
mathematics

Article

Using Diffusion Map for Visual Navigation of a
Ground Robot

Oleg Kupervasser 1,2,* , Hennadii Kutomanov 1, Michael Mushaelov 1 and Roman Yavich 1

1 Department of Mathematics, Ariel University, Ariel 4070000, Israel; kutomanov.hennadii@gmail.com (H.K.);
mushaelov1993@gmail.com (M.M.); romany@g.ariel.ac.il (R.Y.)

2 Transist Video Llc, 121205 Skolkovo, Russia
* Correspondence: olegku@ariel.ac.il; Tel.: +972-52-3596-586

Received: 21 September 2020; Accepted: 1 December 2020; Published: 6 December 2020
����������
�������

Abstract: This paper presents the visual navigation method for determining the position and
orientation of a ground robot using a diffusion map of robot images (obtained from a camera
in an upper position—e.g., tower, drone) and for investigating robot stability with respect to
desirable paths and control with time delay. The time delay appears because of image processing
for visual navigation. We consider a diffusion map as a possible alternative to the currently popular
deep learning, comparing the possibilities of these two methods for visual navigation of ground
robots. The diffusion map projects an image (described by a point in multidimensional space) to a
low-dimensional manifold preserving the mutual relationships between the data. We find the ground
robot’s position and orientation as a function of coordinates of the robot image on the low-dimensional
manifold obtained from the diffusion map. We compare these coordinates with coordinates obtained
from deep learning. The algorithm has higher accuracy and is not sensitive to changes in lighting,
the appearance of external moving objects, and other phenomena. However, the diffusion map needs
a larger calculation time than deep learning. We consider possible future steps for reducing this
calculation time.

Keywords: diffusion map; vision-based navigation; visual navigation; ground robots; tethered platform;
airborne control; prototype; vision-based navigation; artificial neural network; deep learning convolution
network; autopilot; time delay; stability of differential equations

1. Introduction

Currently, deep learning (based on artificial neural networks) [1–7] is a very popular and powerful
instrument for arriving at the solution of complex problems of classification and function regression.
The main advantage of this method is that we need not develop some complex features describing the
group of investigated objects. We obtain these features automatically. In addition, deep learning is a
very effective method for function regression. For example, we cannot only recognize a ground robot
but can also find its position and orientation.

“PoseNet is [1] is based on the GoogLeNet architecture. It processes RGB-images and is modified
so that all three softmax and fully connected layers are removed from the original model and replaced
by regressors in the training phase. In the testing phase the other two regressors of the lower layers are
removed and the prediction is done solely based on the regressor on the top of the whole network.

Bayesian PoseNet Kendall et al. [2] propose a Bayesian convolutional neural network to estimate
uncertainty in the global camera pose which leads to improving localization accuracy. The Bayesian
convolutional neural is based on PoseNet architecture by adding dropout after the fully connected
layers in the pose regressor and after one of the inception layers (layer 9) of GoogLeNet architecture.

Mathematics 2020, 8, 2175; doi:10.3390/math8122175 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-8478-2489
http://dx.doi.org/10.3390/math8122175
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/12/2175?type=check_update&version=2

Mathematics 2020, 8, 2175 2 of 16

LSTM-Pose [3] is otherwise similar to PoseNet, but applies LSTM networks for output feature
coming from the final fully connected layer. In detail, it is based on utilizing the pre-trained GoogLeNet
architecture as a feature extractor followed by four LSTM units applying in the up, down, left and
right directions. The outputs of LSTM units are then concatenated and fed to a regression module
consisting of two fully connected layers to predict camera pose.

VidLoc [4] is a CNN-based system based on short video clips. As in PoseNet and LSTM-Pose,
VidLoc incorporates similarly modified pre-trained GoogLeNet model for feature extraction. The output
of this module is passed to bidirectional LSTM units predicting the poses for each frame in the sequence
by exploiting contextual information in past and future frames.” (cited from [5]). Here RGB is Red,
Green, Blue; CNN is Convolutional Neural Network; GoogLeNet is a well-known 22 layers deep
network (googlenet in Matlab).

In the paper [5], we propose an encoder–decoder convolutional neural network (CNN) architecture
for estimating camera pose (orientation and location) from a single RGB image. The architecture has
an hourglass shape consisting of a chain of convolution and up-convolution layers followed by a
regression part.

In the paper [6], similar to PoseNet, MapNet also learns a deep learning neural network (DNN)
that estimates the 6-DoF camera pose from an input RGB image on the training set via supervised
learning. The main difference, however, is that MapNet minimizes both the loss of the per-image
absolute pose and the loss of the relative pose between image pairs.

The corresponding results can be found in our paper [8]. However, the principal difference
between [1–6] and [8] is the following: in [1–6], a camera is on a moving object, while in [8], we used
a camera which is external with respect to the moving object and established on an upper position
(e.g., tower, drone or tethered flying platform). This is our new original patented technology [9].

Because of the popularity of deep learning, many scientists think that only deep learning has
these remarkable properties. However, competing methods exist with the same advantages–they
can generate features automatically and are very effective methods for function regression. We must
remember these methods and investigate their advantages and disadvantages with respect to deep
learning. Hence, we would like to consider one such method–the diffusion map [10–17] and compare it
with deep learning using a very interesting task of visual navigation of a ground robot from an upper
position [8,9].

We can give an example of using the diffusion map in navigation [10]. However, the diffusion map
is not used in this paper for visual navigation, i.e., identification position and orientation of a moving
object with respect to a camera. The diffusion map was used for path planning inside a 2D grid map.

In this paper, we apply methods based on low-dimensional manifolds, which are widely used in
image recognition, to the problem of the determination of ground robot coordinates. The main idea
is that multidimensional image data are, in fact, distributed close to some embedded mathematical
manifold of low dimension. The diffusion map projects an image (described by a point in the
multidimensional space) to this low-dimensional manifold preserving the mutual relationships
between the data [11–17]. The coordinates of the point on the low-dimensional manifold represent the
coordinates of the object. We find the ground robot coordinates as a function of coordinates of the
robot image on the low-dimensional manifold obtained from the diffusion map. We compare these
coordinates with coordinates obtained from deep learning. We also give a short description of robot
control with a time delay on the basis of these coordinates found from the diffusion map.

The structure of the paper is the following:
Part 1 is the Introduction. In this part, we explain the importance and novelty of the paper. Indeed,

we seek methods that can compete with deep learning in universality and the possibility of automatic
generation of features for recognition and regression. The diffusion map is such a method. In this
paper, we offer an important practical example (the ground robot navigation), demonstrating that the
diffusion map can indeed compete with deep learning. We also offer in this section a list of relevant
references and describe the structure of the paper.

Mathematics 2020, 8, 2175 3 of 16

Part 2 is the Materials and Methods section. In this part, we describe methods used for the solution
of the ground robot navigation using a diffusion map and provide a block diagram describing the
solution flowchart.

Part 3 is the Results. In this part, we introduce the diffusion map using four steps. First, we define
the function for comparing similar images based on the Lucas–Kanade method [18] for finding optical
flow. In the second step, we define diffusion space and its eigenbasis. In the third step, we define how
an arbitrary image can be expanded using the eigenbasis. However, finding the ground robot position
and orientation is only half of the problem of navigation. Hence, in the fourth step, we consider
the problem of controlling the robot’s motion. The paper presents a method for stabilization of the
moving robot controlled by autopilot with time delay using results developed herein [8]. Indeed,
image processing for visual navigation demands much time and results in time delay. However,
the proposed method allows us to achieve stable control in the presence of this time delay.

Part 4 is the Discussion section. In this part, we describe the results of the diffusion map algorithm
and the deep learning algorithm, drawing conclusions on the efficiency of the diffuse map method.

Part 5 is the Conclusion. In this part, we conclude with the main results of our paper, compare the
diffusion map with deep learning, describe the advantages and disadvantages of the methods and also
discuss future plans to improve the diffusion map.

2. Materials and Methods

In this paper, we use two sets of images—a training set (900 images) and a validation set
(5000 images). The training set is used for training the diffusion map algorithm, and the validation set
is used for verification of the diffusion map algorithm. The diffusion map algorithm allows us to find
the coordinates of the ground robot on an image in the diffusion space.

We also know the usual space coordinates of the ground robot with respect to the camera.
Hence, using 1800 images (900 from the training set and 900 from the validation set) and some
interpolation functions, we can find values of the usual space coordinates for any values of the diffusion
space coordinates.

The rest of the images from the validation set are used for finding error values for two coordinates
and the angle describing the position of the ground robot with respect to the camera.

The diffusion map, as a data analysis tool, was introduced in 2006 [11,12]. The authors showed
that the eigenfunctions of the Markov matrices could be used to construct embedded low-dimensional
manifold coordinates, obtained by the diffusion map, that create effective representations for complex
geometric structures. It is very useful for dimensionality reduction and data parameterization.

For many cases, the data sample is represented by a set of numeric attributes. In this situation,
the condition that two nodes can be connected and the strength of this connection is calculated on the
basis of closeness for the corresponding data points of the feature space.

The basic idea is to treat the eigenvectors of the Markov matrices (the matrix of translation
probability for all node connections) as coordinates on a dataset. Therefore, the data initially considered
as a graph can be considered as a point cloud.

This algorithm demonstrates two main advantages with respect to classical dimensionality
reduction methods (for example, classical multivariate scaling or principal component analysis): it is
nonlinear and preserves local structures.

Let us briefly describe the diffusion map algorithm. Suppose that images x1, x2, . . . , xn ∈

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 16

Part 2 is the Materials and Methods section. In this part, we describe methods used for the
solution of the ground robot navigation using a diffusion map and provide a block diagram
describing the solution flowchart.

Part 3 is the Results. In this part, we introduce the diffusion map using four steps. First, we
define the function for comparing similar images based on the Lucas–Kanade method [18] for finding
optical flow. In the second step, we define diffusion space and its eigenbasis. In the third step, we
define how an arbitrary image can be expanded using the eigenbasis. However, finding the ground
robot position and orientation is only half of the problem of navigation. Hence, in the fourth step, we
consider the problem of controlling the robot’s motion. The paper presents a method for stabilization
of the moving robot controlled by autopilot with time delay using results developed herein [8].
Indeed, image processing for visual navigation demands much time and results in time delay.
However, the proposed method allows us to achieve stable control in the presence of this time delay.

Part 4 is the Discussion section. In this part, we describe the results of the diffusion map
algorithm and the deep learning algorithm, drawing conclusions on the efficiency of the diffuse map
method.

Part 5 is the Conclusion. In this part, we conclude with the main results of our paper, compare
the diffusion map with deep learning, describe the advantages and disadvantages of the methods
and also discuss future plans to improve the diffusion map.

2. Materials and Methods

In this paper, we use two sets of images—a training set (900 images) and a validation set (5000
images). The training set is used for training the diffusion map algorithm, and the validation set is
used for verification of the diffusion map algorithm. The diffusion map algorithm allows us to find
the coordinates of the ground robot on an image in the diffusion space.

We also know the usual space coordinates of the ground robot with respect to the camera. Hence,
using 1800 images (900 from the training set and 900 from the validation set) and some interpolation
functions, we can find values of the usual space coordinates for any values of the diffusion space
coordinates.

The rest of the images from the validation set are used for finding error values for two
coordinates and the angle describing the position of the ground robot with respect to the camera.

The diffusion map, as a data analysis tool, was introduced in 2006 [11,12]. The authors showed
that the eigenfunctions of the Markov matrices could be used to construct embedded low-
dimensional manifold coordinates, obtained by the diffusion map, that create effective
representations for complex geometric structures. It is very useful for dimensionality reduction and
data parameterization.

For many cases, the data sample is represented by a set of numeric attributes. In this situation,
the condition that two nodes can be connected and the strength of this connection is calculated on the
basis of closeness for the corresponding data points of the feature space.

The basic idea is to treat the eigenvectors of the Markov matrices (the matrix of translation
probability for all node connections) as coordinates on a dataset. Therefore, the data initially
considered as a graph can be considered as a point cloud.

This algorithm demonstrates two main advantages with respect to classical dimensionality
reduction methods (for example, classical multivariate scaling or principal component analysis): it is
nonlinear and preserves local structures.

Let us briefly describe the diffusion map algorithm. Suppose that images 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈ 𝓜,
where 𝓜–multifold in ℝே. Let us define up to multifold 𝓜 measure μ, such that:

1. ∀𝑥ଵ, 𝑥ଶ ∃𝑙 ∈ ℝ: 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝑙
2. ∀𝑥ଵ, 𝑥ଶ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝛍ሺ𝑥ଶ, 𝑥ଵሻ (1)

3. ∀𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝛍ሺ𝑥ଵ, 𝑥ଷሻ ≤ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ + 𝛍ሺ𝑥ଶ, 𝑥ଷሻ

,
where

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 16

Part 2 is the Materials and Methods section. In this part, we describe methods used for the
solution of the ground robot navigation using a diffusion map and provide a block diagram
describing the solution flowchart.

Part 3 is the Results. In this part, we introduce the diffusion map using four steps. First, we
define the function for comparing similar images based on the Lucas–Kanade method [18] for finding
optical flow. In the second step, we define diffusion space and its eigenbasis. In the third step, we
define how an arbitrary image can be expanded using the eigenbasis. However, finding the ground
robot position and orientation is only half of the problem of navigation. Hence, in the fourth step, we
consider the problem of controlling the robot’s motion. The paper presents a method for stabilization
of the moving robot controlled by autopilot with time delay using results developed herein [8].
Indeed, image processing for visual navigation demands much time and results in time delay.
However, the proposed method allows us to achieve stable control in the presence of this time delay.

Part 4 is the Discussion section. In this part, we describe the results of the diffusion map
algorithm and the deep learning algorithm, drawing conclusions on the efficiency of the diffuse map
method.

Part 5 is the Conclusion. In this part, we conclude with the main results of our paper, compare
the diffusion map with deep learning, describe the advantages and disadvantages of the methods
and also discuss future plans to improve the diffusion map.

2. Materials and Methods

In this paper, we use two sets of images—a training set (900 images) and a validation set (5000
images). The training set is used for training the diffusion map algorithm, and the validation set is
used for verification of the diffusion map algorithm. The diffusion map algorithm allows us to find
the coordinates of the ground robot on an image in the diffusion space.

We also know the usual space coordinates of the ground robot with respect to the camera. Hence,
using 1800 images (900 from the training set and 900 from the validation set) and some interpolation
functions, we can find values of the usual space coordinates for any values of the diffusion space
coordinates.

The rest of the images from the validation set are used for finding error values for two
coordinates and the angle describing the position of the ground robot with respect to the camera.

The diffusion map, as a data analysis tool, was introduced in 2006 [11,12]. The authors showed
that the eigenfunctions of the Markov matrices could be used to construct embedded low-
dimensional manifold coordinates, obtained by the diffusion map, that create effective
representations for complex geometric structures. It is very useful for dimensionality reduction and
data parameterization.

For many cases, the data sample is represented by a set of numeric attributes. In this situation,
the condition that two nodes can be connected and the strength of this connection is calculated on the
basis of closeness for the corresponding data points of the feature space.

The basic idea is to treat the eigenvectors of the Markov matrices (the matrix of translation
probability for all node connections) as coordinates on a dataset. Therefore, the data initially
considered as a graph can be considered as a point cloud.

This algorithm demonstrates two main advantages with respect to classical dimensionality
reduction methods (for example, classical multivariate scaling or principal component analysis): it is
nonlinear and preserves local structures.

Let us briefly describe the diffusion map algorithm. Suppose that images 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈ 𝓜,
where 𝓜–multifold in ℝே. Let us define up to multifold 𝓜 measure μ, such that:

1. ∀𝑥ଵ, 𝑥ଶ ∃𝑙 ∈ ℝ: 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝑙
2. ∀𝑥ଵ, 𝑥ଶ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝛍ሺ𝑥ଶ, 𝑥ଵሻ (1)

3. ∀𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝛍ሺ𝑥ଵ, 𝑥ଷሻ ≤ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ + 𝛍ሺ𝑥ଶ, 𝑥ଷሻ

–multifold in RN. Let us define up to multifold

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 16

Part 2 is the Materials and Methods section. In this part, we describe methods used for the
solution of the ground robot navigation using a diffusion map and provide a block diagram
describing the solution flowchart.

Part 3 is the Results. In this part, we introduce the diffusion map using four steps. First, we
define the function for comparing similar images based on the Lucas–Kanade method [18] for finding
optical flow. In the second step, we define diffusion space and its eigenbasis. In the third step, we
define how an arbitrary image can be expanded using the eigenbasis. However, finding the ground
robot position and orientation is only half of the problem of navigation. Hence, in the fourth step, we
consider the problem of controlling the robot’s motion. The paper presents a method for stabilization
of the moving robot controlled by autopilot with time delay using results developed herein [8].
Indeed, image processing for visual navigation demands much time and results in time delay.
However, the proposed method allows us to achieve stable control in the presence of this time delay.

Part 4 is the Discussion section. In this part, we describe the results of the diffusion map
algorithm and the deep learning algorithm, drawing conclusions on the efficiency of the diffuse map
method.

Part 5 is the Conclusion. In this part, we conclude with the main results of our paper, compare
the diffusion map with deep learning, describe the advantages and disadvantages of the methods
and also discuss future plans to improve the diffusion map.

2. Materials and Methods

In this paper, we use two sets of images—a training set (900 images) and a validation set (5000
images). The training set is used for training the diffusion map algorithm, and the validation set is
used for verification of the diffusion map algorithm. The diffusion map algorithm allows us to find
the coordinates of the ground robot on an image in the diffusion space.

We also know the usual space coordinates of the ground robot with respect to the camera. Hence,
using 1800 images (900 from the training set and 900 from the validation set) and some interpolation
functions, we can find values of the usual space coordinates for any values of the diffusion space
coordinates.

The rest of the images from the validation set are used for finding error values for two
coordinates and the angle describing the position of the ground robot with respect to the camera.

The diffusion map, as a data analysis tool, was introduced in 2006 [11,12]. The authors showed
that the eigenfunctions of the Markov matrices could be used to construct embedded low-
dimensional manifold coordinates, obtained by the diffusion map, that create effective
representations for complex geometric structures. It is very useful for dimensionality reduction and
data parameterization.

For many cases, the data sample is represented by a set of numeric attributes. In this situation,
the condition that two nodes can be connected and the strength of this connection is calculated on the
basis of closeness for the corresponding data points of the feature space.

The basic idea is to treat the eigenvectors of the Markov matrices (the matrix of translation
probability for all node connections) as coordinates on a dataset. Therefore, the data initially
considered as a graph can be considered as a point cloud.

This algorithm demonstrates two main advantages with respect to classical dimensionality
reduction methods (for example, classical multivariate scaling or principal component analysis): it is
nonlinear and preserves local structures.

Let us briefly describe the diffusion map algorithm. Suppose that images 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈ 𝓜,
where 𝓜–multifold in ℝே. Let us define up to multifold 𝓜 measure μ, such that:

1. ∀𝑥ଵ, 𝑥ଶ ∃𝑙 ∈ ℝ: 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝑙
2. ∀𝑥ଵ, 𝑥ଶ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝛍ሺ𝑥ଶ, 𝑥ଵሻ (1)

3. ∀𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝛍ሺ𝑥ଵ, 𝑥ଷሻ ≤ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ + 𝛍ሺ𝑥ଶ, 𝑥ଷሻ

measure µ, such that:

1. ∀x1, x2 ∃l ∈ R : µ(x1, x2) = l
2.

∀x1, x2 µ(x1, x2) = µ(x2, x1) (1)

3. ∀x1, x2, x3 µ(x1, x3) ≤ µ(x1, x2) + µ(x2, x3)

Mathematics 2020, 8, 2175 4 of 16

Let us build using an x1, x2, . . . , xn weighted graph, where x1, x2, . . . , xn will be nodes of the
graph and µ(xi, xk) will be graph distances, connecting the nodes i and k. These distances create
distance matrix M. At the next step from the graph matrix M we define weight matrix W that is called
the Laplace matrix. Moreover, in the next step from the weight matrix W, we create the Markov matrix
P. The first m ≤ n eigenvectors of the Markov matrix may be considered as coordinates in the diffusion
spaceDm

x1,x2, ..., xn with m-dimensions, produced by x1, x2, . . . , xn.
If we get a new point y < [x1, x2, . . . , xn], by using the vector (µ(y, x1), µ(y, x2), . . . ,µ(y, xn))

we can find point y in diffusion spaceDm
x1,x2, ..., xn . These coordinates provide us essential information

about the new point y.
We can build the diffusion space up to the basic set of ground robot images x1, x2, . . . , xn.

This diffusion space will allow us to find with high precision coordinates in the diffusion space for any
additional image y, which is not included in the set x1, x2, . . . , xn.

For finding the diffusion map, we must define the function of similarity µ(x1, x2) for two images
x1, x2. To do it, we look for intrinsic points by the Harris–Stephens corner detector [17] and then use
the Lucas–Kanade algorithm [18] to find corresponding intrinsic points.

Finally, we describe the robot control with time delay based on diffusion map algorithm
measurements using the results of the papers [19,20].

The flowchart for the full ground robot navigation and control algorithm using a diffusion map is
the following:

1. Start;
2. We define the similarity of two robot images using the Harris–Stephens corner detector [17] and

then use the Lucas–Kanade algorithm [18] to find correspondent intrinsic points;
3. We choose the set of n robot images describing its possible rotations and translations with some

small steps;
4. Using the set of n images and the similarity function, we find the diffusion map with correspondent

n eigenvalues and eigenvectors;
5. Using these eigenvalues and eigenvector, we find the correspondent reduced m-dimension (m « n)

diffusion space;
6. We describe the method for finding coordinates of an arbitrary robot image in the diffusion space;
7. We add n new images and find their coordinates in the diffusion space;
8. Using these two sets of n images and any interpolation method, we can find correspondence

between the position and orientation of the robot and its image coordinates in the diffusion space;
9. Using the found correspondence, we can find the position and orientation of the robot on

any image;
10. Using the theory for the robot control with time delay, we can find control signals for decreasing

difference between the found and desirable robot position and orientation;
11. Finish.

3. Results

3.1. Basic and Additional Sets of Images

Images of a ground robot on a neutral background with pixel size 100 × 100 were created in the
Unity program (Figure 1). Because of the properties of our image processing algorithm, we choose a
special pattern for the upper surface of the robot with a large number of intrinsic points and nonuniform
environments of these points: The black strip borders with the upper robot surface. We need this strip
to separate the upper robot surface from the surrounding background.

Mathematics 2020, 8, 2175 5 of 16

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 16

with angle step 10°. The coordinate origin (for the robot body) is pointed in the middle of the line
connecting the centers of the back wheels because this point is a center of robot rotation during
motion, and we need to know the origin of the coordinates for controlling the robot. In addition, 0°
corresponds to the robot pointed down with respect to the image, with a clockwise direction
corresponding to the robot angle increasing.

The set of the basic robot images corresponds to a table with the robot coordinates and robot
angle sin(𝛼) and cos(𝛼) correspondent to the robot position and orientation on the images. We use
sin(𝛼) and cos(𝛼) to prevent a gap (for 𝛼) in the point between −180° and 180°.

The set of additional images (the validation set) includes 5000 images with random angles and
coordinates in the same range.

Images 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ can be considered as points of the multifold 𝓜 ∈ ℝே in the space, where
N is equal to the pixel number of an image multiplied by the number of the layers, i.e., N = 100 × 100
× 3 = 30,000. As far as images, 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈ 𝓜 are different only by the coordinates and rotation
angle of the robot. It is evident that 𝓜 ≅ ℝଶ × 𝑼ሺ𝟏ሻ, and dimሺ𝓜ሻ = 3. However, for the description
of the robot position and orientation, we will use 4 values–𝑢, 𝑣, cos , sin to prevent mistakes for
rotation angle close to values −180° or 180°.

3.2. Intrinsic Points

On the image of the robot with pixel coordinates 𝑢 = 0, 𝑣 = 0 and rotation angle 𝛼 = 0°, we
found 25 intrinsic points by the Harris–Stephens corner detector [17] (Figure 3). These points can be
easily found on any image of the robot with a different position and orientation. We also found
coordinates of all these points on all images of the basic set (900 images).

Figure 1. The ground robot images.

 𝑢 = −16 𝑝𝑖𝑐 𝑣 = −16 𝑝𝑖𝑐 𝛼 = 50°
𝑢 = −8 𝑝𝑖𝑐 𝑣 = 0 𝑝𝑖𝑐 𝛼 = −130°

𝑢 = 0 𝑝𝑖𝑐 𝑣 = 0 𝑝𝑖𝑐 𝛼 = 0°
𝑢 = 8 𝑝𝑖𝑐 𝑣 = 0 𝑝𝑖𝑐 𝛼 = 180°

Figure 2. Examples of images from the basic set (the red plus sign denotes the robot body origin).

Figure 1. The ground robot images.

The basic set (the training set) of images includes 900 images with a pixel size of 100 × 100, where
coordinates of the robots and their rotation angle are some discrete set. Some examples are shown in
Figure 2. The set of the horizontal coordinates u are −16 pixels, −8 pixels, 0 pixels, 8 pixels, 16 pixels.
A similar set is defined for the vertical coordinates v. The rotation angle α changes from −170◦ to 180◦

with angle step 10◦. The coordinate origin (for the robot body) is pointed in the middle of the line
connecting the centers of the back wheels because this point is a center of robot rotation during motion,
and we need to know the origin of the coordinates for controlling the robot. In addition, 0◦ corresponds
to the robot pointed down with respect to the image, with a clockwise direction corresponding to the
robot angle increasing.

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 16

with angle step 10°. The coordinate origin (for the robot body) is pointed in the middle of the line
connecting the centers of the back wheels because this point is a center of robot rotation during
motion, and we need to know the origin of the coordinates for controlling the robot. In addition, 0°
corresponds to the robot pointed down with respect to the image, with a clockwise direction
corresponding to the robot angle increasing.

The set of the basic robot images corresponds to a table with the robot coordinates and robot
angle sin(𝛼) and cos(𝛼) correspondent to the robot position and orientation on the images. We use
sin(𝛼) and cos(𝛼) to prevent a gap (for 𝛼) in the point between −180° and 180°.

The set of additional images (the validation set) includes 5000 images with random angles and
coordinates in the same range.

Images 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ can be considered as points of the multifold 𝓜 ∈ ℝே in the space, where
N is equal to the pixel number of an image multiplied by the number of the layers, i.e., N = 100 × 100
× 3 = 30,000. As far as images, 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈ 𝓜 are different only by the coordinates and rotation
angle of the robot. It is evident that 𝓜 ≅ ℝଶ × 𝑼ሺ𝟏ሻ, and dimሺ𝓜ሻ = 3. However, for the description
of the robot position and orientation, we will use 4 values–𝑢, 𝑣, cos , sin to prevent mistakes for
rotation angle close to values −180° or 180°.

3.2. Intrinsic Points

On the image of the robot with pixel coordinates 𝑢 = 0, 𝑣 = 0 and rotation angle 𝛼 = 0°, we
found 25 intrinsic points by the Harris–Stephens corner detector [17] (Figure 3). These points can be
easily found on any image of the robot with a different position and orientation. We also found
coordinates of all these points on all images of the basic set (900 images).

Figure 1. The ground robot images.

 𝑢 = −16 𝑝𝑖𝑐 𝑣 = −16 𝑝𝑖𝑐 𝛼 = 50°
𝑢 = −8 𝑝𝑖𝑐 𝑣 = 0 𝑝𝑖𝑐 𝛼 = −130°

𝑢 = 0 𝑝𝑖𝑐 𝑣 = 0 𝑝𝑖𝑐 𝛼 = 0°
𝑢 = 8 𝑝𝑖𝑐 𝑣 = 0 𝑝𝑖𝑐 𝛼 = 180°

Figure 2. Examples of images from the basic set (the red plus sign denotes the robot body origin). Figure 2. Examples of images from the basic set (the red plus sign denotes the robot body origin).

The set of the basic robot images corresponds to a table with the robot coordinates and robot angle
sin(α) and cos(α) correspondent to the robot position and orientation on the images. We use sin(α) and
cos(α) to prevent a gap (for α) in the point between −180◦ and 180◦.

The set of additional images (the validation set) includes 5000 images with random angles and
coordinates in the same range.

Images x1, x2, . . . , xn can be considered as points of the multifold

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 16

Part 2 is the Materials and Methods section. In this part, we describe methods used for the
solution of the ground robot navigation using a diffusion map and provide a block diagram
describing the solution flowchart.

Part 3 is the Results. In this part, we introduce the diffusion map using four steps. First, we
define the function for comparing similar images based on the Lucas–Kanade method [18] for finding
optical flow. In the second step, we define diffusion space and its eigenbasis. In the third step, we
define how an arbitrary image can be expanded using the eigenbasis. However, finding the ground
robot position and orientation is only half of the problem of navigation. Hence, in the fourth step, we
consider the problem of controlling the robot’s motion. The paper presents a method for stabilization
of the moving robot controlled by autopilot with time delay using results developed herein [8].
Indeed, image processing for visual navigation demands much time and results in time delay.
However, the proposed method allows us to achieve stable control in the presence of this time delay.

Part 4 is the Discussion section. In this part, we describe the results of the diffusion map
algorithm and the deep learning algorithm, drawing conclusions on the efficiency of the diffuse map
method.

Part 5 is the Conclusion. In this part, we conclude with the main results of our paper, compare
the diffusion map with deep learning, describe the advantages and disadvantages of the methods
and also discuss future plans to improve the diffusion map.

2. Materials and Methods

In this paper, we use two sets of images—a training set (900 images) and a validation set (5000
images). The training set is used for training the diffusion map algorithm, and the validation set is
used for verification of the diffusion map algorithm. The diffusion map algorithm allows us to find
the coordinates of the ground robot on an image in the diffusion space.

We also know the usual space coordinates of the ground robot with respect to the camera. Hence,
using 1800 images (900 from the training set and 900 from the validation set) and some interpolation
functions, we can find values of the usual space coordinates for any values of the diffusion space
coordinates.

The rest of the images from the validation set are used for finding error values for two
coordinates and the angle describing the position of the ground robot with respect to the camera.

The diffusion map, as a data analysis tool, was introduced in 2006 [11,12]. The authors showed
that the eigenfunctions of the Markov matrices could be used to construct embedded low-
dimensional manifold coordinates, obtained by the diffusion map, that create effective
representations for complex geometric structures. It is very useful for dimensionality reduction and
data parameterization.

For many cases, the data sample is represented by a set of numeric attributes. In this situation,
the condition that two nodes can be connected and the strength of this connection is calculated on the
basis of closeness for the corresponding data points of the feature space.

The basic idea is to treat the eigenvectors of the Markov matrices (the matrix of translation
probability for all node connections) as coordinates on a dataset. Therefore, the data initially
considered as a graph can be considered as a point cloud.

This algorithm demonstrates two main advantages with respect to classical dimensionality
reduction methods (for example, classical multivariate scaling or principal component analysis): it is
nonlinear and preserves local structures.

Let us briefly describe the diffusion map algorithm. Suppose that images 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈ 𝓜,
where 𝓜–multifold in ℝே. Let us define up to multifold 𝓜 measure μ, such that:

1. ∀𝑥ଵ, 𝑥ଶ ∃𝑙 ∈ ℝ: 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝑙
2. ∀𝑥ଵ, 𝑥ଶ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝛍ሺ𝑥ଶ, 𝑥ଵሻ (1)

3. ∀𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝛍ሺ𝑥ଵ, 𝑥ଷሻ ≤ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ + 𝛍ሺ𝑥ଶ, 𝑥ଷሻ

∈ RN in the space,
where N is equal to the pixel number of an image multiplied by the number of the layers, i.e.,
N = 100 × 100 × 3 = 30,000. As far as images, x1, x2, . . . , xn ∈

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 16

Part 2 is the Materials and Methods section. In this part, we describe methods used for the
solution of the ground robot navigation using a diffusion map and provide a block diagram
describing the solution flowchart.

Part 3 is the Results. In this part, we introduce the diffusion map using four steps. First, we
define the function for comparing similar images based on the Lucas–Kanade method [18] for finding
optical flow. In the second step, we define diffusion space and its eigenbasis. In the third step, we
define how an arbitrary image can be expanded using the eigenbasis. However, finding the ground
robot position and orientation is only half of the problem of navigation. Hence, in the fourth step, we
consider the problem of controlling the robot’s motion. The paper presents a method for stabilization
of the moving robot controlled by autopilot with time delay using results developed herein [8].
Indeed, image processing for visual navigation demands much time and results in time delay.
However, the proposed method allows us to achieve stable control in the presence of this time delay.

Part 4 is the Discussion section. In this part, we describe the results of the diffusion map
algorithm and the deep learning algorithm, drawing conclusions on the efficiency of the diffuse map
method.

Part 5 is the Conclusion. In this part, we conclude with the main results of our paper, compare
the diffusion map with deep learning, describe the advantages and disadvantages of the methods
and also discuss future plans to improve the diffusion map.

2. Materials and Methods

In this paper, we use two sets of images—a training set (900 images) and a validation set (5000
images). The training set is used for training the diffusion map algorithm, and the validation set is
used for verification of the diffusion map algorithm. The diffusion map algorithm allows us to find
the coordinates of the ground robot on an image in the diffusion space.

We also know the usual space coordinates of the ground robot with respect to the camera. Hence,
using 1800 images (900 from the training set and 900 from the validation set) and some interpolation
functions, we can find values of the usual space coordinates for any values of the diffusion space
coordinates.

The rest of the images from the validation set are used for finding error values for two
coordinates and the angle describing the position of the ground robot with respect to the camera.

The diffusion map, as a data analysis tool, was introduced in 2006 [11,12]. The authors showed
that the eigenfunctions of the Markov matrices could be used to construct embedded low-
dimensional manifold coordinates, obtained by the diffusion map, that create effective
representations for complex geometric structures. It is very useful for dimensionality reduction and
data parameterization.

For many cases, the data sample is represented by a set of numeric attributes. In this situation,
the condition that two nodes can be connected and the strength of this connection is calculated on the
basis of closeness for the corresponding data points of the feature space.

The basic idea is to treat the eigenvectors of the Markov matrices (the matrix of translation
probability for all node connections) as coordinates on a dataset. Therefore, the data initially
considered as a graph can be considered as a point cloud.

This algorithm demonstrates two main advantages with respect to classical dimensionality
reduction methods (for example, classical multivariate scaling or principal component analysis): it is
nonlinear and preserves local structures.

Let us briefly describe the diffusion map algorithm. Suppose that images 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈ 𝓜,
where 𝓜–multifold in ℝே. Let us define up to multifold 𝓜 measure μ, such that:

1. ∀𝑥ଵ, 𝑥ଶ ∃𝑙 ∈ ℝ: 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝑙
2. ∀𝑥ଵ, 𝑥ଶ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝛍ሺ𝑥ଶ, 𝑥ଵሻ (1)

3. ∀𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝛍ሺ𝑥ଵ, 𝑥ଷሻ ≤ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ + 𝛍ሺ𝑥ଶ, 𝑥ଷሻ

are different only by the coordinates
and rotation angle of the robot. It is evident that

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 16

Part 2 is the Materials and Methods section. In this part, we describe methods used for the
solution of the ground robot navigation using a diffusion map and provide a block diagram
describing the solution flowchart.

Part 3 is the Results. In this part, we introduce the diffusion map using four steps. First, we
define the function for comparing similar images based on the Lucas–Kanade method [18] for finding
optical flow. In the second step, we define diffusion space and its eigenbasis. In the third step, we
define how an arbitrary image can be expanded using the eigenbasis. However, finding the ground
robot position and orientation is only half of the problem of navigation. Hence, in the fourth step, we
consider the problem of controlling the robot’s motion. The paper presents a method for stabilization
of the moving robot controlled by autopilot with time delay using results developed herein [8].
Indeed, image processing for visual navigation demands much time and results in time delay.
However, the proposed method allows us to achieve stable control in the presence of this time delay.

Part 4 is the Discussion section. In this part, we describe the results of the diffusion map
algorithm and the deep learning algorithm, drawing conclusions on the efficiency of the diffuse map
method.

Part 5 is the Conclusion. In this part, we conclude with the main results of our paper, compare
the diffusion map with deep learning, describe the advantages and disadvantages of the methods
and also discuss future plans to improve the diffusion map.

2. Materials and Methods

In this paper, we use two sets of images—a training set (900 images) and a validation set (5000
images). The training set is used for training the diffusion map algorithm, and the validation set is
used for verification of the diffusion map algorithm. The diffusion map algorithm allows us to find
the coordinates of the ground robot on an image in the diffusion space.

We also know the usual space coordinates of the ground robot with respect to the camera. Hence,
using 1800 images (900 from the training set and 900 from the validation set) and some interpolation
functions, we can find values of the usual space coordinates for any values of the diffusion space
coordinates.

The rest of the images from the validation set are used for finding error values for two
coordinates and the angle describing the position of the ground robot with respect to the camera.

The diffusion map, as a data analysis tool, was introduced in 2006 [11,12]. The authors showed
that the eigenfunctions of the Markov matrices could be used to construct embedded low-
dimensional manifold coordinates, obtained by the diffusion map, that create effective
representations for complex geometric structures. It is very useful for dimensionality reduction and
data parameterization.

For many cases, the data sample is represented by a set of numeric attributes. In this situation,
the condition that two nodes can be connected and the strength of this connection is calculated on the
basis of closeness for the corresponding data points of the feature space.

The basic idea is to treat the eigenvectors of the Markov matrices (the matrix of translation
probability for all node connections) as coordinates on a dataset. Therefore, the data initially
considered as a graph can be considered as a point cloud.

This algorithm demonstrates two main advantages with respect to classical dimensionality
reduction methods (for example, classical multivariate scaling or principal component analysis): it is
nonlinear and preserves local structures.

Let us briefly describe the diffusion map algorithm. Suppose that images 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈ 𝓜,
where 𝓜–multifold in ℝே. Let us define up to multifold 𝓜 measure μ, such that:

1. ∀𝑥ଵ, 𝑥ଶ ∃𝑙 ∈ ℝ: 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝑙
2. ∀𝑥ଵ, 𝑥ଶ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝛍ሺ𝑥ଶ, 𝑥ଵሻ (1)

3. ∀𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝛍ሺ𝑥ଵ, 𝑥ଷሻ ≤ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ + 𝛍ሺ𝑥ଶ, 𝑥ଷሻ

� R2
×U(1), and dim

(

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 16

Part 2 is the Materials and Methods section. In this part, we describe methods used for the
solution of the ground robot navigation using a diffusion map and provide a block diagram
describing the solution flowchart.

Part 3 is the Results. In this part, we introduce the diffusion map using four steps. First, we
define the function for comparing similar images based on the Lucas–Kanade method [18] for finding
optical flow. In the second step, we define diffusion space and its eigenbasis. In the third step, we
define how an arbitrary image can be expanded using the eigenbasis. However, finding the ground
robot position and orientation is only half of the problem of navigation. Hence, in the fourth step, we
consider the problem of controlling the robot’s motion. The paper presents a method for stabilization
of the moving robot controlled by autopilot with time delay using results developed herein [8].
Indeed, image processing for visual navigation demands much time and results in time delay.
However, the proposed method allows us to achieve stable control in the presence of this time delay.

Part 4 is the Discussion section. In this part, we describe the results of the diffusion map
algorithm and the deep learning algorithm, drawing conclusions on the efficiency of the diffuse map
method.

Part 5 is the Conclusion. In this part, we conclude with the main results of our paper, compare
the diffusion map with deep learning, describe the advantages and disadvantages of the methods
and also discuss future plans to improve the diffusion map.

2. Materials and Methods

In this paper, we use two sets of images—a training set (900 images) and a validation set (5000
images). The training set is used for training the diffusion map algorithm, and the validation set is
used for verification of the diffusion map algorithm. The diffusion map algorithm allows us to find
the coordinates of the ground robot on an image in the diffusion space.

We also know the usual space coordinates of the ground robot with respect to the camera. Hence,
using 1800 images (900 from the training set and 900 from the validation set) and some interpolation
functions, we can find values of the usual space coordinates for any values of the diffusion space
coordinates.

The rest of the images from the validation set are used for finding error values for two
coordinates and the angle describing the position of the ground robot with respect to the camera.

The diffusion map, as a data analysis tool, was introduced in 2006 [11,12]. The authors showed
that the eigenfunctions of the Markov matrices could be used to construct embedded low-
dimensional manifold coordinates, obtained by the diffusion map, that create effective
representations for complex geometric structures. It is very useful for dimensionality reduction and
data parameterization.

For many cases, the data sample is represented by a set of numeric attributes. In this situation,
the condition that two nodes can be connected and the strength of this connection is calculated on the
basis of closeness for the corresponding data points of the feature space.

The basic idea is to treat the eigenvectors of the Markov matrices (the matrix of translation
probability for all node connections) as coordinates on a dataset. Therefore, the data initially
considered as a graph can be considered as a point cloud.

This algorithm demonstrates two main advantages with respect to classical dimensionality
reduction methods (for example, classical multivariate scaling or principal component analysis): it is
nonlinear and preserves local structures.

Let us briefly describe the diffusion map algorithm. Suppose that images 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈ 𝓜,
where 𝓜–multifold in ℝே. Let us define up to multifold 𝓜 measure μ, such that:

1. ∀𝑥ଵ, 𝑥ଶ ∃𝑙 ∈ ℝ: 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝑙
2. ∀𝑥ଵ, 𝑥ଶ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ = 𝛍ሺ𝑥ଶ, 𝑥ଵሻ (1)

3. ∀𝑥ଵ, 𝑥ଶ, 𝑥ଷ 𝛍ሺ𝑥ଵ, 𝑥ଷሻ ≤ 𝛍ሺ𝑥ଵ, 𝑥ଶሻ + 𝛍ሺ𝑥ଶ, 𝑥ଷሻ

)
= 3. However, for the

description of the robot position and orientation, we will use 4 values–u, v, cosα, sinα to prevent
mistakes for rotation angle close to values −180◦ or 180◦.

3.2. Intrinsic Points

On the image of the robot with pixel coordinates u = 0, v = 0 and rotation angle α = 0◦, we found
25 intrinsic points by the Harris–Stephens corner detector [17] (Figure 3). These points can be easily
found on any image of the robot with a different position and orientation. We also found coordinates
of all these points on all images of the basic set (900 images).

Mathematics 2020, 8, 2175 6 of 16

Mathematics 2020, 8, x FOR PEER REVIEW 6 of 16

Figure 3. Image of the robot with pixel coordinates 𝑢 = 0, 𝑣 = 0 and rotation angle 𝛼 = 0° with 25
intrinsic points found by the Harris–Stephens corner detector [17].

These points have the following properties [17]:

• distinctness–the intrinsic point must be clearly different from the background and have a special
(one-of-a-kind) environment

• invariance–the recognition of an intrinsic point must be independent with respect to affine
transformation.

• stability–the recognition of an intrinsic point must be independent with respect to noise and
errors.

• uniqueness–except for local distinctness (already described above), the intrinsic point must also
have global uniqueness for the distinction of repeating patterns.

• interpretability–the intrinsic point must be defined in such a way to use them for analysis of
correspondences and finding interpretive information from images.

3.3. Measure Definition

We defined 𝛍ሺ𝑥ଵ, 𝑥ଶሻ as a measure of similarity between images 𝑥ଵ (one of the basic images)
and 𝑥ଶ by the following:

1. Both images 𝑥ଵ and 𝑥ଶ we transform to gray images;
2. Twenty-five intrinsic points on the first image we take from prepared data of basic images with

already previously found intrinsic points;
3. Using the Lucas–Kanade algorithm [18], we find correspondent points on the second image

(Figure 4);
4. We find distances between correspondent points. If no correspondent point is found for some

intrinsic point of the first image, we suppose the distance to be equal to 100;
5. The Lucas–Kanade algorithm gives us information about the error value of the found

correspondence. If this error value is larger than the threshold value 30, we suppose the distance
to be equal to 100. The example of such correspondence is denoted by a red arrow in Figure 4;

6. All 25 found distances are arranged in increasing order;
7. The measure of similarity between images 𝑥ଵ and 𝑥ଶ is the median value of the distances.

Figure 3. Image of the robot with pixel coordinates u = 0, v = 0 and rotation angle α = 0◦ with
25 intrinsic points found by the Harris–Stephens corner detector [17].

These points have the following properties [17]:

• distinctness–the intrinsic point must be clearly different from the background and have a special
(one-of-a-kind) environment.

• invariance–the recognition of an intrinsic point must be independent with respect to
affine transformation.

• stability–the recognition of an intrinsic point must be independent with respect to noise and errors.
• uniqueness–except for local distinctness (already described above), the intrinsic point must also

have global uniqueness for the distinction of repeating patterns.
• interpretability–the intrinsic point must be defined in such a way to use them for analysis of

correspondences and finding interpretive information from images.

3.3. Measure Definition

We defined µ(x1, x2) as a measure of similarity between images x1 (one of the basic images) and
x2 by the following:

1. Both images x1 and x2 we transform to gray images;
2. Twenty-five intrinsic points on the first image we take from prepared data of basic images with

already previously found intrinsic points;
3. Using the Lucas–Kanade algorithm [18], we find correspondent points on the second image

(Figure 4);
4. We find distances between correspondent points. If no correspondent point is found for some

intrinsic point of the first image, we suppose the distance to be equal to 100;
5. The Lucas–Kanade algorithm gives us information about the error value of the found

correspondence. If this error value is larger than the threshold value 30, we suppose the
distance to be equal to 100. The example of such correspondence is denoted by a red arrow in
Figure 4;

6. All 25 found distances are arranged in increasing order;
7. The measure of similarity between images x1 and x2 is the median value of the distances.

Mathematics 2020, 8, 2175 7 of 16

Mathematics 2020, 8, x FOR PEER REVIEW 7 of 16

Figure 4. Correspondent points on the two images 𝑥ଵ, 𝑥ଶ and the found measure 𝛍ሺ𝑥ଵ, 𝑥ଶሻ.

3.4. Definition of Weight Matrix

1. Using the described above measure based on the Lucas–Kanade algorithm, we can define the
distance matrix M with size 900 × 900, where any matrix element ሺ𝑖, 𝑗ሻ is defined by measure 𝛍൫𝑥௜, 𝑥௝൯ between 𝑖-th and 𝑗-th images.

2. In the next step, we define weight matrix W: 𝑾 = 𝑒𝑥𝑝 ൬− 𝑴𝜀 ൰ , where elements of 𝑾: 𝑤௜,௝ = 𝑤൫𝑥௜, 𝑥௝൯ = 𝑒𝑥𝑝 ቆ− 𝛍൫𝑥௜, 𝑥௝൯𝜀 ቇ (2)

where ε-is a correctly chosen scale coefficient.
To choose ε, we use the recommendation described in the paper (Bah, 2008), specifically:

• we calculate the value:

𝐿ሺ𝜀ሻ = ෍ ෍ 𝑾௜௝ሺ𝜀ሻ௡
௝ୀଵ

௡
௜ୀଵ (3)

• we draw the function 𝐿ሺ𝜀ሻ on a logarithmic scale (Figure 5). This graph has two asymptotes
for 𝜀 → 0 and for 𝜀 → +∞

• we choose the final value of 𝜀 on the middle of the linear part of the graph 𝐿ሺ𝜀ሻ in the
inflection point.

Figure 5. The function 𝐿ሺ𝜀ሻ in logarithmic scale.

3.5. Creation of Diffusion Space 𝒟௫భ,௫మ,…,௫೙ ௠

For the creation of the diffusion space, we need to find eigenvectors of the Markov matrix.
Markov matrix 𝑷 is created from matrix W by normalization of its rows. To do this, we need to:

1. Create the diagonal matrix D using the following formulas:

Figure 4. Correspondent points on the two images x1, x2 and the found measure µ(x1, x2).

3.4. Definition of Weight Matrix

1. Using the described above measure based on the Lucas–Kanade algorithm, we can define the
distance matrix M with size 900 × 900, where any matrix element (i, j) is defined by measure
µ
(
xi, x j

)
between i-th and j-th images.

2. In the next step, we define weight matrix W:

W = exp
(
−

M
ε

)
, where elements of W : wi, j = w

(
xi, x j

)
= exp

−µ
(
xi, x j

)
ε

 (2)

where ε-is a correctly chosen scale coefficient. To choose ε, we use the recommendation described
in the paper (Bah, 2008), specifically:

• we calculate the value:

L(ε) =
n∑

i=1

n∑
j=1

Wi j(ε) (3)

• we draw the function L(ε) on a logarithmic scale (Figure 5). This graph has two asymptotes
for ε→ 0 and for ε→ +∞ .

• we choose the final value of ε on the middle of the linear part of the graph L(ε) in the
inflection point.

Mathematics 2020, 8, x FOR PEER REVIEW 7 of 16

Figure 4. Correspondent points on the two images 𝑥ଵ, 𝑥ଶ and the found measure 𝛍ሺ𝑥ଵ, 𝑥ଶሻ.

3.4. Definition of Weight Matrix

1. Using the described above measure based on the Lucas–Kanade algorithm, we can define the
distance matrix M with size 900 × 900, where any matrix element ሺ𝑖, 𝑗ሻ is defined by measure 𝛍൫𝑥௜, 𝑥௝൯ between 𝑖-th and 𝑗-th images.

2. In the next step, we define weight matrix W: 𝑾 = 𝑒𝑥𝑝 ൬− 𝑴𝜀 ൰ , where elements of 𝑾: 𝑤௜,௝ = 𝑤൫𝑥௜, 𝑥௝൯ = 𝑒𝑥𝑝 ቆ− 𝛍൫𝑥௜, 𝑥௝൯𝜀 ቇ (2)

where ε-is a correctly chosen scale coefficient.
To choose ε, we use the recommendation described in the paper (Bah, 2008), specifically:

• we calculate the value:

𝐿ሺ𝜀ሻ = ෍ ෍ 𝑾௜௝ሺ𝜀ሻ௡
௝ୀଵ

௡
௜ୀଵ (3)

• we draw the function 𝐿ሺ𝜀ሻ on a logarithmic scale (Figure 5). This graph has two asymptotes
for 𝜀 → 0 and for 𝜀 → +∞

• we choose the final value of 𝜀 on the middle of the linear part of the graph 𝐿ሺ𝜀ሻ in the
inflection point.

Figure 5. The function 𝐿ሺ𝜀ሻ in logarithmic scale.

3.5. Creation of Diffusion Space 𝒟௫భ,௫మ,…,௫೙ ௠

For the creation of the diffusion space, we need to find eigenvectors of the Markov matrix.
Markov matrix 𝑷 is created from matrix W by normalization of its rows. To do this, we need to:

1. Create the diagonal matrix D using the following formulas:

Figure 5. The function L(ε) in logarithmic scale.

Mathematics 2020, 8, 2175 8 of 16

3.5. Creation of Diffusion SpaceDm
x1,x2,...,xn

For the creation of the diffusion space, we need to find eigenvectors of the Markov matrix.
Markov matrix P is created from matrix W by normalization of its rows. To do this, we need to:

1. Create the diagonal matrix D using the following formulas:

Di j =


n∑

j=1
wi j, i = j

0, i , j
(4)

2. Find eigenvectors of the Markov matrix P = D−1W that we previously need to create the

symmetric matrix P′ = D
1
2 PD−

1
2 = D−

1
2 WD−

1
2 instead of P = D−1W (element Pij of Markov

matrix P can be interpreted as the probability of transition from node i to node j of the graph).
It was demonstrated in the paper [13] that symmetric matrix P′ has the same eigenvectors as P up
to multiplication to D−

1
2 . Specifically, if ν′ are eigenvectors and λ′ are eigen values of matrix P′,

then eigenvectors and eigen values of matrix P will be, correspondingly:

λ = λ′ (5)

ν = D−
1
2 ν′ (6)

〈ν′L,ν′s〉 = ν′L
Tν′s =

n∑
i=1

ν′L,iν
′
s,i =

{
1, s = l
0, s , l

(7)

The first eigenvector ν1 is trivial and equal to ν1 =(1, 1, 1, . . . , 1) T with eigen value 1.
3. Image coordinates of xi in diffusion space

Mathematics 2020, 8, x FOR PEER REVIEW 8 of 16

𝐷௜௝ = ൞෍ 𝑤௜௝, 𝑖 = 𝑗௡
௝ୀଵ0, 𝑖 ≠ 𝑗 (4)

2. Find eigenvectors of the Markov matrix 𝑷 = 𝑫ିଵ𝑾 that we previously need to create the
symmetric matrix 𝑷′ = 𝑫ଵ ଶൗ 𝑷𝑫ିଵ ଶൗ = 𝑫ିଵ ଶൗ 𝑾𝑫ିଵ ଶൗ instead of 𝑷 = 𝑫ିଵ𝑾 (element 𝑷𝒊𝒋 of
Markov matrix 𝑷 can be interpreted as the probability of transition from node i to node j of
the graph). It was demonstrated in the paper [13] that symmetric matrix 𝑷ᇱ has the same
eigenvectors as 𝑷 up to multiplication to 𝑫ିଵ ଶൗ . Specifically, if ′ are eigenvectors and λ′ are
eigen values of matrix 𝑷′, then eigenvectors and eigen values of matrix 𝑷 will be,
correspondingly: λ = λ′ (5)

 = 𝑫ିଵ ଶൗ ′ (6)

〈′୐, ′ୱ〉 = ′୐்′ୱ = ෍ ′୐,௜′ୱ,௜௡
௜ୀଵ = ൜1, 𝑠 = 𝑙0, 𝑠 ≠ 𝑙 (7)

The first eigenvector ଵ is trivial and equal to ଵ =(1, 1, 1, …, 1) T with eigen value 1.
3. Image coordinates of 𝑥௜ in diffusion space 𝓓𝒙భ,𝒙మ,…,𝒙𝒏 ௡ can be defined as the following:

𝑌௜ = ⎣⎢⎢
⎡ଶଶ,௜
ଷଷ,௜⋮
௡௡,௜⎦⎥⎥

⎤
 (8)

where ௝,௜ = ௝ሺ𝑥௜ሻ is the 𝑖-th element of the 𝑗-th eigenvector. As demonstrated [13], the distance
between points 𝑥௜ and 𝑥୨ in the diffusion space is equal:

𝐷൫𝑥௜, 𝑥௝൯ଶ = ෍௟ଶ൫௟,௜ − ௟,௝൯ଶ = ෍ ൫𝑃௟,௜ − 𝑃௟,௝൯ଶ𝐷௟,௟ ∑ 𝐷௞,௞௡௞ୀଵ⁄௡
௟ୀଵ

௡
௟ୀଵ (9)

Using only the first m = 20 ≤ n = 900 eigenvectors, we get a low-dimension representation of
the initial set of basic images. The corresponding diffusion space 𝓓𝒙𝟏,𝒙𝟐,…,𝒙𝒏 ௠ can be defined as
follows:

𝑌௜ = ⎣⎢⎢
⎡ ଶଶ,௜
ଷଷ,௜⋮
௠௠,௜⎦⎥⎥

⎤
 (10)

In this connection, the information about the position and orientation of the robot in the images
is included in the first eigenvectors (Figure 6). In Figure 6, we can see that the second eigenvector is
correlated with sin(𝛼), the third vector is correlated with cos(𝛼), the sixth vector is correlated with 𝑢,
and the seventh vector is correlated with 𝑣.

3.6. Finding the Diffusion Coordinate for an Arbitrary Image Not Included in the Basic Set

Currently, we need to find the diffusion coordinate for an arbitrary image not included in the
basic set:

1. Using the above-described measure 𝛍 for arbitrary image 𝑥̅ , we can create the vector: 𝑚ഥ = ሾ𝛍ሺ𝑥ଵ, 𝑥̅ሻ, 𝛍ሺ𝑥ଶ, 𝑥̅ሻ, … , 𝛍ሺ𝑥୬, 𝑥̅ሻ ሿ (11)

We can rewrite the vector 𝑚ഥ in weight form similar to elements of matrix 𝑾 (see Equation (2)): 𝑤ഥ = 𝑒𝑥𝑝 ቀ− ௠ഥఌ ቁ = ሾ𝑤ഥሺ𝑥ଵ, 𝑥̅ሻ, 𝑤ഥሺ𝑥ଶ, 𝑥̅ሻ, … , 𝑤ഥሺ𝑥୬, 𝑥̅ሻ ሿ, where 𝑤ഥሺ𝑥௜, 𝑥̅ሻ = 𝑒𝑥𝑝 ቀ− 𝛍ሺ௫೔,௫̅ሻఌ ቁ (12)

can be defined as the following:

Yi =


λ2ν2,i
λ3ν3,i

...
λnνn,i

 (8)

where ν j,i = ν j(xi) is the i-th element of the j-th eigenvector. As demonstrated [13], the distance
between points xi and x j in the diffusion space is equal:

D
(
xi, x j

)2
=

n∑
l=1

λ2
l

(
νl,i − νl, j

)2
=

n∑
l=1

(
Pl,i − Pl, j

)2

Dl,l/
∑n

k=1 Dk,k
(9)

Using only the first m = 20 ≤ n = 900 eigenvectors, we get a low-dimension representation of the
initial set of basic images. The corresponding diffusion space

Mathematics 2020, 8, x FOR PEER REVIEW 8 of 16

𝐷௜௝ = ൞෍ 𝑤௜௝, 𝑖 = 𝑗௡
௝ୀଵ0, 𝑖 ≠ 𝑗 (4)

2. Find eigenvectors of the Markov matrix 𝑷 = 𝑫ିଵ𝑾 that we previously need to create the
symmetric matrix 𝑷′ = 𝑫ଵ ଶൗ 𝑷𝑫ିଵ ଶൗ = 𝑫ିଵ ଶൗ 𝑾𝑫ିଵ ଶൗ instead of 𝑷 = 𝑫ିଵ𝑾 (element 𝑷𝒊𝒋 of
Markov matrix 𝑷 can be interpreted as the probability of transition from node i to node j of
the graph). It was demonstrated in the paper [13] that symmetric matrix 𝑷ᇱ has the same
eigenvectors as 𝑷 up to multiplication to 𝑫ିଵ ଶൗ . Specifically, if ′ are eigenvectors and λ′ are
eigen values of matrix 𝑷′, then eigenvectors and eigen values of matrix 𝑷 will be,
correspondingly: λ = λ′ (5)

 = 𝑫ିଵ ଶൗ ′ (6)

〈′୐, ′ୱ〉 = ′୐்′ୱ = ෍ ′୐,௜′ୱ,௜௡
௜ୀଵ = ൜1, 𝑠 = 𝑙0, 𝑠 ≠ 𝑙 (7)

The first eigenvector ଵ is trivial and equal to ଵ =(1, 1, 1, …, 1) T with eigen value 1.
3. Image coordinates of 𝑥௜ in diffusion space 𝓓𝒙భ,𝒙మ,…,𝒙𝒏 ௡ can be defined as the following:

𝑌௜ = ⎣⎢⎢
⎡ଶଶ,௜
ଷଷ,௜⋮
௡௡,௜⎦⎥⎥

⎤
 (8)

where ௝,௜ = ௝ሺ𝑥௜ሻ is the 𝑖-th element of the 𝑗-th eigenvector. As demonstrated [13], the distance
between points 𝑥௜ and 𝑥୨ in the diffusion space is equal:

𝐷൫𝑥௜, 𝑥௝൯ଶ = ෍௟ଶ൫௟,௜ − ௟,௝൯ଶ = ෍ ൫𝑃௟,௜ − 𝑃௟,௝൯ଶ𝐷௟,௟ ∑ 𝐷௞,௞௡௞ୀଵ⁄௡
௟ୀଵ

௡
௟ୀଵ (9)

Using only the first m = 20 ≤ n = 900 eigenvectors, we get a low-dimension representation of
the initial set of basic images. The corresponding diffusion space 𝓓𝒙𝟏,𝒙𝟐,…,𝒙𝒏 ௠ can be defined as
follows:

𝑌௜ = ⎣⎢⎢
⎡ ଶଶ,௜
ଷଷ,௜⋮
௠௠,௜⎦⎥⎥

⎤
 (10)

In this connection, the information about the position and orientation of the robot in the images
is included in the first eigenvectors (Figure 6). In Figure 6, we can see that the second eigenvector is
correlated with sin(𝛼), the third vector is correlated with cos(𝛼), the sixth vector is correlated with 𝑢,
and the seventh vector is correlated with 𝑣.

3.6. Finding the Diffusion Coordinate for an Arbitrary Image Not Included in the Basic Set

Currently, we need to find the diffusion coordinate for an arbitrary image not included in the
basic set:

1. Using the above-described measure 𝛍 for arbitrary image 𝑥̅ , we can create the vector: 𝑚ഥ = ሾ𝛍ሺ𝑥ଵ, 𝑥̅ሻ, 𝛍ሺ𝑥ଶ, 𝑥̅ሻ, … , 𝛍ሺ𝑥୬, 𝑥̅ሻ ሿ (11)

We can rewrite the vector 𝑚ഥ in weight form similar to elements of matrix 𝑾 (see Equation (2)): 𝑤ഥ = 𝑒𝑥𝑝 ቀ− ௠ഥఌ ቁ = ሾ𝑤ഥሺ𝑥ଵ, 𝑥̅ሻ, 𝑤ഥሺ𝑥ଶ, 𝑥̅ሻ, … , 𝑤ഥሺ𝑥୬, 𝑥̅ሻ ሿ, where 𝑤ഥሺ𝑥௜, 𝑥̅ሻ = 𝑒𝑥𝑝 ቀ− 𝛍ሺ௫೔,௫̅ሻఌ ቁ (12)

can be defined as follows:

Yi =


λ2ν2,i
λ3ν3,i

...
λmνm,i

 (10)

In this connection, the information about the position and orientation of the robot in the images
is included in the first eigenvectors (Figure 6). In Figure 6, we can see that the second eigenvector is
correlated with sin(α – 65), the third vector is correlated with cos(α + 205) = cos(α – 65 + 270) = sin(α – 65),
the sixth vector is correlated with u, and the seventh vector is correlated with v.

Mathematics 2020, 8, 2175 9 of 16
Mathematics 2020, 8, x FOR PEER REVIEW 9 of 16

(a) (b)

(c) (d)

Figure 6. Correlation of eigenvectors with the robot coordinates and rotation angle: (a)
correlation of the second eigenvector with sin() of rotation angle; (b) correlation of the third
eigenvector with cos() of rotation angle; (c) correlation of the sixth eigenvector with robot
coordinate u; (d) correlation of the seventh eigenvector with robot coordinate v.

2. However, to find the diffusion coordinate for an arbitrary image not included in the basic set,
it is necessary to use the method of geometric harmonics based on the Nyström extension [12] and
[15].

According to the definition of eigenvectors and eigenvalues νW, λW of matrix 𝑾 𝒇𝒓𝒐𝒎 𝒆𝒒. ሺ𝟐ሻ,
we can write the following equations:

௦ௐ௦ௐ൫𝑥௝൯ = ௦ௐ௦,௝ௐ = ෍ 𝑤௜௝௦,௜ௐ௡
௜ୀଵ = ෍ 𝑤൫𝑥௜, 𝑥௝൯௦,௜ௐ௡

௜ୀଵ (13)

Using the Nyström extension, we can approximate ത௦ௐሺ𝑥̅ሻ for images 𝑥̅ not included in the basic
set:

ത௦ௐሺ𝑥̅ሻ = 1
௦ௐ ෍ 𝑤ഥሺ𝑥௜, 𝑥̅ሻ௦,௜ௐ௡

௜ୀଵ (14)

Eigen vectors {νW} form the orthonormal basis in ℝ௡. Consequently, any function f(x), defined in
the basic set of images, can be approximate as the linear combination of basic eigenvectors {νW}:

𝑓ሺ𝑥ሻ = ෍〈௦ௐ, 𝑓〉௡
௦ୀଵ ௦ௐ (15)

−20 −15 −10 −5 0 5 10 15 20
u

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

ei
ge

n
ve

ct
or

 0
6

−20 −15 −10 −5 0 5 10 15 20
v

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 6. Correlation of eigenvectors with the robot coordinates and rotation angle: (a) correlation of the
second eigenvector with sin(α – 65) of rotation angle α; (b) correlation of the third eigenvector with
cos(α + 205) = sin(α – 65) of rotation angleα; (c) correlation of the sixth eigenvector with robot coordinate
u; (d) correlation of the seventh eigenvector with robot coordinate v.

3.6. Finding the Diffusion Coordinate for an Arbitrary Image not Included in the Basic Set

Currently, we need to find the diffusion coordinate for an arbitrary image not included in the
basic set:

1. Using the above-described measure µ for arbitrary image x, we can create the vector:

m = [µ(x1, x), µ(x2, x), . . . , µ(xn, x)] (11)

We can rewrite the vector m in weight form similar to elements of matrix W (see Equation (2)):

w = exp
(
−

m
ε

)
= [w(x1, x), w(x2, x), . . . , w(xn, x)], where w(xi, x) = exp

(
−
µ(xi, x)
ε

)
(12)

2. However, to find the diffusion coordinate for an arbitrary image not included in the basic set,
it is necessary to use the method of geometric harmonics based on the Nyström extension [12]
and [15].

Mathematics 2020, 8, 2175 10 of 16

According to the definition of eigenvectors and eigenvalues νW, λW of matrix W from Equation (2),
we can write the following equations:

λW
s νW

s

(
x j

)
= λW

s νW
s, j =

n∑
i=1

wi jν
W
s,i =

n∑
i=1

w
(
xi, x j

)
νW

s,i (13)

Using the Nyström extension, we can approximate νW
s (x) for images x not included in the

basic set:

νW
s (x) =

1

λW
s

n∑
i=1

w(xi, x)νW
s,i (14)

Eigen vectors {νW} form the orthonormal basis in Rn. Consequently, any function f(x), defined in
the basic set of images, can be approximate as the linear combination of basic eigenvectors {νW}:

f (x) =
n∑

s=1

〈νW
s , f 〉νW

s , (15)

where

〈νW
s , f 〉 =

n∑
j=1

νW
s, j f

(
x j

)
(16)

Using the Nyström extension, we can approximate f(x) for an arbitrary value x:

f (x) =
n∑

s=1

〈νW
s , f 〉νW

s (x) (17)

Applying the last equation for the eigenvectors ν j of Markov matrix P instead of function f, we
derive from Equations (14) and (17):

ν j(x) =
n∑

s=1

1

λW
s
〈νW

s ,ν j〉

n∑
i=1

w(xi, x)νW
s,i (18)

These values can be used for the calculation of the diffusion coordinates of the image x.
3. Diffusion coordinates of the image x can be found as follows:

Y(x) =


λ2ν2(x)
λ3ν3(x)

...
λmνm(x)

 (19)

3.7. Finding the Robot Coordinates and Rotation Angle from Image Coordinates in the Diffusion Space

We can form the learning set including 900 basic images and 900 images (not included in the
basic set) with the robot’s two known coordinates, sin() and cos() of rotation angle and find the
coordinates of these images in the diffusion space. In the next step, we can consider the robot’s two
coordinates, sin() and cos() of rotation angle as a function of its image coordinates in the diffusion space.
Indeed, we can find these 4 functions using 1800 images described above with the help of any known
interpolation method (for example, artificial neural network, inverse distance weighting and so on).

Mathematics 2020, 8, 2175 11 of 16

3.8. Automatic Control

We define the following parameters and variables used in the ground robot motion equations
(Figure 7):

(1) motion variables: x иy—ground robot coordinates; α-robot rotation angle on the plane; v—robot
translation velocity; ω-robot angular velocity

(2) parameters of the ground robot: R–radius of the robot wheels; l—distance between robot wheels
(3) Command signals for control: ωL and ωR—angular rotation velocities for the left and right wheels.

Mathematics 2020, 8, x FOR PEER REVIEW 11 of 16

The robot trajectory can be estimated by a polygonal chain path. This path is a set of rotations in
vertices with zero translational velocity and constant angular velocity (rotation), and linear motion
along straight-line segments with zero angular velocity and constant translational velocity (linear
motion).

In case the stationary parameters themselves cannot guarantee stability for the desirable steady-
state trajectory, an autopilot is necessary (see Figure 8). This autopilot must state the controlling
parameters δv(t-τ), δω(t-τ) controlled by autopilot as functions of the output parameters (δx(t),
δy(t),δα(t)), which are perturbations with respect to the desirable steady-state path. The autopilot gets
the output parameter values from navigation: from vision-based navigation, satellite navigation,
inertial navigation, and so on. Using these measurements, the autopilot can find signals of control for
decreasing undesirable perturbations. Unfortunately, for any measurement, some delay always exists
in getting output parameters used for control. As a result, we are faced with a problem because we
have a lack of information for control. From [20], we can see that even for such conditions with the
time delay, we can generate a signal of control that guarantees a stable trajectory.

From [20] the final solution is the following:
The steady state solution for rotation is as follows:

α(t) = ωt + φ; v(t) = 0; φ = 0 (22)

where control parameters are the following: 𝛿𝑣ሺt − τሻ𝑐𝑜𝑠൫𝜔ሺt − τሻ൯𝛿𝑥ሺt − τሻ − 2 𝑎௥ 𝑠𝑖𝑛൫𝜔ሺt − τሻ൯𝛿𝑦ሺt − τሻ, 𝑤ℎ𝑒𝑟𝑒 𝜔 ≠ 0, 𝑎௥> |𝜔| (23) 𝛿𝜔ሺt − τሻ = 𝑏ఈ𝛿𝛼ሺt − τሻ , where 𝑏ఈ < 0 (24)

The steady-state solution for linear motion is as follows:

α(t)=α; v(t)=v; (25)

where values of control parameters can be found by: 𝛿𝑣ሺt − τሻ = −𝑎௟ 𝑐𝑜𝑠ሺ𝛼ሻ𝛿𝑥ሺt − τሻ − 𝑎௟ 𝑠𝑖𝑛ሺ𝛼ሻ𝛿𝑦ሺt − τሻ, 𝑤ℎ𝑒𝑟𝑒 𝑎௟ > 0 (26) 𝛿𝜔ሺt − τሻ = 𝑎 sinሺ𝛼ሻ 𝛿𝑥ሺ𝑡 − τሻ − 𝑎 cosሺ𝛼ሻ 𝛿𝑦ሺ𝑡 − τሻ − 2𝑏 𝛿𝛼ሺt − τሻ, 𝑤ℎ𝑒𝑟𝑒 𝑎𝑣> 0, 𝑏 > √𝑎𝑣 (27)

Time of delay can be found by: τ ≤ min ൬ 12𝑒|𝑏| , 1𝑒|𝑎௟| , 1𝑒|𝑏ఈ| , 12𝑒|𝑎௥|൰ (28)

Figure 7. Ground robot, the picture on the surface of the robot was used for navigation with the help
of the deep learning network.
Figure 7. Ground robot, the picture on the surface of the robot was used for navigation with the help of
the deep learning network.

We can see from [19] that rotation and forward movement can be described using the following
system of equations:

.
x = v cosα;

.
y = v sinα;

.
α = ω; (20)

v =
R(ωR +ωL)

2
; ω =

2R(ωR −ωL)

l
(21)

As a result of system nonlinearity, it is too difficult to use those equations for stability analysis.
It is thus necessary to linearize them. The parameters x(t), y(t), α(t), v(t), ω(t) correspond to steady-state
flight (x0(t), y0(t), α0(t), v0(t), ω0(t)) perturbated by small increments δx(t), δy(t),δα(t), δv(t-τ), δω(t-τ).

The robot trajectory can be estimated by a polygonal chain path. This path is a set of rotations in
vertices with zero translational velocity and constant angular velocity (rotation), and linear motion along
straight-line segments with zero angular velocity and constant translational velocity (linear motion).

In case the stationary parameters themselves cannot guarantee stability for the desirable
steady-state trajectory, an autopilot is necessary (see Figure 8). This autopilot must state the controlling
parameters δv(t-τ), δω(t-τ) controlled by autopilot as functions of the output parameters (δx(t),
δy(t),δα(t)), which are perturbations with respect to the desirable steady-state path. The autopilot
gets the output parameter values from navigation: from vision-based navigation, satellite navigation,
inertial navigation, and so on. Using these measurements, the autopilot can find signals of control for
decreasing undesirable perturbations. Unfortunately, for any measurement, some delay always exists
in getting output parameters used for control. As a result, we are faced with a problem because we
have a lack of information for control. From [20], we can see that even for such conditions with the
time delay, we can generate a signal of control that guarantees a stable trajectory.

Mathematics 2020, 8, 2175 12 of 16
Mathematics 2020, 8, x FOR PEER REVIEW 12 of 16

Figure 8. Automatic control: the ground robot has output parameters (output of block 1) describing
its position, orientation, and velocity. These parameters are measured and calculated by the
measurement system with some time delay (output of block 2). These measured parameters and their
desirable values, calculated from the desirable trajectory (inputs of block 3), can be compared, and
deviation from desirable trajectory can be calculated (output of block 3). The automatic pilot receives
these deviations and calculates the control parameters for the ground robot to decrease these
deviations. Then the ground robot changes its output parameters (output of block 1). This cycle
repeats for the duration of the motion.

4. Discussion

In [8], we used the deep learning network for the solution of the same task: looking for the
orientation and position of a ground robot. The deep learning network was developed using AlexNet
with small changes in training mode and structure. AlexNet [7] is a popular CNN (convolutional
neural network), which was developed by Alex Krizhevsky and described by Ilya Sutskever, Alex
Krizhevsky and Geoffrey Hinton. On 30 September 2012, AlexNet took part in the ImageNet large
scale visual recognition challenge and was the winner. Initially, AlexNet had eight levels (five
convolutional levels and three fully connected levels). In our case, we replaced the last two fully
connected layers with one fully connected layer having four outputs (trigonometric functions sin()
and cos(), where  -angle of rotation, and x, y coordinates) or seven outputs (sin(), cos(),x, y,
angle error, coordinate errors, and total error) and also one regression layer. The pre-trained modified
AlexNet network was used for the solution of the regression problem: finding the course angle and
two coordinates of the ground robot (Figure 2 in [8]).

With this deep learning network, it is possible to find the ground robot angle with an accuracy
of 4° and ground robot position with an accuracy of 2.6 pixels (6 cm) (Table 1) for any 227 × 227 pixel-
sized image. For training, we used the set of 10,000 images and the “adam” solver, with training
carried out in 200 epochs with a batch size equal to 500. Using Unity modeling, we programmatically
generated the dataset.

At every step, robot rotation angle, robot position, and working platform element location were
selected randomly. We simulated lighting as sunlight falling from various directions and angles. We
used 50 different textures for the background to be sure that the ground robot coordinates would be
independent of the background. In addition, 12,000 3036 × 3036-pixel sized RGB images were
generated which contain the ground robot. There also were images where the robot was completely
or partially occluded by the camera tower or some objects of the environment. We also prepared a
file with data about the angle of rotation and coordinates for the ground robot. After using these
images, we prepared the set of reduced 227 × 227-pixel sized images.

We have the train set (used for the ANN or artificial neural network training) and the validation
set for the verification of the pre-trained ANN.

All errors were found for the validation set of images as differences between positions and
orientations, obtained from the pre-trained artificial neural network, and known positions and

Figure 8. Automatic control: the ground robot has output parameters (output of block 1) describing its
position, orientation, and velocity. These parameters are measured and calculated by the measurement
system with some time delay (output of block 2). These measured parameters and their desirable
values, calculated from the desirable trajectory (inputs of block 3), can be compared, and deviation
from desirable trajectory can be calculated (output of block 3). The automatic pilot receives these
deviations and calculates the control parameters for the ground robot to decrease these deviations.
Then the ground robot changes its output parameters (output of block 1). This cycle repeats for the
duration of the motion.

From [20] the final solution is the following:
The steady state solution for rotation is as follows:

α(t) = ωt + ϕ; v(t) = 0; ϕ = 0 (22)

where control parameters are the following:

δv(t− τ)cos(ω(t− τ))δx(t− τ) − 2 ar sin(ω(t− τ))δy(t− τ), where ω , 0, ar > |ω| (23)

δω(t− τ) = bαδα(t− τ) , where bα < 0 (24)

The steady-state solution for linear motion is as follows:

α(t) = α; v(t) = v; (25)

where values of control parameters can be found by:

δv(t− τ) = −al cos(α)δx(t− τ) − al sin(α)δy(t− τ), where al > 0 (26)

δω(t− τ) = a sin(α) δx(t− τ) − a cos(α)δy(t− τ) − 2b δα(t− τ), where av > 0, b >
√

av (27)

Time of delay can be found by:

τ ≤ min
(

1
2e|b|

,
1

e|al|
,

1
e|bα|

,
1

2e|ar|

)
(28)

4. Discussion

In [8], we used the deep learning network for the solution of the same task: looking for the
orientation and position of a ground robot. The deep learning network was developed using AlexNet
with small changes in training mode and structure. AlexNet [7] is a popular CNN (convolutional neural
network), which was developed by Alex Krizhevsky and described by Ilya Sutskever, Alex Krizhevsky
and Geoffrey Hinton. On 30 September 2012, AlexNet took part in the ImageNet large scale visual
recognition challenge and was the winner. Initially, AlexNet had eight levels (five convolutional levels
and three fully connected levels). In our case, we replaced the last two fully connected layers with one

Mathematics 2020, 8, 2175 13 of 16

fully connected layer having four outputs (trigonometric functions sin(α) and cos(α), where α-angle
of rotation, and x, y coordinates) or seven outputs (sin(α), cos(α), x, y, angle error, coordinate errors,
and total error) and also one regression layer. The pre-trained modified AlexNet network was used for
the solution of the regression problem: finding the course angle and two coordinates of the ground
robot (Figure 2 in [8]).

With this deep learning network, it is possible to find the ground robot angle with an accuracy of
4◦ and ground robot position with an accuracy of 2.6 pixels (6 cm) (Table 1) for any 227 × 227 pixel-sized
image. For training, we used the set of 10,000 images and the “adam” solver, with training carried out
in 200 epochs with a batch size equal to 500. Using Unity modeling, we programmatically generated
the dataset.

Table 1. Error of coordinates and rotation angle for the ground robot for navigation by the artificial
neural network; size of the robot is 50 cm × 50 cm; pixel size corresponds to the distance 2.30 cm on
the ground.

Sets σu σv σcos(α) σsin(α) σα

Validation set 2.6 pic
(6 cm)

2.6 pic
(6 cm) 0.070 0.070 4◦

At every step, robot rotation angle, robot position, and working platform element location were
selected randomly. We simulated lighting as sunlight falling from various directions and angles.
We used 50 different textures for the background to be sure that the ground robot coordinates would
be independent of the background. In addition, 12,000 3036 × 3036-pixel sized RGB images were
generated which contain the ground robot. There also were images where the robot was completely or
partially occluded by the camera tower or some objects of the environment. We also prepared a file
with data about the angle of rotation and coordinates for the ground robot. After using these images,
we prepared the set of reduced 227 × 227-pixel sized images.

We have the train set (used for the ANN or artificial neural network training) and the validation
set for the verification of the pre-trained ANN.

All errors were found for the validation set of images as differences between positions and
orientations, obtained from the pre-trained artificial neural network, and known positions and
orientations used for the creation of images by the Unity program. The root-mean-squares of these
errors are written in the second row of Table 1.

Let us consider the visual navigation again with the help of the diffusion map algorithm.
In Figure 6, we can see that the second eigenvector is correlated with sin(α), the third vector is

correlated with cos(α), the sixth vector is correlated with u, and the seventh vector is correlated with v.
We can see that the basis of the diffusion space, in fact, corresponds to the robot position and

orientation. The first seven eigenvectors give us full information about these parameters.
Our experiment demonstrates that for optimal results, the number of the first eigenvectors of the

diffusion space m = 40 (from maximal value n = 900).
In Table 2, we can see the error value for four variables describing the ground robot position:

coordinate (u and v) and rotation angle (cos(α), sin(α), α). We give the results for the training set (used for
the creation of the diffusion space and interpolation function) and the independent validation set.

Table 2. Error of coordinates and rotation angle for the ground robot for navigation by the diffusion
map; size of the robot is 50 cm × 50 cm; pixel size corresponds to 1.47 cm on the ground.

Sets σu σv σcos(α) σsin(α) σα

Training set 0.33 pic (0.48 cm) 0.34 pic (0.5 cm) 0.022 0.023 1.32◦

Validation set 0.88 pic (1.29 cm) 0.87 pic (1.28 cm) 0.072 0.068 3.90◦

Mathematics 2020, 8, 2175 14 of 16

We have the training set (used for finding the diffusion map) and the validation set for the
verification of the diffusion map method results.

First, all errors were found for the training set of images as differences between positions and
orientations, obtained from the diffusion map method, and known positions and orientations used for
the creation of the images by the Unity program. The root-mean-square of these errors is written in the
first row of Table 2.

Second, all errors were found for the validation set of images as differences between positions and
orientations, obtained from the diffusion map method, and known positions and orientations used for
the creation of the images by the Unity program. The root-mean-square of these errors is written in the
second row of Table 2.

The following conclusions can be made about the diffusion map:

1. The computing time used for the diffusion map is high because of the large number of basic images;
2. The diffusion map needs very high localization for the area of the possible robot position. We can

use motion detection for this localization;
3. Under correct estimation of similarity between images, the diffusion map has higher precision;
4. The diffusion map operates according to the known algorithm, and we automatically get features

for recognition and function regression, describing position and orientation. It is the seven first
axes of the diffusion space.

5. Conclusions

In our previous paper [8], we used the artificial neural network (deep learning) for the solution
of the same task: finding the position and orientation of the ground robot. The developed network
allowed us to find the coordinates with a precision of 6 cm and a rotation angle with a precision of
4◦ (Table 1).

We can calculate robot recognition error in a deep learning network using three (from seven
outputs) with position and orientation errors (in a seven output network, described above). We can
conclude that the robot does not exist on an image or is partially occluded if there are very big position
and orientation errors.

For the deep learning and diffusion map algorithms, we chose the robot surface and background
to be strongly different, so recognition quality is almost ideal. This is not because of the high quality of
the network or the diffusion map, but because of choosing the robot surface, which is very different
from the background. Indeed, we need to choose robot surfaces for robust navigation, which are
strongly different from the background. The chosen robot surfaces, which are optimal for recognition,
are different for the two methods (see Figures 1 and 7).

The diffusion map allows us to find the position and orientation of the ground robot with better
precision for coordinates and similar precision for the rotation angle.

The following differences exist with respect to deep learning [8]:

1. The computing time used for the diffusion map is higher than the computer time, which is
necessary for deep learning. We need longer computer time for the diffusion map because of the
large number of images in the basic set;

2. The artificial neural network can find the robot in a large area, but the diffusion map claims very
high localization for the area of the possible robot position. We can use motion detection for
this localization;

3. Under correct estimation of similarity between images, the diffusion map has higher precision
than deep learning;

4. The diffusion map operates according to a known algorithm, so we need not look for some
artificial neural network structure.

We see that the main disadvantage of the diffusion map is the long calculation time. Our future
plans are to resolve this problem. The time can be reduced using the following methods:

Mathematics 2020, 8, 2175 15 of 16

a. Using parallel processing for calculation of the measure of similarity for the pair of images and
parallel calculations for different images in the basic set;

b. Reduction of time by optimization of an algorithm for calculation of the measure of similarity
between a pair of images;

c. Reduction of the number of images in the basic set;
d. Preprocessing clustering of close images in the basic set. Hence, we can then calculate only

measures of similarity between an investigated image and images only from its closest clusters.

Image processing for visual navigation needs a great deal of time. As a result, we are faced with
a time delay. We can see in Figure 8 that the time delay exists in the measurement block because of
the long duration of time, which is necessary for image processing of visual navigation. As a result,
we can also find the perturbations of the robot coordinates with the time delay. However, the proposed
method allows us to get a stable control in the presence of the time delay if this time delay is small
enough (see Equation (28)).

Author Contributions: All authors have written this paper, and the final form of this paper is approved by all
authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kendall, A.; Grimes, M.; Cipolla, R. PoseNet: A convolutional network for real-time 6-dof camera
relocalization. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 7–13 December 2015.

2. Kendall, A.; Cipolla, R. Geometric loss functions for camera pose regression with deep learning. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,
21–26 July 2017.

3. Walch, F.; Hazirbas, C.; Leal-Taixe, L.; Sattler, T.; Hilsenbeck, S.; Cremers, D. Image-based localization using
LSTMs for structured feature correlation. In Proceedings of the 2017 IEEE International Conference on
Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

4. Clark, R.; Wang, S.; Markham, A.; Trigoni, N.; Wen, H. VidLoc: A Deep Spatio-Temporal Model for 6-DoF
Video-Clip Relocalization. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

5. Melekhov, I.; Ylioinas, J.; Kannala, J.; Rahtu, E. Image-based Localization using Hourglass Networks.
In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice,
Italy, 22–29 October 2017.

6. Brahmbhatt, S.; Gu, J.; Kim, K.; Hays, J.; Kautz, J. Geometry-Aware Learning of Maps for Camera Localization.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, UT, USA, 18–23 June 2018.

7. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
Commun. ACM 2017, 60, 84–90. [CrossRef]

8. Kupervasser, O.; Kutomanov, H.; Sarychev, V.; Yavich, R. The new advanced prototype of airborne
visual control of a ground robot. In Proceedings of the Geomate 2020, Melbourne, Australia,
11–13 November 2020. Available online: https://www.researchgate.net/publication/344925210_THE_NEW_
ADVANCED_PROTOTYPE_OF_AIRBORNE_VISUAL_CONTROL_OF_A_GROUND_ROBOT (accessed on
28 October 2020).

9. Kupervasser, O.Y. Russian Invention: Method for Coordination of Ground Moving Automated Devices with
the Help of Single Central Control. System. Patent No. 2691788, 5 July 2015.

10. Chen, Y.F.; Liu, S.-Y.; Liu, M.; Miller, J.; How, J.P. Motion Planning with Diffusion Maps. In Proceedings of
the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea,
9–14 October 2016.

11. Coifman, R.; Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 2006, 21, 5–30. [CrossRef]

http://dx.doi.org/10.1145/3065386
https://www.researchgate.net/publication/344925210_THE_NEW_ADVANCED_PROTOTYPE_OF_AIRBORNE_VISUAL_CONTROL_OF_A_GROUND_ROBOT
https://www.researchgate.net/publication/344925210_THE_NEW_ADVANCED_PROTOTYPE_OF_AIRBORNE_VISUAL_CONTROL_OF_A_GROUND_ROBOT
http://dx.doi.org/10.1016/j.acha.2006.04.006

Mathematics 2020, 8, 2175 16 of 16

12. Coifman, R.; Lafon, S. Geometric harmonics: A novel tool for multiscale out-of-sample. Appl. Comput.
Harmon. Anal. 2006, 21, 31–52. [CrossRef]

13. De la Portey, J.; Herbsty, B.M.; Hereman, W.; van der Walt, S.J. An Introduction to Diffusion Maps.
In 19th Symposium of the Pattern Recognition Association of South Africa; University of Stellenbosch: Stellenbosch,
South Africa, 2008.

14. Koltyrin, A. Hyperspectral Imaging dataclustering by constructing a diffusion map, Technical sciences-from
theory to practice. In Proceedings of the X International Science and Practice Conference, Novosibirsk,
Russia, 12 June 2012.

15. Averbuch, A.; Hochman, K.; Rabin, N.; Schclar, A.; Zheludev, V. A diffusion framework for detection of
moving vehicles. Digit. Signal Process. 2010, 20, 111–122.

16. Bah, B. Diffusion Maps: Analysis and Applications; University of Oxford: Oxford, UK, 2008.
17. Haralick, R.M.; Shapiro, L.G. Computer and Robot Vision; Addison-Wesley Longman Publishing Co., Inc.:

Boston, MA, USA, 1992.
18. Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision.

In Proceedings of the DARPA Imaging Understanding Workshop, Washington, DC, USA, 23 April 1981;
pp. 121–130.

19. Longoria, R.G. Turning Kinematically. 2015. Available online: https://docplayer.net/31417021-Turning-
kinematically.html (accessed on 25 August 2020).

20. Domoshnitsky, A.; Kupervasser, O.; Kutomanov, H.; Yavich, R. A Method for Stabilization of Ground Robot
Path Controlled by Airborne Autopilot with Time Delay; Book Chapter; Springer Nature Singapore Pte Ltd.:
Singapore, 2020.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.acha.2005.07.005
https://docplayer.net/31417021-Turning-kinematically.html
https://docplayer.net/31417021-Turning-kinematically.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Results
	Basic and Additional Sets of Images
	Intrinsic Points
	Measure Definition
	Definition of Weight Matrix
	Creation of Diffusion Space Dx1,x2,…,xnm
	Finding the Diffusion Coordinate for an Arbitrary Image not Included in the Basic Set
	Finding the Robot Coordinates and Rotation Angle from Image Coordinates in the Diffusion Space
	Automatic Control

	Discussion
	Conclusions
	References

