
mathematics

Article

Improving Accuracy and Generalization Performance
of Small-Size Recurrent Neural Networks Applied to
Short-Term Load Forecasting

Pavel V. Matrenin 1 , Vadim Z. Manusov 1, Alexandra I. Khalyasmaa 2,3 ,
Dmitry V. Antonenkov 1, Stanislav A. Eroshenko 2,3 and Denis N. Butusov 4,*

1 Industrial Power Supply Systems Department, Novosibirsk State Technical University,
630073 Novosibirsk, Russia; matrenin.2012@corp.nstu.ru (P.V.M.); manusov@corp.nstu.ru (V.Z.M.);
antonenkov@corp.nstu.ru (D.V.A.)

2 Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N.
Yeltsin, 620002 Ekaterinburg, Russia; a.i.khaliasmaa@urfu.ru (A.I.K.); s.a.eroshenko@urfu.ru (S.A.E.)

3 Power Plants Department, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
4 Youth Research Institute, Saint Petersburg Electrotechnical University “LETI”,

197376 Saint Petersburg, Russia
* Correspondence: dnbutusov@etu.ru; Tel.: +7-950-008-7190

Received: 28 October 2020; Accepted: 30 November 2020; Published: 4 December 2020
����������
�������

Abstract: The load forecasting of a coal mining enterprise is a complicated problem due to the
irregular technological process of mining. It is necessary to apply models that can distinguish both
cyclic components and complex rules in the energy consumption data that reflect the highly volatile
technological process. For such tasks, Artificial Neural Networks demonstrate advanced performance.
In recent years, the effectiveness of Artificial Neural Networks has been significantly improved
thanks to new state-of-the-art architectures, training methods and approaches to reduce overfitting.
In this paper, the Recurrent Neural Network architecture with a small-size model was applied to the
short-term load forecasting of a coal mining enterprise. A single recurrent model was developed and
trained for the entire four-year operational period of the enterprise, with significant changes in the
energy consumption pattern during the period. This task was challenging since it required high-level
generalization performance from the model. It was shown that the accuracy and generalization
properties of small-size recurrent models can be significantly improved by the proper selection of the
hyper-parameters and training method. The effectiveness of the proposed approach was validated
using a real-case dataset.

Keywords: coal mining; neural network applications; recurrent neural networks; short-term
load forecasting

1. Introduction

Electrical energy consumption forecasting is essential for the cost-effective operation of electric
power systems. The higher the accuracy of the forecast, the better electricity suppliers can plan
energy generation and distribution, which sequentially reduces the costs for all of the participants
of the energy market [1]. Short-term forecasting, as a rule, has a horizon from minutes to weeks [2].
Currently, there are several classes of short-term load forecasting methods. Historically, analytical and
regression methods appeared earlier than others. These methods are based on regression models [3,4],
including Holt–Winters seasonal models [5], autoregression, and various hybrid approaches such
as autoregressive integrated moving average (ARIMA) [6,7] and hybrid regression with fuzzy logic
models [8].

Mathematics 2020, 8, 2169; doi:10.3390/math8122169 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-5704-0976
https://orcid.org/0000-0001-5327-6076
https://orcid.org/0000-0001-9617-2154
https://orcid.org/0000-0002-8941-4220
http://dx.doi.org/10.3390/math8122169
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/12/2169?type=check_update&version=2

Mathematics 2020, 8, 2169 2 of 17

Machine-learning methods, except for Artificial Neural Network (ANN) models (we consider
ANN models as a particular class), form the second class of commonly used methods. Machine-learning
models use Support Vector-based methods [9,10], Regression Trees [11], K-Nearest Neighbors
algorithms [12], Random Forest regression [13], etc.

The major disadvantage of these methods is a drastic reduction in forecasting accuracy in the case
of unsteady stochastic time series, where the identification of trend and periodic components is not
sufficient [14,15].

The third class of models is ANN models. As Hippert shows in his review [16], the application
of multilayer perceptron (MLP) has proven to be ineffective. The “small” networks in terms of the
number of hidden layers and neurons were insufficiently accurate for the majority of the problems
under consideration. At the same time, increasing the model size leads to the effect of overfitting [16].
It means that the model does not perform well on the dataset, which was not used for training. In other
words, simple ANN models do not have sufficient generalization (robustness) performance.

Fundamental studies in the field of ANNs have resulted in considerable model performance
improvements for different problems, including load forecasting [17]. A significant contribution to the
load forecasting problem solution was made by applying Convolution Neural Networks (CNNs) [18,19],
Deep Neural Networks (DNNs) [17,20,21], ANN ensembles [22] and Recurrent Neural Networks
(RNN) [19,23,24].

Ryu et al. [14] presented a comparison of a DNN model with a multi-layer perceptron, ARIMA,
and seasonal Holt–Winters model for the electrical energy consumption forecasting of industrial
enterprises. The main disadvantages of DNNs, large CNNs or RNNs are the need for a vast dataset [20],
the high computational complexity of the training procedures [15,17], and the high complexity of the
hyper-parameter tuning (network architecture and training method parameters) [14,15,25].

Additionally, the problem of reusing the trained network remains. For example, if the energy
consumption model used meteorological data as inputs [12,14,17] such as temperature, wind speed,
pressure and cloudiness, then without this data, the model will not work. Moreover, it is likely to fail in
the cases of meteorological, sociological or economic changes [15]. A model trained for one industrial
facility may not be accurate for another enterprise with a particular technological process, or even for a
similar enterprise in another country, due to administrative or political factors [26]. All this can lead
to the fact that the accuracy of the ANN model with incorrect settings will be even worse than the
accuracy of less-complicated forecasting methods.

A coal mining enterprise is a complex electrical engineering system, with a big share of irregular
processes, unlike many other industrial facilities. The electrical load of coal mining enterprises depends
on the structure and size of coal deposits, terrain, geological conditions and implemented technological
processes. The power systems of coal mines are highly dynamic in time and space throughout the
mines’ lifecycles [26].

The intensification of the production process is always accompanied by a constant deepening
of mining operations and added complexity of the mining and geological conditions. Therefore,
for the problem under consideration, the forecasting model is required to have high robustness and
generalization properties, providing effective adaptation to various changes in the technological
process of the enterprise.

Up-to-date studies on ANNs’ practical applications, including RNNs, CNNs and DNNs, do not
highlight the problem of the short-term load forecasting of enterprises with complicated energy
consumption schedules, having a high proportion of non-cyclic components. This paper presents the
results of a study on improving the accuracy and generalization performance of the RNN-based model
for coal mining load forecasting 48 h ahead.

The remainder of the paper is organized as follows. In Section 2, the proposed RNN model and
the corresponding hyper-parameters are introduced. Section 3 presents the results of the studies on
model performance when using different training methods, activation functions, types of recurrent
cells, etc. In Section 4, we conclude the paper with a discussion and highlight future work.

Mathematics 2020, 8, 2169 3 of 17

2. Methodology

The presented study highlights two novel contributions. Firstly, the effectiveness of hyper-parameter
tuning was investigated: the activation functions, training method, type of recurrent cells, and regularization
techniques for the load forecasting of a coal mining enterprise. Secondly, a single RNN model was developed
and trained with a small number of layers and large amount of recurrent cells for the entire four-year
operational period of the enterprise, characterized by considerable changes in the energy consumption
schedule during this period.

2.1. Problem Formulation

The following forecasting problem formulation was considered. It was required to build a model
that transformed the input data (retrospective hourly electrical energy consumption for the previous m
hours X) into a load forecast for 48 h ahead:

y = f (X)

X = x1, x2, · · · , xm
(1)

where y is a model output (the load forecast for 48 h ahead), f is the model itself, X is the electrical load
of the previous (48-m; 48) hours and m is length of the previous hourly power consumption.

The mean absolute percentage error (MAPE) was used as a measure of the forecasting accuracy:

MAPE =
1
n

n∑
i=1

∣∣∣∣∣∣ y∗i − yi

yi

∣∣∣∣∣∣, (2)

where n is the number of hours in the dataset, y∗i is the predicted value of the load for the ith hour
(model output), and yi is the actual value of the load for the ith hour (true value).

We also used the MAPE as a loss function for training the model.

2.2. Neural Network Architecture

The general principles of applying ANN models for load forecasting can be found in the work
of Bakirtzis et al. for the MPL case [27], S. Ryu et al. for the DNN [14], Deng et al. for the
CNN [18] and Kong et al. for the RNN [23]. In this paper, we selected an RNN-based model as
the most suitable for time series processing. We performed multiple simulations to define near to
the optimal number of layers and other architectural hyper-parameters of the network. At the same
time, we experimented with activation functions, training methods and regularization methods
(Dropout and L2 regularization). Figure 1 shows the resulting architecture of the RNN model.

2.3. Activation Function

Our study examined three activation functions: Logistic Sigmoid (Sigmoid), Hyperbolic tangent
(Tanh), and Rectified Linear Activation Unit (ReLU). In recent years, the ReLU has shown high
efficiency in many applied tasks [28,29]. Firstly, the ReLU is much simpler in terms of computing,
which decreases the training time for an ANN model. Secondly, the ReLU consists of two linear
segments, so the derivative at any point of the segment is constant. It helps for solving the vanishing
gradient problem. In this study, we examined how effective ReLUs were compared to classic activation
functions when using a non-deep and non-convolution neural network. The authors also experimented
with the Leaky ReLU, but there was no fundamental difference in accuracy between the Leaky ReLU
and ReLU, so only the ReLU was considered in the case study under consideration.

Mathematics 2020, 8, 2169 4 of 17
Mathematics 2020, 8, x FOR PEER REVIEW 4 of 17

Figure 1. The Recurrent Neural Network (RNN) model with two recurrent and two dense layers.

2.3. Activation Function

Our study examined three activation functions: Logistic Sigmoid (Sigmoid), Hyperbolic tangent
(Tanh), and Rectified Linear Activation Unit (ReLU). In recent years, the ReLU has shown high
efficiency in many applied tasks [28,29]. Firstly, the ReLU is much simpler in terms of computing,
which decreases the training time for an ANN model. Secondly, the ReLU consists of two linear
segments, so the derivative at any point of the segment is constant. It helps for solving the vanishing
gradient problem. In this study, we examined how effective ReLUs were compared to classic
activation functions when using a non-deep and non-convolution neural network. The authors also
experimented with the Leaky ReLU, but there was no fundamental difference in accuracy between
the Leaky ReLU and ReLU, so only the ReLU was considered in the case study under consideration.

2.4. Recurrent Cells

For time series processing, it is advisable to use the RNN since it has a loop to pass data from
one step to another. As a result, RNNs have internal memory based on cells’ states. RNNs based on
long short-term memory cells (LSTM), introduced by Hochreiter and Schmidhuber [30], or on the
Gated Recurrent Unit (GRU), proposed by Cho et al. [31], are more efficient in managing data flows.

An LSTM cell has separate blocks for selecting the input data to store new information in the
cell’s state (“input gate”), to update the state (“forget gate”) and to create cell output (“output gate”).
Thus, an LSTM-based RNN can be trained to select the necessary features from the time series and
store them in memory for a long time. A GRU cell is a bit simpler; the main difference from LSTM is
that the input gate and the forget gate are merged and called the “reset gate.”

For short-term load forecasting, Wu et al. applied the GRU to the CNN model [19]; Kong et al.
[23] and Cai et al. [24] used the LSTM. However, the authors did not directly compare the GRU and
LSTM in the task of short-term load forecasting. The authors of the study provided that comparison
for the problem under consideration. In order to determine whether the long-term memory property

Figure 1. The Recurrent Neural Network (RNN) model with two recurrent and two dense layers.

2.4. Recurrent Cells

For time series processing, it is advisable to use the RNN since it has a loop to pass data from
one step to another. As a result, RNNs have internal memory based on cells’ states. RNNs based on
long short-term memory cells (LSTM), introduced by Hochreiter and Schmidhuber [30], or on the
Gated Recurrent Unit (GRU), proposed by Cho et al. [31], are more efficient in managing data flows.

An LSTM cell has separate blocks for selecting the input data to store new information in the cell’s
state (“input gate”), to update the state (“forget gate”) and to create cell output (“output gate”). Thus,
an LSTM-based RNN can be trained to select the necessary features from the time series and store
them in memory for a long time. A GRU cell is a bit simpler; the main difference from LSTM is that the
input gate and the forget gate are merged and called the “reset gate.”

For short-term load forecasting, Wu et al. applied the GRU to the CNN model [19]; Kong et al. [23]
and Cai et al. [24] used the LSTM. However, the authors did not directly compare the GRU and LSTM
in the task of short-term load forecasting. The authors of the study provided that comparison for the
problem under consideration. In order to determine whether the long-term memory property has an
impact on performance, a comparison was made with the simplest type of recurrent cell (Simple RNN).

2.5. Training Methods

Among the many methods for ANN training, the Backpropagation method should be distinguished
as the one most often used. The Backpropagation method has a large number of modifications.
We compared four of them:

• Stochastic Gradient Descent (Stochastic Gradient Descent, SGD);
• Momentum;
• Root Mean Squared Propagation (RMSProp);
• Adam.

Mini-batch training is used for all of the listed methods.

Mathematics 2020, 8, 2169 5 of 17

SGD is the simplest method that substantially implements the principle of Backpropagation [32].
The following equation shows the main principle:

W = W −αdW, (3)

where W is a matrix of weights, α is the learning rate, and dW is the gradient matrix, illustrating the
error (E) dynamics ∂E/∂W.

Training ANNs is an optimization problem with a very sophisticated large dimension topology
of the search space. As a result, the training process may change some ANN weights too weakly
(slowly) and others too strongly (rapidly, failing to find the neighborhood of the best values). One way
to adapt the training process to the problem under consideration is to introduce inertia properties,
as the Momentum method does [32]. If some parameter at each step changes at a high speed, then the
training process should be slowed down:

VdW = β1VdW + (1−β1)dW,

W = W −αVdw
(4)

where Vdw is a matrix characterizing the weights’ variation speeds; β1 is a parameter that sets the
balance between taking into account the moving average of the gradient and the gradient obtained for
the new training step; usually, this parameter is typically close to 1 (~0.9) [33,34].

Tieleman and Hinton proposed an effective modification of the backpropagation approach named
RMSProp [33]. The idea is that if a parameter changes slowly, then it is necessary to speed up the
training process, and vice versa—if it is changing too quickly, then it should be slowed down:

SdW = β2SdW + (1−β2)dW2,

W = W −αdW/
√

SdW + ε,
(5)

where Sdw is the matrix characterizing the degree (“energy”, since the gradient is squared) of the
weights’ variation, without taking into account the gradient direction; β2 sets a balance between the
moving average of the squared gradient and the squared gradient obtained at the new training step
(usually, the value of this parameter is close to 1 (~0.999)) [33,34]; and ε is a positive number close to
zero, to prevent division by zero.

If the gradient varies greatly, then Sdw has a high value, reducing the learning rate. If, on the
contrary, the gradient changes too slowly, then the learning rate is increased.

Kingma and Ba, in the Adam method, applied the ideas of Momentum and RMSProp [34]:

Vcorr
dW = VdW

(
1− βt

1

)
,

Scorr
dW = SdW

(
1− βt

2

)
,

W = W − αVcorr
dW /

√
Scorr

dW + ε,

(6)

where t is a timestamp (the number of the training step).
Summarizing the discussion on the training algorithm, Stochastic Gradient Descent was selected

as the simplest algorithm and was used as the baseline. Experiments have shown that its accuracy is
low, and it is necessary to use an adaptive learning-rate algorithm.

Adam was chosen because it has shown the best results in a number of studies on training
recurrent networks; at the same time, it is now more widespread than modifications such as AdaMax
or Nadam. Since Adam showed high performance, and it is known that Adam can be viewed as a
combination of RMSprop and Momentum, it was necessary to check whether it was enough to add
inertia properties to the problem under consideration, or whether it was necessary to update the
weights taking into account the variability of the gradients (via the exponentially decaying average of

Mathematics 2020, 8, 2169 6 of 17

squared gradients). Thus, the authors experimented with Momentum and RMSProp. Methods such as
Adadelta and Adagrad are not compared, as they are close to RMSProp.

2.6. Regularization

To reduce the overfitting of the RNN model, we tried two regularization techniques: Dropout and
L2 regularization. Dropout randomly disconnects individual neurons of the network layer [29].
L2 regularization adds the sum of the squares of the weights to the loss function [35].

Among the mentioned papers [17–24] that used neural networks for electric load forecasting,
only two clearly describe how the regularization methods were applied [17,19]. The others do not
address this issue at all. Both studies [17,19] implemented the Dropout approach, but the authors do
not provide a comparison of the results with and without Dropout.

3. Results

3.1. Dataset

We conducted the study for the logs of the hourly electrical energy consumption of the Gorlovsk
and Kolyvan coal mines (as a single consumer) of Sibirsky Antratsit corporation for 2015–2018 (35,064 h).
The major consumers of electrical energy are drilling rigs and excavators. Figure 2 demonstrates a
fragment of the loading curve for a two-week period (one week plotted versus another).

Mathematics 2020, 8, x FOR PEER REVIEW 6 of 17

Summarizing the discussion on the training algorithm, Stochastic Gradient Descent was selected
as the simplest algorithm and was used as the baseline. Experiments have shown that its accuracy is
low, and it is necessary to use an adaptive learning-rate algorithm.

Adam was chosen because it has shown the best results in a number of studies on training
recurrent networks; at the same time, it is now more widespread than modifications such as AdaMax
or Nadam. Since Adam showed high performance, and it is known that Adam can be viewed as a
combination of RMSprop and Momentum, it was necessary to check whether it was enough to add
inertia properties to the problem under consideration, or whether it was necessary to update the
weights taking into account the variability of the gradients (via the exponentially decaying average
of squared gradients). Thus, the authors experimented with Momentum and RMSProp. Methods
such as Adadelta and Adagrad are not compared, as they are close to RMSProp.

2.6. Regularization

To reduce the overfitting of the RNN model, we tried two regularization techniques: Dropout
and L2 regularization. Dropout randomly disconnects individual neurons of the network layer [29].
L2 regularization adds the sum of the squares of the weights to the loss function [35].

Among the mentioned papers [17–24] that used neural networks for electric load forecasting,
only two clearly describe how the regularization methods were applied [17,19]. The others do not
address this issue at all. Both studies [17,19] implemented the Dropout approach, but the authors do
not provide a comparison of the results with and without Dropout.

3. Results

3.1. Dataset

We conducted the study for the logs of the hourly electrical energy consumption of the Gorlovsk
and Kolyvan coal mines (as a single consumer) of Sibirsky Antratsit corporation for 2015–2018 (35,064
h). The major consumers of electrical energy are drilling rigs and excavators. Figure 2 demonstrates
a fragment of the loading curve for a two-week period (one week plotted versus another).

Figure 2. Actual load for two weeks (12–18 October plotted versus 19–25 October). x-axis represents
time (hours), and y-axis represents the electrical load of the coal mining enterprise (megawatts,
starting from 00:00 of the denominated day).

The plot demonstrates the extent to which electrical energy consumption may differ at the same
hours of the day, which is conditioned by the irregular non-cyclic nature of the technological process.

Figure 2. Actual load for two weeks (12–18 October plotted versus 19–25 October). x-axis represents
time (hours), and y-axis represents the electrical load of the coal mining enterprise (megawatts,
starting from 00:00 of the denominated day).

The plot demonstrates the extent to which electrical energy consumption may differ at the same
hours of the day, which is conditioned by the irregular non-cyclic nature of the technological process.
Therefore, autoregressive methods and models that take into account the trend and seasonality do not
allow obtaining a satisfactory forecasting accuracy.

For each hour, we took retrospective data for the previous hours. For example, if yi is the ith hour,
then Xi represents the hours from the (ith–h) to (ith–h–m), where h is the forecasting horizon (48 h or
two days ahead) and m is the width of an input time window, according to the Equations (1) and (2).

The load value for each hour was normalized to a 0–1 range, using rescaling (min–max normalization).
Our preliminary analysis showed that the accuracy of the forecasts does not increase with an increase in
the time window beyond 120 h. Thus, each sample is given as <X, y>, where X is the electrical energy

Mathematics 2020, 8, 2169 7 of 17

consumption data for the previous 120 h, and y is the energy consumption for 48 h ahead. Finally,
we randomly shuffled and split the dataset (each <X, y> sample) into training (64%), validation (16%)
and test (20%) sets. The validation set was used for tuning hyper-parameters such as the number
of neurons in the layers of the network, coefficients of the introduced training methods (α, β1, β2),
and regularization coefficients.

3.2. RNN Model Implementation

We used the Google Colab platform, Python 3 programming language and Keras, TensorFlow open-
source libraries to conduct the computational experiments. Box 1 describes the implementation of our
RNN model (for navigation, we numbered the lines of the code).

Box 1. The Python code of the elaborated model.

Mathematics 2020, 8, x FOR PEER REVIEW 7 of 17

Therefore, autoregressive methods and models that take into account the trend and seasonality do
not allow obtaining a satisfactory forecasting accuracy.

For each hour, we took retrospective data for the previous hours. For example, if yi is the ith
hour, then Xi represents the hours from the (ith–h) to (ith–h–m), where h is the forecasting horizon (48
h or two days ahead) and m is the width of an input time window, according to the Equations (1) and
(2).

The load value for each hour was normalized to a 0–1 range, using rescaling (min–max
normalization). Our preliminary analysis showed that the accuracy of the forecasts does not increase
with an increase in the time window beyond 120 h. Thus, each sample is given as <X, y>, where X is
the electrical energy consumption data for the previous 120 h, and y is the energy consumption for
48 h ahead. Finally, we randomly shuffled and split the dataset (each <X, y> sample) into training
(64%), validation (16%) and test (20%) sets. The validation set was used for tuning hyper-parameters
such as the number of neurons in the layers of the network, coefficients of the introduced training
methods (α, β , β), and regularization coefficients.

3.2. RNN Model Implementation

We used the Google Colab platform, Python 3 programming language and Keras, TensorFlow
open-source libraries to conduct the computational experiments. Box 1 describes the implementation
of our RNN model (for navigation, we numbered the lines of the code).

Box 1. The Python code of the elaborated model.

3.3. Training Method and Activation Function

As indicated above, we investigated the activation functions Sigmoid, Tanh and ReLU for the
third and fourth layers (code lines No. 6 and 8); the training methods SGD, Momentum, RMSProp

1. model_input = Input(shape = (120, 1))

2. layer_1_rnn = CuDNNLSTM(units = 64

 , input_shape = (120, 1)

 , kernel_regularizer = keras.regularizers.l2(0.02)

 , return_sequences = True)(model_input)

3. layer_1_dropout = Dropout(0.4)(layer_1_rnn)

4. layer_2_rnn = CuDNNLSTM(units = 32

 , input_shape = (120, 64)

 , kernel_regularizer = keras.regularizers.l2(0.02)

 , return_sequences = False)(layer_1_dropout)

5. layer_3_dense = Dense(16

 , kernel_regularizer = keras.regularizers.l2(0.05))

 (layer_2_rnn)

6. layer_3_act = Activation('relu')(layer_3_dense)

7. layer_4_dense = Dense(8

 , kernel_regularizer = keras.regularizers.l2(0.05))

 (layer_3_act)

8. layer_4_act = Activation('relu')(layer_4_dense)

9. output_neuron = Dense(1)(layer_4_act)

10. model_output = Activation('sigmoid')(output_neuron)

3.3. Training Method and Activation Function

As indicated above, we investigated the activation functions Sigmoid, Tanh and ReLU for the
third and fourth layers (code lines No. 6 and 8); the training methods SGD, Momentum, RMSProp and
Adam; the regularization techniques L2 regularization, Dropout, L2 regularization and Dropout, and no
regularization (code lines No. 2–7); and recurrent cells for the first and second layers SimpleRNN,
LSTM and GRU (code lines No. 2 and 3).

The total number of all the combinations is 3 × 4 × 4 × 3 = 144. Each combination also requires
a hyper-parameter tuning process (choosing the learning rate, the batch size, the coefficients for the
L2 regularization, the Dropout coefficient and others). Therefore, in practice, we decided to move
iteratively, without the investigation of all the possible combinations.

Mathematics 2020, 8, 2169 8 of 17

The first step was the choice of a training method. For various activation functions, we applied
all the selected training methods. In this case, we used the LSTM as recurrent cells and only L2
regularization (without Dropout). The best results for all the training methods were obtained with the
ReLU (Table 1 and Figure 3).

Table 1. Influence of training method on model accuracy.

Training Method MAPE, Training Set (%) MAPE, Test Set (%)

SGD 32.40 35.20
Momentum 25.95 23.27
RMSProp 15.24 14.96

Adam 15.38 16.59

Mathematics 2020, 8, x FOR PEER REVIEW 8 of 17

and Adam; the regularization techniques L2 regularization, Dropout, L2 regularization and Dropout,
and no regularization (code lines No. 2–7); and recurrent cells for the first and second layers
SimpleRNN, LSTM and GRU (code lines No. 2 and 3).

The total number of all the combinations is 3 × 4 × 4 × 3 = 144. Each combination also requires a
hyper-parameter tuning process (choosing the learning rate, the batch size, the coefficients for the L2
regularization, the Dropout coefficient and others). Therefore, in practice, we decided to move
iteratively, without the investigation of all the possible combinations.

The first step was the choice of a training method. For various activation functions, we applied
all the selected training methods. In this case, we used the LSTM as recurrent cells and only L2
regularization (without Dropout). The best results for all the training methods were obtained with
the ReLU (Table 1 and Figure 3).

Table 1. Influence of training method on model accuracy.

Training Method MAPE, Training Set (%) MAPE, Test Set (%)
SGD 32.40 35.20

Momentum 25.95 23.27

RMSProp 15.24 14.96
Adam 15.38 16.59

Figure 3. Influence of training method on the model accuracy. RMSProp and Adam showed a much
higher quality of training.

RMSProp and Adam significantly outperformed SGD and Momentum, most likely due to the
limitation of the oscillations of the neurons’ weights during the training process. Moreover, due to
the small size of the model and L2 regularization, the model had low overfitting properties.

We conclude that for the problem under consideration, Adam worked well precisely due to the
application of RMSProp learning, not Momentum. Besides, RMSProp compared to Adam is slightly
faster because of fewer calculations and less-time-consuming hyper-parameter tuning.

Table 2 and Figure 4 show the influence of the activation function for two of the best training
methods.

Table 2. Influence of training method and activation function on the model accuracy.

Training
Method

Activation Function MAPE, Training Set (%) MAPE, Test Set (%)

RMSProp Sigmoid 38.57 36.40
RMSProp Tanh 35.37 33.60

RMSProp ReLU 15.24 14.96

0

5

10

15

20

25

30

35

40

SGD Momentum RMSProp Adam

MAPE, training set (%) MAPE, test set (%)

Figure 3. Influence of training method on the model accuracy. RMSProp and Adam showed a much
higher quality of training.

RMSProp and Adam significantly outperformed SGD and Momentum, most likely due to the
limitation of the oscillations of the neurons’ weights during the training process. Moreover, due to the
small size of the model and L2 regularization, the model had low overfitting properties.

We conclude that for the problem under consideration, Adam worked well precisely due to the
application of RMSProp learning, not Momentum. Besides, RMSProp compared to Adam is slightly
faster because of fewer calculations and less-time-consuming hyper-parameter tuning.

Table 2 and Figure 4 show the influence of the activation function for two of the best
training methods.

In the experiments, the ReLU outperformed Sigmoid and Tanh significantly. The advantage of the
ReLU for the DNN and CNN is well known, but our study confirmed that for a small RNN model,
the ReLU is also useful because it does not have gradient vanishing problems. Therefore, in the course
of the subsequent steps, only the RMSProp with the ReLU was used.

Table 2. Influence of training method and activation function on the model accuracy.

Training Method Activation Function MAPE, Training Set (%) MAPE, Test Set (%)

RMSProp Sigmoid 38.57 36.40
RMSProp Tanh 35.37 33.60
RMSProp ReLU 15.24 14.96

Adam Sigmoid 38.22 37.59
Adam Tanh 35.18 34.73
Adam ReLU 15.38 16.59

Mathematics 2020, 8, 2169 9 of 17

Mathematics 2020, 8, x FOR PEER REVIEW 9 of 17

Adam Sigmoid 38.22 37.59
Adam Tanh 35.18 34.73
Adam ReLU 15.38 16.59

Figure 4. Influence of the activation function of dense layers on the model accuracy. ReLU
significantly outperformed Sigmoid and Hyperbolic tangent.

In the experiments, the ReLU outperformed Sigmoid and Tanh significantly. The advantage of
the ReLU for the DNN and CNN is well known, but our study confirmed that for a small RNN model,
the ReLU is also useful because it does not have gradient vanishing problems. Therefore, in the course
of the subsequent steps, only the RMSProp with the ReLU was used.

It should be noted that for the LSTM and GRU recurrent cells, we used the default activation
functions described in [30,31]. For them, replacing the sigmoid function and hyperbolic tangent with
ReLU significantly reduced the forecasting accuracy. Additionally, for the output neuron, we used
the Logistic Sigmoid function.

3.4. Type of Recurrent Cells

After choosing the training method and activation functions, we studied the influence of
recurrence cells in Layers 3 and 4 (Figure 1). The results are shown in Table 3 and Figure 5.

The type of recurrent cell did not have a substantial effect on the forecasting accuracy compared
to the optimization of the training method and activation functions. However, the higher the model
accuracy, the more difficult it is to increase the accuracy. Therefore, a continuous decrease in the
accuracy difference between the various methods in the course of ANN model tuning is logical.
Additionally, if we look at the relative differences in percentages, the application of the LSTM in the
test set provided us with 19.6% lower error than SimpleRNN, and GRU, 12% lower error than
SimpleRNN.

Table 3. Influence of recurrent cell on the model accuracy.

Recurrent Cell MAPE, Training Set (%) MAPE, Test Set (%)
Simple RNN 14.50 15.03

LSTM 8.23 12.09

GRU 11.31 13.22

0
5

10
15
20
25
30
35
40

Sigmoid Tanh ReLU Sigmoid Tanh ReLU

RMSProp RMSProp RMSProp Adam Adam Adam

MAPE, train set (%) MAPE, test set (%)

Figure 4. Influence of the activation function of dense layers on the model accuracy. ReLU significantly
outperformed Sigmoid and Hyperbolic tangent.

It should be noted that for the LSTM and GRU recurrent cells, we used the default activation
functions described in [30,31]. For them, replacing the sigmoid function and hyperbolic tangent with
ReLU significantly reduced the forecasting accuracy. Additionally, for the output neuron, we used the
Logistic Sigmoid function.

3.4. Type of Recurrent Cells

After choosing the training method and activation functions, we studied the influence of recurrence
cells in Layers 3 and 4 (Figure 1). The results are shown in Table 3 and Figure 5.

Table 3. Influence of recurrent cell on the model accuracy.

Recurrent Cell MAPE, Training Set (%) MAPE, Test Set (%)

Simple RNN 14.50 15.03
LSTM 8.23 12.09
GRU 11.31 13.22

Mathematics 2020, 8, x FOR PEER REVIEW 10 of 17

Figure 5. Influence of recurrent cells on the model accuracy. Using LSTM and GRU is preferable due
to more efficient work with cell memory.

3.5. Regularization

Overfitting led to the fact that the model found false relations in the training dataset and
demonstrated an accuracy on the training data much better than that on the validation and testing
data. Initially, in order to eliminate overfitting, we limited the model size and used no more than two
recurrent layers and no more than two fully connected (dense) layers.

The robustness and generalization performance are no less important than the forecasting
accuracy. If a model can be trained without overfitting and finding false dependencies, it is possible,
if necessary, to adapt the model to other data (other conditions). For example, it becomes possible to
adjust the model to a different enterprise.

At the same time, the application of a model prone to overfitting carries the risk of a drastic
accuracy reduction with even small changes in the technological process of the enterprise. The further
training of such models will not provide a significant improvement of the real accuracy since the
model will probably find false dependencies again.

The influence of the Dropout and L2 regularization when using the RMSProp and GRU is
detailed in Table 4 and Figure 6. The Dropout rate was set to be equal to 0.4; the L2 regularization
coefficient was equal to 0.02 or 0.05 depending on the layer (see Lines 4, 5 and 7 of the code and Figure
1).

Table 4. Influence of regularization methods on model accuracy.

Regularization
Method

MAPE, Training
Set (%)

MAPE, Test
Set (%)

MAPE Difference between
Training and Test (%)

No 10.47 13.97 33.43
Dropout 11.14 13.44 17.11
L2 reg. 11.15 13.20 15.53

Dropout and
L2 reg. 11.31 13.22 14.45

0
2
4
6
8

10
12
14
16

Simple RNN LSTM GRU

MAPE, training set (%) MAPE, test set (%)

Figure 5. Influence of recurrent cells on the model accuracy. Using LSTM and GRU is preferable due to
more efficient work with cell memory.

The type of recurrent cell did not have a substantial effect on the forecasting accuracy compared
to the optimization of the training method and activation functions. However, the higher the model
accuracy, the more difficult it is to increase the accuracy. Therefore, a continuous decrease in the

Mathematics 2020, 8, 2169 10 of 17

accuracy difference between the various methods in the course of ANN model tuning is logical.
Additionally, if we look at the relative differences in percentages, the application of the LSTM in the test
set provided us with 19.6% lower error than SimpleRNN, and GRU, 12% lower error than SimpleRNN.

3.5. Regularization

Overfitting led to the fact that the model found false relations in the training dataset and
demonstrated an accuracy on the training data much better than that on the validation and testing
data. Initially, in order to eliminate overfitting, we limited the model size and used no more than
two recurrent layers and no more than two fully connected (dense) layers.

The robustness and generalization performance are no less important than the forecasting accuracy.
If a model can be trained without overfitting and finding false dependencies, it is possible, if necessary,
to adapt the model to other data (other conditions). For example, it becomes possible to adjust the
model to a different enterprise.

At the same time, the application of a model prone to overfitting carries the risk of a drastic
accuracy reduction with even small changes in the technological process of the enterprise. The further
training of such models will not provide a significant improvement of the real accuracy since the model
will probably find false dependencies again.

The influence of the Dropout and L2 regularization when using the RMSProp and GRU is detailed
in Table 4 and Figure 6. The Dropout rate was set to be equal to 0.4; the L2 regularization coefficient
was equal to 0.02 or 0.05 depending on the layer (see Lines 4, 5 and 7 of the code and Figure 1).

Table 4. Influence of regularization methods on model accuracy.

Regularization Method MAPE, Training Set (%) MAPE, Test Set (%) MAPE Difference between
Training and Test (%)

No 10.47 13.97 33.43
Dropout 11.14 13.44 17.11
L2 reg. 11.15 13.20 15.53

Dropout and L2 reg. 11.31 13.22 14.45Mathematics 2020, 8, x FOR PEER REVIEW 11 of 17

Figure 6. Influence of the regularization method on the model accuracy. It is necessary to apply at
least one of the methods to reduce overfitting.

During the study, it was proved that it is necessary to apply at least one of the regularization
methods to reduce overfitting. Otherwise, the accuracy obtained for the test set is much lower than
for the training set. It is better to use both methods since they have different performing mechanisms
and influence the varying cases of overfitting.

3.6. Resulting Forecasting Accuracy

Table 5 contains the results of the best configurations of the RNN model developed during the
studies. In addition, the RNN architecture was compared with the autoregressive model ARIMA and
the simple traditional ANN model, the MLP model. Its hyper-parameters were as follows: numbers
of neurons in hidden layers—24, 32, 16 and 1; activation functions in hidden layers—ReLU; L2-
regularization coefficient—0.01; Adam training method. Figures 7–9 show a comparison of the
predicted and the actual loading curves for the daily samples, and Figures 10 and 11 show a
comparison of the predicted and the actual loading curves for the weekly samples. The resulting
RNN model accurately predicted not only the moments but also the magnitudes of the power
consumption decrements at the time of shift change (two lowest points on the daily loading curve).

Table 5. The best configurations of the RNN model and Artificial Neural Network (ANN) model.

Model Training
Method

Recurrent Cell Activation
Function

MAPE,
Training
Set (%)

MAPE, Test
Set (%)

RNN RMSProp LSTM ReLU 8.23 12.09
RNN RMSProp GRU ReLU 11.31 13.22

RNN Adam GRU ReLU 13.09 14.66
MLP Adam Simple neuron ReLU 17.42 19.45

ARIMA - - - 22.19 22.38

0

2

4

6

8

10

12

14

No Dropout L2 reg. Dr.out+L2

MAPE, train set (%) MAPE, test set (%)

Figure 6. Influence of the regularization method on the model accuracy. It is necessary to apply at least
one of the methods to reduce overfitting.

During the study, it was proved that it is necessary to apply at least one of the regularization
methods to reduce overfitting. Otherwise, the accuracy obtained for the test set is much lower than for
the training set. It is better to use both methods since they have different performing mechanisms and
influence the varying cases of overfitting.

Mathematics 2020, 8, 2169 11 of 17

3.6. Resulting Forecasting Accuracy

Table 5 contains the results of the best configurations of the RNN model developed during the
studies. In addition, the RNN architecture was compared with the autoregressive model ARIMA
and the simple traditional ANN model, the MLP model. Its hyper-parameters were as follows:
numbers of neurons in hidden layers—24, 32, 16 and 1; activation functions in hidden layers—ReLU;
L2-regularization coefficient—0.01; Adam training method. Figures 7–9 show a comparison of the
predicted and the actual loading curves for the daily samples, and Figures 10 and 11 show a comparison
of the predicted and the actual loading curves for the weekly samples. The resulting RNN model
accurately predicted not only the moments but also the magnitudes of the power consumption
decrements at the time of shift change (two lowest points on the daily loading curve).

Table 5. The best configurations of the RNN model and Artificial Neural Network (ANN) model.

Model Training Method Recurrent Cell Activation Function MAPE, Training
Set (%)

MAPE, Test
Set (%)

RNN RMSProp LSTM ReLU 8.23 12.09
RNN RMSProp GRU ReLU 11.31 13.22
RNN Adam GRU ReLU 13.09 14.66
MLP Adam Simple neuron ReLU 17.42 19.45

ARIMA - - - 22.19 22.38
Mathematics 2020, 8, x FOR PEER REVIEW 12 of 17

Figure 7. Forecasting results, ground truth (actual load), predictions of the models and errors for 26th
October 2015. x-axis expresses time (hour unit), and y-axis represents the electricity load and errors.

Figure 8. Forecasting results, ground truth (actual load), predictions of the models and errors for 15th
May 2016. x-axis expresses time (hour units), and y-axis represents the electricity load and errors.

Figure 7. Forecasting results, ground truth (actual load), predictions of the models and errors for
26 October 2015. x-axis expresses time (hour unit), and y-axis represents the electricity load and errors.

Mathematics 2020, 8, 2169 12 of 17

Mathematics 2020, 8, x FOR PEER REVIEW 12 of 17

Figure 7. Forecasting results, ground truth (actual load), predictions of the models and errors for 26th
October 2015. x-axis expresses time (hour unit), and y-axis represents the electricity load and errors.

Figure 8. Forecasting results, ground truth (actual load), predictions of the models and errors for 15th
May 2016. x-axis expresses time (hour units), and y-axis represents the electricity load and errors.

Figure 8. Forecasting results, ground truth (actual load), predictions of the models and errors for
15 May 2016. x-axis expresses time (hour units), and y-axis represents the electricity load and errors.Mathematics 2020, 8, x FOR PEER REVIEW 13 of 17

Figure 9. Forecasting results, ground truth (actual load), predictions of the models, and errors for 2
November 2018. x-axis expresses time (hour units), and y-axis represents the electricity load and
errors.

Figure 10. Forecasting results, ground truth (actual load), predictions of the models and errors for a
week (15–21 May 2016). x-axis expresses time (hour unit), and y-axis represents the electricity load
and errors.

Figure 9. Forecasting results, ground truth (actual load), predictions of the models, and errors for
2 November 2018. x-axis expresses time (hour units), and y-axis represents the electricity load and errors.

Mathematics 2020, 8, 2169 13 of 17

Mathematics 2020, 8, x FOR PEER REVIEW 13 of 17

Figure 9. Forecasting results, ground truth (actual load), predictions of the models, and errors for 2
November 2018. x-axis expresses time (hour units), and y-axis represents the electricity load and
errors.

Figure 10. Forecasting results, ground truth (actual load), predictions of the models and errors for a
week (15–21 May 2016). x-axis expresses time (hour unit), and y-axis represents the electricity load
and errors.

Figure 10. Forecasting results, ground truth (actual load), predictions of the models and errors for a week
(15–21 May 2016). x-axis expresses time (hour unit), and y-axis represents the electricity load and errors.Mathematics 2020, 8, x FOR PEER REVIEW 14 of 17

Figure 11. Forecasting results, ground truth (actual load), predictions of the models and errors for a
week (2–8 November 2018). x-axis expresses time (hour unit), and y-axis represents the electricity load
and errors.

The main reason for the low average accuracy of the forecast is large errors corresponding to the
hours when the features of the technological process lead to abrupt variations in the energy
consumption schedule. The abrupt variations can be either an increase due to the growth in the coal
mining rate or a decrease due to accidents or downtime during blasting.

The computational experiments resulted in the following conclusions about the application of
RNNs to this forecasting problem under consideration:

• RMSProp and Adam significantly outperformed the SGD and Momentum (see Table 1 and
Figure 3);

• The ReLU activation function in dense layers effectively solves the vanishing gradient problem
compared to the Sigmoid function and Hyperbolic tangent (see Table 2 and Figure 4);

• Recurrent cells with “long memory” such as LSTM and GRU are preferable in comparison with
simple recurrent cells; the LSTM-based RNN showed a little higher accuracy but less
generalization performance than the GRU-based RNNs (see Table 3 and Figure 5);

• Even with a small model size, it is necessary to use Dropout and L2 regularization to avoid
overfitting (Table 4 and Figure 6);

• The best configuration in terms of accuracy is RMSProp+LSTM+ReLU. However, the
configuration RMSProp+GRU+ReLU is more robust, since it had less bias between the training
and test sets. That is why RMSProp+GRU+ReLU was used for the final model design (see Figure
12).

Figure 11. Forecasting results, ground truth (actual load), predictions of the models and errors for a week
(2–8 November 2018). x-axis expresses time (hour unit), and y-axis represents the electricity load and errors.

Mathematics 2020, 8, 2169 14 of 17

The main reason for the low average accuracy of the forecast is large errors corresponding to
the hours when the features of the technological process lead to abrupt variations in the energy
consumption schedule. The abrupt variations can be either an increase due to the growth in the coal
mining rate or a decrease due to accidents or downtime during blasting.

The computational experiments resulted in the following conclusions about the application of
RNNs to this forecasting problem under consideration:

• RMSProp and Adam significantly outperformed the SGD and Momentum (see Table 1 and
Figure 3);

• The ReLU activation function in dense layers effectively solves the vanishing gradient problem
compared to the Sigmoid function and Hyperbolic tangent (see Table 2 and Figure 4);

• Recurrent cells with “long memory” such as LSTM and GRU are preferable in comparison with
simple recurrent cells; the LSTM-based RNN showed a little higher accuracy but less generalization
performance than the GRU-based RNNs (see Table 3 and Figure 5);

• Even with a small model size, it is necessary to use Dropout and L2 regularization to avoid
overfitting (Table 4 and Figure 6);

• The best configuration in terms of accuracy is RMSProp+LSTM+ReLU. However, the configuration
RMSProp+GRU+ReLU is more robust, since it had less bias between the training and test sets.
That is why RMSProp+GRU+ReLU was used for the final model design (see Figure 12).Mathematics 2020, 8, x FOR PEER REVIEW 15 of 17

Figure 12. The schematic of the resulting RNN model.

4. Conclusions

This paper focuses on the application of Recurrent Neural Networks for short-term load
forecasting for a coal mining enterprise 48 h ahead. Unlike most industrial consumers with certain
daily consumption patterns, the energy consumption of coal mining has a high proportion of
irregular processes. The power system of such an enterprise evolves in time and in space. Thus, for
the considered problem, the forecasting model is required to be highly robust to adapt to various
changes in the technological process.

For this task, the paper proposes a small-size RNN-based model with long memory cells. The
small model size allows one to avoid overfitting and to apply a single model for the entire energy
consumption schedule, which changes a lot in the course of the enterprise operation and
development.

We studied the influence of hyper-parameters and methods of improving the accuracy and
generalization performance of the RNN model based on a real-case dataset. The study showed the
effectiveness of the RMSProp and Adam training methods. A comparison of the Adam and RMSProp
methods was carried out with widely known and easy-to-implement methods: SGD and Momentum.
SGD was used as a baseline for comparison, and the use of Momentum helped us to understand that
the efficiency of Adam is connected to a greater extent not with the inertia, which is also present in
Momentum, but with the variability of the weight gradient, as in RMSProp. This confirms that the
considered power consumption is a complex non-stationary process with the presence of rare events
that have a significant impact on power consumption.

The effectiveness of the ReLU activation function for dense layers, both LSTM and GRU
recurrent cells, and the application of Dropout and (or) L2 regularization were also demonstrated.
The resulting MAPE of the load forecasting for 48 h ahead was 11% for the training dataset and 13%
for the test dataset.

Thus, the major contribution of the authors to the area of study corresponds to the following
main points:

• Existing RNN studies consider electric power consumers with a much more periodic schedule
and fewer abrupt deviations from the daily average—for example, large buildings’
consumption, joint households and cities. The problem under study is characterized by a high

Figure 12. The schematic of the resulting RNN model.

4. Conclusions

This paper focuses on the application of Recurrent Neural Networks for short-term load forecasting
for a coal mining enterprise 48 h ahead. Unlike most industrial consumers with certain daily
consumption patterns, the energy consumption of coal mining has a high proportion of irregular
processes. The power system of such an enterprise evolves in time and in space. Thus, for the
considered problem, the forecasting model is required to be highly robust to adapt to various changes
in the technological process.

Mathematics 2020, 8, 2169 15 of 17

For this task, the paper proposes a small-size RNN-based model with long memory cells. The small
model size allows one to avoid overfitting and to apply a single model for the entire energy consumption
schedule, which changes a lot in the course of the enterprise operation and development.

We studied the influence of hyper-parameters and methods of improving the accuracy and
generalization performance of the RNN model based on a real-case dataset. The study showed the
effectiveness of the RMSProp and Adam training methods. A comparison of the Adam and RMSProp
methods was carried out with widely known and easy-to-implement methods: SGD and Momentum.
SGD was used as a baseline for comparison, and the use of Momentum helped us to understand that
the efficiency of Adam is connected to a greater extent not with the inertia, which is also present in
Momentum, but with the variability of the weight gradient, as in RMSProp. This confirms that the
considered power consumption is a complex non-stationary process with the presence of rare events
that have a significant impact on power consumption.

The effectiveness of the ReLU activation function for dense layers, both LSTM and GRU recurrent
cells, and the application of Dropout and (or) L2 regularization were also demonstrated. The resulting
MAPE of the load forecasting for 48 h ahead was 11% for the training dataset and 13% for the
test dataset.

Thus, the major contribution of the authors to the area of study corresponds to the following
main points:

• Existing RNN studies consider electric power consumers with a much more periodic schedule
and fewer abrupt deviations from the daily average—for example, large buildings’ consumption,
joint households and cities. The problem under study is characterized by a high proportion
of irregular processes, evolving in time and in space, which have not been addressed in
earlier investigations.

• Modern research on the neural networks for predicting power consumption uses neural networks
(not necessarily recurrent ones) of a very large size. In the presented study, it was shown
experimentally that for small RNNs, methods of increasing efficiency such as the ReLU, Adam,
RMSProp, Dropout, LSTM and GRU are also applicable.

• Comparisons of the LSTM and GRU; the influence of L2-regularization, Dropout and their
combination; and a comparison of training methods supported by numerical results for the
problem of the short-term load forecasting of industrial enterprises have not been discussed
previously. The present study provides a comprehensive understanding of their impact on the
accuracy of irregular technological process forecasting.

Within the scope of future work, the RNN model, firstly, will be supplemented with convolution
layers for more efficient feature extraction. Secondly, we expect to validate the prediction methodology
for different types of industrial customers. Finally, a further comparison with existing methods will
also be carried out.

Author Contributions: Conceptualization, P.V.M., D.V.A. and V.Z.M.; data curation, A.I.K., D.V.A., S.A.E. and
D.N.B.; formal analysis, P.V.M. and D.V.A.; funding acquisition, A.I.K. and S.A.E.; investigation, P.V.M., D.V.A.,
A.I.K. and D.N.B.; methodology, P.V.M., V.Z.M. and D.V.A.; project administration, A.I.K. and V.Z.M.; resources,
S.A.E. and D.N.B.; software, P.V.M., D.V.A. and S.A.E.; supervision, A.I.K. and V.Z.M.; validation, P.V.M., D.V.A.
and D.N.B.; visualization, P.V.M.; writing—original draft, P.V.M. and A.I.K.; writing—review and editing, S.A.E.
and D.N.B. All authors have read and agreed to the published version of the manuscript.

Funding: No funding was received for this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Park, S.; Ruy, S.; Choi, Y.; Kim, J.; Kim, H. Data-driven baseline estimation of residential buildings for demand
response. Energies 2015, 8, 10239–10259. [CrossRef]

2. Gross, G.; Galiana, F.D. Short-term load forecasting. Proc. IEEE 1987, 75, 1558–1573. [CrossRef]

http://dx.doi.org/10.3390/en80910239
http://dx.doi.org/10.1109/PROC.1987.13927

Mathematics 2020, 8, 2169 16 of 17

3. Hahn, H.; Meyer-Nieberg, S.; Pickl, S. Electric load forecasting methods: Tools for decision making. Eur. J.
Oper. Res. 2009, 199, 902–907. [CrossRef]

4. Deb, C.; Zhang, F.; Yang, J.; Lee, S.; Shah, K. A review on time series forecasting techniques for building
energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [CrossRef]

5. Taylor, J.W. Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper.
Res. Soc. Aug. 2003, 54, 799–805. [CrossRef]

6. Cho, M.Y.; Hwang, J.C.; Chen, C.S. Customer short term load forecasting by using ARIMA transfer function
model. In Proceedings of the International Conference on Energy Management and Power Delivery,
Singapore, 21–23 November 1995; Volume 1, pp. 317–322.

7. Behr, S.M. The time series approach to short term load forecasting. IEEE Trans. Power Syst. 1987, 2, 785–791.
8. Song, K.B.; Baek, Y.S.; Hong, D.H.; Jang, G. Short-term load forecasting for the holidays using fuzzy linear

regression method. IEEE Trans. Power Syst. 2005, 20, 96–101. [CrossRef]
9. Hong, W.-C. Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic

artificial bee colony algorithm. Energy 2011, 36, 5568–5578. [CrossRef]
10. Li, W.; Yang, X.; Li, H.; Su, L. Hybrid forecasting approach based on GRNN neural network and SVR machine

for electricity demand forecasting. Energies 2017, 10, 44. [CrossRef]
11. Kosemura, N. Optimal regression tree based rule discovery for short-term load forecasting. In Proceedings

of the IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 28 January–1 February 2001;
Volume 2, pp. 421–426.

12. Zhang, R.; Xu, Y.; Dong, Z.Y.; Kong, W.; Wong, K.P. A composite k-nearest neighbor model for day-ahead
load forecasting with limited temperature forecasts. In Proceedings of the IEEE Power and Energy Society
General Meeting, Boston, MA, USA, 17–21 July 2016; pp. 1–5.

13. Huo, J.; Shi, T.; Chang, J. Comparison of Random Forest and SVM for electrical short-term load forecast with
different data sources. In Proceedings of the IEEE International Conference on Software Engineering and
Service Science, Beijing, China, 26–28 August 2016; pp. 1077–1080.

14. Ryu, S.; Noh, J.; Kim, H. Deep neural network based demand side short term load forecasting. Energies 2016,
10, 3. [CrossRef]

15. Zor, K.; Timur, O.; Teke, A. A state-of-the-art review of artificial intelligence techniques for short-term electric
load forecasting. In Proceedings of the 6th International Youth Conference on Energy, Budapest, Hungary,
21–24 June 2017; pp. 1–7.

16. Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and
evaluation. IEEE Trans. Power Syst. 2001, 16, 44–55. [CrossRef]

17. Chen, K.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-Term Load Forecasting with Deep Residual Networks.
IEEE Trans. Smart Grid 2019, 10, 3943–3952. [CrossRef]

18. Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-Scale Convolutional Neural Network with
Time-Cognition for Multi-Step Short-Term Load Forecasting. IEEE Access 2019, 7, 88058–88071. [CrossRef]

19. Wu, L.; Kong, C.; Hao, X.; Chen, W. A Short-Term Load Forecasting Method Based on GRU-CNN Hybrid
Neural Network Model. Math. Probl. Eng. 2020, 2020, 1428104. [CrossRef]

20. He, W. Deep neural network based load forecast. Comput. Model. New Technol. 2014, 18, 258–262.
21. Kong, W.; Dong, Z.Y.; Hill, D.J.; Luo, F.; Xu, Y. Short-Term Residential Load Forecasting Based on Resident

Behaviour Learning. IEEE Trans. Power Syst. 2018, 33, 1087–1088. [CrossRef]
22. Qiu, X.; Zhang, L.; Ren, Y.; Suganthan, P.; Amaratunga, G. Ensemble deep learning for regression and time

series forecasting. In Proceedings of the IEEE Symposium on Computational Intelligence in Ensemble
Learning, Orlando, FL, USA, 9–12 December 2014; pp. 21–26.

23. Kong, W.; Dong, Z.; Jia, Y.; Hill, D.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM
recurrent neural network. IEEE Trans. Smart Grid 2019, 10, 841–851. [CrossRef]

24. Cai, M.; Pipattanasomporn, M.; Rahman, S. Day-ahead building-level load forecasts using deep learning vs.
traditional time-series techniques. Appl. Energy 2019, 236, 1078–1088. [CrossRef]

25. Baczynski, D.; Parol, M. Influence of artificial neural network structure on quality of short-term electric
energy consumption forecast. IEE Proc.-Gener. Transm. Distrib. 2004, 151, 241–245. [CrossRef]

26. Antonenkov, D.V.; Solovev, D.B. Mathematic simulation of mining company’s power demand forecast
(by example of “Neryungri” coal strip mine). IOP Conf. Ser. Earth Environ. Sci. 2017, 87, 032003. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2009.01.062
http://dx.doi.org/10.1016/j.rser.2017.02.085
http://dx.doi.org/10.1057/palgrave.jors.2601589
http://dx.doi.org/10.1109/TPWRS.2004.835632
http://dx.doi.org/10.1016/j.energy.2011.07.015
http://dx.doi.org/10.3390/en10010044
http://dx.doi.org/10.3390/en10010003
http://dx.doi.org/10.1109/59.910780
http://dx.doi.org/10.1109/TSG.2018.2844307
http://dx.doi.org/10.1109/ACCESS.2019.2926137
http://dx.doi.org/10.1155/2020/1428104
http://dx.doi.org/10.1109/TPWRS.2017.2688178
http://dx.doi.org/10.1109/TSG.2017.2753802
http://dx.doi.org/10.1016/j.apenergy.2018.12.042
http://dx.doi.org/10.1049/ip-gtd:20040070
http://dx.doi.org/10.1088/1755-1315/87/3/032003

Mathematics 2020, 8, 2169 17 of 17

27. Bakirtzis, A.G.; Petridis, V.; Kiartzis, S.; Alexiadis, M.; Maissis, A.H. A neural network shor-term load
forecasting model for the Greek power system. IEEE Trans. Power Syst. 1996, 11, 858–863. [CrossRef]

28. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
29. Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving deep neural networks for LVCSR using rectified linear

units and dropout. In Proceedings of the IEEE Acoustics, Speech and Signal Processing, Vancouver, BC,
Canada, 26–31 May 2013; pp. 8609–8613.

30. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
31. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y.

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv
2014, arXiv:1406.1078.

32. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
33. Tieleman, T.; Hinton, G. Lecture 6.5—RMSProp, COURSERA: Neural Networks for Machine Learning;

Technical Report; University of Toronto: Toronto, ON, Canada, 2012.
34. Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. Ng, A.Y. Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance. In Proceedings of the 21st

International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; pp. 1–8.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/59.496166
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Problem Formulation
	Neural Network Architecture
	Activation Function
	Recurrent Cells
	Training Methods
	Regularization

	Results
	Dataset
	RNN Model Implementation
	Training Method and Activation Function
	Type of Recurrent Cells
	Regularization
	Resulting Forecasting Accuracy

	Conclusions
	References

