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Abstract: The construction of first integrals for SL(2,R)-invariant nth-order ordinary differential
equations is a non-trivial problem due to the nonsolvability of the underlying symmetry algebra
sl(2,R). Firstly, we provide for n = 2 an explicit expression for two non-constant first integrals
through algebraic operations involving the symmetry generators of sl(2,R), and without any kind
of integration. Moreover, although there are cases when the two first integrals are functionally
independent, it is proved that a second functionally independent first integral arises by a single
quadrature. This result is extended for n > 2, provided that a solvable structure for an integrable
distribution generated by the differential operator associated to the equation and one of the prolonged
symmetry generators of sl(2,R) is known. Several examples illustrate the procedures.
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1. Introduction

The study of nth-order ordinary differential equations admitting the unimodular Lie group
SL(2,R) is a non-trivial problem due to the nonsolvability of the underlying symmetry algebra sl(2,R).
This problem has been tackled by different approaches during the last decades, next we review only
some of the most relevant for the purposes of this work.

Most results in the literature refer to third-order SL(2,C)-invariant ODEs, which can be solved
via a pair of quadratures and the solution to a Riccati equation (or, equivalently, to a second-order
linear ODE). This result can be proved as a consequence of the study preformed by Clarkson and
Olver [1], who connected the three inequivalent actions of SL(2,C) in the complex plane via the
standard prolongation process. It was demonstrated in Reference [2] that the fourth action that appears
in the real case can be obtained from the same source, and this study was extended to 2D and 3D Lie
algebras of symmetries, providing interesting results on the linearization of second-order ODEs via
contact transformations [2,3]. A different approach [4] exploits the existence of nonlocal symmetries,
latter connected with C∞-symmetries in Reference [5], where the fourth realization that appears in
the real case was also discussed. By using techniques based on solvable structures [6–12], the general
solution in parametric form for each one of the four canonical third-order SL(2,R)-invariant ODEs
were obtained in References [13,14]. Such solution is given in terms of a fundamental set of solutions to
a second-order linear ODE, which is explicitly given for each one of the four different actions of SL(2,R)
on the real plane [14]. The concept of generalized solvable structure was introduced in Reference [15] in
order to extend the study to SL(2,R)-invariant ODEs of arbitrary order n. The main result in this regard
states that when a generalized solvable structure is known, then a complete set of first integrals can
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be constructed by quadrature, and given in terms of a fundamental set of solutions to a second-order
linear ODE depending on n− 3 parameters (see Reference [15] for further details).

In this paper we present new relevant results about first integrals of differential operators
associated to SL(2,R)-invariant ODEs, showing how some of these first integrals can be constructed
without any kind of integration at all. The paper is organized as follows. After a preliminary section
setting the notation and necessary previous results, we consider the case of second-order equations
as a starting point. For this class of equations, instead of using a two-dimensional subgroup for its
integration, we provide two first integrals given straightforwardly through the symmetry generators,
without integration. Although we are able to prove that both first integrals are not constant, we show
with an example that they need not to be functionally independent functions (in contrast to what
happens in the case of the rotation symmetry group [16]). Nevertheless, we prove that in this
unfavourable situation a functionally independent first integral always arises by a single quadrature.

These results are extended for equations of arbitrary order in Section 4. In the general case, we use
a solvable structure for the integrable distribution generated by the differential operator associated to
the equation and one of the prolonged symmetry generators of sl(2,R). It is worth mentioning that
the solvable structure of such distribution needs not to be either a solvable structure or a generalized
solvable structure for the equation. We also present illustrative examples in order to show how these
new results can be applied in practice.

2. Preliminaries

2.1. Distributions of Vector Fields and Their Symmetries

Given a set of vector fields {A1, . . . , An−k} on a n-dimensional manifold N, we denote by
A := 〈A1, . . . , An−k〉 the distribution of vector fields generated by {A1, . . . , Ak}. Similarly, given a
set of 1-forms {β1, . . . , βk}, we denote by β := 〈β1, . . . , βk〉 the corresponding Pfaffian system
(i.e., the sub-module over C∞(N) generated by {β1, . . . , βk}) [17,18].

The distribution A is integrable (in Frobenius sense) if and only if the Lie bracket [A, B] ∈ A,
for each A, B ∈ A [6,7,11,12]. If U is a open domain of N where the vector fields {A1, . . . , An−k}
are pointwise linearly independent, we say that A is a distribution of maximal rank n − k (or of
codimension k) on U. It is well known that an integrable distribution A of maximal rank determines a
(n− k)-dimensional foliation of U ⊆ N [17,18]. If this foliation is described though the vanishing of k
functions of the form Ih − ch, where Ih ∈ C∞(U) and ch ∈ R, we can choose 〈dI1, . . . dIk〉 as generators
for the Pfaffian system annihilating the distribution A. A submanifold S ⊂ N is an integral manifold for
A if A|S ⊆ TS. If, in particular, A|S = TS we say that S is a maximal integral manifold of A [18].

LetA and B be two distributions on N. We say thatA and B are transversal at p ∈ N if they do not
vanish at p and A(p) ∩ B(p) = {0}. Analogously, A and B are transversal in U if they are transversal
at any point of U.

Given a distributionA, a vector field X is a symmetry ofA if [X, A] ∈ A, for any A ∈ A [6,7,11,12].
An algebra G of symmetries for a distribution A is non-trivial if G generates a distribution which is
transversal to A. Analogously, given an ideal of differential forms I, a vector field X is a symmetry of I
if LX I ⊂ I, where L denotes the Lie derivative [6].

Next we prove two results on symmetries of distributions of vector fields that will be used
throughout the paper. In what follows, the Einstein summation convention is used and y stands
for the interior product (contraction) of vector fields and differential forms [18]. Throughout the
paper we assume that we are working on an open simply connected domain U of N, functions are
usually assumed to be smooth and well defined on U, the vector fields and forms are not allowed
to vanish at any point of U. Where necessary, the reader should assume that the domains have been
restricted accordingly.
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Proposition 1. Let A := 〈A1, . . . An−k〉 be an integrable distribution on an n-dimensional manifold N.
If Ω is a volume form on N, and α is the k-form on N defined by

α := A1y . . .yAn−kyΩ, (1)

then Ai is a symmetry of α, for i = 1, . . . , n− k.

Proof. Since Ω is a volume form over N, LAi Ω = (divAi)Ω, for i = 1, . . . , n − k. Since A is an

integrable distribution, there exists a family of functions f j
il ∈ C∞(N) such that [Ai, Al ] = f j

il Aj,
for 1 ≤ i, j, l ≤ n− k. By properties of the Lie derivative L and the interior product y we can write

LAi α = LAi (A1y . . .yAn−kyΩ)

= [Ai, A1]yA2y . . .yAn−kyΩ + A1y[Ai, A2]y . . .yAn−kyΩ + . . .
+A1y . . .y[Ai, An−k]yΩ + A1y . . .yAn−kyLAi Ω

= ( f j
ij + divAi)α = Hiα,

where Hi = ( f j
ij + divAi), for i = 1, . . . , n− k. This proves that LAi α ∈ 〈α〉.

A similar proof can be used to demonstrate the following result:

Proposition 2. Let A = 〈A1, . . . , An−k〉 be a distribution of maximal rank on a n-dimensional manifold N.
If X is a symmetry of A and α is the k-form defined by (1), then X is a symmetry of α.

2.2. Solvable Structures for Integrable Distributions

It is well known that, given an integrable distribution A of maximal rank (n − k) on an
n-dimensional manifold N, the knowledge of a solvable k-dimensional algebra G of non-trivial
symmetries for A guarantees that A can be integrated, at least locally, by quadratures alone [8,19].
Solvable structures provide an extension of this classical result, significantly enlarging the class of
vector fields which can be used to integrate by quadratures a distribution of vector fields. In this section
we recall basic definitions and results on solvable structures. The interested reader is referred
to References [6,8,11,12] for further details.

Definition 1. Let A be an integrable distribution of maximal rank n− k on an n-dimensional manifold N.
For a set of vector fields {Y1, Y2, . . . , Yk} we denote A0 = A, Ah = A⊕ 〈Y1, . . . , Yh〉, for h ≤ k. The vector
fields {Y1, Y2, . . . , Yk} form a solvable structure for A in a open neighbourhood U ⊆ N if and only if the
following conditions are satisfied:

1. the distribution 〈Y1, Y2, . . . , Yh〉 has maximal rank h and is transversal to A in U, for h ≤ k;
2. Ah is distribution of maximal rank n− k + h on U;
3. LYhAh−1 ⊂ Ah−1, for h ∈ {1, . . . , k}.

In the next theorem we collect the main results on the integrability of integrable distributions
by means of solvable structures [8,11]. The proof can be consulted, for instance in the following
references: [6] (Theorem 3.15), [8] (Proposition 3), [11] (Proposition 5), [12] (Proposition 4.7):

Theorem 1. Let A = 〈A1, . . . , An−k〉 be an integrable distribution of maximal rank n − k defined on an
orientable n-dimensional manifold N and let {Y1, ..., Yk} be a solvable structure for A. Let Ω be a volume form
on N and define the k-form α as in (1). The distribution A is the annihilator of the Pfaffian system generated by

ωi =
1
∆
(Y1y...yŶiy...yYkyα), i = 1, . . . , k, (2)
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where the hat denotes omission of the corresponding vector field and ∆ is the function on N defined by

∆ = Y1yY2y...yYkyα.

Moreover, for i ∈ {1, ..., k− 1}, the 1-forms ωi satisfy

dωk = 0,
dωi = 0 mod {ωi+1, . . . , ωk}.

In consequence, the integral manifolds of the distribution A can be described in implicit form as level
manifolds I1 = c1, I2 = c2, . . . , Ik = ck, where

ωk = dIk, ωk−1|{Ik=ck} = dIk−1, . . . , ω1|{Ik=ck ,Ik−1=ck−1,...,I2=c2} = dI1.

We remark that, if the distribution A admits an abelian Lie algebra of symmetries generated by
the vector fields Y1, . . . , Yk, the 1-forms ωi are closed, that is, the function 1/∆ provides an integrating
factor for all the 1-forms

Y1y...yŶiy...yYkyα, i = 1, . . . , k.

The main difference between a solvable structure and a solvable symmetry algebra for
an integrable distribution A is that the fields belonging to a solvable structure do not need to be
symmetries of A. This, of course, gives more freedom in the choice of the vector fields which can be
used to find integral manifolds of A by quadratures.

2.3. Jacobi Multipliers for Integrable Distributions

In this section we recall the definition and some properties of Jacobi multipliers [20–22] for
an integrable distribution A.

Definition 2. Let A := 〈A1, . . . An−k〉 be an integrable distribution of codimension k on an n-dimensional
manifold N. If Ω is a volume form on N, and α is the k-form defined by (1), we say that a function M ∈ C∞(N)

is a Jacobi multiplier for A if
d(Mα) = 0,

where d denotes the exterior derivative.

It is well known that Jacobi multipliers are related with first integrals for the distributionA, and in
particular we have the following:

Lemma 1. Given two Jacobi multipliers M1 and M2 for an integrable distributionA, the function I := M1/M2

is a first integral for A.

Proof. By definition of Jacobi multipliers we have that d(M1α) = d(M2α) = 0, which implies

d
(

M1

M2

)
∧ α = 0.

Therefore, if we consider the interior product of this (k + 1)-form with any vector field A ∈ A,
we get [

Ay d
(

M1

M2

)]
α− d

(
M1

M2

)
∧ (Ay α) =

[
Ay d

(
M1

M2

)]
α = 0,

leading to A
(

M1
M2

)
= 0.
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The following theorem provides a link between Jacobi multipliers and symmetries of the
distribution A.

Theorem 2. Let A := 〈A1, . . . An−k〉 be an integrable distribution of codimension k on N, admitting a
k-dimensional algebra G := 〈X1, . . . , Xk〉 of non-trivial symmetries. Then a Jacobi multiplier for A is given by
the function

M :=
1

X1y . . .yXkyα
.

Proof. The proof is a direct computation. We start by rewriting d(Mα) = 0 in the equivalent form

(X1yX2y . . .yXkyα)dα− d(X1yX2y . . .yXkyα) ∧ α = 0. (3)

The integrability of A ensures that α is a decomposable k-form such that dα = ρ ∧ α for a suitable
1-form ρ. In particular, given k− 1 vector fields Bi, we have

(B1y . . .yBk−1yα) ∧ α = 0,

and this fact, together with a repeated use of the formula

LY β = Yydβ + d(Yyβ),

allow us to rewrite the left hand side of (3) as

(X1yX2y . . .yXkyα)dα− (X1yX2y . . .yXkydα) ∧ α. (4)

Finally, from dα = ρ ∧ α it follows that (4) vanishes, concluding the proof.

3. Second-Order SL(2,R)-Invariant ODEs

In this section we consider the trivially integrable one-dimensional distribution A = 〈A〉 defined
by a differential operator

A = ∂x + u1∂u + F(x, u, u1)∂u1, (5)

associated to a second order SL(2,R)-invariant ordinary differential equation

u2 = F(x, u, u1), (6)

where u stands for the dependent variable, x is the independent variable and subscript i indicates the
derivative of order i of u with respect to x.

Throughout this section N denote an open set of the first-order jet bundle J1(R,R) where A is
well defined. Since J1(R,R) is a three dimensional manifold, Theorem 2 ensures that with any pair of
symmetries of (6) we can associate a Jacobi multiplier. In particular, the knowledge of three symmetries
for Equation (6) allows us to obtain three Jacobi multipliers for the one-dimensional integrable
distribution A = 〈A〉 and, by Lemma 1, two corresponding first integrals. Unfortunately, if no
special assumptions on the structure of the symmetry algebra are made, we have no guarantees about
the non-triviality and functional independence of the first integrals thus obtained. In this section
we investigate how to construct non-constant first integrals and complete sets of two functionally
independent first integrals.

In the following we denote by X1, X2, X3 the generators of the Lie algebra sl(2,R) satisfying the
commutation relations

[X1, X2] = 2X3, [X1, X3] = X1, [X3, X2] = X2. (7)
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It must be said that since X1 and X3 (or X2 and X3) form a solvable Lie algebra, any of such pair
of symmetries can be used to integrate Equation (6) by following any of the strategies described in
Reference [16] (Chapter 7). However, next we present a new approach to construct non-trivial first
integrals without integration, somehow similar to the strategy followed in Reference [16] (Chapter 8)
to integrate a second order ODE admitting a nonsolvable group isomorphic to the group of rotations
of a three-dimensional space.

We first prove that the symmetry generators of the symmetry algebra sl(2,R) can be used to
construct, without any kind of integration, non-constant first integrals for the differential operator (5)
associated to any second-order SL(2,R)-invariant equation:

Theorem 3. Let A = 〈A〉 be the integrable distribution generated by the vector field (5) associated to any
SL(2,R)-invariant second-order ODE (6). Assume that for i, j = 1, 2, 3 the distributions 〈A, Xi, Xj〉 have
maximal rank in an open set U ⊂ J1(R,R), where X1, X2, X3 denote the symmetry generators of sl(2,R).
Then two (possibly not functionally independent) non-constant first integrals I1 and I2 of Equation (6) arise
without any kind of integration.

Proof. Let us consider the volume form Ω = dx ∧ du ∧ du1 on J1(R,R) and the two-form α = AyΩ.
The two functions

I1 =
X1yX2yα

X1yX3yα
, I2 =

X1yX2yα

X2yX3yα
(8)

are well-defined and non-vanishing functions owing to the fact that 〈A, Xi, Xj〉 have maximal rank
for i, j = 1, 2, 3. Moreover, Theorem 2 and Lemma 1 ensure that I1 and I2 are first integrals of the
differential operator (5), because they are ratios of Jacobi multipliers. Therefore, we have only to prove
that I1 and I2 are not constant.

By contradiction, let us suppose that I1 is constant, so that X1(I1) = LX1(I1) = 0. Thus[
LX1(X1yX2yα)

]
(X1yX3yα)− (X1yX2yα)

[
LX1(X1yX3yα

]
= 0,

and, using Proposition 2 and the commutation relations (7), we can write

(2X1yX3yα + X1yX2yG1α)(X1yX3yα)− (X1yX2yα)(X1yX3yG1α)

= 2(X1yX3yα)2 = 0.

Then X1yX3yα = 0 which contradicts the hypothesis on the maximal rank of 〈A, X1, X3〉.
Analogously we can prove that I2 is not constant, considering X2(I2) = 0.

Example 1. Let A denote the corresponding differential operator (5) associated to the second-order equation

u2 =
u2

1 + 2k
2u

, k ∈ R, (9)

defined in N = {(x, u, u1) ∈ J1(R,R) : u 6= 0}. It is easy to check that the symmetry algebra of Equation (9)
is isomorphic to the nonsolvable algebra sl(2,R) with symmetry generators

v1 = ∂x, v2 = x2∂x + 2xu∂u, v3 = x∂x + u∂u, (10)

whose first-order prolongations Xi = v(1)
i , for i = 1, 2, 3, satisfy the commutation relations (7). It can

be also checked that the distributions 〈A, X1, X2〉, 〈A, X1, X3〉, and 〈A, X2, X3〉, are of maximal rank in
U = {(x, u, u1) ∈ N : (u1x− 2u)2 + 2kx2 6= 0, u2

1 + 2k 6= 0, xu2
1 + 2kx− 2uu1 6= 0}.

The corresponding 2-form (1) becomes

α =
u2

1 + 2k
2u

dx ∧ du− u1dx ∧ du1 + du ∧ du1.
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By Theorem 3, the functions

I1 =
X1yX2yα

X1yX3yα
=

2xu2
1 + 4kx− 4uu1

u2
1 + 2k

, I2 =
X1yX2yα

X2yX3yα
= −2((u1x− 2u)u1 + 2kx)

(u1x− 2u)2 + 2kx2 (11)

are two non-constant first integrals for Equation (9). It can be checked that I1 and I2 are functionally independent
in U if and only if k 6= 0. Consequently, the general solution of Equation (9) when k 6= 0, arises immediately
by setting I1 = C1, I2 = C2, for C1, C2 ∈ R. The possible singular solutions whose first-order prolongations
are in set where the first integrals are not defined or vanish (i.e., the set where the distributions 〈A, X1, X2〉,
〈A, X1, X3〉, and 〈A, X2, X3〉 are not of maximal rank) should be analyzed separately. This also applies for all
the examples presented in the paper.

We want to note that Equation (9) can be integrated by the standard Lie method, because it admits
a two-dimensional symmetry group, although there is no guarantee that the quadratures can be performed in
closed form. However, in the above process, no integration has been made at all.

In contrast to the case of second-order ODEs admitting SO(3) as symmetry group ([16] Section 8.3),
for second-order equations with symmetry algebra sl(2,R) we cannot ensure that the first integrals I1 and I2

given by (8) are always functionally independent. This can be seen, for instance, by considering Equation (9) for
k = 0 : the first integrals (11) become

I1 =
2(xu1 − 2u)

u1
, I2 = − 2u1

u1x− 2u
, (12)

which are clearly functionally dependent because the relation I1 I2 + 4 = 0 holds.

Although, as we have shown, the first integrals produced in Theorem 3 may be functionally
dependent, next we prove that a second functionally independent first integral arises by quadrature:

Theorem 4. In the same conditions than in Theorem 3, the 1-form

βk =
Xkyα

XkyX3yα
(13)

for k = 1 or for k = 2, is locally exact. Moreover, a corresponding primitive Jk is a non-constant first integral of
Equation (9) which is functionally independent of the respective first integral Ik given in (8).

Proof. For k = 1, the form (13) is closed because the symmetry generators X1 and X3 span a (solvable)
two-dimensional symmetry algebra for the differential operator A given in (5). By Poincaré lemma, β1

is locally exact and a corresponding primitive J1, which is a first integral of the integrable distribution
〈A, X1〉, arises by quadrature.

In order to prove that I1 and J1 are functionally independent, let us check that dI1 ∧ dJ1 6= 0 by
proceeding by contradiction. If dI1 ∧ dJ1 = 0, we can consider the interior product of the vector fields
X3 and X1 with the two-form dI1 ∧ dJ1 which becomes

X3yX1y(dI1 ∧ dJ1) = X1(I1)X3(J1)− X3(I1)X1(J1).

Using the fact that dJ1 = β1, where β1 is given by (13) for k = 1, we have X3(J1) = X3ydJ1 = −1
and X1(J1) = X1ydJ1 = 0. Therefore previous equality implies that

X3yX1y(dI1 ∧ dJ1) = −X1(I1) = 0.

We continue as in the proof of Theorem 3 to get the identity X1yX3yα = 0, which contradicts the
hypothesis on the maximal rank of the distribution 〈A, X1, X3〉.
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A similar proof can be used to show that the 1-form β2 =
X2yα

X2yX3yα
is locally exact and a

corresponding primitive J2 is functionally independent of the first integral I2 given in (8).

Example 2. We recall that the first integrals (12) obtained by application of Theorem 3 to Equation (9) for
k = 0 were functionally dependent. In this situation, we can use Theorem 4 in order to complete the integration.
For instance, the corresponding closed 1-form (13)

β1 =
1
u

du− 2
u1

du1

provides by quadrature a primitive J1 = ln

(
u
u2

1

)
. The function J1 (or the equivalent invariant u/u2

1) is a first

integral of Equation (9) for k = 0, which is functionally independent of the function I1 obtained in (12).

3.1. On the Functional Independence of the First Integrals (8)

Example 1 shows that the functional independence or the functional dependency of the first
integrals produced in Theorem 3 can occur for equations admitting the same realization of the
symmetry algebra sl(2,R).

In this regard, we firstly observe that when k 6= 0, Equation (9) does not admit additional
Lie point symmetries, whereas the symmetry algebra in the case k = 0 is eight-dimensional and
hence isomorphic to sl(3,R). These are the only possible symmetry algebras for second-order
SL(2,R)-invariant ODEs [23] (Proposition 2), corresponding the case of sl(3,R) to linearizable
equations by a point transformation [24] (p. 405), [25] (Theorem 8) (see also References [26,27]).
In this section we investigate the functional independence of the first integrals (8) separately for these
two types of equations.

3.1.1. Non-Linearizable Equations

According to Reference [28], there are two equivalence classes of second-order ODEs possessing
only sl(2,R) as symmetry algebra. The respective representations of sl(2,R) and the representative
equations are

Type I: v1 = ∂u, v2 = 2xu∂x + (u2 − x2)∂u, v3 = x∂x + u∂u. (14)

xu2 = u3
1 + u1 + a(1 + u2

1)
3/2, a 6= 0. (15)

Type II: v1 = ∂u, v2 = 2xu∂x + u2∂u, v3 = x∂x + u∂u, (16)

xu2 = au3
1 −

1
2

u1, a 6= 0. (17)

Let U1 and U2 denote the respective open sets where the distributions 〈A, Xi, Xj〉, 1 ≤ i, j, k ≤ 3,
corresponding to (14) and (16) are of maximal rank. Theorem 3 gives the following first integrals of
Equations (15) and (17), respectively:

Type I: I1 = 2u +
2x

a
√

u2
1 + 1 + u1

, I2 = −
2au
√

u2
1 + 1 + 2(x + uu1)

a(x2 + u2)
√

u2
1 + 1 + u1(u2 − x2) + 2ux

. (18)

Type II: I1 = 2u +
4xu1

2au2
1 − 1

, I2 = −
4auu2

1 + 4xu1 − 2u
(2au2

1 − 1)u2 − 4x2u2
1 + 4xuu1

. (19)

It can be easily checked that (19) are functionally independent in U2. This proves the
local functional independence of the first integrals (8) for any not linearizable second-order
SL(2,R)-invariant ODE that can be mapped, through a local change of variables, into the representative
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Equation (17). As an example, Equation (1) for k 6= 0, corresponds to type II, by means of the change of
variables {x = u, u = x}, and for a = −k.

The first integrals (18) are functionally independent in U1 if and only if a 6= ±1. In consequence,
the first integrals (8) are functionally independent for any not linearizable second-order SL(2,R)-invariant
ODE that is in the equivalence class of Equation (15) for a 6= ±1. In order to find a second
functionally independent first integral for Equation (17) when a = ±1, we can apply Theorem 4.
The corresponding 1-form β1 defined in (13) is closed, and hence locally exact, that is, β1 = dJ1.
Consequently, two functionally independent first integrals for Equation (15) for a 6= ±1 are given by

I1 = 2u± 2x√
u2

1 + 1 + u1

, J1 = ln
(

x
√

u2
1 + 1

)
∓ arcsinh(u1), for a = ±1. (20)

In (20), J1 is equivalent to the algebraic invariant J̃1 = exp(J1) :

J̃1 = x
√

u2
1 + 1

(
u1 +

√
u2

1 + 1
)∓1

, for a = ±1. (21)

3.1.2. Linearizable Equations

We first observe that the vector field v4 = u∂u, is one of the additional Lie point symmetries
admitted by Equation (9) for k = 0, and it commutes with all symmetry generators (10). In other words,
when k = 0 Equation (9) admits the four-dimensional subalgebra G = span{v1, v2, v3, v4}, isomorphic
to gl(2,R) ' sl(2,R)⊕R, which is one the subalgebras of the overall symmetry algebra sl(3,R) [29].

In this situation, it is possible to prove that the first integrals (8) become always functionally
dependent: since Y = v(1)

4 satisfies [Y, Xi] = 0, for i = 1, 2, 3, and by Proposition 2, LY(α) ∈ 〈α〉,
we can write

LY(I1) =
1

(X1yX3yα)2 [LY(X1yX2yα)(X1yX3yα)− (X1yX2yα)LY(X1yX3yα)]

=
1

(X1yX3yα)2 [(X1yX2yLY(α))(X1yX3yα)− (X1yX2yα)(X1yX3yLY(α))] = 0.
(22)

Similarly, LY(I2) = 0. In consequence, I1, I2 are first integrals of the integrable distribution 〈A, Y〉
(of maximal rank), which proves that I1 and I2 are functionally dependent.

Previous discussion applies, not only for the particular Equation (9) with k = 0, but for any
second-order ODE that is linearizable by a point transformation and hence admits the maximum
eight-dimensional Lie algebra isomorphic to sl(3,R). When the first integrals (8) are calculated by
using the symmetry generators of sl(2,R) included in the symmetry subalgebra gl(2,R), relation (22)
proves that such first integrals become always functionally dependent.

This result explains why the first integrals (12) are functionally dependent, but also raises the
next question: could there exist other symmetry generators of sl(2,R) for linearizable equations that
produce functionally independent first integrals?

To answer this question, we consider the unique possible realization of the symmetry algebra
sl(3,R) in the real plane [30,31], which is given by:

w1 = ∂x, w2 = ∂u, w3 = x∂x, w4 = u∂x, w5 = x∂u,

w6 = u∂u, w7 = x2∂x + xu∂u, w8 = xu∂x + u2∂u.
(23)

Any second-order ODE admitting a symmetry algebra isomorphic to sl(3,R) can be mapped
through a point transformation into u2 = 0, which admit the symmetry generators (23) [24,32]. It can
be checked that v1 = w1, v2 = w7, v3 = w3 + w6/2 and v4 = w6 span a symmetry subalgebra
isomorphic to gl(2,R), where span{v1, v2, v3} ' sl(2,R). It follows from (22) that the first integrals (8)
of u2 = 0 calculated by using Xi = v(1)

i , for i = 1, 2, 3, are functionally dependent.
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Nevertheless, it can be checked that the symmetry generators

v1 = w1 + w5 = ∂x + x∂u,
v2 = 2(w7 −w4) = 2(x2 − u)∂x + 2xu∂u,
v3 = w3 + 2w6 = x∂x + 2u∂u,

(24)

also satisfy the commutation relations (7) and hence span a symmetry subalgebra isomorphic to
sl(2,R). The associated first integrals (8) become

I1 = 2u1, I2 =
u1

u− xu1
, (25)

and are functionally independent on the open set U where the distributions 〈A, Xi, Xj〉, 1 ≤ i, j, k ≤ 3,
are of maximal rank. This proves that also in the linearizable case there exist symmetry generators of
sl(2,R) for which the first integrals (8) are functionally independent.

As an illustration, symmetry generators of sl(2,R) satisfying (7) that produce functionally
independent first integrals for Equation (9) when k = 0 are

v1 = 2
√

u∂x +
√

u∂u, v2 = 4x
√

u∂x + 2
√

u(4u− x)∂u, v3 = 2x∂x + 2u∂u. (26)

The corresponding first integrals (8) become

I1 =
2
√

u
u1

, I2 =

√
u

xu1 − 2u
, u > 0.

In summary, the first integrals obtained in Theorem 3 may be functionally dependent for
linearizable equations, but it is always possible to select symmetry generators of sl(2,R) for which the
associated first integrals become functionally independent.

4. First Integrals for nth-Order SL(2,R)-Invariant ODEs

In the following we aim at extending Theorems 3 and 4 to higher order equations admitting
sl(2,R) as symmetry algebra. This extension requires the use of the notion of solvable structure
introduced in Section 2.2, allowing the sets to have s < k vector fields satisfying the same conditions
as in Definition 1.

Given an n-order SL(2,R)-invariant ODE of the form

un = F(x, u, u1, . . . , un−1) (27)

and the corresponding vector field

A = ∂x + u1∂u + . . . + F(x, u, u1, . . . , un−1)∂un−1 (28)

on the jet bundle Jn−1(R,R), we have the following result, that shows how to construct (possibly not
functionally independent) non-trivial first integrals for (27) without any kind of integration.

Theorem 5. Let A be the differential operator (28) associated to the nth-order ODE (27), which admits the
symmetry algebra sl(2,R) with generators X1, X2, X3 satisfying the commutation relations (7). If {Y1, . . . Yn−2}
is a solvable structure for the integrable distribution 〈A, Xk〉 for k = 1 or for k = 2, and the distributions
〈A, Xi, Xj, Y1, . . . , Yn−2〉 have maximal rank for i, j = 1, 2, 3, then the function

Ik =
Yn−2y . . . Y1yX1yX2yα

Yn−2y . . . Y1yXkyX3yα
, (29)

is a non-constant first integral for the operator (28).
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Proof. We demonstrate the results only for k = 1, as the corresponding proofs for k = 2 follow exactly
the same line. If we consider the volume form on Jn−1(R,R) given by Ω = dx ∧ du∧ dux ∧ . . .∧ dun−1

and define the n-form
α = AyΩ

we have to prove that function (29) is a non-trivial first integral of (27).
We remark that, since Y1, . . . Yn−2 are not (in general) symmetries for (27), but they form a solvable

structure for 〈A, X1〉, we cannot use Theorem 2 and Lemma 1 to ensure that I1 is a first integral.
Therefore we proceed by explicit computation and we rewrite A(I1) = 0 in the equivalent form

LA(Yn−2y . . .yY1yX1yX2yα)(Yn−2y . . .yY1yX1yX3yα)+

−(Yn−2y . . .yY1yX1yX2yα)LA(Yn−2y . . .yY1yX1yX3yα) = 0.
(30)

Since, by definition of solvable structure

LA(Yl) = −LYl A ∈ 〈A, X1, Y1, . . . , Yl−1〉,

for any l = 1, . . . n− 2 we have that

LA(Yn−2y . . .yY1yX1yX2yα) = div(A)(Yn−2y . . .yY1yX1yX2yα),

where we use the fact that X1 and X2 are symmetries for A.
Analogously we have

LA(Yn−2y . . .yY1yX1yX3yα) = div(A)(Yn−2y . . .yY1yX1yX3yα),

and rewriting (30) as

div(A)(Yn−2y . . .yY1yX1yX2yα)(Yn−2y . . .yY1yX1yX3yα)+

−(Yn−2y . . .yY1yX1yX2yα)div(A)(Yn−2y . . .yY1yX1yX3yα) = 0
(31)

we get A(I1) = 0.
The second step is to prove that the first integral I1 is not constant. By contradiction, let us suppose

that I1 is constant so that X1(I1) = LX1(I1) = 0. Using the expression (29) we get

LX1(Yn−2y . . .yY1yX1yX2yα)(Yn−2y . . .yY1yX1yX3yα)+

−(Yn−2y . . .yY1yX1yX2yα)LX1(Yn−2y . . .yY1yX1yX3yα) = 0.
(32)

Therefore, the definition of solvable structure and the commutation relations (7) allow us to
rewrite (32) as

(Yn−2y . . .yY1yX1y2X3yα + Yn−2y . . .yY1yX1yX2yG1α)(Yn−2y . . .yY1yX1yX3yα)+

−(Yn−2y . . .yY1yX1yX2yα)(Yn−2y . . .yY1yX1yX3yG1α) =

2(Yn−2y . . .yY1yX1yX3yα)2 = 0,

which contradicts the hypothesis that the distribution 〈A, X1, X3, Y1, . . . , Yn−2〉 has maximal rank.

According to Proposition 4 in Reference [8], if the p independent integrals of an involutive system
A of n− p vector fields are known, then one can construct a local coordinate system in which there
exist p independent, commuting symmetries of the systemA, which constitute, in particular, a (special)
case of solvable structure for A. Since for k = 1, 2, Ak = {A, Xk} is an integrable distribution,
Frobenius’ Theorem ensures the (local) existence of n − 1 functionally independent common first
integrals [18,19,33]. Therefore, the result in Reference [8] (Proposition 4) guarantees the (local) existence
of n − 1 commuting symmetries Zi of the system Ak. From the conditions LZi (Ak) ⊂ Ak and
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[Zi, Zj] = 0 it follows that any set with n− 2 of these commuting symmetries satisfies the conditions
of Theorem 5. Of course, the construction of such specific solvable structure of commuting symmetries
is not obvious at all, and it can be as difficult as solving the given equation, but theoretically its local
existence can be ensured.

Example 3. The third-order ODE

u3 =
3u2

2
2u1
− 2u3

1C(u), u1 6= 0, (33)

where C(u) is an arbitrary function depending on u, admits the symmetry generators

v1 = ∂x, v2 = x2∂x, v3 = x∂x, (34)

whose respective second-order prolongations Xi = v(2)
i

X1 = ∂x,
X2 = x2∂x − 2xu1∂u1 − 2(2xu2 − u1)∂u2 ,
X3 = x∂x − u1∂u1 − 2u2∂u2 ,

(35)

satisfy the commutation relations (7).
Apart from (34), Equation (33) for arbitrary C(u) admits the symmetry generators fi(u)∂u, where fi,

for i = 1, 2, 3, are three independent solutions of the linear third-order ODE f ′′′(u) + 4C(u) f ′(u) +
2C′(u) f (u) = 0. The structure of the whole symmetry algebra is different depending on the explicit form of
C(u). In this example we consider two particular cases for which the equation admits an additional Lie point
symmetry v such that Y = v(2) satisfies

[A, Y] = [Xi, Y] = 0, i = 1, 2, 3. (36)

This situation is very favourable, because Y is a solvable structure with respect to 〈A, X1〉 and also
with respect to 〈A, X2〉. In this case, according to Theorem 5, a single vector field Y permits to calculate two
non-constant first integrals without any kind of integration. We present two different examples, in order to show
that both first integrals may be functionally dependent or independent.

In what follows, α = AyΩ is given by

α =−
(

3u2
2

2u1
− 2u3

1C(u)

)
dx ∧ du ∧ du1+

u2dx ∧ du ∧ du2 − u1dx ∧ du1 ∧ du2 + du ∧ du1 ∧ du2.

(37)

1. For C(u) = 1, Equation (33) admits, apart from (34), the Lie point symmetry v = ∂u. It is easy to check
that the prolongation Y = v(2) = ∂u satisfies the commutation relations (36). Let U denote the open
set of N = {(x, u, u1, u2) ∈ J2(R,R) : u1 6= 0}, where the distributions 〈A, Xi, Xj, Y〉, for i = 1, 2, 3,
have maximal rank. By Theorem 5, the symmetry generators (35) and Y is all we need to calculate the
two non-constant first integrals (29), for k = 1, 2 :

I1 =
YyX1yX2yα

YyX1yX3yα
=

2(4xu4
1 + xu2

2 + 2u1u2)

u2
2 + 4u4

1
,

I2 =
YyX1yX2yα

YyX2yX3yα
= −

2(4xu4
1 + xu2

2 + 2u1u2)

4x2u4
1 + x2u2

2 + 4xu1u2 + 4u2
1

,
(38)
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defined for (x, u, u1, u2) ∈ U. The Jacobian determinant

∂(I1, I2)

∂(u1, u2)
=

256u6
1(4xu4

1 + xu2
2 + 2u1u2)

(u2
2 + 4u4

1)
2(4x2u4

1 + x2u2
2 + 4xu1u2 + 4u2

1)
2

does not vanish in U, and hence the functions I1, I2 given in (38) are functionally independent in U.

2. It can be checked that for C(u) = 3u− 9
4

u4 Equation (9) admits, apart from (34), the Lie point symmetry

v = exp(−u3)∂u,

whose prolongation

Y = exp(−u3)
(
∂u − 3u2u1∂u1 + (3(3u3 − 2)uu2

1 − 3u2u2)∂u2

)
, (39)

satisfies the commutation relations (36).

Such first integrals are constructed through (29) by using the corresponding 2-form (37) and the symmetry
generators (34)–(39). The corresponding first integrals become:

I1 =
YyX1yX2yα

YyX1yX3yα
=

2u2x + 6u2u2
1 + 4u1

u2 + 3u2u2
1

,

I2 =
YyX1yX2yα

YyX2yX3yα
= −

2u2 + 6u2
1u2

u2x + 3xu2u2
1 + 2u1

.
(40)

Both first integrals are functionally dependent, because the relation I1 I2 + 4 = 0 holds.

This example shows that, as in the case of second order equations, the first integrals I1 and I2 may
be functionally dependent. In the next Theorem we prove that under suitable additional hypotheses on
the vector fields Y1, . . . , Yn−2, we are able to construct a second functionally independent first integral
with Ik, for k = 1 or k = 2, integrating by quadrature a closed 1-form. This extends Theorem 4 for
SL(2,R)-invariant ODEs of arbitrary order n.

Theorem 6. Let A be a vector field on Jn−1(R,R) of the form (28), associated with the nth-order
ODE (27) which admits the symmetry algebra sl(2,R) with generators X1, X2, X3 satisfying the commutation
relations (7). If {Y1, . . . Yn−2} is a solvable structure for 〈A, Xk〉 for k = 1 or for k = 2, the distributions
〈A, Xi, Xj, Y1, . . . , Yn−2〉 have maximal rank for i, j = 1, 2, 3, and {Y1, . . . Yn−2} is a solvable structure for
the three dimensional distribution 〈A, X1, X3〉, then the first integral Ik given by (29) and the first integral Jk
obtained by integrating by quadrature the closed 1-form

βk =
Yn−3y . . .yY1yX3yXkyα

Yn−2yYn−3y . . .yY1yX3yXkyα
(41)

are functionally independent.

Proof. We write the proof for k = 1, the case k = 2 is similar. First note that, since X1 and X3

form a solvable algebra of Lie symmetries for A, the vector fields X1, X3, Y1, . . . Yn−2 form a solvable
structure for 〈A〉, and the 1-form β1 is closed due to Theorem 1. In order to prove that I1 and J1 are
functionally independent, we suppose by contradiction that dI1 ∧ dJ1 = 0 and consider the interior
product of the two-form dI1 ∧ dJ1 = 0 with the vector fields X1 and Yn−2. Since Yn−2ydJ1 = 1 and
X1ydJ1 = 0 we get

Yn−2yX1y(dI1 ∧ dJ1) = X1(I1)Yn−2(J1)− X1(J1)Yn−2(I1) = X1(I1) = 0. (42)
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By proceeding as in the proof of Theorem 5, from X1(I1) = 0 it follows that
(Yn−2y . . .yY1yX1yX3yα)2 = 0, which contradicts the hypothesis that the distribution
〈A, X1, X3, Y1, . . . , Yn−2〉 has maximal rank.

Example 4. In this example we apply Theorem 6 in order to find, by quadrature, additional first integrals for
the the particular cases of Equation (33) considered in Example 3.

1. We recall that (38) are two functionally independent first integrals of Equation (33) when C(u) = 1.
Therefore, we only need to find one additional first integral, than can be done by using any of the
corresponding 1-forms (41) for k = 1, or for k = 2. For instance, the 1-form

β1 =
X3yX1yα

YyX3yX1yα
=

1
u2

2 + 4u4
1

(
du− 4u2u1du1 + 2u2

1du2

)
(43)

is closed, and hence locally exact. A corresponding primitive arises by direct integration:

J1 = u− arctan

(
2u2

1
u2

)
. (44)

According to Theorem 5, {I1, I2, J1}, where I1, I2 are given in (38), is a complete set of first integrals for
Equation (33) when C(u) = 1.

2. In order to complete the integration of the second particular case of Equation (33) considered in Example 3,
we need two additional independent first integrals, because the functions (40) are functionally dependent.

With this aim, we use the two 1-forms (41), for k = 1 and k = 2. By using the 3-form (37) and the
symmetry generators (35) we find that:

β1 =
exp (u3)

(u2 + 3u2
1u2)2

(
(u2

2 + 12u4
1u− 9u3)du− 4u2u1du1 + 2u2

1du2

)
. (45)

This 1-form is closed, and hence locally exact. A corresponding primitive arises by direct integration:

J1 = −
2 exp(u3)u2

1
u2 + 3u2u2

1
+ φ(u), (46)

where φ(u) satisfies
φ′(u) = exp(u3). (47)

Function φ(u) can be expressed in terms of the Gamma function as follows: φ(u) =
1
3

Γ
(

1
3

,−u3
)

.

According to Theorem 6, the first integral (46) and the first integral I1 (or I2) given in (40) are
functionally independent.

Similarly, a primitive of the corresponding 1-form (41) for k = 2

β2 =
exp(u3)

(xu2 + 3xu2u2
1 + 2u1)2

(−4u3
1dx + (x2u2

2 + 4xu1u2 + 4u2
1

− (9u4 − 12u)x2u4
1)du− 4xu1(xu2 + u1)du1 + 2x2u2

1du2)

(48)

becomes

J2 = −
2 exp(u3)xu2

1
xu2 + 2u1 + 3xu2u2

1
+ ϕ(u), (49)

where ϕ(u) satisfies condition (47), i.e., ϕ′(u) = exp(u3).
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A rational first integral can be calculated by using J1 and J2 :

J1 − J2 =
−4u3

1 exp(u3)

(xu2 + 3xu2u2
1 + 2u1)(u2 + 3u2u2

1)
.

Any of the sets {Ii, J1, J2} or {Ii, J1 − J2, Ji}, for i = 1, 2 are complete sets of first integrals for the

differential operator associated to Equation (3) for C(u) = 3u− 9
4

u4, which is now completely integrated.

Next we present an example of a third-order SL(2,R)-invariant ODE which only admits
an additional Lie point symmetry.

Example 5. Let A be the differential operator associated to the third-order ordinary differential equation

u3u2 +
(

u2
1 − 2uu2

)3/2
= 0, (50)

defined in N =
{
(x, u, u1, u2) ∈ J2(R,R) : u 6= 0, u2

1 − 2uu2 > 0
}

. The algebra of Lie point symmetries of
Equation (50) is four-dimensional and spanned by

v1 = ∂x, v2 = x2∂x + 2xu∂u, v3 = x∂x + u∂u, v4 = u∂u. (51)

The symmetry generators v1, v2 and v3 correspond to the fourth realization of sl(2,R) in Reference [30]
(Table 6) and hence span a symmetry subalgebra isomorphic to sl(2,R). The corresponding prolongations
Xi = v(2)

i , i = 1, 2, 3

X1 = ∂x, X2 = x2∂x + 2xu∂u + 2u∂u1 − (2xu2 − 2u1)∂u2 , X3 = x∂x + u∂u − u2∂u2 (52)

satisfy the commutation relations (7). The Lie point symmetry v4 commutes with v1, v2 and v3, which implies
that Y = v(2)

4 forms a solvable structure with respect to 〈A, X1〉 and also with respect to 〈A, X2〉. Let U be
the open set U ⊂ N where the integrable distributions 〈A, X1, X2, Y〉, 〈A, X2, X3, Y〉 and 〈A, X1, X3, Y〉 are
of maximal rank. By Theorem 5, the Lie point symmetry v4 can be exploited to find two non-constant first
integrals of Equation (50) without any kind of integration. Such first integrals become:

I1 =
YyX1yX2yα

YyX1yX3yα
=

2
(
(xu1 − u)

√
u2

1 − 2uu2 + uu1 − u2ux
)

u1

√
u2

1 − 2uu2 − uu2

,

I2 =
YyX1yX2yα

YyX2yX3yα
=

2
(
(xu1 − u)

√
u2

1 − 2uu2 + uu1 − u2ux
)

(2xu− x2u1)
√

u2
1 − 2uu2 + 2u2 + x2u2u− 2u1ux

.

(53)

It can be checked that the Jacobian determinant

∂(I1, I2)

∂(u1, u2)
=

−16u4
(
(xu1 − u)

√
u2

1 − 2uu2 + uu1 − u2ux
)

(
u1

√
u2

1 − 2uu2 − uu2

)2(
(x2 − 2xu)

√
u2

1 − 2xu− 2u2 − x2u2u + 2u1ux
)2

does not vanish for (x, u, u1, u2) ∈ U and hence the first integrals (53) are functionally independent in U.
In order to find a third functionally independent first integral by using Theorem 6 we consider the

corresponding 1-form β1 defined in (41)
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β1 =

(
uu2

2du +
(
(u2

1 − 2uu2)
3/2 − uu1u2

)
du1 + u2u2du2

)
(2uu2 − u2

1)
(

u2u− u1

√
u2

1 − 2uu2

) ,

which is closed and then locally exact. A corresponding function J1 such that dJ1 = β1 is locally given by:

J1 =
√

2 arctanh


√

2
(

u1 +
√

u2
1 − 2uu2

)
2u1

+ ln
(√

u2
1 − 2uu2

)
. (54)

According to Theorem 6, {I1, I2, J1}, where I1, I2, J2 are given in (53) and (54), is a complete set of
functionally independent first integrals that completes the integration of Equation (50).

5. Conclusions and Further Extensions

New methods to construct first integrals of differential operators associated to SL(2,R)-invariant
ODEs have been introduced. Some of these first integrals can be computed through the symmetry
generators without any kind of integration. It is possible to prove that they are never constant,
although in some cases may be functionally dependent. In this last situation, it is possible to find an
independent first integral by quadrature alone. The theoretical results show that the vector fields that
can be used to integrate the equation by quadrature are not limited to symmetries or solvable structures.

To the best of our knowledge, it is the first time that these techniques are applied to provide
first integrals for SL(2,R)-invariant ODEs without integration. In the case of second-order ODEs,
only the symmetry generators of sl(2,R) are used in the procedures. Our results apply in particular
for the class of second-order equations that are linearizable by a point transformation, which admit the
maximal symmetry algebra sl(3,R). Second-order ODEs admitting two commuting and noncommuting
unnconnected point symmetries were investigated with a view to linerization in References [26,27],
and several equivalent characterizations of linearization for second-order ODEs are well known in the
literature [25]. For all these equations we have shown how to construct directly two independent first
integrals, given just in terms of appropriate symmetry generators of sl(2,R), without any integration at all.

The SL(2,R)-invariant second-order ODEs that do not pass Lie’s test of linearization cannot
admit additional symmetries, apart from the symmetry generators of sl(2,R). They are in the class of
second-order ODEs with only three symmetries that have been considered in Reference [28] with a view
to linearization by not point transformation, relationships with the complete symmetry group [32,34],
and the Painlevé property [35–37]. Our investigation reveals that for this class of equations the first
integrals obtained without integration in Theorem 3 generally are functionally independent. In fact
there are only two possible equations which fail (considered as the representatives of the corresponding
equivalence classes). We do not know if such equations have special features which explain this
peculiar situation.

The potential application of our results to investigate the linearization under non-point
transformations needs to be investigated further. The relationships with linear equations of higher and
lower order found in Reference [28] suggest to investigate the role of different types of symmetries
in the construction of the solvable structures used in Theorem 5. This includes nonlocal symmetries,
hidden symmetries of types I and II [38], contact symmetries and generalized symmetries. By other
hand, the presence of fundamental sets of solutions of second-order linear equations that have been
recently found in the first integrals and in the general parametric solutions of SL(2,R)-invariant
ODEs [13–15] may help to establish other connections with linear equations by means of new types
of transformations.

Finally, we would like to note that several further questions remain open. Between them, it would
be of great interest to study the functional independence of the first integrals obtained in Theorem 5,
extending the study performed for n = 2 in Section 3.1 to equations of arbitrary order n > 2. In this
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regard, the results obtained in Example 3 seem to indicate that the representation of the symmetry
algebra is not as relevant as the structure of possible additional symmetries admitted by the equation.
A detailed analysis of each of the four canonical third-order equations associated to the nonequivalent
realizations of sl(2,R) in the real plane [13,14] could be a good starting point for this research.
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