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Abstract: An efficient isogeometric analysis method (IGA) based on a simple first-order shear
deformation theory is presented to study free vibration, static bending response, dynamic response,
and active control of functionally graded plates (FGPs) integrated with piezoelectric layers. Based on
the neutral surface, isogeometric finite element motion equations of piezoelectric functionally graded
plates (PFGPs) are derived using the linear piezoelectric constitutive equation and Hamilton’s
principle. The convergence and accuracy of the method for PFGPs with various mechanical and
electrical boundary conditions have been investigated via free vibration analysis. In the dynamic
analysis, both time-varying mechanical and electrical loads are involved. A closed-loop control
method, including displacement feedback control and velocity feedback control, is applied to the
static bending control and the dynamic vibration control analysis. The numerical results obtained are
accurate and reliable through comparisons with various numerical and analytical examples.

Keywords: isogeometric analysis method; simple first-order shear deformation theory; piezoelectric
functionally graded plates; neutral surface; dynamic response; closed loop control

1. Introduction

Functionally graded materials (FGMs) [1] have been used extensively in the aerospace,
nuclear power industries, biomedical field, and other applications [2–4] for their superior
thermo-mechanical properties, such as low thermal conductivity and high thermal resistance. Classified
as smart materials, piezoelectric materials are also known for their piezoelectric effects [5] (used as
sensors) and converse piezoelectric effects (used as actuators). Unique electro-mechanical coupling
characteristics of piezoelectric materials enable them to be applied in the fields of health monitoring and
structural control. Accordingly, by fabricating (or embedding) piezoelectric materials on the surface
(inside) of functionally graded beams, plates, shells, and other structures, they can respond rapidly
according to their physical characteristics and shape changes, when the external environment changes.

Piezoelectric functionally graded plates (PFGPs) are one of the basic structural forms of
piezoelectric functionally graded structures. Traditional numerical methods of PFGPs consume
a mass of computational meshes based on the conventional three-dimensional elastic theory framework.
To overcome these shortcomings, scholars combined various numerical methods with equivalent single
layer theory [6] for predicting the behaviors of PFGPs [7,8]. The finite element method (FEM) has
always been one of the popular methods to study PFGPs. Ray et al. [9] and Loja et al. [10] presented
investigation for the static response analysis of PFGPs. He et al. [11] employed the piezoelectric
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materials to investigate the dynamic vibration control of functionally graded plates (FGPs) by using
the classical plate theory (CPT). Similarly, Liew et al. [12,13] studied the active control of FGPs with
distributed piezoelectric materials under thermal loads based on the first-order shear deformation
theory (FSDT). Aryana et al. [14] proposed a method to identify the most sensitive design variables
that affect the dynamic characteristics of the structure. Using a cell-based smoothed discrete shear gap
method, Nguyen-Quang et al. [15] studied the static and dynamic control analysis of FGPs bonded
with piezoelectric actuators and sensors. In this method, each parent triangle element is divided into
three sub-triangle elements, and the discrete shear gap method is used in each sub-triangle element
to eliminate the shear-locking effects [16]. Then, the strain smoothing technology is applied in the
whole parent triangle element to solve the defect of rigidity of triangle elements in FEM. By using the
higher-order shear deformation theory (HSDT), Fakhari et al. [17,18] analyzed the nonlinear free and
forced vibration, as well as nonlinear vibration control of PFGPs in thermal environments. Recently,
a generalized C0-type HSDT polygonal finite element method was presented by Nguyen et al. [19] for
investigating the active control of smart, functionally graded metal foam plates reinforced by graphene
platelets. To avoid the decrease in the calculation accuracy [20,21] caused by element distortion in the
FEM, various scholars also attempted to use the mesh-free method to analyze the behaviors of PFGPs.
Using the element-free Galerkin method, Dai et al. [22] investigated the static, active control analysis of
FGPs with surface-bonded piezoelectric materials in thermal environments. The stability of PFGPs
subjected to distributed thermo-electro-mechanical loads was studied by Chen et al. [23]. The radial
point interpolation method was implemented to investigate the geometrically nonlinear response of
PFGPs under mechanical and electrical loads by Hossein et al. [24]. Considering the stability of the
plate in vibration control, Selim et al. [25] studied the active control of two types of PFGP structures.
They pointed out that for the structure of two piezoelectric layers distributed symmetrically on the
upper and lower surfaces of the FGPs, due to the stretching–bending coupling effect, the velocity
feedback control in the active vibration control is unstable when the gradient index is in the range of
0 < n <∞.

Although the FEM and mesh-free methods have achieved considerable success in the analysis
of piezoelectric smart structures, there continues to be strong interest in new numerical methods.
Recently, an isogeometric analysis (IGA) method was proposed by Hughes et al. [26]. Because of
the advantages of high-order continuity and simple meshing, Phung-Van et al. [27] employed IGA
to study the nonlinear dynamic response analysis of PFGPs under thermo-electro-mechanical loads.
Similar studies of smart piezoelectric composite plates were developed by the same authors in the
literature [28,29]. Along the same line, Nguyen et al. [30] and Nguyen-Quang et al. [31] presented
developments of isogeometric analysis of piezoelectric, functionally graded porous plates reinforced
by graphene platelets, and laminated carbon nanotube-reinforced composite plates bonded with
piezoelectric materials, respectively.

The above studies on the dynamic analysis of piezoelectric smart structures are focused on the
dynamic response of structures under mechanical loads. Few people pay attention to the dynamic
response of the structures under time-varying voltage loads. However, many piezoelectric smart
structures, such as piezoelectric motors [32] and robots [33], realize their motions precisely by utilizing
the dynamic response under voltage loads. In addition, for the PFGPs, the presence of additional
electric potential fields will result in more complicated mathematical modelling. Hence, a low-cost,
efficient numerical method without loss of accuracy is extremely important. Most current approaches
used CPT, FSDT, and HSDTs for the analysis of PFGPs. In these plate theories, CPT has the least
amount of calculation because it has only three unknowns, but it is only valid for the thin plates due to
the shear deformation effects being ignored [34]. The computational cost of FSDTs and HSDTs is more
expensive than CPT because they have five or more unknowns. It is worth noting that Thai et al. [35,36]
proposed a new simple first-order shear deformation theory (S-FSDT) with only four unknowns.
Compared with FSDTs and HSDTs, the decrease of unknowns makes S-FSDT have a certain advantage
in computational efficiency. Moreover, because S-FSDT is derived from FSDT, it is suitable for both thin
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and thick plates. The accuracy and validity of this theory for analyzing the static bending, buckling,
free vibration [37], and geometrically nonlinear responses [38] of FGPs have been demonstrated.

In summary, the main motivations of this paper are: (i) there are no studies on isogeometric
analysis for the analysis of PFGPs based on the simple first-order shear deformation theory, and the
present study can fill this research gap; (ii) the S-FSDT-based IGA method has only four unknowns,
and it is easily applied to the open-source IGA frameworks; (iii) the investigation of dynamic response
of the structures under time-varying voltage loads can provide a more comprehensive understanding
of the mechanical behavior of piezoelectric smart structures.

Therefore, in this paper, we propose an approach based on S-FSDT and the NURBS-based
isogeometric analysis for analyzing the mechanical behavior of the PFGPs. The mechanical displacement
field and electric potential field in PFGPs are approximated using the NURBS basis functions.
Isogeometric finite element equations of PFGPs are derived through the linear piezoelectric constitutive
equation and Hamilton’s variational principle. The dynamic response of PFGPs under mechanical
loads and voltage loads are studied by using the Newmark-β direct integration method. Additionally,
the static and dynamic closed-loop control are used for controlling the shapes and vibration of the plates.

2. Mathematical Model

The piezoelectric functionally graded plate is shown in Figure 1 with the size of a× b× ht (length
× width × thicknesses), in which ht = h f + 2hp, where h f and hp are the thicknesses of the FGM layer
and each piezoelectric layer. The polarization directions of the upper and lower piezoelectric layers are
downward and upward, respectively.
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Figure 1. Structure diagram of the PFGP.

2.1. Functionally Graded Materials

The material properties of functionally graded plates along the thickness direction can be
described as

P(z) = (Pm − Pc)Vm(z) + Pc. (1)

The volume fraction of metal materials is defined as

Vm(z) = (
1
2
+

z
h f

)
n
, (2)

where the subscript symbols m and c represent the metal and ceramic, respectively; Pc and Pm are the
corresponding material properties, such as mass density (ρ), Young’s modulus (E), and various other
properties; n is the gradient index. Figure 2 shows the variation of the composition of the FGP with n.
It is seen that as n increases, the less metal components in the plate.
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2.2. Mechanical Displacement and Strain Based on S-FSDT

For the simple first-order shear deformation theory, the unknowns are reduced from five to four
using two assumptions [36]: first, the transverse displacement w0(x, y) in the standard FSDT is split into
bending and shear parts, that is, w0 = wb + ws; second, the rotations βx and βy are expressed using the
partial derivatives of the transverse bending components, that is, βx = −∂wb/∂x and βx = −∂wb/∂y.

The neutral surface is introduced to avoid the stretching–bending coupling effect. Hence,
the displacement formulation of the S-FSDT can be written as

u(x, y, z) = u(x, y) + (z− z0)
_
u(x, y), (3)

where u = {u v w}T, u = {u0 v0 wb + ws}
T, and

_
u = −

{
∂wb/∂x ∂wb/∂y 0

}T
. In which, u0 and v0

represent the displacements of the neutral plane of the plate in x and y directions, respectively; βx and
βy are the rotation variables; z0 is the distance between the mid and neutral surface, which can be
denoted as

z0 =

∫ ht/2
−ht/2 zE(z)dz∫ ht/2
−ht/2 E(z)dz

. (4)

The geometric strains ε̃ can be given as

ε̃ =

{
ε

γ

}
, (5)

where
ε= { εx εy γxy

}T
= ε0−(z− z0)κ, (6a)

γ =
{
γxz γyz

}T
=

{
∂ws
∂x

∂ws
∂y

}T
, (6b)

with
ε0= { u0,x v0,y u0,y + v0,x

}T
, (7a)

κ =
{
∂2wb/∂x2 ∂2wb/∂y2 2∂2wb/∂x∂y

}T
. (7b)

2.3. Constitutive Relationship

For the functionally graded plates, the constitutive relationship between the geometric stresses
and strains can be denoted as

σ f = Q f ε̃, (8)
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where

Q f =

[
Q 0
0 G

]
, (9)

with

Q =


Q11 Q12 0
Q21 Q22 0

0 0 Q66

, G =

[
Q44 0

0 Q55

]
, (10)

in which

Q11 = Q22 =
E(z)

1− v(z)2 , Q12 = Q21 =
v(z)E(z)

1− v(z)2 , Q44 = Q55 =
E(z)

2(1 + v(z))
. (11)

For the piezoelectric layers, the linear piezoelectric constitutive equation [18] is given by:[
σp

D

]
=

[
Qp −eT

e g

] [
ε̃

E

]
, (12)

where σp is the stress; D is the electrical displacement; g is the permittivity constant matrix; and e is
the piezoelectric stress constant matrix. Qp is the elastic constant of piezoelectric materials with the
similar form of Q f .

Only the electric field component in the z direction is considered. Hence, the electric field E is
calculated by

E = −gradϕ =
{

0 0 Ez
}T

. (13)

The stress resultants in the PFGPs are expressed as
N
M
P

= _
c


ε0

κ

γ

−


NP

MP

0

, (14)

where
_
c =

[
Dmb 0

0 Cs

]
, (15)

with

Dmb =

[
A B
B D

]
, Cs = k

∫ ht/2

−ht/2
Gi jdz i, j = 4, 5, (16)

where k is the shear correction factor and it is set to be 5/6, and

Ai j =

∫ ht/2

−ht/2
Qi jdz, i, j = 1, 2, 6, (17a)

Di j =

∫ ht/2

−ht/2
(z− z0)

2Qi jdz, i, j = 1, 2, 6, (17b)

since the introduction of neutral surface [39], Bi j = 0.
The forces and bending moments generated by the electric field can be calculated by

NP =


Np

x
Np

y
Np

xy

 =

∫ h f
2 +hp

h f
2

eTE dz +
∫
−

h f
2

−
h f
2 −hp

eTEdz, (18)
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MP =


Mp

x
Mp

y
Mp

xy

 =

∫ h f
2 +hp

h f
2

eTE (z− z0)dz +
∫
−

h f
2

−
h f
2 −hp

eTE (z− z0)dz. (19)

2.4. Nurbs-Based Isogeometric Analysis

In this section, the displacements and electric potential are approximated by using the NURBS
basis functions. Then, the isogeometric finite element motion equations are derived through the
variational form of the PFGPs’ motion equations.

2.4.1. Basis Functions

Combining an additional individual weight ϑi, j with the tensor product of B-spline basis functions
in two parametric dimensions ξ and ηwith two knot vectors Ψ(ξ) = {ξ1 = 0,..., ξi,..., ξm+p+1 = 1} and
Ψ(η) = {η1 = 0,..., ηj,..., ηn+q+1 = 1}, the two-dimensional (2D) NURBS basis function can be written
as [40]

Rp,q
i, j (ξ, η) =

Gi,p(ξ)H j,q(η)Ji, j
m∑

i=1

n∑
j=1

Gi,p(ξ)H j,q(η)Ji, j

, (20)

where G and H are B-spline basis functions, respectively; p and q are the orders.

2.4.2. Approximation of Mechanical Displacement

The mechanical displacement can be approximated as

u(ξ, η) = [ u0 v0 wb ws ]
T
=

m×n∑
k=1

Rk(ξ, η) dk, (21)

where dk = [ u0k v0k wbk wsk ]
T

is the unknown displacement vector of control point k and Rk(ξ, η)
is the basis function defined in (20).

The strain functions can be achieved by substituting (21) into (6) and (7), which yields

ε0 =
m×n∑
k=1

[
Bm

k

]T
dk κ =

m×n∑
k=1

[
Bb

k

]T
dk γ =

m×n∑
k=1

[
Bs

k

]T
dk, (22)

where

Bm
k =


Rk,x 0 0 0

0 Rk,y 0 0
Rk,y Rk,x 0 0

, (23a)

Bb
k =


0 0 Rk,xx 0
0 0 Rk,yy 0
0 0 2Rk,xy 0

, (23b)

Bs
k =

[
0 0 0 Rk,x
0 0 0 Rk,y

]
. (23c)

2.4.3. Approximation of the Electric Potential Field

The electric potential is assumed to vary linearly along the thickness [41], expressed as

ϕ = Rkϕk, (24)

where ϕk is the generalized nodal electric potential vector.
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Substituting (24) into (13) yields
E = −Bϕϕk, (25)

with
Bϕ= { 0 0 Rk/hp

}T
. (26)

2.4.4. Isogeometric Finite Element Motion Equations

The variational form of the equations of motion for the plate can be obtained by Hamilton’s principle

δ

∫ t2

t1

Ldt = δ

∫ t2

t1

(T −U + Wext)dt= 0, (27)

where L is the total energy, including kinetic energy T, potential energy U, and external work Wext,
with

T =

∫
V

1
2

m
.
uT .

udV, (28a)

U =

∫
V
(

1
2
ε̃

TQε̃− ε̃TeTE−
1
2

ETgE)dV, (28b)

Wext =

∫
Ω

(
uTfs −ϕqs

)
dΩ, (28c)

where u is the displacement;
.
u is velocity; qs denotes the surface charge; fs is the surface loads.

By substituting (8), (12), (22), (23), and (25) into (27), the governing equations of PFGPs can be
denoted as

Muu
..
d + Kuud + Kuϕϕ = f, (29a)

Kϕud−Kϕϕϕ = fϕ, (29b)

where

Kuu =

∫
V

BT
u
_
c BudV, Kuϕ =

∫
V

BT
u ẽTBϕdV, (30a)

Kϕϕ =
∫

V BT
ϕgBϕdV, Kϕu = KT

uϕ,
Muu =

∫
V ΛTmΛdV,

(30b)

f =
∫

Ω
fz

¯
ΛdΩ,

¯
Λ =

[
0 0 Rk Rk

]T
, (31a)

fϕ =

∫
Ω

RT
k qEdΩ, (31b)

and

Bu =
[ (

Bm
k

)T (
Bb

k

)T (
Bs

k

)T
]T

, (32a)

ẽ= [ eT
m −(z− z0)eT

m eT
s

]
, (32b)

g =


k11 0 0
0 k22 0
0 0 k33

, (32c)

m =

[
I0 I1

I1 I2

]
, (32d)

Λ =
[

Λ1 Λ2
]T

, (32e)
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in which

em =


0 0 0
0 0 0

e31 e32 0

, es =


0 e15

e15 0
0 0

, (33a)

(I0, I1, I2) =

∫ ht/2

−ht/2
ρ(z)(1, (z− z0), (z− z0)

2) dz, (33b)

Λ1 =


Rk 0 0 0
0 Rk 0 0
0 0 Rk Rk

, (33c)

Λ2 =


0 0 Rk,x 0
0 0 Rk,y 0
0 0 0 0

. (33d)

In (31), fz is the transverse mechanical surface load; qE is the charge density on the surface of
piezoelectric layers.

qE = k33
U
hp

, (34)

where U is the electric potential applied on piezoelectric layers.
Eliminating the potential ϕ, (29) is rewritten as

Muu
..
d + Kd = F, (35)

in which
K = Kuu + KuϕK−1

ϕϕKϕu, (36a)

F = f + KuϕK−1
ϕϕfϕ. (36b)

Introducing Rayleigh damping, (35) is rewritten as

Muu
..
d + CR

.
d + Kd = F, (37)

where
CR = αRMuu + βRKuu, (38)

in which αR and βR are Rayleigh damping factors that can be confirmed through [42].

3. Closed-Loop Control

In this section, the static and dynamic closed-loop control of the FGPs by using piezoelectric
sensors and actuators are studied. As shown in Figure 3, the upper piezoelectric layer serves as
an actuator, and the lower piezoelectric layer serves as a sensor. The sensor generates electric charges
because of the piezoelectric effect when the structure deforms. Then, these electric charges are amplified
as the input voltage of the actuator. On account of the converse piezoelectric effect, the actuator exerts
a force opposite to the external mechanical loads to suppress the static bending or dynamic vibration
of the structure, achieving the purpose of active control.
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According to the prior analysis, (29b) can be rewritten as

Kϕuad−Kϕϕaϕa = fϕa, (39)

Kϕusd−Kϕϕsϕs = fϕs, (40)

where the subscripts a and s represent the terms associated with the actuator and sensor, respectively.
Using the feedback control law [43], ϕa is expressed as

ϕa = Gdϕs + Gv
.
ϕs, (41)

where Gd and Gv are the displacement and velocity feedback control gain, respectively.
For the sensor layer, it is assumed that there is no external charge fϕs, ignoring the converse

piezoelectric effect. From (40), the voltage generated on the sensor layer can be defined as

ϕs = K−1
ϕϕsKϕusds. (42)

From (41), (42), and (39), the charge of the actuator layer can be derived by

fϕa = Kϕuada −GdKϕϕaK−1
ϕϕsKϕusds −GvKϕϕaK−1

ϕϕsKϕus
.
ds. (43)

From (43) and (37), the governing equation is rewritten as

Muu
..
d + (CR + C)

.
d +

¯
Kd = F, (44)

in which
¯

K = Kuu + GdKϕϕaK−1
ϕϕsKϕus, (45)

and the active damping matrix C is

C = GvKϕϕaK−1
ϕϕsKϕus. (46)

4. Numerical Results

The order of the NURBS basis functions should be equal to or greater than two to satisfy the
requirement of C1 continuity in approximate formulations [44]. Hence, the orders of the 2D NURBS
basis functions in this study are set to be three (p = q = 3). For convenience, the plate’s mechanical
boundary conditions are simplified as S, C, and F, where S represents the simply supported edge,
with C and F representing the clamped edge and free edge, respectively. The dynamic responses and
active vibration analysis of the plate are calculated via the Newmark-β direct integration method.
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4.1. Convergence and Verification Studies

The convergence of the present method is verified via the calculation of the natural frequencies
of a SSSS square PFGP. The dimensions of the PFGP as depicted in Figure 1 are: a = b = 400 mm,
h f = 5 mm, and hp = 0.1 mm. The materials of FGP and piezoelectric layer are Ti-6A1-4V/aluminum
oxide and PZT-G1195N. All the material properties are displayed in Table 1.

Table 1. Material parameters.

Parameters
FGMs Piezoelectric Materials

Ti-6Al-4V Aluminum Oxide Al Al2O3 PZT-G1195N

Young’s modulus (Gpa)
E11 105.70 320.24 70 380 63.0
E22 105.70 320.24 70 380 63.0
E33 105.70 320.24 70 380 63.0
G12 - - - - 24.2
G13 - - - - 24.2
G23 - - - - 24.2

Poisson’s ratio
v12 0.2981 0.26 0.3 0.3 0.3
v13 0.2981 0.26 0.3 0.3 0.3
v23 0.2981 0.26 0.3 0.3 0.3

Density (kg/m3)
ρ 4429 3750 2707 3800 7600

Piezoelectric coefficients (m/V)
d31 - - - - 254 × 10−12

d32 - - - - 254 × 10−12

Dielectric constant (F/m)
k11 - - - - 15.3 × 10−9

k22 - - - - 15.3 × 10−9

k33 - - – 15.0 × 10−9

The four different control meshes of 10 × 10, 12 × 12, 16 × 16, and 18 × 18 are shown in Figure 4.
Table 2 lists the lowest 10 natural frequencies of the plate. It is seen that the natural frequencies
calculated with the 16 × 16 mesh match well with the analytical solutions [45]. Furthermore, the effects
on the natural frequency of each mode are not significant when the mesh level is greater than 16 × 16.
As a result, the 16 × 16 mesh and cubic NURBS basis functions are applied to all numerical subsequent
examples. Figure 5 shows the first six mode shapes of the PFGP with a gradient index n = 2.
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Table 2. The lowest 10 natural frequencies (Hz) of a SSSS PFGP with different control meshes.

Mode Method
n

0 0.5 1 5 15 100 1000

1

IGA (10 × 10) 145.355 186.550 200.615 232.411 249.284 261.318 263.696
IGA (12 × 12) 145.355 186.550 200.615 232.411 249.283 261.317 263.695
IGA (16 × 16) 145.355 186.550 200.614 232.410 249.283 261.317 263.695
IGA (18 × 18) 145.355 186.550 200.614 232.410 249.283 261.317 263.695

[45] 145.350 186.254 200.569 233.036 250.327 262.674 265.114

2/3

IGA (10 × 10) 363.085 466.002 501.155 580.604 622.741 652.785 658.721
IGA (12 × 12) 363.070 465.982 501.133 580.581 622.716 652.759 658.695
IGA (16 × 16) 363.061 465.970 501.119 580.566 622.701 652.743 658.678
IGA (18 × 18) 363.060 465.968 501.117 580.563 622.698 652.740 658.676

[45] 363.050 465.223 500.994 582.112 625.288 656.108 662.201

4

IGA (10 × 10) 580.400 744.936 801.160 928.208 995.551 1043.553 1053.035
IGA (12 × 12) 580.382 744.911 801.132 928.178 995.520 1043.520 1053.001
IGA (16 × 16) 580.371 744.895 801.115 928.160 995.500 1043.500 1052.981
IGA (18 × 18) 580.369 744.893 801.112 928.160 995.497 1043.496 1052.977

[45] 580.350 743.699 800.911 930.617 999.616 1048.857 1058.589

5/6

IGA (10 × 10) 725.405 931.104 1001.409 1160.205 1244.348 1304.318 1316.163
IGA (12 × 12) 725.196 930.812 1001.091 1159.861 1243.988 1303.943 1315.785
IGA (16 × 16) 725.073 930.640 1000.904 1159.658 1243.766 1303.721 1315.561
IGA (18 × 18) 725.052 930.612 1000.873 1159.624 1243.741 1303.685 1315.524

[45] 725.000 929.078 1000.571 1162.638 1248.819 1310.310 1322.461

7/8

IGA (10 × 10) 941.987 1209.114 1300.455 1506.753 1616.004 1693.840 1709.211
IGA (12 × 12) 941.818 1208.877 1300.197 1506.741 1615.712 1693.536 1708.904
IGA (16 × 16) 941.718 1208.738 1300.047 1506.310 1615.540 1693.357 1708.723
IGA (18 × 18) 941.702 1208.716 1300.022 1506.283 1615.512 1693.327 1708.694

[45] 941.640 1206.740 1299.640 1510.197 1622.102 1701.923 1717.694

9/10

IGA (10 × 10) 1232.501 1582.351 1702.018 1971.842 2114.649 2216.399 2236.490
IGA (12 × 12) 1231.079 1580.332 1699.815 1969.482 2112.191 2213.838 2233.907
IGA (16 × 16) 1230.273 1579.200 1698.580 1968.149 2110.799 2212.388 2232.444
IGA (18 × 18) 1230.145 1579.021 1698.386 1967.938 2110.579 2212.158 2232.212

[45] 1229.880 1576.201 1697.617 1972.734 2118.843 2223.021 2243.603

4.2. Free Vibration Analysis

For investigating the effects of the electrical boundary conditions on natural frequencies of the
PFGP, a SSSS PFGP with different ratios of h f /a and hp/h f is taken into consideration for comparison.
In the closed circuit, two piezoelectric layers are both grounded, while in the open circuit, the electric
potential remains free, which implies that there is no electric displacement. The materials of PFGP
are Al/Al2O3 and PZT-4, and the material parameters of PZT-4 are defined in [45]. Note that, in this
example, n = 0 means that the FGP consists only of ceramic (Al2O3). Conversely, n = ∞means that
the FGP is an isotropic metal (Al) plate. Table 3 lists the natural frequencies of the plate with different
dimension scales. Besides, Table 4 shows the lowest six natural frequencies of a square plate with SSSC
and SCSC boundary conditions when h f /a = 0.02 and hp/h f = 0.1. It can be seen that the results from
the S-FSDT-based IGA match well with those of the analytical [45] and numerical [25] solutions.
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Table 3. The lowest two natural frequencies (Hz) of a SSSS PFGP with open and closed circuits.

hf/a hp/hf Electrical Condition Mode
n = 0 n = 0.5 n = 1

Present [45] Present [45] Present [45]

0.05

0.1
Closed

1 426.704 426.662 369.050 369.015 339.888 339.859
2 1049.687 1049.356 908.204 907.918 836.293 836.020

Open 1 433.793 433.747 377.971 377.934 350.126 350.092
2 1066.743 1066.390 929.708 929.406 860.967 860.669

0.2
Closed

1 408.435 408.475 362.207 362.269 340.242 340.311
2 1001.350 1001.133 887.808 887.637 833.442 833.266

Open 1 421.961 421.983 378.417 378.460 358.168 358.212
2 1033.682 1033.381 926.547 926.311 876.222 875.953

0.1

0.1
Closed

1 826.873 826.463 715.679 715.319 658.905 658.555
2 1954.769 1952.530 1694.005 1691.992 1558.808 1556.838

Open 1 840.030 839.595 732.294 731.920 677.970 677.597
2 1983.671 1981.321 1730.703 1728.702 1600.948 1598.821

0.2
Closed

1 786.393 786.011 697.081 696.730 654.023 653.652
2 1841.071 1838.475 1630.952 1628.388 1527.467 1524.747

Open 1 811.198 810.723 726.796 726.393 686.798 686.343
2 1894.719 1891.714 1695.063 1692.715 1598.083 1595.292

Table 4. The natural frequencies (Hz) of SSSC and SCSC PFGPs.

n Mode

Boundary Conditions

SSSC SCSC

Open Circuit Closed Circuit Open Circuit Closed Circuit

Present [25] Present [25] Present [25] Present [25]

0

1 209.750 208.651 206.281 205.550 256.565 254.251 252.330 251.120
2 457.219 454.822 449.683 448.463 484.164 480.640 476.190 474.440
3 518.331 513.724 509.805 507.453 611.731 602.687 601.699 596.858
4 759.533 751.930 747.075 743.357 833.053 821.085 819.420 813.141
5 883.305 876.924 868.834 866.929 900.225 892.760 885.483 882.944
6 995.360 982.452 979.117 973.305 1131.713 1109.422 1113.343 1101.578

1

1 169.301 168.200 164.296 163.727 207.096 204.560 200.984 200.041
2 369.044 366.401 358.167 357.223 390.797 386.889 379.288 377.936
3 418.385 413.303 406.077 404.247 493.802 483.968 493.318 475.541
4 613.063 604.586 595.075 592.200 672.432 659.364 652.744 647.876
5 712.952 705.039 692.056 690.600 726.615 717.565 705.327 703.381
6 803.453 788.691 779.993 775.467 913.608 889.211 887.063 877.852

15

1 147.106 145.798 140.782 140.155 179.859 176.792 172.147 171.103
2 320.364 317.022 306.656 305.467 339.173 334.267 324.677 323.006
3 362.992 356.745 347.506 345.368 428.071 416.219 409.888 405.664
4 531.147 520.850 508.885 505.316 582.586 566.509 557.909 552.131
5 617.872 607.441 591.657 589.345 629.633 617.822 602.937 600.054
6 695.567 677.205 666.222 660.679 789.825 760.509 756.752 746.359

1000

1 132.128 130.883 125.082 124.591 161.553 158.500 152.959 152.151
2 287.775 284.556 272.499 271.659 304.677 299.892 288.521 287.316
3 326.083 319.956 308.822 307.247 384.572 372.904 364.300 361.092
4 477.475 467.118 452.296 449.750 523.425 507.747 495.908 491.650
5 555.120 544.766 525.892 524.530 565.693 554.003 535.927 534.127
6 624.981 606.883 592.251 588.375 709.757 681.066 672.853 665.183

4.3. Static Bending Analysis

A cantilevered (CFFF) square PFGP with the same materials and dimensions as those in Section 4.1
is used for analyzing the static bending responses.
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First, the centerline deflection of the plate under a uniformly distributed load of −100 N/m2 is
displayed in Figure 6. The deflection obviously decreases when n increases due to the increase in the
elastic modulus value E(z) of the FGP.
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Figure 6. Deflection of a cantilevered PFGP with different gradient index n under the action of
a uniformly distributed load.

Next, the centerline deflection of the plate under a 10 V voltage is plotted in Figure 7. This situation
involves the open-loop control of the plate, in which both two piezoelectric layers act as actuators.
In this situation, the upper piezoelectric layer is polarized in the direction of the applied electric field,
and the lower piezoelectric layer is polarized in the opposite direction of the applied electric field.
In the case of the converse piezoelectric effect, the upper piezoelectric layer contracts, while the lower
piezoelectric layer extends along the direction of the length.
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The centerline deflection of the plate under a uniformly distributed load of −100 N/m2 and
different input electric voltages is shown in Figure 8. It can be observed that the deflection decreases as
the input voltages increase. Meanwhile, Table 5 lists the tip deflection values of the plate. The results
in this approach are in good agreement with the solutions in [15].
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Table 5. Tip deflection of a CFFF PFGP under the action of electromechanical loads (10−4 m).

n Method
Input Electric Voltages (V)

0 20 40

n = 0
[15] −2.5460 −1.3346 −0.1232

Present −2.5433 −1.3323 −0.1212

n = 0.5
[15] −1.6199 −0.8440 −0.0681

Present −1.6167 −0.8421 −0.0675

n = 5
[15] −1.1266 −0.5820 −0.0375

Present −1.1253 −0.5811 −0.0369

n =∞
[15] −0.8947 −0.4609 −0.0271

Present −0.8939 −0.4602 −0.0265

We also investigated the bending response of PFGPs which are subjected to the voltage range
0–60 V with different mechanical boundary conditions. Figure 9 provides the tip deflection or central
node deflection of the plate with n = 2. It is observed that the deflections increase linearly with the
increase in the voltage. For the CFFF plate, the deflection is positive, while for the other boundary
conditions, the deflections are negative. This phenomenon is due to the upper piezoelectric layer being
shortened and the lower piezoelectric layer being elongated due to the converse piezoelectric effect.
At the same time, the change of mechanical boundary conditions also results in the change of the
deflection direction of the plate.
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4.4. Dynamic analysis

A SSSS square FGP (Al/Al2O3) with n = 1 is used for demonstrating the validity of the dynamic
analysis with the S-FSDT-based IGA. The length and thickness of the plate are 200 mm and 10 mm.
Four different distributed transverse forces are defined as

q = q0 sin
(
πx
a

)
sin

(πy
b

)
F(t), (47)

in which q0 = −15 Mpa, and F(t) is defined as

F(t) =



1 Step load
1− t/t1 Triangular load

sin(πt/t1) Sinusoidal load
e−rt Explosive load

 if 0 ≤ t ≤ t1

0 if t ≥ t1

, (48)

where γ = 330s−1 and t1 = 0.003 s.
The normalized central transient deflection w = w/h of the plate under the action of sinusoidal

load is depicted in Figure 10. Apparently, the results of this study coincide with those in [46].
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Next, a SSSS plate with sizes of a = b = 200 mm, hp = 2 mm, and h f = 20 mm was selected
to study the dynamic response of PFGP. The FGM constituents are Ti-6A1-4V and aluminum oxide.
The piezoelectric material is PZT-G1195N.
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Introducing Rayleigh damping, Figure 11 shows the transient deflections of the plate. It is
observed that the vibration amplitude and period of motions decrease with the increase in the gradient
index n due to the strengthening of stiffness of the plate.
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Figure 11. Dynamic analysis of a simply supported (SSSS) PFGP under four different sinusoidally
distributed transverse forces: (a) Step load; (b) triangular load; (c) sinusoidal load; (d) explosive load.

Next, we analyze the dynamic response of PFGPs with n = 2 under the time-varying electric
loads. As shown in Figure 12, the magnitude of the voltage amplitude U0 will affect the vibration
amplitude of the plate. Due to the effect of structural damping, the central vibration amplitude of the
plate tends to be stable after a period of time. In this example, the time step is set to be 2π/(20w1),
in which w1 is the first natural frequency (rad/s) of the plate.

4.5. Active Control Analysis

A square plate and a clamped circular plate are applied for the static bending control analysis
and dynamic vibration control analysis of the FGPs through piezoelectric actuators and sensors.
The materials of the FGPs and piezoelectric layers in this section are Ti-6Al-4V/aluminum oxide and
PZT- G1195N.
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Figure 12. Transient analysis of a simply supported (SSSS) PFGP when the upper and lower
piezoelectric layers are subjected to voltage loads: (a) Uu = Ul = U0 sin(w1t); (b) Uu = U0 cos(w1t),
Ul = U0 sin(w1t); (c) Uu = U0 sin(w1t), Ul = 0.

4.5.1. Static Bending Control

1. Square plate
A square PFGP with n = 2 and SSSS and CFFF boundary conditions is used for investigating

the static bending control. The dimensions of the plate are set as: a = b = 300 mm, hp = 0.1 mm,
and h f = 5 mm. The effects of the displacement feedback control gain Gd on the plate’s static bending
response under a uniformly distributed load of q = −100 N/m2 are plotted in Figure 13. As expected,
the centerline deflections of the plates decrease with the increase in the gain Gd.
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2. Circular plate
A clamped circular PFGP with n = 2 is also considered. The thicknesses of the plate and each

piezoelectric layer are 0.3 mm and 0.05 mm. The radius R is 50 mm. Figure 14 shows the deformation
of the plate under a mechanical load of −100 N/m2. We can see that the deformation of the circular
plate can also be effectively controlled by Gd.
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4.5.2. Dynamic Vibration Control

1. Square plate
First, we assume that the former square CFFF PFGP is initially subjected to a downward uniformly

distributed load of −100 N/m2, then the load is instantaneously removed, resulting in the motion from
the initial displacement. The piezoelectric stress constants e31 and e32 are 6.1468 C/m2, and the Rayleigh
damping CR of the plate is not considered in this example.

If the stretching–bending coupling effect exists, the active damping C (C = GvKϕϕaK−1
ϕϕsKϕus) is

not a symmetric positive definite matrix [25,47]. As shown in Figure 15, the dynamic vibration control
of plate structures with piezoelectric layers symmetrically distributed on the upper and lower surfaces
may be unstable. The main purpose of introducing the neutral surface in this paper is to solve the
instability of dynamic vibration control for this sort of plate structure.

Figure 16 shows the transient deflection response at the tip of the PFGP with n = 0 and n = ∞

by using the neutral surface. It is clear that the vibration response attenuates faster when the control
gain Gv increases and the results match well with the mesh-free method presented by Selim et al. [25].
It is noteworthy that the stretching–bending coupling effect does not exist when n = 0 and n = ∞.
Similarly, Figure 17 depicts the transient deflection of the PFGP with n = 1 and n = 15, and we can see
that the dynamic vibration control effect is still stable.
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Figure 17. The tip transient deflection of a CFFF PFGP under an initial uniformly distributed load of
−100 N/m2: (a) n = 1; (b) n = 15.

Next, a fully clamped (CCCC) square PFGP is used for studying the active vibration control
under four different sinusoidally distributed transverse forces defined in (47) with q0 = −1× 104 N/m2.
The length of the plate is 200 mm, and the thicknesses of the FGP and each piezoelectric layer are
20 mm and 2 mm, respectively.

The transient deflection responses of the central point with different control gains are plotted
in Figure 18. Similarly, in both the forced vibration state and free vibration state, the oscillation is
significantly suppressed when the control gain Gv increases.
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2. Circular plate
The circular plate in the section of static bending control is used for further investigation. With

the action of an initial uniformly distributed load of −100 N/m2, the time of vibration attenuation to
the weakest is investigated in Figure 19. It is observed that the decay time decreases with the increase
of n, and the larger the value of Gv, the faster the vibration disappears.
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feedback control gain Gv. By using this feature, controllers can be designed and optimized according
to the requirements of different applications to control both the displacement and oscillation time.

5. Conclusions

In this study, an isogeometric analysis method (IGA) based on a simple first-order shear
deformation theory (S-FSDT) was used for investigating the free vibration, static bending response,
dynamic response, and active control analysis of FGPs with surface-bonded piezoelectric actuators
and sensors. Through some numerical examples, several major points can be drawn as follows:

� The isogeometric finite element motion equations of piezoelectric functionally graded plates
(PFGPs) based on the simple first-order shear deformation theory can be derived easily, due to
one unknown saved in S-FSDT.

� From some comparison studied of free vibration and static bending analyses of piezoelectric
functionally graded plates, it can be obtained that although one unknown is saved in simple
first-order shear deformation theory, the S-FSDT-based IGA method is still effective and accurate.

� Due to the electromechanical coupling effect, the natural frequencies of the piezoelectric
functionally graded plates in open-circuit state are greater than those in closed-circuit state.

� The vibration amplitude tends to be stable after a period of time when the plate is subjected to
time-varying electric loads; the greater the amplitude of the voltage, the greater the amplitude of
the vibration.

� For closed-loop control analysis of the plates, the static bending response can be altered by
adjusting the displacement feedback control gain Gd, and the dynamic vibration and vibration
time can be controlled through the velocity feedback control gain Gv.
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Nomenclature

a Plate length N In-plane forces
b Plate width M Moments
ht Total thickness of the plate P Shear forces
h f Thickness of the FGM layer fz Transverse mechanical surface load
hp Thickness of each piezoelectric layer MP Moments generated by electric field
P Material properties of FGM Bϕ Relation matrix between electric field and electric potential
Pm Material properties of metal constituent d Displacement vector after assembling the elements
Pc Material properties of ceramic constituent u Displacement vector
Vm Volume fraction of metal

.
u First time derivative of u

n Gradient index qs Surface charge
D Electrical displacement fs Surface loads
g Permittivity constant matrix Muu Mass matrix
z0 Distance between the mid and neutral surfaces

..
d Second time derivative of d

ε̃ Geometric strain
.
d First time derivative of d

ε In-plane strains E Electric field
γ Shear strains Kϕϕ Electric stiffness matrix
βx Rotations of a transverse normal about the y axis NP In-plane forces generated by electric field
βy Rotations of a transverse normal about the x axis qE Charge density on the surface of piezoelectric layer
e Piezoelectric stress constant matrix C Active damping matrix
Qp Elastic constant of piezoelectric materials CR Rayleigh damping
Q f Elastic constant of FGM αR, βR Rayleigh damping factors
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k Shear correction factor Gd Displacement feedback control gain
ϑi, j Weight Gv Velocity feedback control gain
G,H B-spline basis functions Kuϕ, Kϕu Displacement-electric stiffness matrices
p,q Orders of B-spline basis functions ϕk Nodal electric potential vector
dk Displacement vector of control point k Kuu Stiffness matrix
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