predetermined “success appetite” value,
we found out that our method required fewer bits of the private keys in order to factor N.

Keywords: CRT-RSA cryptosystem; cryptanalysis; partial-key exposure attack; prime counting
function; Dickman’s function

1. Introduction

RSA algorithm is known as one of the earliest public-key cryptosystems, introduced in 1977 [1].
However, its practical applications multiply in numbers with the coming of the digital age that requires
swift key transportation mechanism to establish secure communication, either by encrypting a key or
verifying a digital certificate. To ensure the encryption (or signing) and decryption (or verification) of
RSA works, an RSA modulus N = pq is introduced where p 6= q and p < q < 2p. To encrypt or sign,
an RSA public exponent, e is required such that it satisfies gcd(e, φ(N)) = 1 where φ(N) is Euler’s
totient function. To decrypt or verify, an RSA private exponent, d is required such that it satisfies the
RSA key equation,

ed ≡ 1 (mod φ(N)).

Mathematics 2020, 8, 2188; doi:10.3390/math8122188 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-3293-1160
https://orcid.org/0000-0001-5000-354X
https://orcid.org/0000-0002-4748-0844
https://orcid.org/0000-0002-0060-482X
http://www.mdpi.com/2227-7390/8/12/2188?type=check_update&version=1
http://dx.doi.org/10.3390/math8122188
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 2188 2 of 20

One of the hard mathematical problems that become the sources of security for RSA is embedded
in N and called an integer factorization problem. Since p and q are very large n-bit primes
(typically n = 1024), the best current algorithm to factor N is still running in sub-exponential times
using a method called general number field sieve [2]. Therefore, no modern computers yet can threaten
the security of RSA.

As RSA algorithms need to be flexible and meet the demands of their applications, a lot of RSA
variants have been introduced over the years. In this paper, we focus on a variant of RSA called
Chinese remainder theorem (CRT) RSA cryptosystem [3]. This variant applies the result from the
Chinese remainder theorem by utilizing two private exponents, dp and dq, instead of a single private
exponent in standard RSA. These private exponents are derived from the original d with respect to
its corresponding RSA primes, p and q. The addition in numbers of private exponents in CRT-RSA
may require additional modular exponentiations, but the computations in CRT-RSA are significantly
faster compared to the computations in standard RSA, since dp and dq are significantly smaller in size
compared to the original d [4]. Due to this speed up, CRT-RSA is ubiquitous in many cryptographic
implementations today.

For the past attacks on RSA and its variants to be successful, an adversary needs to gain certain
advantages. One of the advantages is that the adversary knows partial bits of RSA private parameters,
d and p and/or q. The bits may be derived from their most significant bits (MSBs) or least significant
bits (LSBs). This assumption is realistic since there is a method called side-channel attacks that is
helpful to retrieve certain bits of parameters from cryptographic devices [5].

Using the partially known bits, an adversary can conduct an attack called partial key exposure
attack. This kind of attack initially was executed on a standard RSA cryptosystem by [6], where they
showed that 2/3 bits of p or q are required to factor N using an integer programming technique.
Then, Ref. [7] reduced the required value of bits to 1/2 using the LLL algorithm. This method
utilizes a lattice-based approach to find the small solution of polynomials modulo N that consequently
results in the factorization of N. It then proliferated other partial key exposure attacks on standard
RSA cryptosystem [8–10]. For the collection of this type of attack on standard RSA cryptosystem,
refer to [11].

In 2003, Ref. [12] showed that partial key exposure attack can also be conducted on CRT-RSA.
Given an approximation dp, called d̃p, that has half of the MSBs of dp, they showed that factorization
of N can be solved easily. Particularly, dp satisfies edp ≡ 1 (mod p − 1) within the CRT-RSA key
equation, and given d̃p such that |dp − d̃p| < N1/4−α for some α that satisfy e = Nα < N1/4 where e is
the public exponent of CRT-RSA, then N can be factored in polynomial time. It then can be generalized
to |dp − d̃p| < N1/4 if e is very small, which occurs greatly in most implementations. This result
utilized an approach using lattice-based approximation which has been extended in [13–15].

Another method of attacking CRT-RSA is using a key reconstruction algorithm by [16].
The method is motivated by the capability of a newly introduced side-channel attack called cold
boot attacks [17]. It systematically constructs bits of RSA private keys namely RSA private exponent
and RSA primes from any random bit positions as its initial point. The method only requires at least
0.27 bits from any bit position of p, q, d, dp, dq. If this condition is fulfilled, then the adversary can
solve the factorization of N in polynomial time using the lattice-based method. In more recent work,
Ref. [18] proposed an improvement of past attacks by showing an attack that requires less amount of
leaked MSBs for all e < N0.375. The attack can be conducted by selecting better lattice constructions of
the underlying polynomials created from the obtained partial information.

Our contribution. We take a novel approach in conducting partial key exposure attack on
CRT-RSA by proving that by knowing the largest prime factor of

⌊
p−1

e

⌋
called a1, N can be factored in

polynomial time if the conditions on the approximations of dp and p are satisfied. We also extend this
result by showing the difficulties of finding a1 can be reduced by having sufficient combinations of
computing power and success appetites.

Mathematics 2020, 8, 2188 3 of 20

Organization of the article. In Section 2, we show the CRT-RSA key generation algorithm in its
full form. We also introduce a certain theorem, definition and lemmas that will be utilized in our attack.
In Section 3, we introduce our attack by parts. First, we show the conditions required to conduct our
attack. Then, we proceed with the attack by proving that by knowing the largest prime factor of

⌊
p−1

e

⌋
called a1, our attack can factor N in polynomial time using conditions from the first part of the attack.
In Section 4, we estimate the number of primes that can be the candidates for the largest prime factor
of
⌊

p−1
e

⌋
using a theorem provided before. Then, in Section 5, we estimate the number of primes that

can be the candidates for the largest prime factor of
⌊

p−1
e

⌋
if based on various success appetites which

have been pre-defined. By using this estimation, we discuss our method compared to other methods
that attacked CRT-RSA in Section 6 before we finally conclude our paper in Section 7.

2. Preliminaries

One of the earliest variations of the RSA cryptosystem is to decrypt the plaintext using Chinese
remainder theorem or CRT (more on CRT can be read here [19]). This variant, called CRT-RSA,
is proposed by the creators of RSA in their patent application [3]. The rationale of using the concept is
to utilize much smaller parameter size in the decryption algorithm specifically during computing the
modular exponentiation computation. As we shall see, in Algorithm 1, the key generation algorithm
of CRT-RSA employs almost similar computations compared to the standard process. However, the
difference lies in additional computations of

dp ≡ e−1 (mod p− 1)

and
dq ≡ e−1 (mod q− 1)

which we called CRT exponents as in Algorithm 1 (line 5 and line 6). The CRT-RSA key generation
algorithm is as follows:

Algorithm 1 Chinese remainder theorem (CRT)-RSA Key Generation Algorithm

Input: Security parameter, n
Output: RSA public keys (N, e), and RSA private keys (p, q, φ(N), dp, dq)

1: Generate randomly two distinct of n-bit primes p and q, where p < q < 2p.
2: Compute N = pq.
3: Compute φ(N) = (p− 1)(q− 1).
4: Choose e such that e < φ(N) and gcd(e, φ(N)) = 1.
5: Compute dp such that edp ≡ 1 (mod p− 1).
6: Compute dq such that edq ≡ 1 (mod q− 1).
7: Output (N, e) as RSA public keys and (p, q, φ(N), dp, dq) as RSA private keys.

In this paper, supposing e = N
α
2 , we assume that the adversary is given a fraction α of the MSBs

of dp and p (or q). We shall see that by having this information, the adversary can derive an important
intermediate that allows us to find d in polynomial time, thus factoring N in polynomial time. However,
to find the greatest prime factor of the intermediate that can enable our attack, we need to count the
number of primes that can be the suitable candidates for our greatest prime factor. To achieve that,
we need to utilize the prime counting function as follows: (See [20], (Theorem 6.9)).

Theorem 1. Let π(X) be a function estimating number of primes ≤ X. Then

π(X) ≤ X
ln X

(
1 +

1
ln X

+
2.334
ln2 X

)

Mathematics 2020, 8, 2188 4 of 20

for X ≥ 2953652287.

After the adversary can count the number of primes that can be the suitable candidates for our
greatest prime factor, the adversary need to know the probability of finding the prime in a known
parameter space. This probability will help the adversary to adjust the success appetite of the attack
and consequently determine whether the attack is feasible, based on the computational ability of
the adversary. To estimate the probability, we require an application of the prime number theorem
called Dickman’s function. Given a real number value, this function computes the probability of the
greatest prime factor of an integer to be less than the given value. We call this function a Dickman’s
function [21,22] and it is defined as below:

Definition 1 (Dickman’s function). The probability function that a random integer between 1 and N will
have its greatest prime factor less than Nζ is defined through the integral equation

F(ζ) =
∫ ζ

0
F(t/(1− t))

dt
t

for 0 ≤ ζ ≤ 1.

Dickman’s function is defined in a form of cumulative distribution function. It is important to
determine the distribution of the greatest prime factor of a given value. For example, let ζ = 1/2 then

F(1/2) =
∫ 1/2

0 F(t/(1− t)) dt
t = 1−

∫ 1
1/2 F(t/(1− t)) dt

t

= 1−
∫ 1

1/2
dt
t = 1 + ln(1/2) = 0.3068.

(1)

This means that for any random integer N, there is a probability of 0.3068 that its greatest prime
factor is less than N1/2. Next, we require these two lemmas to help us in the attack.

Lemma 1. Let u, v, w ∈ Z where v < u < v+w. If
⌊ u

w
⌋
= u

w − ε1 and
⌊ v

w
⌋
= v

w − ε2 such that ε2− ε1 < 0,
then

⌊ u
w
⌋
=
⌊ v

w
⌋
.

Proof. Observe that
0 < u− v < w ⇒ 0 <

u
w
− v

w
< 1.

Since
0 <

u
w

⇒ 0 ≤
⌊ u

w

⌋
<

u
w

(2)

and
0 <

v
w

⇒ 0 ≤
⌊ v

w

⌋
<

v
w

. (3)

If
⌊ u

w
⌋
= u

w − ε1 and
⌊ v

w
⌋
= v

w − ε2 for ε2 − ε1 < 0, computing (2) and (3) will get

0 ≤
⌊ u

w

⌋
−
⌊ v

w

⌋
=

(u
w
− ε1

)
−
(v

w
− ε2

)
=

(u
w
− v

w

)
+ (ε2 − ε1)

< 1 + (ε2 − ε1) < 1 + 0 = 1

(4)

Since
⌊ u

w
⌋

and
⌊ v

w
⌋

are integers,
⌊ u

w
⌋
−
⌊ v

w
⌋
= 0⇒

⌊ u
w
⌋
=
⌊ v

w
⌋
.

This result will help us to enable the attack later presented in Theorem 2.

Lemma 2. If an integer H divides
⌊ rs

t
⌋

then
⌊ rs

t
⌋
· 1

H =
⌊ rs

tH
⌋
.

Mathematics 2020, 8, 2188 5 of 20

Proof. Let rs
t = z1 +

r′
t for some integer z1 and r′ where r′ < t. Then

⌊ rs
t

⌋
· 1

H
=

⌊
z1 +

r′

t

⌋
· 1

H

= bz1c ·
1
H

=
z1

H

If H divides
⌊ rs

t
⌋

then H will also divides z1. Hence z1
H = z2 for some integer z2 ∈ Z. That is,⌊ rs

t

⌋
· 1

H
= z2. (5)

Then ⌊ rs
tH

⌋
=

⌊
z1

H
+

r′

tH

⌋
=

⌊ z1

H

⌋
= bz2c

= z2.

(6)

Comparing (5) and (6), This completes the proof.

The above results will help us to enable the attack later presented in Theorem 2.

3. The Attack

The initial strategy in our attack is to find the conditions on the approximations of dp and p
to enable our attack. By using these conditions, we shall prove mathematically that there exists an
unknown intermediate that will help us to find the factorization of N in polynomial time.

First, to find the conditions on the approximations of dp and p, we need the following lemma
regarding an approximation of p.

Lemma 3. Let N = pq with p < q < 2p. If there exists p̃ where |p− p̃| < p1−α then (p− 1) p̃ > 1
8 N.

Proof. From p < q < 2p we know

p2 < pq < 2p2 ⇒ p < N1/2 <
√

2p (7)

and
pq < q2 < 2pq⇒ N1/2 < q < 2N1/2 (8)

Combining (7) and (8), we get p < N1/2 < q. Since p and q are of the same bit length, observe

p > p− 1 >
q
2
>

N1/2

2
. (9)

Mathematics 2020, 8, 2188 6 of 20

Suppose |p− p̃| < p1−α. This implies p̃ shares the same a fraction α of the MSBs with p and
subsequently p̃ > p

2 . Thus

(p− 1) p̃ >
N1/2

2
p̃ >

N1/2

2
p
2
>

N1/2

2
N1/2

4

=
1
8

N.

This completes the proof.

The next lemma assumes that p < q < 2p, then we show that, by having a fraction α of the MSBs
of p and q of CRT-RSA modulus, we can get an approximation of p to a certain bound.

Lemma 4. Let N = pq be an CRT-RSA modulus with p < q < 2p. If a fraction α of the MSBs of p or q are
known then we can find p̃ such that |p− p̃| < N

1−α
2 .

Proof. We know that if p < q < 2p then p2 < N < 2p2. Observe p < N1/2 <
√

2p. If a fraction α of
the MSBs of p are known then we can find p̃ which consists of a fraction α of the MSBs of p such that

|p− p̃| < p1−α < N
1−α

2 .

On the side of q, since N1/2 < q2 < 2pq ⇒ N1/2 < q < (2N)1/2, if a fraction α of the MSBs of q
are known, then

|q− q̃| < q1−α < (2N)
1−α

2 .

Since q and q̃ shares the same a fraction α of the MSBs, then q̃ < (2N)1/2. Given q̃, we can compute
p̃ = N

q̃ which satisfies

|p− p̃| =
∣∣∣∣N

q
− N

q̃

∣∣∣∣ = ∣∣∣∣N(q̃− q)
qq̃

∣∣∣∣ < N((2N)
1−α

2)

2N
< N

1−α
2 .

This completes the proof.

From Lemma 4, we know that by having a fraction α of MSBs of p or q, we can obtain an
approximation of p called p̃ where |p− p̃| < N

1−α
2 . This approximation of p will enable the next lemma

to find kp given a fraction α of the MSBs of dp and p̃ where edp = 1 + kp(p− 1) and |p− p̃| < N
1
2−α.

Lemma 5. Let N = pq be an CRT-RSA modulus with p < q < 2p. Suppose e = N
α
2 be a valid public

exponent with 0 < α ≤ 1/4 and dp be its corresponding private exponent which satisfies CRT-RSA key equation
edp = 1 + kp(p− 1). If a fraction α of the MSBs of dp and p (or q) are known, then the constant kp in the key
equation can be determined, up to a small constant additive error, in time polynomial in log(N).

Proof. Recall that one of the private exponent of CRT-RSA satisfies edp = 1 + kp(p − 1). So,
we can write

kp =
edp − 1
p− 1

(10)

If a fraction α of the MSBs of dp are known, then we have d̃p such that |dp− d̃p| < d1−α
p < N

1
2 (1−α).

From Lemma 4, if we have a fraction α of the MSBs of p (or q) are known then we have p̃ such that
|p− p̃| < p1−α < N

1
2 (1−α). k̃p is given by

k̃p =

⌈
ed̃p − 1

p̃

⌋
=

ed̃p − 1
p̃

+ ε,

Mathematics 2020, 8, 2188 7 of 20

for some |ε| ≤ 1/2, reveals some of the most significant bits of kp. In particular, notice that

∣∣kp − k̃p
∣∣ =

∣∣∣∣∣ edp − 1
p− 1

−
⌈

ed̃p − 1
p̃

⌋∣∣∣∣∣ =
∣∣∣∣∣ edp − 1

p− 1
−

ed̃p − 1
p̃

+ ε

∣∣∣∣∣
=

∣∣∣∣∣ p̃(edp − 1)
(p− 1) p̃

−
(p− 1)(ed̃p − 1)

(p− 1) p̃
+ ε

∣∣∣∣∣
=

∣∣∣∣∣ p̃edp − p̃− ped̃p + p + ed̃p − 1
(p− 1) p̃

+ ε

∣∣∣∣∣
=

∣∣∣∣∣ p̃edp − p̃− p̃ed̃p + p̃ed̃p − ped̃p + p + ed̃p − 1
(p− 1) p̃

+ ε

∣∣∣∣∣
<

∣∣∣∣∣ p̃e(dp − d̃p)

(p− 1) p̃
+

(p̃− p)(ed̃p − 1)
(p− 1) p̃

+ ε

∣∣∣∣∣
<

∣∣∣∣∣ e(dp − d̃p)

(p− 1)
+

(p̃− p)(ed̃p)

(p− 1) p̃
+ ε

∣∣∣∣∣ .

(11)

If (p− 1) p̃ > 1
8 N as in Lemma 3, then (11) will be

∣∣kp − k̃p
∣∣ < ∣∣∣N α

2 +
1
2 (1−α)− 1

2 + 8N
1
2 (1−α)+ α

2 +
1
2−1 + ε

∣∣∣ < 10

for large N. Hence, the constant kp will be in the range
{

k̃p − 10, k̃p + 10
}

. Since kp can be computed
in time polynomial in log(N). This completes the proof.

Lemma 5 shows the significance of knowing a fraction α of the MSBs of d and p, in order to find
kp. It also shows that the conditions presented in Lemma 5 must be carried throughout the attack since
it enables the attack. The value of kp obtained in Lemma 5 is utilized in the next proposition.

Proposition 1. Let N = pq be an CRT-RSA modulus with p < q < 2p and |p− p̃| < N
1
2−α. Suppose

e = N
α
2 be a valid public exponent with 0 < α ≤ 1/4 and dp be its corresponding private exponent, which

satisfies edp = 1 + kp(p− 1). Let ed′p = 1 (mod kp) for some d′p ∈ Z then dp = kp

⌊
(p−1)

e

⌋
+ d′p.

Proof. Observe that

edp = 1 + kp(p− 1) (12)

ed′p = 1 + k′pkp. (13)

for some k′p ∈ Z. Substitute value of e in (12) into (13), we obtain(
1 + kp(p− 1)

dp

)
d′p = 1 + k′pkp

d′p + d′pkp(p− 1) = dp + dpk′pkp

(14)

Rearranging (14), we have

dp = d′pkp(p− 1)− dpk′pkp + d′p

= kp(d′p(p− 1)− dpk′p) + d′p.
(15)

Mathematics 2020, 8, 2188 8 of 20

The term d′p(p− 1)− dk′p can become

d′p(p− 1)− dpk′p =
1 + k′pk

e
(p− 1)− dp

d′pe− 1

kp

=
(p− 1)kp(1 + k′pkp)− edp(d′pe− 1)

kpe

=
(p− 1)kp(1 + k′pkp)− ((p− 1)kp + 1)(d′pe− 1)

kpe

=
(p− 1)kp(1 + k′pkp)− ((p− 1)kp)(d′pe− 1) + 1

kpe
−

d′p
kp

=
(p− 1)kp(1 + k′pkp)− ((p− 1)kp)(d′pe− 1)

kpe
+

1− ed′p
kpe

=
(p− 1)kp(1 + k′pkp)− ((p− 1)kp)(d′pe− 1)

kpe
−

k′pkp

kpe

=
(p− 1)kp(1 + k′pkp)− ((p− 1)kp)(d′pe− 1)

kpe
−

k′p
e

>

(
(p− 1)

e

(
k′pkp − d′pe + 2

))
− 1

(16)

since
k′p
e < 1. If ed′p = 1 + k′pkp then k′pkp − d′pe = −1. Thus, (16) become

d′p(p− 1)− dpk′p >

(
(p− 1)

e
(−1 + 2)

)
− 1

=
(p− 1)

e
− 1.

(17)

This implies that (p−1)
e − (d′p(p− 1)− dpk′p) < 1. Since d′p(p− 1)− dpk′p is always an integer,

d′p(p− 1)− dpk′p =
⌊
(p−1)

e

⌋
. Now, we can see that

dp = kp

⌊
(p− 1)

e

⌋
+ d′p. (18)

This completes the proof.

Remark 1. Equation (18) shows that under assumption of Proposition 1, which values d′p and k′p are known,

it is crucial that
⌊
(p−1)

e

⌋
is kept secret.

The next theorem shows the implication of the results from Proposition 1 in our aim to factor
CRT-RSA modulus in polynomial time.

Theorem 2. Let N = pq be a CRT-RSA modulus with p < q < 2p. Suppose e = N
α
2 be a valid public exponent

with 0 < α ≤ 1/4 and dp be its corresponding private exponent which satisfies edp = 1+ kp(p− 1). Let ed′p =

1 + k′pkp for some kp, k′p, d′p ∈ Z. Let a1 be one of the prime factor of
⌊
(p−1)

e

⌋
= ab1

1 · a
b2
2 · . . . · abn

n =
n
∏
i=1

abi
i

such that |(p− 1)− p̃| < ea1. Suppose
⌊

p̃
ea1

⌋
= p̃

ea1
− ε1 and

⌊
p−1
ea1

⌋
= p−1

ea1
− ε2 such that ε2 − ε1 < 0. If

a1 and a fraction α of the MSBs of dp and p (or q) are known then N can be factored in polynomial time.

Mathematics 2020, 8, 2188 9 of 20

Proof. If a1 satisfies |(p− 1)− p̃| < ea1, and
⌊

p̃
ea1

⌋
= p̃

ea1
− ε1 and

⌊
p−1
ea1

⌋
= p−1

ea1
− ε2 such that

ε2 − ε1 < 0, from Lemma 1, we obtain ⌊
p̃

ea1

⌋
=

⌊
(p− 1)

ea1

⌋
(19)

Lemma 2 implies if a1 divides
⌊
(p−1)

e

⌋
then

⌊
(p−1)

e

⌋
· 1

a1
=
⌊
(p−1)

e·a1

⌋
. This also implies

⌊
(p− 1)

e

⌋
· a1

a1
=

⌊
(p− 1)

e · a1

⌋
a1 (20)

From Proposition 1,

dp = kp

⌊
(p− 1)

e

⌋
+ d′p

= kp
a1

a1

⌊
(p− 1)

e

⌋
+ d′p

= kpa1

⌊
(p− 1)

ea1

⌋
+ d′p

= kpa1

⌊
p̃

ea1

⌋
+ d′p.

(21)

If p̃ and a fraction α of the MSBs of dp are known, based on Lemma 5, we can find kp in polynomial
time. Then, we can compute d′p as d′p ≡ 1/e (mod kp). If a1 is known, we can compute dp in (21).

Using the value of dp, we can obtain p by computing p =
edp−1

kp
+ 1 and factorizes N. This completes

the proof.

Remark 2. We have shown that given α most significant bits of dp and p, the complexity of factoring N depends

on knowing the factor of
⌊
(p−1)

ea1

⌋
. This demonstrates that we have reduced one of the hard problems of RSA from

factoring N to factoring
⌊
(p−1)

ea1

⌋
. However, the complexity of factorization is still sub-exponential according to

the current factorization technique.

We construct an algorithm based on our attack. The parameters used in the algorithm are
described in Table 1:

Table 1. List of Parameters Used in the Attack.

Parameters known before the attack:

• RSA public keys, (N, e)
• approximation of d, d̃p

• approximation of p, p̃

• a prime factor of
⌊
(p−1)

e

⌋
, a1

Parameters known during the attack:

• Constant from CRT-RSA
key Equation (10), kp

• Intermediate of (13), k̃p

• Intermediate of (13), d′p

Parameters known after the attack:
• CRT-RSA private exponent, dp

• CRT-RSA private key, p
• CRT-RSA private key, q

The algorithm takes the input of RSA public keys (N, e) and a prime factor of
⌊
(p−1)

e

⌋
, a1 that

satisfies |(p− 1)− p̃| < ea1, given a fraction α of the MSBs of dp and p̃. The algorithm is as follows:

Mathematics 2020, 8, 2188 10 of 20

Remark 3. Since we assume that the value of a1 is already known in Algorithm 2, the algorithm runs in
polynomial time.

The following is an example to illustrate Algorithm 2.

Algorithm 2 Factoring N of CRT-RSA via Theorem 2

Input: CRT-RSA public keys (N, e), d̃p, p̃ and prime factor of
⌊
(p−1)

e

⌋
, a1

Output: p, q
1: Compute k̃p =

⌈
ed̃p−1

p̃

⌋
.

2: Set kp ∈ {k̃p − 10, k̃p + 10}. . Step 1 until 2 are based on Lemma 5
3: for each kp do
4: Compute d′p ≡ e−1 (mod kp)
5: Compute dp = kp · a1 ·

⌊
p̃

ea1

⌋
+ d′p.

6: Compute p′ = edp−1
kp

+ 1.
7: if p′ ∈ Z then
8: Compute q′ = N/p′.
9: if q′ ∈ Z then

10: Set q = q′.
11: end if
12: Set p = p′.
13: end if
14: end for
15: Output p and q

Example 1. We use RSA-2048 in this example. Specifically, we are given

N = 26854041985238375212475778164676011572680663430940658107484164678

81881009475246975164803757355184419648595055886375159003247478439

92143741255730632610827884401657509117670049123360590970470225653

67370191193688936329713163878893198502800751634549138639730928812

40142505876139322063065708976736945544675563231857474829753757364

89461162692635457445662945510534745278831004328830299446277566122

87687169004926239194650447064129592636966022464572301245637234770

50294647480922968543256342945263036346158795045888810801423391916

97736283477365028685949028278325146903748790144455033008532116417

89895820938922463256886051224441

and e = 2588040962967479019863275440499 which is about N0.05. Let

d̃p = 36055607231202775283080802009652619678848579202676835359522337232

45304648210382882262903480159927251198134217538338417610010663688

39077835797132043978282412016850688884540907420868648185609637754

11063506013449129456265445743931127981044130978483361430857693084

40916227786667499669328426663847808738852591212

Mathematics 2020, 8, 2188 11 of 20

where a fraction α of the MSBs of dp are given such that |dp − d̃p| < d1−α
p . In this case, α = 0.1 or about 10%

(103-bits) bits of its original, dp. Then, let

p̃ = 14367613307214246903591926069142770099295123891127829274068843132

84507873128193703874025274483229621351740372731847216208987451381

22600446098472260720529957802520996016314325569094216775717168908

41782721517081770370921396206536643264683692385497895745823983436

0770156094067408884861977891020041626737366980204

where a fraction α of the MSBs of p (or q) are also given, such that |p− p̃| < p1−α. From Lemma 5, given d̃p

and p̃, we obtain k̃p and proceed to recover kp = 64947035018102022468569402425 in polynomial time. Then,
we compute

d′p ≡ e−1 (mod kp)

≡ 14291832328785630096514471874 (mod 64947035018102022468569402425)

Given that we also know one of the prime factor of
⌊ p

e
⌋
,

a1 = 43185843225970563415154944273587881760667418641821175935878843801

62779147404915309140284507695180396733831689901698607027115346112

71569728695701943263595028176276635021689474779238127599104918615

72151376677546400416324969826940325349800202462521919212154035625

31983030526947

such that | p̃− p| < ea1. Then

dp = kp · a1 ·
⌊

p̃
ea1

⌋
+ d′p

= 36055607231202775283080802009649108834176664752875840471779128853

65479408662427699263008533084770049815277792852591783505517277427

76754417366858919379167907800491269897943246773311982875789843868

49579557361199476994871376824209224903108180826295016253816460096

02016637714750590649460512253997299687719907999.

By knowing dp, we can get

p =
edp − 1

kp
+ 1

= 14367613307214246903591926069142452203848898341656376495846139272

96888354084505142420920972987941360124023642545598929784435347521

29827893551421260667238347559758806433514905636985352008519026850

47195482010956044783038279094608638461799318081089013845804738749

4897239865723803413293355621434998234772291243981.

Mathematics 2020, 8, 2188 12 of 20

and

q = N/p

= 18690677018537559979968031085225887816085307412051352387412281562

63664879599722127409077204025890837680223683840960510872264130729

19499428723542093381211298664979433605748124826497957558030353615

18738757121243839997910925158423130594718234233298178099345593794

9142322870446532378712921531570515925370391213661.

N has been successfully factored.

Figure 1 shows the flowchart based on Algorithm 2:

Start Compute

kp =

⌈
ed̃p−1

p̃

⌋

Choose randomly
kp ∈

{
k̃p − 10, k̃p + 10

}Compute
d′p ≡ e−1 (mod kp)

Compute
dp = kp · a1 ·

⌊
p̃

ea1

⌋
+ d′p

Compute
p′ = edp−1

kp
+ 1

Is
p′ ∈ Z?

No

Yes

Compute
q′ = N/p′.

Is
q′ ∈ Z?

NoYesSet q = q′

and p = p′.Finish

Figure 1. Flowchart of Algorithm 2.

Our Attack in RSA Implementation

In most RSA implementations, RSA public exponent e is a small integer. The reason for this choice
is to optimize the computing time of the RSA encryption algorithm. In this part, we investigate the
implication of the size of e in our attack. Typically, e = 216 + 1. Since we set e = N

α
2 in our attack,

observe that
α = 2 logN e ≈ 2 log22048 216 + 1 ≈ 0.01562

in the implementation of RSA-2048.
This implicates that our attack requires 0.01562 · 2048 = 31.98976 or about 32 bits of dp and p to be

exposed since |dp − d̃p| < N1−α and |p− p̃| < p1−α. The exposed bits may come from the side-channel
attack or a brute-force method, since the number of bits that are required are quite small. The number
of exposed bits that are required can be reduced, if the size of N or e is smaller.

Mathematics 2020, 8, 2188 13 of 20

4. Estimating Number of Candidates for a1

To find an a1 that satisfy |(p− 1)− p̃| < ea1 posed in Theorem 2, we can anticipate that a1 to be
the largest prime factor of

⌊
(p−1)

e

⌋
. We need to estimate the number of primes that are eligible to be a1.

However, first, the next lemma modifies the result by [20] and applies it to show an estimation of the
number of primes between two bounds.

Lemma 6. Let Nζ and Nθ respectively be the upper and lower bounds of a1 where 0 < θ < ζ < 1. Then,
the number of primes between Nζ and Nθ will be less than Nζ

(
1

ln Nζ

) (
1 + 1

ln Nθ +
2.334

ln2 Nθ

)
.

Proof. Let F be the number of primes less than the upper bound of a1 and G be the number of primes
less than the lower bound of a1. Then, according to Theorem 1,

F =
Nζ

ln Nζ

(
1 +

1
ln Nζ

+
2.334

ln2 Nζ

)
and

G =
Nθ

ln Nθ

(
1 +

1
ln Nθ

+
2.334

ln2 Nθ

)
.

To estimate the number of candidates of a1, we need to calculate

F− G =
Nζ

ln Nζ

(
1 +

1
ln Nζ

+
2.334

ln2 Nζ

)
− Nθ

ln Nθ

(
1 +

1
ln Nθ

+
2.334

ln2 Nθ

)
<

Nζ

ln Nζ

(
1 +

1
ln Nθ

+
2.334

ln2 Nθ

)
− Nθ

ln Nθ

(
1 +

1
ln Nθ

+
2.334

ln2 Nθ

)
=

(
Nζ

ln Nζ
− Nθ

ln Nθ

)(
1 +

1
ln Nθ

+
2.334

ln2 Nθ

)
<

(
Nζ

ln Nζ

)(
1 +

1
ln Nθ

+
2.334

ln2 Nθ

)
= Nζ

(
1

ln Nζ

)(
1 +

1
ln Nθ

+
2.334

ln2 Nθ

)
(22)

as Nθ < Nζ . This completes the proof.

Mathematics 2020, 8, 2188 14 of 20

Then, we need to find the upper and lower bounds of a1 that satisfy the condition posed in
Theorem 2.

Proposition 2. Let N = pq be a CRT-RSA modulus with p < q < 2p. Suppose e = N
α
2 is a valid public

exponent with 0 < α ≤ 1/4 and dp be its corresponding private exponent which satisfies edp = 1 + kp(p− 1).
Let ed′p = 1 + k′pkp for some kp, k′p, d′p ∈ Z. Let a fraction α of the MSBs of dp and p (or q) are known. If a1 be

one of the prime factor of
⌊
(p−1)

e

⌋
= ab1

1 · a
b2
2 · . . . · abn

n =
n
∏
i=1

abi
i such that |(p− 1)− p̃| < ea1 then a1 will be

bounded as N
1−3α

2 < a1 < N
1−α

2 .

Proof. We know that |(p− 1)− p̃| < ea1 where |p− p̃| < N
1
2−α. Then

a1 >
|(p− 1)− p̃|

e

≈ N
1
2−α

N
α
2

= N
1
2−α− α

2 = N
1−3α

2 .

Thus, N
1−3α

2 is the lower bound for a1. For the upper bound, we know that a1 <
⌊
(p−1)

e

⌋
as a1 is a

factor of
⌊
(p−1)

e

⌋
. Then

a1 <

⌊
(p− 1)

e

⌋
<

N
1
2

N
α
2

= N
1−α

2

Thus, a1 < N
1−α

2 . This follows the result.

After we know the upper and lower bounds of a1, we can estimate the number of primes between
the bounds. To achieve that, we use the estimation in Lemma 6. The estimation is as follows in the
next proposition.

Proposition 3. Let N = pq be an CRT-RSA modulus with p < q < 2p. Suppose e = N
α
2 be a valid public

exponent with 0 < α ≤ 1/4 and dp be its corresponding private exponent which satisfies edp = 1 + kp(p− 1).
Let ed′p = 1 + k′pkp for some kp, k′p, d′p ∈ Z. Let a fraction α of the MSBs of dp and p (or q) are known. If a1

be one of the prime factor of
⌊
(p−1)

e

⌋
= ab1

1 · a
b2
2 · . . . · abn

n =
n
∏
i=1

abi
i such that |(p− 1)− p̃| < ea1 then the

number of candidates of a1 that satisfies Theorem 2. will be less than

N
1−α

2

(
ln2(N

1−3α
2) + ln(N

1−3α
2) + 2.334

)
ln(N

1−α
2) ln2(N

1−3α
2)

.

Mathematics 2020, 8, 2188 15 of 20

Proof. We use results from Lemma 6 to count the sum of primes that satisfy Theorem 2. Thus,
we changes H1 and H2 in Lemma 6 to N

1−α
2 and N

1−3α
2 respectively based on the bounds in

Proposition 2. Equation (22) will become

N
1−α

2

ln N
1−α

2

(
1 +

1
(1−3α

2) ln N
+

2.334
(1−3α

2)2 ln2 N

)

=
N

1−α
2

ln(N
1−α

2)
+

N
1−α

2

ln(N
1−α

2) ln(N
1−3α

2)
+

N
1−α

2 (2.334)

ln(N
1−α

2) ln2(N
1−3α

2)

=
N

1−α
2

(
ln2(N

1−3α
2) + ln(N

1−3α
2) + 2.334

)
ln(N

1−α
2) ln2(N

1−3α
2)

.

(23)

This completes the proof.

The following is an example to illustrate the result from Proposition 3.

Example 2. In this example, we try to illustrate the number of primes that are eligible to be the candidates of
a1.To do that, we set α = 1

4 to imitate the lowest possible estimation of the number of primes. We also substitute
the value of N from Example 1 into (23) which approximates to

2.736665× 10228 ≈ N0.3705816.

This is the approximation of the amount of primes that are eligible to be the candidates of a1.

5. Estimating the Number of Candidates for a1 with Various Success Appetite

To reduce the number of the candidates of a1 to be manipulated by an adversary, we define the
“success appetite” terminology to best describe our findings.

Definition 2. CRT-RSA Success Appetite, G(δh) is the conditional probability of successfully finding the
largest prime factor of

⌊ p
e
⌋
, a1; where a1 is less than Ny1 , given that a1 is greater than Ny2 where N = pq and

y1 > y2 for suitable y1, y2 ∈ (0, 1).

Remark 4. Success appetite as described in this paper relates to the success probability of the adversary to find
the actual value of a1 from a certain set of primes. The adversary can choose his success appetite, depending
on computing resources available to the adversary. The probability of success for the adversary depends on the
size of the set of prime candidates where a1 resides. As such, success appetite and probability of success are two
different concepts.

Since further experiment and analysis must be completed to be corroborated with the independent
nature of Dickman’s function and randomized values of

⌊
pi
ei

⌋
, we put forward the next conjecture that

defines CRT-RSA success appetite quantitatively.

Conjecture 1. Given i different RSA moduli, Ni = piqi that are randomly generated in RSA key generation
algorithm, then the largest number of RSA moduli of which the greatest prime factor of

⌊
pi
ei

⌋
is between its

intended success-dependent upper and lower bound is G(δh) · i.

By having the CRT-RSA success appetite, an adversary can evaluate it using the next corollary.

Mathematics 2020, 8, 2188 16 of 20

Proposition 4. Let N = pq be an RSA modulus. Let e = N
α
2 be an RSA public exponent and d be an RSA

private exponent where 0 < α ≤ 1/4. Let a1 be one of the prime factors of
⌊ p

e
⌋
= ab1

1 · a
b2
2 · . . . · abn

n =
n
∏
i=1

abi
i .

Suppose B is a known integer larger than ρφ(N) and B− ρφ(N) < ea1. Let FX(y) be the Dickman’s function.
If δh is the CRT-RSA success appetite, then the number of candidates of a1 that satisfies Theorem 2 will be
less than

N
1−α

2

(
ln2(N

1−3α
2) + ln(N

1−3α
2) + 2.334

)
ln(N

1−α
2) ln2(N

1−3α
2)

.

where y1 = F−1
(

δh · FX(
1−3α

2) + FX(
1−3α

2)
)

.

Proof. Let FX(y) or F(y) be the probability function for a random integer between 1 and X to have
the greatest prime factor less than Xy as defined in Definition 1 (Dickman’s function). Let Xy1 be the
upper bound of a1 and Xy2 to be the lower bound of a1, then (23) can also be written as

Ny1
(

ln2(Ny2) + ln(Ny2) + 2.334
)

ln(Ny1) ln2(Ny2)
(24)

Next, we define

(a) F(y1) to be the probability of X having its greatest prime factor less than Xy1 ;
(b) F(y2) to be the probability of X having its greatest prime factor less than Xy2 ; and
(c) F(y2) to be the probability of X not having its greatest prime factor less than Xy2 .

Let δh be the success appetite as defined in Definition 2, we can rewrite δh as the probability of⌊
p−1

e

⌋
having its largest prime factor less than Ny1 , given that it has no largest prime factor less than

Ny2 . Using the definition of conditional probability, observe that

δh = F(y1 | y2) =
F(y1 ∩ y2)

F(y2)

=
F(y1)− F(y2)

F(y2)
.

(25)

From (25),

F(y1)− F(y2) = δh · F(y2)

F(y1) = δh · F(y2) + F(y2)

y1 = F−1 (δh · F(y2) + F(y2)) .

According to Proposition 2, y2 = 1−3α
2 . Substitute values of y1 and y2 into (24), we obtain

Ny1
(

ln2(N
1−3α

2) + ln(N
1−3α

2) + 2.334
)

ln(Ny1) ln2(N
1−3α

2)
. (26)

where y1 = F−1
(

δh · F(1−3α
2) + F(1−3α

2)
)

Proposition 4 shows that an adversary can adjust the upper bound of a1 according to the success
appetite preferred by the adversary. In the next section, we can see how this adjustment can reduce the
number of primes eligible to be the significant candidates of a1.

Mathematics 2020, 8, 2188 17 of 20

6. Comparative Analysis

In this section, we show two comparisons. In the first comparison, we compare the changes of
the number of candidates of a1, π(a1) in terms of β (where π(a1) = Nβ) when the success appetite, δh
changes. We also set α = 0.05, 0.1, 0.15, 0.2 and 0.25 to see the changes in π(a1). The full details of the
values are shown in Table 2.

Table 2. Comparison in Number of Candidates of a1 In Terms of Logarithm to Base N with Respect to
δh and α.

Intended Success
Probability, δh

β, π(a1) = Nβ

α = 0.05 α = 0.1 α = 0.15 α = 0.2 α = 0.25

0.01 0.4208 0.3464 0.2719 0.1973 0.1250
0.25 0.4324 0.3682 0.3023 0.2337 0.1796
0.50 0.4448 0.3925 0.3375 0.2785 0.2289
0.75 0.4575 0.4182 0.3768 0.3318 0.2913
1.00 0.4706 0.4457 0.4205 0.3952 0.3704

Based on Table 2, when δh progressively reduces from 1 to 0.01, for α = 0.05, the number of
candidates also slowly reduces from N0.4706 to N0.4208, N0.4457 to N0.3464 for α = 0.1, N0.4205 to N0.2719

for α = 0.15, N0.3952 to N0.1973 for α = 0.2 and N0.3704 to N0.125 for α = 0.25. In general, the number of
candidates decreases as the values of the success appetites decrease. A similar pattern occurs when the
values of α increases. This means that the best situation for an adversary to conduct an attack against
CRT-RSA using our method is when 0.25 MSBs of d and p (or q) are known with a consideration of a
success appetite that is as small as possible.

In the second comparison, we intend to compare our attack with results from [12–16]. All of these
results require some bits of dp to be known beforehand. In [15], Takayatsu et al. provided a result
which includes bits of dq. A comparison with our results is shown in Table 3.

Based on Table 3, Ref. [16] requires at least 0.27 random bits of all p, q, d, dp, dq. The attack also
used random reconstruction algorithm. On another hand, attack by [12] requires an approximation of
dp called d̃p to be given, such that |dp − d̃p| < N

1
4−α where e = Nα. The suitable size of e used in the

attack is 1 < e < N1/4. The methodology used in [12] can also be applied in many conditions, since we
can see that the extension of the results in [13–15] are also using the similar lattice-based approach.

Meanwhile, our attack requires an approximation of dp and p called d̃p and p̃ to be given, such

that |dp − d̃p|, |p− p̃| < N
1−α

2 . As 0 < α ≤ 1/4, this means that the suitable range for e in our case is
0 < e < N1/8. based on Table 3, Ref. [12] needs the approximation of dp to be between 0 and < N1/4

from the actual dp. Meanwhile, in our case, we need the approximation of dp and p to be between N3/8

and N1/2 from the actual values of dp and p. This means that our attack is less stringent and requires
less MSBs of private keys to be known than [12] (although our attack needs two approximations of
private keys). In addition, our method takes a different approach compared to other results, since
we detach our method from the common approach of partial key attack on CRT-RSA by using the
lattice-based method to finding the largest prime factor of

⌊
p−1

e

⌋
with versatile success appetites.

Mathematics 2020, 8, 2188 18 of 20

Table 3. Comparison of Our Method Against Existing Methods to Conduct Partial-Key Exposure
Attack Against CRT-RSA.

Attacks

Exposed Information about
Private Keys for
the Attack to be

Successful

Methodology

Heninger and
Shacham (2009)

Given 0.27 of the bits of
p, q, d, dp, dq

Using random
reconstruction

algorithm

Blömer and
May (2003)

Given d̃p, e = Nα such that
|dp − d̃p| < N

1
4−α

where 0 < α ≤ 1/4

Lu et al.
(2014)

Given d̃p ≈ Nγ, e ≈ Nα

where |dp − d̃p| < Nγ1

such that γ, γ1, α satisfy
conditions in Theorem 6 of [13] Using

lattice-based
methodSarkar and

Venkateswarlu
(2014)

Given e ≈ Nα and bits of dp
except for n many blocks with

sizes γi log N bits for 1 ≤ i ≤ n,
such that γ, γ1, α satisfy

inequality in Theorem 1 of [14]

Takayatsu and
Kunihiro (2015)

Given d̃p ≈ Nγ, e ≈ Nα

where dp ≈ Nγ1

such that α, γ, γ1 satisfy
conditions in Theorem 6 of [15]

Our method
Given d̃p, p̃, e = Nα/2

where 0 < α ≤ 1/4 such that
|dp − d̃p|, |p− p̃| < N

1−α
2

Need to determine
the largest prime
factor of

⌊
p−1

e

⌋
7. Conclusions

We have successfully factored the modulus of CRT-RSA in polynomial time using our new
method under specific conditions. Given e = N

α
2 , where 0 < α ≤ 1/4, the method requires an

approximation of private exponent called d̃p and approximation of p called p̃ to be known, such that

|dp − d̃p|, |p − p̃| < N
1−α

2 . Our attack also requires the largest prime factor of
⌊

p−1
e

⌋
. By utilizing

Dickman’s theorem, we showed a practical approach to identify the prime from a set of primes that
the factor most likely resides in. The approach manipulates a versatile self-defined value known as the
success appetite value that can be referred to by the adversary based on the computational power at
hand. This makes our attack less stringent and requires fewer MSBs of private keys to be known than
existing attacks. For a future extension of this work, one may develop a new method to find a1 from a
smaller set of primes. The method should include a marked up algorithm that identifies a1, where its
respective success appetite is compared with the number of candidates of a1 in terms of the logarithm
to base N, as shown in Table 2. Another interesting future approach to tackle the problem of finding
a1 is by using synchronized machine learning with the aid of cloud systems for its storage space, as
shown in [23].

Author Contributions: Conceptualization, A.H.A.G. and M.R.K.A.; methodology, formal analysis, investigation,
writing—original draft preparation, A.H.A.G.; writing—review and editing, A.H.A.G., M.R.K.A., S.M.Y. and
S.H.S.; supervision and funding acquisition, M.R.K.A. All authors have read and agreed to the published version
of the manuscript.

Funding: The research was supported by Ministry of Higher Education of Malaysia with Fundamental Research
Grant Scheme (FRGS/1/2019/STG06/UPM/02/8).

Mathematics 2020, 8, 2188 19 of 20

Acknowledgments: The research was supported by Ministry of Higher Education of Malaysia with Fundamental
Research Grant Scheme (FRGS/1/2019/STG06/UPM/02/8).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

LSB Least significant bits
MSB Most significant bits
RSA Rivest–Shamir–Adleman

References

1. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems.
Commun. ACM 1978, 21, 120–126. [CrossRef]

2. Buhler, J.P.; Lenstra, H.W.; Pomerance, C. Factoring integers with the number field sieve. In The Development
of the Number Field Sieve; Springer: Berlin/Heidelberg, Germany, 1993; pp. 50–94.

3. Rivest, R.L.; Shamir, A.; Adleman, L.M. Cryptographic Communications System and Method. U.S. Patent
4,405,829, 20 September 1983.

4. Hinek, M.J. Cryptanalysis of RSA and Its Variants; CRC Press: Boca Raton, FL, USA, 2009.
5. Kocher, P.; Jaffe, J.; Jun, B.; Rohatgi, P. Introduction to differential power analysis. J. Cryptogr. Eng. 2011,

1, 5–27. [CrossRef]
6. Rivest, R.L.; Shamir, A. Efficient factoring based on partial information. In Workshop on the Theory and

Application of of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1985; pp. 31–34.
7. Coppersmith, D. Finding a small root of a bivariate integer equation; factoring with high bits

known. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer:
Berlin/Heidelberg, Germany, 1996; pp. 178–189.

8. Boneh, D.; Durfee, G.; Frankel, Y. Exposing an RSA private key given a small fraction of its bits. Full Version
Work. Asiacrypt 1998, 98, 25-34.

9. Ernst, M.; Jochemsz, E.; May, A.; De Weger, B. Partial key exposure attacks on RSA up to full size
exponents. In Annual International Conference on the Theory and Applications of Cryptographic Techniques;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 371–386.

10. Sarkar, S.; Maitra, S.; Sarkar, S. RSA Cryptanalysis with Increased Bounds on the Secret Exponent using Less
Lattice Dimension. IACR Cryptol. ePrint Arch. 2008, 2008, 315.

11. Abd Ghafar, A.H.; Ariffin, M.R.K.; Johari, M.A.M.; Asbullah, M.A. A Survey of Partial Key Exposure Attacks
on RSA Cryptosystem. Embrac. Math. Divers. 2019, 1, 24.

12. Blömer, J.; May, A. New partial key exposure attacks on RSA. In Annual International Cryptology Conference;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 27–43.

13. Lu, Y.; Zhang, R.; Lin, D. New partial key exposure attacks on CRT-RSA with large public exponents.
In International Conference on Applied Cryptography and Network Security; Springer: Cham, Switzerland, 2014;
pp. 151–162.

14. Sarkar, S.; Venkateswarlu, A. Partial key exposure attack on CRT-RSA. In International Conference on
Cryptology in India; Springer: Berlin/Heidelberg, Germany, 2014; pp. 255–264.

15. Takayasu, A.; Kunihiro, N. Partial key exposure attacks on CRT-RSA: Better cryptanalysis to full size
encryption exponents. In International Conference on Applied Cryptography and Network Security; Springer:
Cham, Switzerland, 2015; pp. 518–537.

16. Heninger, N.; Shacham, H. Reconstructing RSA private keys from random key bits. In Advances in
Cryptology-CRYPTO 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–17.

17. Halderman, J.A.; Schoen, S.D.; Heninger, N.; Clarkson, W.; Paul, W.; Calandrino, J.A.; Feldman, A.J.;
Appelbaum, J.; Felten, E.W. Lest we remember: Cold-boot attacks on encryption keys. Commun. ACM 2009,
52, 91–98. [CrossRef]

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1007/s13389-011-0006-y
http://dx.doi.org/10.1145/1506409.1506429

Mathematics 2020, 8, 2188 20 of 20

18. Takayasu, A.; Kunihiro, N. Partial key exposure attacks on CRT-RSA: General improvement for the exposed
least significant bits. In International Conference on Information Security; Springer: Berlin/Heidelberg, Germany,
2016; pp. 35–47.

19. Ireland, K.; Rosen, M. A Classical Introduction to Modern Number Theory; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2013; Volume 84.

20. Dusart, P. Estimates of some functions over primes without RH. arXiv 2010, arXiv:1002.0442.
21. Dickman, K. On the frequency of numbers containing prime factors of a certain relative magnitude.

ARkiv Mat. Astron. Och Fys. 1930, 22, 1–14.
22. Donald, E.K. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms; Addison-Wesley: Boston,

MA, USA, 1981.
23. Çatak, F.Ö.; Mustacoglu, A.F. CPP-ELM: Cryptographically privacy-preserving extreme learning machine

for cloud systems. Int. J. Comput. Intell. Syst. 2018, 11, 33–44. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2991/ijcis.11.1.3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	The Attack
	Estimating Number of Candidates for a1
	Estimating the Number of Candidates for a1 with Various Success Appetite
	Comparative Analysis
	Conclusions
	References

